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All electromagnetic scattering bodies are
matrix-valued oscillators

Lang Zhang1, Francesco Monticone 2 & Owen D. Miller 1

Scattering theory is the basis of all linear optical and photonic devices, whose
spectral response underpinswide-ranging applications from sensing to energy
conversion. Unlike the Shannon theory for communication channels, or the
Fano theory for electric circuits, understanding the limits of spectral wave
scattering remains a notoriously challenging open problem. We introduce a
mathematical scattering representation that inherently embeds fundamental
principles of causality and passivity into its elemental degrees of freedom. We
use this representation to reveal strong constraints in the mathematical
structure of scattered fields, and to develop a general theory of the maximum
radiative heat transfer in the near field, resolving a long-standing open ques-
tion. Our approach can be seamlessly applied to high-interest applications
across nanophotonics, and appears extensible to general classical and quan-
tum scattering theory.

Probing and harnessing the frequencydependenceof electromagnetic
scattering underlies atomic spectroscopy, molecular sensing, infor-
mation and energy technologies, and more1–4. A key pillar of electro-
magnetic scattering theory is the decomposition of scatterers into
“resonators,” inwhich spectral response is determinedby lifetimes and
coupling coefficients (or suitable generalizations) of resonant
modes5–8. These “physical oscillators” enable complex scenarios to
often be well-described by a small number of parameters, and they
offer high-accuracy descriptive modeling. However, there is typically
no limit on the possible number, lifetimes, or couplings of the modes,
such that little can be said about their extreme limits. Mathematically,
the difficulty in finding extreme limits arises because the set of all
possible resonator designs is nonconvex. Hence physical oscillators
provide little prescriptive guidance: what lineshapes are physically
possible, and what are the ultimate limits of corralling broadband
radiation?

In lieu of resonator decompositions, passivity, and causality have
long been recognized as key constraints on broadband response in
linear physical systems without gain9–15. Causality is implied by pas-
sivity, so that one need not separately invoke it, and the foundations of
linear system theory typically start with passivity12. Passivity-based
approaches to spectral response have yielded fundamental limits for
matching networks in circuit theory16,17, optical attenuation (e.g., in

stellar grains18), material susceptibilities19,20, and more15. Yet passivity
itself is not a panacea, and electromagnetic scattering theory is a
domain where its application has been met with limited success.
Special linear-amplitude, “optical-theorem”-like power quantities have
bounds analogous to those for optical attenuation21,22. But the general
scattering properties of arbitrary systems are described by scattering
matrices S thatmap input excitations at any number of “port” (power-
carrying “channels” external to the scatterer) to their corresponding
outputs, and scattering S matrices have few (if any) practical spectral
limitations. Their analytic properties and representation theorems
have been extensively studied, from dispersion relations13 and
Blaschke-product representations13 to existence theorems for poles,
zeros, and their generalizations23, but known representations suffer
from the same issue as their coupled-mode counterparts: their degrees
of freedom reside in nonconvex (and often unbounded) sets. This
makes it difficult or impossible to identify optimal response, or upper
limits thereof, across the physical design spaces of scientists and
engineers.

The potential value of spectral-response bounds is highlighted by
a long-standing question in energy transport: what is the maximum
rate at which two bodies can radiatively exchange heat in the near
field? Going back many decades, it has been understood that radiative
heat exchange in the near field can be substantially larger than its far-
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field counterpart24–26, due to the enormous number of accessible
evanescent channels in addition to propagating ones, yet the max-
imum extent of this enhancement—with ramifications for applications
such as thermophotovoltaics27,28, photonic refrigeration29, and heat-
assisted magnetic recording30—has been far less clear. Previous theo-
retical bounds22,31–34 have suggested strong material-electron-density
dependencies, unbounded response for low-loss materials, and
orders-of-magnitude gaps from known designs (>750X). The compu-
tational complexity of the problem has prohibited the application of
large-scale inverse design techniques, leaving unresolved whether
current designs are sub-optimal or the bounds are too loose.

In this article, we show that an alternative scatteringmatrix, theT
matrix35, can be represented by fictitious “mathematical oscillators”
that are ideally suited for probing optimal spectral response. We show
that passivity, in tandemwith the specific interaction characteristics of
materials with electromagnetic waves in low- and high-frequency lim-
its, leads to T-matrix representations in terms of lossless
Drude–Lorentz and Drude–Lorentz-like oscillators with matrix-valued
(spatially nonlocal) coefficients. Crucially, the only degrees of freedom
of these oscillators are their matrix-valued coefficients, which are
constrained to a bounded, convex set. Such limitations must imply
strong constraints on scattering response, which we use to identify a
simple, general theoretical limit to near-field radiative heat transfer.
Our approachoffers insights intowhyplanar structures are better than
sharp-tip patterns, why unconventional plasmonic materials should
offer the largest enhancements, and yields material-independent
bounds within a small factor (5X) of state-of-the-art designs.

