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The transcriptional and phenotypic
characteristics that define alveolar
macrophage subsets in acute hypoxemic
respiratory failure

Eric D.Morrell 1,6 , Sarah E. Holton 1,6, Matthew Lawrance2,MarikaOrlov 3,
Zoie Franklin2, Mallorie A. Mitchem2, Hannah DeBerg2, Vivian H. Gersuk 2,
Ashley Garay1, Elizabeth Barnes1, Ted Liu1, Ithan D. Peltan4, Angela Rogers 5,
Steven Ziegler 2, Mark M. Wurfel1 & Carmen Mikacenic 2

The transcriptional and phenotypic characteristics that define alveolar
monocyte and macrophage subsets in acute hypoxemic respiratory failure
(AHRF) are poorly understood. Here, we apply CITE-seq (single-cell RNA-
sequencing and cell-surface protein quantification) to bronchoalveolar lavage
and blood specimens longitudinally collected from participants with AHRF to
identify alveolarmyeloid subsets, and then validate their identity in an external
cohort using flow cytometry. We identify alveolar myeloid subsets with tran-
scriptional profiles that differ from other lung diseases as well as several
subsets with similar transcriptional profiles as reported in healthy participants
(Metallothionein) or patients with COVID-19 (CD163/LGMN). We use infor-
mation from CITE-seq to determine cell-surface proteins that distinguish
transcriptional subsets (CD14, CD163, CD123, CD71, CD48, CD86 and CD44). In
the external cohort, we find a higher proportion of CD163/LGMN alveolar
macrophages are associatedwithmortality in AHRF.We report a parsimonious
set of cell-surface proteins that distinguish alveolar myeloid subsets using
scalable approaches that can be applied to clinical cohorts.

Alveolar monocytes and macrophages play an essential role in almost
all aspects of lung health and disease1,2. The majority of macrophages
in the healthy human lung are classified as mature CD206+ alveolar
macrophages3–5. Mature alveolar macrophages are primarily respon-
sible for processing surfactant, patrolling the airspaces for pathogens,
and removing dead cells and debris. However, there is strong evidence
that significant heterogeneity exists within the CD206+ alveolar mac-
rophage population. For example, mature CD206+ alveolar macro-
phages collected from participants with idiopathic pulmonary fibrosis

have much higher expression of profibrotic genes such as APOE and
MMP12 compared with CD206+ alveolar macrophages from healthy
donors6. In highly inflammatory disease states such as bacterial
infection or acute respiratory distress syndrome (ARDS), CD14+ per-
ipheral blood monocytes are recruited to the lung and become
alveolar monocytes7. Newly recruited alveolar monocytes secrete
inflammatory cytokines and chemokines as well as activate T effector
cells. Over the past decade, studies using single-cell RNA-sequencing
(scRNA-seq) have identified an evenwider spectrum of subsets in both
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health8 and disease9–20. The diverse activation states of alveolar
monocytes andmacrophages in thesedifferent diseases are thought to
contribute tomultiple processes in the lung including inciting injury or
promoting repair1,2.

There are several important knowledgegaps in our understanding
of the role that alveolar monocytes and macrophages play in acute
lung injury and repair. First, the diversity of alveolar monocytes/mac-
rophages in patients with non-COVID-19 associated acute hypoxemic
respiratory failure (AHRF) has not been well-described. It is not known
whether alveolar monocyte/macrophage subsets that have been
identified by scRNA-seq in participants with COVID-199–13 are con-
served in critically-ill patients without viral infection. Second, the cell-
surface protein markers that best distinguish specific alveolar mono-
cyte/macrophage transcriptional subsets have not been reported. The
identification of a parsimonious panel of cell-surface protein markers
that accurately identify different alveolar monocyte/macrophage
transcriptional subsets would facilitate larger-scale clinical studies that
establish robust links between each subset and clinical outcomes.
Third, the evolution of alveolar monocyte and macrophage subsets
over time is not known. How alveolar monocyte and macrophage
subsets transition over time, and the role that peripheral blood
monocyte recruitment plays in this transition, is critically important to
understanding disease pathogenesis.

In this work, we aim to address these knowledge gaps by applying
cellular indexing of transcriptomes and epitopes (CITE-seq) to alveolar
cells serially-collected from bronchoalveolar lavage (BAL) and paired
peripheral blood mononuclear cells (PBMCs) sampled from a pro-
spective cohort of mechanically ventilated patients with AHRF. CITE-
seq is a single-cell approach that combines scRNA-seqwith cell-surface
protein quantification21,22. We determine that the alveolar micro-
environment in AHRF is populated by a heterogenous collection of
alveolar monocyte/macrophage subsets with specific homeostatic,
inflammatory, and reparative transcriptional signatures that are cor-
related with soluble alveolar mediator levels. Importantly, we leverage
CITE-seq technology to identify the cell-surface proteins that distin-
guish alveolar monocyte/macrophage transcriptional subsets. Finally,
we show that the proportion of these subsets is highly dynamic, with
the percentages of distinct alveolar monocyte/macrophage subsets
either increasing, decreasing, or staying the same over the course of
days. Our findings define the transcriptional and phenotypic char-
acteristics of alveolar monocyte/macrophage subsets in AHRF and
provide a framework for future studies that seek to isolate or identify
specific subsets for functional evaluation and clinical risk stratification.

Results
Study population
We recruited critically ill participants from multiple intensive care
units at HarborviewMedical Center (HMC) in Seattle, WA. Participants
were included if they had a risk factor for ARDS (pneumonia, sepsis,
trauma, aspiration, massive transfusion, or lung contusion), were
supported on invasive mechanical ventilation for < 7 days, had an
infiltrate on radiographic imaging, and required supplemental oxygen.
Patients with COVID-19 or an existing chronic pulmonary disease were
excluded. Full inclusion and exclusion criteria are shown in Table S1.
We performed research bronchoscopies and collected paired samples
of BALF and PBMCs at the timeof enrollment (Bronchoscopy = B1) and
again 4 days later (Bronchoscopy 2 = B2) if a participant was still alive
and on invasive mechanical ventilation.

Table 1 displays the clinical characteristics of enrolled participants
(CITE-seq Cohort). Patients most commonly suffered from severe
trauma,were sampled amedian of 4 days after initiation ofmechanical
ventilation, had a median PaO2/FiO2 (P/F) ratio of 198, and 50% met
BerlinCriteria forARDS23.Wedid not performaB2onparticipantswho
were extubated prior to the sampling window, and no participants
died within 2 weeks of B1. The trajectory of hypoxemia, illness severity

(SOFA score)24, and BAL fluid biomarker levels are shown in Fig. S1.
Table S2 displays the amount of blood products transfused into par-
ticipants prior to B1. All blood transfusion products at HMC undergo
a > 4-log reduction of leukocytes according to United States Food and
Drug Administration Standards25, resulting in a negligible amount of
blood donor leukocytes transfused into enrolled participants. Cells
were cryopreserved at the time of bronchoscopy and thawed in bat-
ches on the day of analysis. Prior to CITE-seq analysis, BAL neutrophils
were depleted from thawed cells using negative selection with CD66b
magnetic beads and cells were sorted for live CD45+CD15− leukocytes.
We generated libraries with an average sequencing depth of 20,000
reads/cell for gene expression and 5000 reads/cell for feature bar-
codes (cell-surface proteins) (Table S3). We analyzed 64,317 alveolar
leukocytes (median, IQR for each participant: 5141, 4800–6171) and
101,866 PBMCs (median, IQR for each participant: 8112, 6762–10,617)
from twenty-four total samples (12 BAL and 12 PBMC) after excluding
approximately 10%of cells that didnotmeet quality control thresholds
(Table S4, Figs. S2, S3).