Results
Passivity constraints and oscillator representation
In linear, time-invariant electrodynamics, the T matrix is the linear
operator that relates electromagnetic fields incident upon a scatterer
to the polarization fields they induce35. For simplicity of notation and
exposition, we assume any standard spatial numerical discretization of
sufficiently high accuracy; we collate the incident fields Einc(x) into a
vector einc and the polarization fields P(x) into a vector p, so that the
frequency-domain (e−iωt time convention) T-matrix is defined by

pðωÞ=TðωÞeincðωÞ, ð1Þ

the discrete analog of the convolution equation
Pðx,ωÞ= R

Tðx,x0,ωÞEincðx0,ωÞdx0. TheT matrix can be derived from
first principles via integral operators (cf. Supplementary Note 1 or
ref. 35), and its timederivative (or productwith −iω) can be interpreted
as an admittance matrix.

A passive scatterer in vacuumhas a causal response function, such
that it is analytic in the upper-half plane and satisfied Kramers–Kronig
(KK) relations15. We write the KK relation in terms ofωTðωÞ to account
for possible simple poles at zero: by Cauchy’s residue theorem, forω in
the UHP, ωTðωÞ= 1

iπ

R1
�1

ω0Tðω0 Þ
ω0�ω dω0. (Physically, TðωÞ must decay as 1/

ω2 at high frequencies, such that ωTðωÞ is square integrable.) Taking
the Hermitian part of this equation yields
Re ωTðωÞ½ �= 1

π

R1
�1

ω0 ImTðω0 Þ
ω0�ω dω0. Hence we can isolate the anti-

Hermitian part of TðωÞ as its only degrees of freedom:

ωTðωÞ=Re ωTðωÞ½ �+ iIm ωTðωÞ½ �

=
1
π

Z 1

�1

1
ωi � ω

+ iπδðω� ωiÞ
� �

ωiImTðωiÞdωi

=
1
π
lim
γ!0

Z 1

�1

1
ωi � ω� iγ

ωiImTðωiÞdωi:

ð2Þ

To further compress to positive frequencies only, we exploit symme-
tries of TðωÞ. The Hermitian matrix Z=ωiImTðωiÞ can be separated
into its reciprocal part X= ðZ+ZT Þ=2 and its nonreciprocal part
Y= ðZ�ZT Þ=2. Real-valued time-domain fields require that

Tð�ωÞ=T*ðωÞ, which implies that Xð�ωÞ=XðωÞ and
Yð�ωÞ= �YðωÞ. Then algebraic manipulations of Eq. (2) give

TðωÞ= 2
π
lim
γ!0

Z 1

0

1
ω2

i � ω2 � iγω
XðωiÞ+

ωi

ω
YðωiÞ

h i
dωi: ð3Þ

We provide an alternative derivation of the same expression in the
Methods section, by recognizing that �iωT is a passive admittance
matrix, which implies a Herglotz–Nevanlinna representation36 that can
be reduced to Eq. (3). For any scattering problem there are at least six
matrices that satisfy an expression similar to Eq. (3): a scattering
matrix, an impedance matrix, and an admittance matrix, each defined
either in the volumeor on a bounding surface. Yet only oneof those six
—the volume admittance matrix (essentially, TðωÞ)—appears to be
useful for wave-scattering bounds.While Eq. (3) reduces the degrees of
freedom to the anti-Hermitian part of T, additional passivity
considerations are needed to meaningfully constrain the possible
scattering response.

Thenext constraints comedirectly frompassivity. Passivitymeans
that polarization fields do no net work. The work done by the incident
fields on the polarization currents J is 1

2 Re
R
E*
inc � J= 1

2 Im
R
E*
inc � ωP.

Positivity of this expression implies that the anti-Hermitian part of
ωTðωÞ is positive semidefinite, which we write ω ImTðωÞ≥0. (This is
equivalent to the condition that admittance matrices have a positive
semidefinite Hermitian part15.) This means thatXðωÞ+YðωÞ≥0 for any
real-valuedω. Using the symmetry relations forXðωÞ andYðωÞ around
ω =0, we have the constraintsXðωÞ+YðωÞ≥0 andXðωÞ �YðωÞ≥0 at
positive frequencies, which further imply XðωÞ≥0. These constraints
are convex (though still unbounded) in XðωÞ and YðωÞ.