Alveolar myeloid subsets are highly diverse in AHRF
We clustered alveolar leukocytes using CITE-seq data in order to
identify subsets present within our cohort of participants with AHRF.
This unsupervised analysis identified cell populations that clearly
mapped to lineage markers of established cell types such as mono-
cytes, macrophages, dendritic cells (DCs), CD4+ T cells, and CD8+

T cells (Fig. 1A). As anticipated, themost abundant cell types were non-
granulocytic alveolar myeloid cells (encompassing alveolar mono-
cytes, alveolar macrophages, and cDCs).

We then did a second round of clustering limited to the alveolar
myeloid population. We identified 9 subsets (BAL Clusters 0 – 8)
characterized by highly distinct gene expression patterns (Fig. 1B, C,
Table S5). Some of the subsets we identified had very similar gene
expression patterns to previously reported alveolar macrophage sub-
sets in healthy participants (“Metallothionein Macrophages” – BAL
Cluster 8)8,17, patients with severe COVID-19 (“IFN-Related Macro-
phages” – BAL Cluster 5)9–11, or patients with idiopathic pulmonary
fibrosis (“Matricellular Macrophages” – BAL Cluster 6)14,15 (Table S6
summarizes published datasets compared with our dataset). We also
identified alveolar macrophage subsets in our participants with non-
COVID-19 associated AHRF that are distinct from other diseases such
as BAL Cluster 2, which we refer to as “Intermediate Monocyte-
Macrophages.” Intermediate Monocyte-Macrophages were character-
ized by high expression of genes associated withmaturemacrophages
such as FBP1 and APOE, but also low expression of other genes that are
highly expressed in mature macrophages such as FABP4 and IFI278,17.
Fig. 1D displays the percentage of each subset as a proportion of all
alveolar myeloid cells at B1 and B2. Our findings demonstrate the
alveolar spaceof patientswith varying severity of AHRF is composedof
a mixture of alveolar monocyte/macrophage subsets unique to AHRF
as well as subsets that are seen in other disease states such as idio-
pathic pulmonary fibrosis.

We correlatedourCITE-seq-derived alveolarmyeloid clusterswith
BAL fluid biomarker levels to explore the relationship between cell
subsets and alveolar mediators. The proportions of Mature and
Intermediate Monocyte-Macrophages were inversely correlated with
the levels of a broad range of proinflammatory and TH1 mediators
(Fig. 2A). For example, a higher proportion of Intermediate Monocyte-
Macrophages were associated with lower BAL fluid levels of sRAGE
(marker of alveolar epithelial injury), CXCL10 (TH1 chemokine), and IL-
6 (inflammatory cytokine) (Fig. S4). In contrast, LGMN/CD163, IFN-
Related, and DCs clustered together and were positively correlated
with proinflammatory chemokines and cytokines such as IL-12b. A
higher proportion of InflammatoryMonocyteswas strongly associated
with higher BAL IL-6 levels. As expected, the proportion of IFN-Related
Macrophages was strongly associated with BAL CXCL10 levels.
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Table 1 | Participant Characteristics of the CITE-seq Cohort

ID Age* Sex† Gender† Primary risk factor Secondary risk factors Sample day ARDS SOFA P/F Ratio OI

1 20–30 M Man Trauma Contusions/Massive
Transfusion

3 No 10 357 2.5

2 20–30 F Woman Trauma Contusions/Massive
Transfusion

5 No 3 468 3.2

3 40–50 M Man Trauma Contusions 2 No 7 310 3.2

4 40–50 M Man Trauma Pneumonia/
Contusions

4 Yes 9 180 5.6

5 50–65 M Man Aspiration
Pneumonitis

VT/VF Arrest 3 Yes 13 215 6.0

6 40–50 M Man Trauma Pneumonia/Massive
Transfusion

5 Yes 7 180 7.2

7 50–65 M Man NSTI/Sepsis Volume Overload 4 No 9 175 8.6

8 50–65 M Man Trauma Pneumonia 4 Yes 8 84 13.1

47
(32–54)

87%
Male

87% Man 75%
Trauma

NA 4
(3–5)

50%
ARDS

9
(7–10)

198
(176–345)

5.8
(3.2–8.3)

ARDS Acute respiratory distress syndrome, adjudicated at time of bronchoscopy,NSTI Necrotizing soft tissue infection, P/F ratio PaO2/FiO2 ratio; calculated at the time of bronchoscopy (if missing
arterial blood gas, SaO2/FiO2 ratio is reported),OIOxygenation index, SampleDay = interval of daysbetween initiation of invasivemechanical ventilation and bronchoscopy;SOFA Sequential organ
failure assessment (calculated at time of bronchoscopy), VT/VF Ventricular tachycardia/ventricular fibrillation
Race and ethnicity were ascertained by participant self-reporting; we do not report individual race/ethnicity to protect participant privacy; 75% of the cohort was white and 25% of the cohort was
black
*Age provided as a range to protect participant privacy
†Sex and gender are described based on participant self-reporting
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Fig. 1 | Alveolar monocyte andmacrophage subsets are highly diverse in acute
hypoxemic respiratory failure. We performed bronchoscopy with bronch-
oalveolar lavage (BAL) on 8 individuals with acute hypoxemic respiratory failure
supported with invasive mechanical ventilation (Bronchoscopy 1 = B1). Four of the
participants were sampled again 4 days later (Bronchoscopy 2 = B2). We isolated
single cells and assessed them with CITE-seq. A Uniform manifold approximation
and projection (UMAP) plot displaying clustering of 64,317 cells based on gene
expression. We annotated the clusters by mapping them to published datasets to
identify B cell, T cell, myeloid (alveolar macrophages = AM, alveolar monocytes =
mono, classical dendritic cells = cDCs), and other cell-types (designated by color).

B Cells identified as myeloid (including macrophages, monocytes, and cDCs) in
panel A were re-clustered. Color designates assignment of cells to one of the 9
clusters identified by Seurat. CDot plot comparing the expression of marker genes
(x-axis) across nine alveolar myeloid cell clusters (y-axis). Each cluster is annotated
based on the marker genes (Table S5). The proportion of each cluster as a per-
centage of all alveolar myeloid cells is displayed. The dot size is proportional the
percentage of cells expressing the gene in each color. The color intensity is pro-
portional to the average scaled log-normalized expression within a cluster. D Bar
plot displaying the individual percentages, median, and interquartile range of each
subset as a proportion of all alveolar myeloid cells at B1 and B2.