The final key element is the identification of sum rules. Sum rules
typically come from evaluation of KK relations in the limit ω→∞ or
ω =0. At infinite frequency, the electrons of amaterial can be regarded
as free, and material susceptibilities must scale as χðωÞ ! �ω2

p=ω
2,

whereω2
p is proportional to the total electron density of thematerial13.

In this limit, the first Born approximation is asymptotically exact, and
the polarization field is given by P ’ χEinc ’ �ðω2

p=ω
2ÞEinc (in units

where the free-space permittivity is 1), implying that the T matrix
asymptotically approaches�ðω2

p=ω
2ÞIV , where IV is the identitymatrix

on the scatterer volume V. Inserting this limit into the KK relation
derived before Eq. (2) yields the high-frequency sum rule,

Z 1

�1
ω ImTðωÞdω=2

Z 1

0
XðωÞdω=πω2

pIV : ð4Þ

This sum rule constrains the total contributions from ImTðωÞ over all
frequencies, a spatially resolved scattering generalization of the f sum
rule for material-susceptibility oscillator strengths37–39. The nonreci-
procal Y matrix makes no contribution to the integral due to its odd
symmetry around ω = 0. Similarly, the low-frequency asymptote is
known: we can write Tðω ! 0Þ=T0,V , where T0,V is a Hermitian
positive semidefinitematrix in the static limit. Inserting this expression
into the KK relation derived before Eq. (2) yields a low-frequency sum
rule,

Z 1

�1

ImTðωÞ
ω

dω=2
Z 1

0

XðωÞ
ω2 dω=πT0,V : ð5Þ

For design problems, one considers many possible scatterer
domains V, each of which has different matrices on the right-hand
sides of the sum rules of (Eqs. (4), (5). How, then, can one accom-
modate many possible designs? Here we can again make the (critical)
choice of the Hermitian/anti-Hermitian split in the KK relation, which,
as we prove in Methods, endows the sum rules with a monotonicity
property: enlarging V can only increase (in a positive semidefinite
sense) the right-hand sides of Eqs. (4), (5). Hence, for a designable
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domain D containing all possible scatterer sub-domains, we can con-
vert the equalities of Eqs. (4), (5) for specific volumesV into inequalities
over the designable domain D.

We can unify the above properties to create a framework for
fundamental limits. TheTðωÞmatrix can always be written in the form
of Eq. (3), while the real-symmetric matrix XðωÞ and the skew-
symmetricmatrixYðωÞ are strongly constrained.We renormalizeX !
ðπ=2ÞX and Y ! ðπ=2ÞY to simplify the oscillator representation.
Together, for the T matrix of any designed scatterer within a desig-
nable region D, we have:

TðωÞ= lim
γ!0

Z 1

0

1
ω2

i � ω2 � iγω
XðωiÞ+

ωi

ω
YðωiÞ

h i
dωi,

XðωiÞ≥0, �XðωiÞ≤YðωiÞ≤XðωiÞ,
1
ω2

p

Z 1

0
XðωiÞdωi ≤ ID,

Z 1

0

1
ω2

i

XðωiÞdωi ≤T0,D:

ð6Þ

The collective representation of Eq. (6) is the foundational result of our
paper: the T matrix of any linear scattering body must be decom-
posable into a set of lossless oscillators,withmatrix-valued coefficients
satisfying definiteness conditions and constrained in total strength.
The only degrees of freedom in the scattering process are thematrices
XðωiÞ and YðωiÞ, both of which have strong constraints on the
bandwidth over which they can be nonzero. The TðωÞ matrix is linear
in these matrix degrees of freedom and the constraints are bounded
convex sets. Hence this representation encodes the constraints of
passivity and sum rules for electromagnetic scatterers in a mathema-
tical structure that is ideally suited for optimization and fundamental
limits.

For afirst demonstration of themathematical structure implied by
this representation, we consider broadband scattering from an ellip-
tical dielectric cylinder. To clarify the origin of the oscillators, we use a
material with χ =ω2

p=ðω2
0 � ω2 � igωÞ, with ωp = 20,ω0 = 10, g =0.01ωp,

which is nearly dispersionless with χ = 4 for ω between 0 and 1 (all
frequencies in unit of 2πc/a) and consistent with the necessary high-
frequency asymptotic response. The scattered electric field at various
points within the scatterer, computed by full-wave simulations (cf.
Supplementary Note 6), is shown in Fig. 1b, but is hard to interpret due
to its seemingly random undulations. Advances in quasinormal-mode
(QNM) techniques suggest that one could accurately reproduce these
fields with a modest number of QNMs8, but that modeling capability
does not imply an understanding of the extreme limits of what is
possible. Howmany resonances can be excited?Withwhat amplitudes,
phases, and overlaps with power-carrying channels?