Article https://doi.org/10.1038/s41467-023-43223-0

Nature Communications |         (2023) 14:7443 3



Collectively, this integrated analysis highlights distinct cell-cytokine
profiles reflective of different immune responses in non-COVID-
associated AHRF.

We next explored whether the subsets were associated with
patient-level factors such as age and severity of respiratory failure to
better understand the clinical relevance of the subsets. We detected a
nominal association between a higher proportion of Inflammatory
Monocytes and worse oxygenation index (Fig. 2B, Fig. S5), however
none of the 9 subsets were significantly associated with ARDS, the
most severe manifestation of AHRF (Table S7, Fig. 2C). We did not
observe significant associations between the proportion of alveolar
myeloid subsets and age (Fig. S6), which is consistent with an analysis
of six human datasets that did not identify a transcriptionally distinct
population of alveolar macrophages that is unique to older
individuals26. Though preliminary, these results suggest the propor-
tion of alveolar monocyte/macrophage subsets is more closely related
to the alveolar microenvironment (e.g. soluble mediators) and clinical
severity than intrinsic factors such as age.

Intermediate monocyte-macrophage subsets are present in
the lung
The contribution of recruited blood monocytes and tissue-resident
precursor alveolar macrophages to alveolar myeloid subsets has been
evaluated through lineage-tracing experiments in mice1. At steady-
state, mature macrophages are continually replenished by tissue-
resident precursor alveolar macrophages. During injury, blood
monocytes are recruited to the alveolar space andmature into alveolar
macrophages27,28. Despite considerable advances in our understanding
of macrophage ontogeny in mice models, the ontogeny of alveolar
myeloid subsets in humans is not well-characterized.

We analyzed our data using RNA velocity to better understand the
developmental trajectory and fate of human alveolar myeloid subsets.

RNA velocity is derived from the ratio of unspliced (nascent) to fully-
spliced (mature)mRNAs in an individual cell29. Cells in the steady-state
have a low ratio of unspliced-to-spliced mRNA, whereas cells that are
transitioning to different developmental states have a high ratio of
unspliced-to-spliced mRNA. The developmental trajectory of a col-
lection of individual cells can be inferred by the rate and direction of
RNA velocity.

Metallothionein Macrophages and DCs had the shortest median
RNA velocities amongst the subsets (Fig. 3A), suggesting these subsets
were composed of steady-state or non-transitioning cells. In contrast,
Inflammatory Monocytes had the highest median RNA velocity com-
pared with the other subsets. The direction of RNA velocity (projected
through partition-based graph abstraction (PAGA))30 showed that
alveolar myeloid subsets originating from either FCN1 Monocytes,
CD163/LGMN Macrophages, or Matricellular Macrophages all con-
verge into Intermediate Monocyte-Macrophages (Fig. 3B, Fig. S7). The
Intermediate Monocyte-Macrophages were also connected to the
MatureMacrophage subset. These findings suggest that heterogenous
alveolar monocyte/macrophage subsets converge into a tran-
scriptionally distinct subset such as Intermediate Monocyte-
Macrophages over the early course of AHRF. It is possible this subset
may repopulate the Mature Macrophage subset or represent a per-
sistently distinct subset. Future studies with longer interval follow-up
BAL fluid sampling are required to determine whether cells in this
Intermediate Monocyte-Macrophage subset retain their transcrip-
tional programsover time, transition tomorematuremacrophages, or
undergo programmed cell death.

We analyzed paired blood monocytes that were collected at the
same time as the alveolar samples to gain insight into blood-lung
monocyte chemotaxis. We projected the blood myeloid transcrip-
tional signatures onto theUMAPgenerated fromonly alveolar samples
(Fig. 3C). Almost all the bloodmonocytes projected in the same UMAP

A.

B. 

Correlation 
Coefficient (r)

1.0

- 1.0

Alveolar Biomarkers

Alveolar M
yeloid C
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C. 

Fig. 2 | Correlations between alveolarmyeloid subsets, biomarker profiles, and
clinical severity. A Heatmap of the correlation coefficients between alveolar
myeloid subset proportions (y-axis) and log2 alveolar biomarker levels (x-axis).
Colors represent the correlation with scale indicating value of Pearson’s r correla-
tion. Axes are ordered by clustering based on Pearson correlation-distances using
pheatmap. B Associations between the proportion of alveolar myeloid subsets as a
percentage of all alveolarmyeloid cells (y-axis) and oxygenation index (OI) (x-axis).
OI is a measure of respiratory failure severity that accounts for both oxygenation
andmean airway pressure being delivered bymechanical ventilation. Higher values
indicate more severe respiratory failure. Depicted are the individual values, linear
regression best-fit line, and 95% confidence intervals (n = 8 unique participants). P-

values test whether the slope (β-coefficient) is significantly non-zero and are
nominal. Bonferronip-values are adjusted for 9 statistical tests (multiple hypothesis
testing for an association between each of the nine subsets and the clinical out-
come). C The percentage of each alveolar myeloid subset as a proportion of all
alveolar myeloid cells in participants with or without ARDS. Depicted are the
individual values, median, and interquartile range of each subset as a proportion of
all alveolar myeloid cells (n = 8 unique participants). P-values were generated with
two-sided Mann-Whitney tests and are nominal. Bonferroni p-values are adjusted
for9 statistical tests (multiple hypothesis testing for anassociationbetween eachof
the nine subsets and the clinical outcome).
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space as the alveolar subsets FCN1 Monocytes, Inflammatory Mono-
cytes, and IFN-RelatedMacrophages, suggesting these alveolar subsets
may originate from recently recruited blood monocytes. We then
created an “integrated” blood-lung UMAP by combining transcrip-
tional data from blood monocytes and paired BAL samples (Fig. S8,
Table S8). Integrated Clusters 0, 3, and 4 were characterized by
monocyte gene expression whereas Integrated Clusters 1, 2, and 5
resembled macrophages. The proportion of each cluster originating
from a BAL vs. blood sample is shown in Fig. S8C. Notably, non-
classical monocytes (Integrated Cluster 4) were almost exclusively
from blood samples. In contrast, the classical monocyte clusters

(Integrated Clusters 0 and 3) were each derived from ~25% BAL and
~75% blood samples. Our finding that classical monocytes
(CD14+CD16−), but not non-classical monocytes (CD14−CD16++), are
present in the alveolar space suggests either selective trafficking of
blood monocyte populations to the alveolar space or that the blood
monocytes are immediately polarized to a classical transcriptional
state as soon as they enter the alveolar environment in early AHRF.

Cell-surface proteins distinguish transcriptional subsets
We used information from CITE-seq to identify the cell-surface pro-
teins thatbest distinguish the alveolarmyeloid transcriptional clusters.
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Fig. 3 | Intermediate monocyte-macrophage subsets are present in the lung.
A Box-plots of median (center line), interquartile range (edge of box), 1.5x inter-
quartile range (whiskers), and individual outliers (dots) of RNA velocity for each
alveolar myeloid subset. B Partition-based graph abstraction (PAGA) of RNA
velocity field projected on the alveolar myeloid UMAP (Fig. 1B). Gray dotted lines
represent topologic connectivity of subsets. Arrows represent RNA velocity
trajectory-inference (alveolar macrophage = AM). Dendric cells were excluded
from RNA velocity analysis. C We collected paired peripheral blood mononuclear

cells (PBMC) from participants who underwent research bronchoalveolar lavage
(BAL). We isolated single cells and assessed them with CITE-Seq. We selected cells
that mapped to blood myeloid lineage markers (monocytes, macrophages, and
DCs) and then projected them into the BAL UMAP space. Blood monocytes clus-
tered in the upper right of the BALUMAP (occupying the sameBAL UMAP space as
FCN1 Alveolar Monocytes and Inflammatory Alveolar Monocytes). Blood DCs
occupied the same BAL UMAP space as alveolar DCs.
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The most differentially expressed cell-surface proteins amongst the 9
alveolar myeloid subsets are shown in Fig. 4A, Table S9, and Supple-
mentary Data 1. Fig. S9 displays the antigen-specificity scores pro-
jected onto the alveolar myeloid subset UMAP. The antigen-specificity
score represents the likelihood of a cell-surface protein binding to its
receptor compare with the negative isotype controls (and thus
accounts for unbound ambient antibodies captured in droplets).
CD206 (canonical alveolar macrophage marker) cell-surface protein
expression was not significantly different between any of the alveolar
macrophage subsets (Fig. 4B). Cell-surface protein expression levels of
CD14 (canonical monocyte marker) were significantly different
between alveolar monocyte Clusters 1 (FCN Monocytes) and 4
(Inflammatory Monocytes), and CD1c clearly distinguished alveolar
DCs from the other alveolar myeloid subsets (Fig. 4B).

Although CD206 did not discriminate between alveolar macro-
phage subsets, a combination of cell-surface protein levels of CD163
(scavenger receptor), CD123 (IL-3 receptor), and CD71 (transferrin
receptor)were able todiscernCD163/LGMN, Intermediate, andMature
transcriptional subsets, respectively (Fig. 4C). For example, CD163/
LGMN Macrophages were characterized by high CD163 and low CD71
cell-surface protein expression. On the other hand, Mature Macro-
phages were characterized by intermediate CD163 and very high CD71
cell-surface protein expression. A combination of CD48 (adhesion and
co-stimulation protein), CD86 (co-stimulation), and CD44 (cell adhe-
sion and migration protein) were likewise able to discriminate IFN-
Related, Matricellular, and Metallothionein Macrophages, respec-
tively. We have identified a parsimonious set of cell-surface protein
markers (CD14, CD163, CD123, CD71, CD48, CD86, and CD44) that
provides a roadmap for future studies that seek to identify and purify

alveolar monocyte/macrophage subsets from participants enrolled in
large clinical cohorts.

CD163/LGMN macrophages are associated with mortality
We sought to validate if the alveolarmacrophage subsets we classified
with our CITE-seq data could be identified in an external cohort of
critically ill patients, and then determine whether these subsets were
associated with clinical outcomes. We analyzed flow cytometry data
we previously generated from a cell-surface marker panel (Table S10)
applied to BAL fluid samples collected from the HMC Clinical
Cohort5,31. The HMC Clinical Cohort enrolled critically ill participants
undergoing bronchoscopy for suspicion of ventilator-associated
pneumonia. Table 2 displays the clinical characteristics of the HMC
Clinical Cohort. Participants were sampled a median of 6 days after
initiation of mechanical ventilation, the median P/F ratio was 185, and
57% of the patients were diagnosed with bacterial pneumonia.

We developed an alveolar macrophage gating strategy based on
the relative cell-surface protein expression levels of CD71 and CD163
that we observed with our CITE-seq data (Fig. 5A). Using this gating
strategy, we identified distinct alveolar macrophage subset popula-
tions within the broader CD206+ alveolar macrophage population.
There was no difference in the relative proportions of Mature Macro-
phages (CD71HICD163HI) between participants who remained alive and
those who died (Fig. 5B). However, the proportion of CD163/LGMN
Macrophages (CD71LOCD163HI) was significantly higher in participants
who died vs. remained alive (Fig. 5B). We next tested whether the
proportion of CD163/LGMN Macrophages was associated with
decreased ventilator-free days, given that this subset has recently been
associated with a “pro-fibrotic” phenotype in patients with severe
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Fig. 4 | Cell-surface protein markers distinguish alveolar monocyte and mac-
rophage subsets. We used feature barcodes to identify the cell-surface proteins
that best discriminated each alveolar myeloid transcriptional subset. A Table dis-
playing the 9mostdifferentially expressed cell-surfaceproteins (y-axis) across nine
alveolar myeloid cell transcriptional subsets (x-axis). Data on CD206 and CD14 are
included at the bottom as a reference. The color intensity is proportional to the
average scaled log-normalized expression for each cell-surface protein. Supple-
mentary Data 1 shows the cell-surface protein intensities for each subset. B The
normalized expression for each cell-surface protein (y-axis) for each

transcriptional subset (x-axis). Depicted are violin plots (including median, inter-
quartile range, and 1.5x interquartile range). The p-value was generated with a two-
sided T-test of the pair-wise comparison between the two subsets with the largest
difference in CD206 expression.C The normalized expression for each cell-surface
protein (y-axis) for each transcriptional subset (x-axis). Depicted are violin plots
(including median, interquartile range, and 1.5x interquartile range). P-values were
generated with two-sided T-tests. The tables on the right summarize the relative
cell-surface protein expression levels for each alveolarmacrophage transcriptional
subset.
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COVID-19 or idiopathic pulmonary fibrosis10,32. We observed a non-
statistically significant trend between a higher proportion of CD163/
LGMN Macrophages and fewer ventilator-free days (Fig. 5B). The
proportion of CD163/LGMN Macrophages was highly correlated with
soluble CD163 (sCD163) levels in BAL fluid (Fig. 5B). These analyses
translate our CITE-seq data into a broader clinical context by showing
that alveolar macrophage transcriptional subsets such as CD163/
LGMN and Mature Macrophages can be identified using cell-surface
protein markers, and that these subsets are associated with clinical
outcomes such as hospital mortality.