By contrast, consider the lineshapes of the Hermitian and anti-
Hermitian parts of the T matrix (computed on a discretization of
more than 37,000 spatial degrees of freedom), as depicted in Fig. 1c
for the same three spatial locations and their cross terms. The
lineshapes of the T-matrix elements closely mimic the Drude-
Lorentz-like behavior of electronic transitions, but they arise not
from real material oscillators, but from complex wave-scattering
behavior itself. The first three traces of Fig. 1c clearly show positive
imaginary parts of varying widths, and real parts that transition from
minima to maxima between the peaks of the imaginary parts, then
transitioning back tominima where the imaginary parts peak. Hence
the peaks tend to coincide (with the real-part peak slightly preced-
ing the imaginary-part peak), and the characteristic lineshapes
might be described as minima-to-maxima-to-transition for the real
parts and Lorentzian-like for the imaginary parts. The second set of
three traces in Fig. 1c do not have exactly this pattern, because they
have complex-valued residues that mix the real and imaginary parts.
But their underlying “oscillator-like" structure is still visible: one still
sees peaks in one part nearly coincidingwith (but slightly preceding)
peaks in the counterpart, as well as Lorentzian-like lineshapes in one
part being pairedwithminima-to-maxima-to-transition lineshapes in
the other. By contrast, no such structure arises in the scattered fields

Fig. 1 | Oscillator structure in broadband scattering. a Schematic depiction of
plane waves incident upon an elliptical scatterer. b Scattered fields at points 1–3 of
(a), exhibiting seemingly random variations for a single plane wave incidence.
cReal and imaginary parts of theTðωÞmatrix elements corresponding to thepoints
in (a), showing oscillator-like responses consistent with the KK relation. d All
eigenvalues of TðωÞ are positive at all frequencies, as a consequence of passivity.

e Convergence of a sum-rule integral for three upper limits (ω1 = 0.2,ω2 = 0.4, units
of 2πc/a), for three scatterers within an elliptical designable domain. The sum rules
converge to a low-frequency matrix constant (in this TE-polarization case, a scalar
multiple of the identity), and the constants for the two smaller scatterers obey the
domain monotonicity property. The combined elements of (c–e) impose strong
constraints on broadband scattering.
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of Fig. 1b, because they simply do not have a representation
resembling Eq. (6).

Collectively, the lineshape widths of the T-matrix elements are
nonzero thanks to the underlying resonant physics, but every fre-
quency can and should (for our purposes) be interpreted as having its
own, lossless-oscillator amplitude, given by ω ImTðωÞ. The diagonal
components have imaginary parts that must be positive. The off-
diagonal components need not have positive imaginary parts, but they
are constrained by the positive-definiteness requirements of the entire
matrix, as verified in Fig. 1d, which shows the positivity of the eigen-
values of ImTðωÞ. The final key component formeaningful constraints
from such a representation is the sum rules, and their domain mono-
tonicity property. Figure 1e shows the integrated response for three
scattering bodies within the elliptical designable domain, showing
both their convergence to the appropriate sum-rulematrix constant as
the integral is taken to infinity (the numerical integral converges to
<1.7% error, as measured by the matrix Frobenius norm, using a 2000-
point Gauss-Legendre quadrature for frequencies from 0 to
40(2πc/a)), aswell as the satisfaction of domainmonotonicity between
the sum-rulematrices for the twosub-domains of the elliptical domain.
As a whole, these combined elements offer an ideal representation for
identifying fundamental limits to spectral control.

Ultimate limits to NFRHT
Next, we apply our formulation to the question of maximal NFRHT.
NFRHT, as depicted in Fig. 2a, poses prohibitive computational

challenges—spatially and temporally incoherent, broadband thermal
sources, exciting rapidly decaying near fields over large macroscopic
areas—which have limited previous design efforts primarily to high-
symmetry structures such as planar bodies40–42. Numerous approaches
have identified particular constraints with corresponding theoretical
bounds22,31–34, but as we show in Fig. 2b, there are orders-of-magnitude
differences between the best structures and the best bounds22,34. We
label the bounds by their distinguishing attributes: in ref. 22 (“analy-
ticity bound”), complex-analyticity played a central role,while in ref. 34
(“channel bound”), a decomposition into power-carrying channels was
the starting point. Recently, it was discovered that a set of uncon-
ventional plasmonic materials offer significant (10X) improvements
over the previous best planar structures43, but otherwise, the field has
been at an impasse, without a meaningful approach to either improve
the best designs or tighten the bounds.