The proportions of alveolar myeloid subsets evolve
during AHRF
Although the proportions of different alveolar monocyte and mac-
rophage subsets have been shown to rapidly change and be asso-
ciated with severity of acute lung injury in animal models6,28,33–37,
little is known about the temporal dynamics of alveolar monocyte

and macrophage subsets in humans with AHRF. We compared the
transcriptional programs of alveolarmonocyte/macrophage subsets
in B1 vs. B2 to better understand the evolution of subsets over time
in humans with AHRF. The most upregulated genes in B1 compared
with B2 samples in bulk analysis (encompassing alveolar monocytes,
macrophages, and DCs) were inflammatory cytokines and chemo-
kines, such as S100A8, S100A9, and CCL2 (Fig. 6A). These findings
suggest there was a global decrease in alveolar myeloid cell inflam-
matory programs from enrollment to 4 days later. However, when
we analyzed subsets individually, we found that the proportion of
Intermediate Monocyte-Macrophages (BAL Cluster 2) and Mature
Macrophages (BAL Cluster 3) significantly increased from B1 to B2,
whereas the proportion of Inflammatory Monocytes (BAL Cluster 4)
trended downward from B1 to B2 (Fig. 6B). These findings confirm
there is significant heterogeneity in the evolution of different
alveolar myeloid subsets over time that bulk transcriptional analysis
does not completely capture.

We integrated our dataset with a publicly-available scRNA-seq
dataset that analyzed alveolar macrophages collected from healthy
human participants (HP)8 to assess how alveolar macrophage gene
expressionmight change over an extended period of time after AHRF.
We observed that alveolar macrophages from B2 had a transcriptional
signature that straddled B1 and HP, suggesting these cells may be in a
transitional state of repair from acute injury to health (Fig. 6C). Known
mature alveolar macrophage marker genes such as PPARG, MARCO,
and ALDH2 had highest expression in HP (Fig. 6D). On the other hand,
proinflammatory chemokine genes such as CCL2 (MCP-1) and CXCL8
(IL-8) had highest expression in B1 with almost no expression in HP.
Interestingly, some genes such as APOE and TREM2 had higher
expression at B2 compared with B1 or HP. APOE and TREM2 have been
shown to mark a macrophage phenotype that is induced by phago-
cytosis of apoptotic cells38–40. Overall, we have determined that the
alveolar composition of monocyte and macrophage subsets rapidly
changes over a short time period after AHRF onset.

Table 2 | Participant Characteristics of the HMC
Clinical Cohort

Participant Characteristics HMC Clinical Cohort (n = 51)

Age 49, 34–63

% Man 78%

% Trauma ICU 75%

% Neuro ICU 25%

Intubation-to-BAL Interval (days) 6, 4–10

P/F 185, 164–250

OI 19, 13–27

% Pneumonia 57%

% Hospital Mortality 16%

ICU Intensive care unit, P/F ratio PaO2/FiO2 ratio, OI Oxygenation index
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Fig. 5 | CD163/LGMN Macrophages are Associated with Mortality in Acute
Respiratory Failure. We collected bronchoalveolar lavage (BAL) fluid from intu-
bated and mechanically ventilated participants (HMC Clinical Cohort) (n = 51).
Table 2 shows the participant characteristics. We analyzed alveolar cells from the
BAL fluid using flow cytometry. A Representative gating for identifying alveolar
monocytes (Monos) (green box) and CD206+ alveolar macrophages (AMs) (orange
box). We classified AMs into CD71HICD163HI (yellow box – Mature AMs) or
CD71LOCD163HI (purple box – CD163/LGMN AMs) subsets based on our CITE-seq
data (Fig. 4C). B The percentage of CD206+ AMs (orange box), airway monocytes
(CD206+CD14+), CD71HICD163HI (yellow box – Mature AMs), and CD71LOCD163HI

(purple box – CD163/LGMN) as a proportion of all alveolar myeloid cells between
participants based on hospital mortality. Depicted are the individual values, med-
ian, and interquartile range of each subset as a proportion of all alveolar myeloid

cells. P-values were generated with two-sided Mann-Whitney tests. CD71LOCD163HI

(purple box – CD163/LGMN AMs) as a proportion of all alveolar myeloid cells
between participants based on ventilator-free days (VFDs). Participants intubated
> 7 days prior to bronchoscopy were excluded from this analysis. VFDs were
defined as the number of days alive and free of invasive mechanical ventilation in
the 21 days following bronchoscopy. VFDs were binned into tertiles. P-value was
generated with Kruskal-Wallis test. Association between soluble CD163 BAL levels
and the percentage of CD71LOCD163HI (CD163/LGMN AMs) as a proportion of all
alveolarmyeloid cells. Depicted are the individual values, linear regression line, and
95% confidence interval. P-values test whether the slope (β-coefficient) is sig-
nificantly non-zero. r Pearson Correlation Coefficient.
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Discussion
In this study, we leveraged CITE-seq to identify alveolar monocyte/
macrophage subsets in patients with AHRF and determined cell-
surface protein markers that could discriminate these subsets. We
validated some of these subsets in an external clinical cohort using the
higher-throughput approachofflowcytometry, and found that CD163/
LGMNmacrophages are associatedwithmortality. By analyzing paired
blood and alveolar samples, we found that FCN1 alveolar monocytes,
inflammatory alveolar monocytes, and IFN-related macrophages have
similar transcriptional profiles as blood monocytes. In contrast, other
alveolar macrophage subsets such as CD163/LGMN and Mature have
highly distinct transcriptional signatures compared with peripheral
blood monocytes41. We determined that alveolar monocytes in AHRF
are uniquely classical monocytes (CD14+CD16−). Finally, we observed
large changes in the relative abundance of different alveolar mono-
cyte/macrophage subsets over the course of only 4 days during early
AHRF. Collectively, our study establishes the transcriptional and phe-
notypic characteristics of alveolar monocytes/macrophages in early
AHRF. These characteristics can be used to facilitate the identification
of alveolar monocyte/macrophage subsets for future functional and
clinical characterization.

The finding that CD163/LGMN macrophages represent between
20 and 40% of alveolar myeloid cells in patients with AHRF and are
associatedwith hospitalmortality strongly suggests this subset plays a
key role in early AHRF (Fig. 5). In our CITE-seq analysis, CD163/LGMN
macrophages were characterized by high expression of genes related
to hemoglobin-haptoglobin processing (e.g., CD163, HMOX1) and
MHCII antigen presentation (e.g. LGMN, CTSL) (Table S5). CD163 is a
hemoglobin-haptoglobin scavenger receptor42. Binding of

hemoglobin-haptoglobin to CD163 on macrophages triggers anti-
inflammatory responses that are mediated through heme oxygenase 1
(HMOX1)43,44. CD163 has also been shown to serve as a macrophage
receptor for both gram-positive and -negative bacteria45. Legumin
(LGMN) and cathepsin L (CTSL) are proteases that localize to the endo-
lysosomal system. They both play a fundamental role in processing
peptides to form complexes with class II MHC molecules for antigen
presentation46–49. Reduced monocyte expression of LGMN has been
shown to contribute to endotoxin tolerance50. Given their transcrip-
tional and phenotypic characteristics, it is possible a role of CD163/
LGMNmacrophages in early AHRF is to efficiently process cellular and
extracellular matrix debris and then direct antigen-specific adaptive
immune responses. As such, we speculate the association between
CD163/LGMN macrophages and mortality in our clinical cohort could
be related to severity of initial lung injury and/or excessive T cell
activation. Notably, CD163/LGMN macrophages have been isolated
from human lung digests collected from patients with COVID-19
associated ARDS10 as well as patients with idiopathic pulmonary
fibrosis (Table S6)32. Although both of these studies identified CD163/
LGMNmacrophages within a fibrotic niche, the role ofmacrophages in
disease is highly dependent on timing (e.g., early vs. late disease) and
context (e.g. repair vs. fibrosis). Further investigation of CD163/LGMN
macrophages in both time- and tissue-specific contexts is required to
better understand their functional roles in AHRF and other disease
states.