TheTmatrix formulation resolves this impasse. The heat transfer
coefficient (HTC) between two bodies is the net flux rate (per area and
per degree K) of electromagnetic energy passing between bodies at
temperatures T and T +ΔT, as measured by the integral of power flux
ð1=2ÞRe ðE×H* � n̂Þ through a separating plane with normal vector n̂.
The incoherent sources in body i with temperature Ti and suscept-
ibility χi(ω), by the fluctuation-dissipation theorem40, are given by
hJjðx,ωÞ J*kðx0,ωÞi= ð4ε0ω=πÞΘðω,TiÞ Im ½χ iðωÞ�δjkδðx� x0Þ at frequency
ω, where Θðω,TiÞ= _ω= e_ω=kBTi � 1

� �
is the Planck spectrum, and kB is

the Boltzmann constant. There are a variety of mathematical trans-
formations that wemake to this problem tomake itmore amenable to

Fig. 2 | Fundamental limits to NFRHT. a NFRHT between two closely separated
bodies. bHeat-transfer coefficients of planar bodies comprising high-performance
planar-body geometries (filled circles), in comparison with the best previous the-
oretical bounds22,34 (open squares and triangles). The previous bounds diverged for
some materials, while showing enormous gaps (>750X) for others, and their
trendline seems to decrease left-to-right, whereas planar-body performance

increases. In black is the theoretical bound offered by ourT-matrix representation,
very close to the best possible planar bodies. c Spectral HTC of the best bulk
(Drude, red) and 2D (heterostructure, blue) designs, with spectral peaksmarked by
asterisks and the predicted theoretical peak from our oscillator-based bound (gray
dashed line). d Peak-HTC frequency of optimal materials (red, blue), nearly coin-
ciding with the predictions of the bound (gray) for a wide range of temperatures.
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optimization, detailed in Methods, such as using reciprocity to move
the sources out of the hotter body and onto the dividing surface,
exploiting spatial symmetries of the bounding domains (two half-
spaces, allowing for any patterning within), as well as a near-field
generalization of the “optical theorem”44. The key novelty, however, is
our use of Eq. (6): once we have transformed the problem to an
appropriate function of the two-body T matrix, we insert the repre-
sentation theorem of T as a sum of positive-semidefinite matrix
coefficients with Drude–Lorentz lineshapes. NFRHT at moderate or
even high temperatures is dominated by low-frequency response, so
weonly impose the low-frequency sumrule. For a designabledomainD
of two-half spaces, T0,D =αID, where α is a scalar function of the
material susceptibility that is bounded above by 2. Once we insert the
T-matrix representation into the NFRHT expression, the resulting
optimization problem over the infinite set of matrix oscillator coeffi-
cients has an analytical upper bound. Straightforward algebraic
manipulations (cf. Methods) lead to an ultimate limit to near-field
radiative HTC given by

HTC≤ β
T

d2 , ð7Þ

where d is the minimum separation between the bodies, T the
temperature of the cooler body, and β=0:11ðαk2

B=_Þ=3:8×
105Wnm2=m2=K2, a numerical constant. This limit cannot be sur-
passed by any geometric patterning, nor can exotic optical properties
of any material alter its value.

Figure 2b compares our theoretical limit with the current state-of-
the-art, as well as the best known bounds. Whereas the gap between
theoptimal planar structures and thebestpreviousboundswas at least
750X (and diverging to ∞ for somematerials), the expression of Eq. (7)
is only 5X larger than the best design. This bound has no material
dependence, which resolves the problematic trend that if one orders
the materials by their planar performance, as in Fig. 2b, the previous
bounds tended to predict worse maximal performance from left to
right. The resolution of this discrepancy is our use of the low-
frequency sum rule, which encodes a constraint on the local density of
states seen by thermal emitters that depends only on their gap
separation, independent of material. The T-matrix approach predicts
an optimal NFRHT frequency of ωmax = 2:57

kBT
_ , determined by the

overlap of the Planck function with the Drude–Lorentz lineshape. The
predictions arematched almost exactly by computationally optimized
planar Drudemetals or 2D heterostructures, as shown in Fig. 2c, d. For
300 K temperature, the spectra shown in Fig. 2c peak at almost exactly

the optimal oscillator frequency, and the match persists across all
relevant temperatures, as shown in Fig. 2d.

Although it seemed plausible (even likely) that nano-structuring
may lead to enhanced NFRHT through field-concentration (lightning-
rod) effects, our sum rule explains why this is not the case: sharp tips
can enhance the fields very close to a sharp tip, but not at the source
location itself. The local density of states is proportional to the latter,
and hence is not enhanced by lightning-rod effects. To illustrate why
sharp-tip-based (or related) structures are inferior, we design a
numerical experiment. In NFRHT, after using reciprocity, the incident
field arises from point sources along a separating plane between the
bodies. For a single given dipole, the relevant low-frequency sum rule
constant is eTincT0einc = e

T
incp, i.e., the overlap between the (static)

incidentfield and the (static) inducedpolarization. This is equivalent to
the scattered field at the point source.

Figure 3a, b compares schematic depictions of sharp-tip versus
planar-area structures, while Fig. 3c shows finite-element calculations
for two-dimensional analogs, with dipole sources of both possible
polarizations between conducting wedges of arbitrary inner angles β,
with the sources a distance d from either tip. The gray lines show the
scatteredfields near the tip (at distances 0.1d), which for the transverse
polarization increase at smaller angles, i.e., sharper tips. This is the
typical lightning-rod effect. Yet these amplified fields play no role in
determining the total level of broadband energy transfer; the static
constant controlling the sum rule is proportional to the scattered field
back at the source, shown in red. This quantity increases with the
wedge inner angle, a result that must be true by our domain mono-
tonicity theorem. Hence planar bodies (β =π) must have the largest
possible frequency-integrated response. The only remaining question
is whether the frequency response can be tailored for maximum
overlap with the Planck spectrum, but that question was answered
above, affirmatively, by optimal material dispersion relations.

The closeness of the arbitrary-structure bound of Eq. (7) to the
best planar structures arises despite quite different mathematical
routes to these results. The translational symmetry of planar bodies
implies conserved wavevectors and thus a set of evanescent plane-
wave channels that are independent, with Landauer-like
transmissivities42. Such an approach cannot describe patterned struc-
tures. Instead, Eq. (7) culminates after using (generalized) reciprocity
tomove the sources from thehot body to the dividing surface, the sum
rule to encapsulate the maximum densities of states seen by those
sources, and the T-matrix representation to constrain the possible
scattering lineshapes.The striking similarity of the two results suggests
that even when confronted by spatial and temporal incoherence,

Fig. 3 | Sharp tips do not enhance broadband NFRHT. For NFRHT, an important
question is whether the optimal structuremight be (a) patternedwith sharp cones,
or (b) planar structures without any patterning. c Numerical simulations of the
scattered fields from an electrostatic dipole source between two-dimensional
conductingwedges, either at the source location (red, distanced from either tip) or

near the tip (gray, distance 0.1d). Near-tip scattered fields (gray) exhibit the
lightning-rod effect, increasingwith tip sharpness. But frequency-integratedenergy
transfer is proportional to the scattered field at the source (red), which increases
with wedge angle, consistent with domain monotonicity. Out of all possible sub-
domains, planar half-spaces must have the largest frequency-integrated response.
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rapidly decaying fields, and large areas, the oscillator representation
compactly captures the key physics of maximal response in the
near field.

Discussion
In this article, we have introduced a framework for broadband elec-
tromagnetic scattering. The example of Fig. 1 showcases the joint
consequences of passivity and sum rules on the structure of the elec-
tromagnetic TðωÞ matrix. We propose a recipe for identifying funda-
mental limits: rewrite any objective of interest in terms of the TðωÞ
matrix, and then use the representation of Eq. (6) as the constraints.
Our application of this framework to NFRHT offers clear guidance for
the fundamental limits of radiative heat transfer and the physical
mechanisms underlying them. The generality of our T matrix repre-
sentation offers tantalizing prospects for wide-ranging applications
across nanophotonics. Metasurfaces45,46, for example, offer a compact
form factor for optics. A central question is the extent to which
metasurfaces can control incoming waves47–49, across varying fre-
quency and angular bandwidths, for applications from lenses to virtual
and augmented reality. Similarly, techniques for imaging through
opaquemedia have flourished withmodern spatial light modulators50,
with a key open question being ultimate limits to spectral control. In
photovoltaics and photodetection, the quest for ever-thinner devices
must ultimately contend with fundamental limits, and similarly across
almost every application of nanophotonics. There has long been a
need to quantify ultimate limits to spectral control; our approach
offers a theory to do so.