Our CITE-seq analysis adds clarity to prior studies that have used
either transcriptional or phenotypic approaches in isolation, and
confirms that mature alveolar macrophages with homeostatic tran-
scriptional programs are best discerned by cell-surface proteins such
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Fig. 6 | The proportions of alveolar myeloid subsets evolve during acute
hypoxemic respiratory failure. A Heat map showing differentially expressed
genes in bulk alveolar myeloid cells between Bronchoscopy 1 (B1) and Broncho-
scopy 2 (B2). B The percentage of each alveolar myeloid subset as a proportion of
all alveolar myeloid cells at B1 and B2. Depicted are the individual values and lines
connecting paired samples (n = 4 unique participants). P-values were generated
with paired two-sided T-tests. Participants who met criteria for ARDS are shown in

red. C UMAP plot incorporating our dataset with single-cell gene expression data
from healthy human participants (HP) who underwent BAL8. Color designates
assignment of cells to either B1, B2, or HP.D Normalized gene expression of select
genes between participants in B1 (n = 8), B2 (n = 4), andHP (n = 9). Depicted are the
individual values, mean, and standard deviation of each subset as a proportion of
all alveolar myeloid cells. P-values were generated with a two-sided T-test.
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as CD71, CD169, andCD274 (PD-L1) (Table S9). Themajority of alveolar
macrophages collected from healthy humans have high expression of
genes associated with homeostatic functions like surfactant proces-
sing (e.g. FABP4, PPARγ) and inhibition of inappropriate immune acti-
vation (e.g., SERPING1)1,8,15,17. Studies using cell-surface proteins to
phenotype alveolar macrophages through flow cytometry or cyto-
metry time-of-flight have determined that most alveolar macrophages
from healthy individuals express CD71 (transferrin receptor), CD169
(sialoadhesin – cell adhesion), and CD274 (checkpoint protein – T cell
inhibition)3–5,51. We and others have identified Mature Macrophages
using these cell-surface protein markers in participants with ARDS5,7

and idiopathic pulmonary fibrosis51, however the proportions of
Mature Macrophages in these disease states are much lower than in
healthy participants where Mature Macrophages constitute ~90% of
alveolar myeloid cells3,5,51. The robust finding that loss of Mature
Macrophages (CD71, CD169, CD274) are associatedwith highly distinct
pathologic states suggests the replacement of Mature Macrophages
with distinct monocyte/macrophage subsets is a common feature
across many forms of lung injury.

Our identification of cell-surface proteins that distinguish alveolar
monocyte/macrophage transcriptional subsets provides a foundation
for future studies that seek to characterize alveolar monocyte/mac-
rophage subsets collected from large clinical cohorts. Both the CD163/
LGMN and Mature subsets have high cell-surface expression of the
classic alveolarmacrophagemarkerCD2064,making this an ineffective
cell-surface marker to distinguish these two subsets (Fig. 4B). We
found that a combination of CD71 and CD163 cell-surface protein
expression discerned these two alveolar macrophage subsets within
the CD206+ population (Fig. 5A). Consistent with findings from lung
digests collected from patients with idiopathic pulmonary fibrosis14,15,
Matricellular Macrophages in our cohort of AHRF patients had high
gene expression of SPP1 (osteopontin), MMP7, CHI3L1, GPNMB, and
PLA2G7. The Matricellular Macrophage subset was marked by
CD163LOCD86HI cell-surface protein expression, distinguishing it from
other alveolar macrophage subsets. Future work should focus on
validating and refining the cell-surface proteins that best distinguish
alveolar monocyte and macrophage subsets.

Our single-cell analysis of serially-collected alveolar samples
expands the existing conceptual model of how alveolar monocyte/
macrophage subsets evolve over time and might contribute to injury
and repair in AHRF/ARDS6,28,33–37. We found that the proportion of
specific subsets such as Intermediate Monocyte-Macrophages and
Mature Macrophages increase over early AHRF, while other popula-
tions such as Inflammatory Monocytes decrease over this same time
course (Fig. 6B). This finding strongly suggests that previous associa-
tions identified between early (Day 1 of ARDS) or late (Day 8) pro-
inflammatory bulk alveolar myeloid gene expression signatures and
clinical outcomes are driven primarily by Inflammatory or FCN1
monocyte subsets (rather than more mature alveolar macrophage
subsets)41,52. This finding also confirms that prior studies identifying
associations between the number and proportion of alveolar mono-
cytes/macrophages over the course of ARDS and clinical outcomes
should be interpreted with caution, because different subsets within
the broader alveolar macrophage population have different trajec-
tories during AHRF/ARDS7,53. Future studies should consider the tem-
poral stage of illness when analyzing alveolar monocyte/macrophage
subsets given the extent their composition can change over the course
of only a few days.

Our study has several limitations. First, our sample size for the
CITE-seq experiments was relatively small and it is possible we did not
capture all the relevant alveolar monocyte/macrophage subsets that
exist in participants with AHRF. Despite this small sample size, wewere
able to identify both previously reported as well as potentially unde-
scribed alveolar monocyte/macrophage transcriptional subsets. Our
findings examining the CD163/LGMN subset in the larger HMCClinical

Cohort also support the validity of our CITE-seq findings. Second, we
were limited to sampling participants at two timepoints separated by
only 4 days. We leveraged an external dataset to infer more long-term
changes in alveolar macrophage transcriptional profiles, however
these findings need to be validated. Third, we did not examine the
relationship between temporal changes in alveolar monocyte/macro-
phage subsets and clinical outcomes given our sample size. Fourth, we
used RNA velocity trajectory analysis to infer cell ontogeny, however
lineage tracing experiments are required to definitively demonstrate
cell ontogeny. Finally, we were only able to validate CD14, CD71, and
CD163 in our clinical cohort because our flow cytometry data was
generated prior to our CITE-seq experiments. The “spectrum” model
of macrophage activation has an inherent “line-drawing” problem that
makes it challenging to classify macrophages into functionally or
clinically distinct subsets54–56. Future studies using functional assays
and more granular phenotyping approaches such as flow cytometry
are required to validate the biologic and clinical relevance of the
subsets we identified with CITE-seq.

In conclusion, we identify a heterogenous mixture of alveolar
monocyte/macrophage subsets in patients with AHRF/ARDS, some of
which are associated with hospital mortality. We provide a description
of cell-surface proteins to discern alveolar monocyte/macrophage
transcriptional subsets in a clinical cohort. The composition of these
alveolar monocyte/macrophage subsets is highly dynamic in AHRF,
supporting the general concept that they may be a modifiable factor
that could be targeted to influence clinical outcomes27,57,58.