Our approach also dovetails seamlessly with a recent flurry of
activity in understanding the limits controlling spatial degrees of
freedom in nanophotonic systems51–56. Transforming the typical Max-
well differential equations into a set of local conservation laws in space,
for real and reactive power flows, leads to a mathematical form of the
design problem that is amenable to systematic approaches to com-
putational bounds. For a single frequency (or a small number of
them57), such conservation laws have shown powerful capabilities for
identifying fundamental limits to spatial control. In these approaches,
the degrees of freedom of the system are typically encoded not in the
electric and magnetic fields, but rather in the electric and magnetic
polarization currents that they induce. Those polarization fields are
exactly those that are determined by the T matrix, which means that
our spectral expansion of the T matrix should be seamlessly compa-
tible with the spatial conservation laws proposed in ref. 52,53. Toge-
ther, the two approachesmay enable a complete understanding of the
spatio-spectral limits of electromagnetic systems.

One might wonder why we have utilized the TðωÞ matrix, when
the vast majority of photonics theory uses the scattering matrix SðωÞ?
There are two reasons. First, inmany scattering systems, incoming and
outgoing waves are spatially distributed (e.g., spherical waves),
requiring exquisite care with S-matrix causality conditions, leading to
(for example) phase shifts in the KK relations13. It becomes unclear
which degrees of freedom (if any) are necessary, sufficient, and have
convexpassivity constraints. The second issue is that there is not, as far
as we know, a useful S-matrix sum rule of a positive semidefinite
quantity. Without such a sum rule, all response is unbounded. As dis-
cussed above, scatterer-volume T matrices appear to be the unique
scattering/impedance/admittance matrix where KK relations, passiv-
ity, and sum rules can all be combined into a bounded, convex set of
constraints.

More broadly, the insight at the foundation of our framework,
about the mathematical properties of scattering T matrices, can be
directly applied to any classical wave equation. These techniques
should be readily extensible to linear scattering problems in acoustics,
elasticity, fluid dynamics, and beyond. The mathematical structure of
the wave equation is similar in each case, and the resultingTmatrices
should thereforehave similar representations. An interesting twistmay

arise in acoustic scattering theory, where materials with higher-than-
vacuum speeds of sound lead to “non-causal” scattering processes58

that have prevented the development of classical sum rules, andwould
appear to prohibit a correspondingTmatrix representation. Yet theT
matrix itself may offer a new route to complex-analytic response
functions in exactly such scenarios. The reason higher sound speeds
lead to “non-causal” response is that the scattered field appears at a
location within the scatterer earlier than the incident wave itself.
Hence, locally, the process appears non-causal. Yet the nonlocal nature
of the T matrix may be precisely what is needed to resolve this para-
dox. A T matrix isolates the response at any point x to the contribu-
tions from the wave incident at each point x0 in the scatterer; each of
which, individually, must be causal. Hence, not only should the T
matrix be extensible to such scenarios; it may further resolve impe-
diments that had previously stymied even simple sum rules in these
fields. (Relatedly, wave scattering with any non-trivial/non-vacuum
background has historically stymied sum rules, and this is another
avenue of exploration with the T matrix.)

Finally, we speculate that the approach described here may even
be extensible to quantum scattering. In the frequency domain, the key
difference between quantum and classical scattering is the analytic
structure of the governing equations. In classical wave equations,
second derivatives in space are proportional to second derivatives in
time, which lead to poles in the lower half of the complex-frequency
plane and analyticity in the upper half. In quantum scattering, second
derivatives in space are proportional to first derivatives in time, which
leads to bounds states for negative real energies and branch cuts on
thepositive real axis. Our standard semicircular contours likely need to
be replaced by “keyhole” contours13, with the open question of whe-
ther there are meaningful sum rules that can be derived (perhaps
dependent on bound-state properties, as in Levinson’s theorem59,60 for
spherically symmetry potentials). If such sum rules could be derived, it
is likely that an infinite-oscillator description could be used to identify
fundamental limits for quantum scattering as well.

Methods
Domain monotonicity
In this section, we derive “domain montonicity” theorems for the
matrices on the right-hand sides of the sum rules of Eqs. (4), (5).
Domain monotonicity is trivial for the high-frequency sum rule, as the
right-hand side is directly proportional to the identity matrix on V.
Consider a domain D that contains V. How can we compare the two
identity matrices? We can embed the identity matrix on V in a larger
matrixonD, with zero elements for any spatial degrees of freedom inD
and not in V. Hence, by direct comparison, we will have

IV ≤ ID, ð8Þ

proving that the high-frequency sum rule obeys domainmonotonicity,
implying that it can be converted to an inequality over any designable
domain of interest.