Methods
Study population
All study protocols were approved and monitored by the University
of Washington Human Subjects Division. We enrolled two separate
cohorts for this study. The CITE-seq data was drawn from a pro-
spectively enrolled cohort of critically ill adult patients with AHRF
between 9/1/2020 and 11/8/2021 (CITE-seq Cohort). We performed
research bronchoscopies and collected BAL and paired PBMCs from
each participant. Written informed consent was obtained for all
participants in the CITE-seq Cohort prior to any study interventions.
We analyzed excess BAL fluid not needed for clinical care from a
second cohort of critically ill patients undergoing bronchoscopy for
suspicion of ventilator-associated pneumonia for flow cytometry
experiments (HMC Clinical Cohort)5,31. All bronchoscopies per-
formed in the HMC Clinical Cohort were conducted for a clinical
purpose by amember of the team caring for the patient. We analyzed
all extant samples with > 150,000 leukocytes that had been collected
between 1/1/2016 and 8/1/21 with spectral flow cytometry. Partici-
pants in the HMC Clinical Cohort were enrolled under a waiver of
informed consent. No participants in the CITE-seq or HMC Clinical
Cohort were co-enrolled. Our study protocol did not include parti-
cipant financial compensation.

Research bronchoscopy
We performed the research BAL by passing a disposable fiberoptic
bronchoscope (GlideScope B-Flex 5.0, Verathon product code: 0570-
0375) through the endotracheal tube. Patients were preoxygenated
with FiO2 = 100% for 5min before and during the procedure. The
procedure was performed with patients remaining on their baseline
sedation and/or analgesia.We administered 1% topical lidocainebefore
and during the procedure as needed for cough (maximum dose = 60
mg). After the bronchoscope was wedged in the right middle lobe or
lingula, five separate 30mL aliquots of normal saline were instilled and
recovered by wall-suction. An external Study Monitor reviewed all
research bronchoscopy encounters and was responsible for reporting
any adverse events to the University of Washington Human Subjects
Division. There were no serious adverse events associated with
this study.
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Clinical definitions
We abstracted clinical data from the electronic medical record into
standardized case report forms. ARDS was defined by the 2012 Berlin
definition23. Sequential organ failure assessment (SOFA) severity
scores were calculated based on the original instrument24. Oxygena-
tion index (OI) was calculated by dividing the product of FiO2 and
mean airway pressure by the PaO2

59. In the HMC Clinical Cohort ana-
lysis, ventilator-free days were calculated as the number of days a
participants was alive and free of invasive mechanical ventilation
within the 21 day period after the participant underwent
bronchoscopy60. We excluded patients from this analysis who under-
went the bronchoscopy > 7 days after initiation of mechanical
ventilation.

Sample collection and processing
The BAL fluid collected for research bronchoscopy (CITE-seq analysis)
or as part of the HMC Clinical Cohort (flow cytometry analysis) was
processedusing the sameprotocol.Wefiltered freshBAL fluid through
a 70-micron cell strainer (Fisher Scientific, Catalogue number: 08-771-
2). The filtrate was centrifuged at 400 x g x 5min and then the super-
natant was separated and aliquoted. The cell-pellet was resuspended
and incubated in Red Blood Cell Lysis Buffer (BioLegend, Catalogue
number: 420301) x 15min at room temperature. After incubation, the
cell suspension was centrifuged at 400 x g x 5min. The supernatant
was discarded, and the remaining cell pellet was resuspended in 2%
FBS/PBS. We obtained a cell count, and then aliquoted the cells at a
concentration of 10,000,000 cells/mL freezingmedia (7%DMSO/FBS).
The cells were placed into a Mr. Frosty freezing container at −80 °C to
allow for controlled cooling for at least 24 h and then transferred to
liquid nitrogen for longer-term storage.

Peripheral bloodwas collected into Cell Preparation Tubes (CPTs)
and centrifuged at 1800 x g x 25min at room temperature. The buffy
coat was collected and then washed in PBS. The suspension was cen-
trifuged at 400 x g x 15min at room temperature. The remaining cell
pellet was resuspended in 2% FBS/PBS, cells were counted, and then
aliquoted at a concentration of 5,000,000 cells/mL freezingmedia (7%
DMSO/FBS). The cells were placed into a Mr. Frosty freezing container
at −80 °C to allow for controlled cooling for at least 24 h and then
transferred to liquid nitrogen for longer-term storage.

Biomarker measurements
We measured BALF biomarker concentrations using electro-
chemiluminescent immunoassays per the manufacturer’s instructions
(Meso Scale Discovery) (V-Plex Proinflammatory Panel 1 (K15049D);
V-Plex Chemokine Panel 1 (K15047D); V-Plex Cytokine Panel 1
(K15050D); U-Plex sPD-L1 (K151Z7K); R-Plex Calprotectin (K151AJYR);
R-Plex Rage (K1514QR); R-Plex sCD163 (K151J4R)). All BALF samples
underwent two freeze-thaw cycles prior to analysis.

Flow cytometry
Cryopreserved cells were thawed in batches on the day of analysis in a
37 °Cwater bath x 2min, resuspended inRPMI, and then centrifuged at
400 x g x 5min. The cells were washed in RPMI and the solution was
again centrifuged at 400 x g x 5min. The cell pelletwas resuspended in
Benzonase (1:5000 dilution in RPMI). Cells were stained with an
eFluor455UV fixable viability dye (Fisher Scientific, Catalogue number:
65-0868-14) x 30min at room temperature in the dark. The cells were
washed with PBS and then we stained the cells with an antibody
cocktail x 30min at room temperature in the dark. Table S10 shows the
antibodies/clones for our flow cytometry antibody cocktail. After
staining, cells were fixed with 4% PFA/FACS buffer x 10min at room
temperature in the dark. Stained cells were washed, resuspended in
FACS buffer, and data was acquired on a 5-laser Cytek Aurora (Cytek
Biosciences) spectral flow cytometer at an event rate for 2500–5000
events per second.We unmixed the spectralflow cytometry data using

SpectraFlow software and analyzed the.fcs files with FlowJo ver-
sion 10.8.1.

Single-cell isolation and library preparation for CITE-seq
Cells were thawed in batches on the day of analysis in a 37 °C water
bath x 2min, resuspended in RPMI, and then centrifuged at 400 x g
x 5min. The cells were washed in RPMI and the solution was again
centrifuged at 400 x g x 10min. The cell pellet was resuspended in
Benzonase (1:5000 dilution in RPMI) x 5min at 37 °C. The cells were
filtered through a 70-micron cell strainer into a FACS tube, washed
with PBS, centrifuged at 400 x g x 5min, and then resuspended in
blocker (1:200 IgG human/mouse blocking solution) x 15min at room
temperature. The solution was centrifuged at 400 x g x 5min and the
cell pellet was resuspended in MojoSort Buffer (BioLegend, Catalogue
number: 480017). We incubated cells with anti-human CD66b (Clone
G10F5, BioLegend, Catalogue number: 305120, dilution 1:40) on ice
x 15min, washed the cells, and centrifuged the solution at 400 x g x 5
min. The cell pelletwas resuspended inMojoSort Buffer containing the
Streptavidin Nanobeads to bind to CD66b labeled cells on ice x 15min.
The solution waswashed, centrifuged at 400 x g x 5min, resuspended
inMojoSort Buffer, and added to themagnet sorter for a total of three
separate cycles each 5min in duration. The cell suspension was cen-
trifuged at 400 x g x 5min, resuspended in PBS, and the remaining
cells were counted.

The cells were first stained with Calcein AM (1:10,000, BD Phar-
migen, Cataloguenumber: 564061) x 30min at roomtemperature. The
solution was washed with PBS then centrifuged at 400 x g x 5min. The
cell pellet was then stained with a MasterMix of CD15 (Clone W6D3,
Biolegend, Catalogue number: 323028, dilution 1:16), CD45 (Clone
H130, BioLegend, Catalogue number: 304008, dilution 1:50), Human
IgG, Mouse IgG, TotalSeq-C Human Universal Cocktail v1.0 (BioLe-
gend, Catalogue number: 399905), TotalSeq-C spike-in antibodies
CD206 (TotalSeq-C0205 anti-human CD206 Clone 15-2, BioLegend,
Catalogue number: 321147), and CD279 (TotalSeq-C0088 anti-human
CD279 (PD-1) Clone EH12.2H7, BioLegend, Catalogue number:
329963). Table S3 shows the entire CITE-seq antibody panel. The cells
were incubated in this MasterMix at 4 °C x 45min in the dark. The
solution was washed with FACS buffer, centrifuged at 400 x g x 5min,
and resuspended in FACS buffer for cell sorting. We sorted cells using
an Aria Fusion and gated on live, single, CD45+, CD15- cells targeting
> 100,000 events. The cells were then processed for single cell cap-
ture, library preparation, and sequencing.

Single cells were processed using the Chromium Next GEM Single
Cell 5’ v2 Kit (10x Genomics). Cells were loaded onto each channel with
a target recovery of 10,000 cells. Libraries were sequenced on a Next-
Seq2000 (Illumina)with an average sequencing depth of 20,000 reads/
cell for gene expression and 5000 reads/cell for cell-surface proteins.

Computational analysis
We used Cell-Ranger mkfastq (10x Genomics) to demultiplex and
produce raw fastq files for downstream analyses. We used Cell-Ranger
multi to align per-sample reads of gene expression to the GRCh38
human reference genome, as well as feature barcoded TotalSeq anti-
bodies to their reference sequences. We combined per-sample-count
matrices into a filtered aggregated matrix using Cell-Ranger aggr. We
excluded cells with < 500 genes, > 4500 features, > 12.5% reads map-
ping to the mitochondrial genome, > 15% genes mapping to ribosomal
genes, and > 5% genes aligning to heme-associated genes.

We used query-reference mapping in Seurat to annotate cells
based on their similarity to expression in the provided peripheral
blood monocyte dataset22. We filtered our Seurat object to only
include monocytes, macrophages, and classic dendritic cells as
defined by this reference. To account for batch effects, we normalized
each sample (method = Center Log Fold Ratio) and filtered based on
the above quality control metrics independently before integrating
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samples via Seurat’s FindIntegrationAnchors function (number of
variable anchors = 2000).

Statistical analyses
We performed PCA analysis in Seurat22 using both surface antibodies
andgeneexpressiondata (30PCs fromgene expression and 15PCs from
surface antibodies), followed by dimensional reduction (UMAP, dims:
1:30). We calculated nearest neighbors and performed Louvain clus-
tering in Seurat (resolution =0.3). We identified both top gene and
antibody markers for each of our clusters using FindMarkers (Wilcox-T
test, log2fc >0.25, p<0.05 for gene expression, p<0.05 and log2fc >0.1
for antibodies). In a sensitivity analysis,weperformednoise reductionof
theantibodymarkersbyutilizing threedifferentmouse isotypenegative
controls to account for background technical noise generated from
factors such as ambient, unbound antibody encapsulated in the dro-
plets. We projected the cell-surface protein “antigen specificity score,”
which is the likelihood of an antigen binding to a specific receptor
compared to the negative control ((1−beta.cdf (0.925, Antigen UMI + 1,
Control UMI + 3)) ∗ 100), onto the alveolar myeloid cluster UMAP.

For our integrated blood-lung analysis, we used integration
anchors in Seurat to perform query-reference mapping between our
BAL dataset and paired PBMC samples. This allowed PBMC samples to
be visualized on the previously produced UMAP projection of BAL
cells. We annotated our PBMC samples based on cluster identities
derived fromour BALdataset (Multimodal ReferenceMapping), as well
as calculated additional PCs (n = 30) andUMAP (dims: 1:30) to describe
variation in the combined PBMC and BAL dataset. We used ggplot2 to
visualize our analyses61. We used T-tests or Mann-Whitney tests based
on whether the data had a parametric or non-parametric distribution
for univariate comparisonsof expression levels or percent populations.
Sample size for power analysis was not predetermined for our study.

We derived average gene expression values for B1 and B2 alveolar
myeloid cells via the AverageExpression Function in Seurat, creating
pseudo-bulked samples for further differential expression analysis.We
then identified differentially expressed genes between B1 and B2
timepoints (log2fc > 0.25,p-value < 0.05). In order to compareour data
with previously published data from healthy participants8, we batch
corrected and integrated both datasets via shared variable genes using
FindIntegrationAnchors (n anchors = 2000). We averaged the scaled
expression of each gene across our samples and our clusters using the
pseudo-bulk approach described above.

We performed RNA velocity and trajectory analyses on the BAL
samples byextracting themetadata fromourfiltered Seurat object and
used it to construct an anndata object for processing in python using
Scampy62, NumPy63, and pandas64. Loom files containing spliced and
unspliced reads on a per sample basis were constructed using
velocyto29, and integrated with our pre-existing metadata with the
merge utility accompanying the package scVelo65. We used scVelo to
calculate velocity scores for each cell in our dataset, and visualized our
previously constructed projections with the included velocity vectors.
We generated a PAGA velocity graph using the RNA velocity data30. All
statistical analyses were performed in R version 4.2.1 and in Python2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We accessed published RNAseq data from healthy participants8 from
the GEO database under accession code GSE151928. We accessed a
reference dataset22 in Seurat to annotate our CITE-seq data using
GSE164378. We accessed the GRCh38 human reference genome using
assembly accessionGCA_ 000001405.29.We have deposited the CITE-
seqdata generated in this study into theGEOdatabase under accession
code GSE234918. All other data are available in the article and its

Supplementary files or from the corresponding author upon
request. Source data are provided with this paper.

Code availability
Wehaveposted the codewe used for theCITE-seq analysis intoGitHub
(https://github.com/BenaroyaResearch/Alveolar_Macrophage_
Subsets_ARDS).
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