Domain monotonicity for the low-frequency (static) sum rule is
less obvious. Here, we generalize the arguments of ref.22 to prove
domain monotonicity. We need to prove that quantities of the form
xyT0,Vx increase, for all x ≠0, when the domain V increases (i.e.,
contains all points of its original domain, and a nonzero volume of
points outside of its original domain), for a positive-semidefinite static
susceptibility. (Gyrotropicmaterials, with a nonreciprocal pole at zero,
arematerials that do not have such susceptibilities61.)We can interpret
the multiplication of T with x as the polarization field induced by an
“incident field” x, and then multiplication on the left by x takes the
overlap of that incident field with the polarization that it induces.
Hence we will label our arbitrary vectors as einc instead of x, for clarity
in the mathematical relations to follow, though we impose no con-
straints on the “incident field” and indeed allow it to be an arbitrary
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vector. In computing the response to such a vector, however, we can
use a few important physical consequences of electromagnetism. In
electrostatics, the fields (and T matrix) can be chosen to be real-
valued, so that we can consider the objective as xTTx, without any
conjugation.

We are interested in the quantity F = eTincTeinc = e
T
incp, and how it

changes when the domain changes. We will consider only continuous,
increasing changes in susceptibility: Δχ(x)≥0 everywhere. Hence a
variation in F can be written

δF = eTincδp: ð9Þ

The polarization field is the solution of the volume
(Lippmann–Schwinger) integral equation:

G0 + ξ
� �

p= � einc, ð10Þ

where G0 is the background (vacuum) Green’s function operator,
ξ = − χ−1, and einc is the incident field. The variation inp can be found by
taking the variation of Eq. (10), which is: G0 + ξ

� �
δp+ ðδξÞp=0. Sol-

ving for δp:

δp= � G0 + ξ
� ��1ðδξÞp: ð11Þ

Inserting this variation into the objective gives

δF = � eTinc G0 + ξ
� ��1ðδξÞp

=pT ðδξÞp:
ð12Þ

Finally, from the equation ξ = − χ−1, we have δξ = χ−1(δχ)χ−1, so that

δF = eT ðδχÞe, ð13Þ

which is nonnegative for any positive semidefinite δχ. Hence we have
shown that

eyincδTeinc ≥0 ð14Þ

for any increases in the domain size or shape; since this is true for any
vector einc, then variations in the electrostatic T matrix must them-
selves be monotonic. This means that given a scatterer Ω1 of any size
and shape whose static T matrix is Tð1Þðω=0Þ, any other scatterer Ω2

whose volume encloses that of Ω1 must have a Tð2Þðω=0Þ no smaller
than Tð1Þðω=0Þ, i.e.:

Tð2Þðω=0Þ≥Tð1Þðω=0Þ, ð15Þ

when the scatterer domainΩ2 entirely encloses the scatter domainΩ1.

Derivation of the NFRHT bound
To investigate radiative heat transfer from object 1 (bottom) to object
2 (top),wefirst break down theproblem topower integrations at every
frequency. The power flowing in the positive z direction across the
middle separating plane (perpendicular to z) between the two objects
is:

SðωÞ= 1
2
Re

Z
dS EJ

xðrÞ
� �

*HJ
yðrÞ � EJ

yðrÞ
� �

*HJ
xðrÞ

h i
, ð16Þ

where the superscripts denote the current sources in the bottom
object, whose amplitudes are dictated by the fluctuation-dissipation
theorem:

�
J*i ω, rv
� �

Jj ω0, r 0v
� �	

=Z ðω,TÞδðω� ω0Þδðrv � r 0vÞδij , ð17Þ

where Z ðω,TÞ= 4ε0ω
π Imχ1ðωÞΘðω,TÞ, the susceptibility of the lower

body is χ1ðωÞ= ε1ðωÞ
ε0

� 1, and Θ(ω, T) is the Planck distribution,
Θðω,TÞ= _ω=ðe

_ω
kBT � 1Þ. The subscripts in rv indicate the position vector

lies in the volumeof the emitter 1. Then the field correlations in Eq. (16)
can be expressed in terms of the Green’s functions GEJðr, r 0vÞ and
GHJðr,r 0vÞ applied to the thermal source correlations in Eq. (17).

Our bound will not distinguish between the x and y directions
(which are symmetric in the bounding domain, even though of course
they are not for many allowable patterns), in which case the upper
bounds on either of the two terms in power integration in Eq. (16)
are identical: Max½Re R dSðEJ

xðrÞÞ*HJ
yðrÞ�=Max½�Re

R
dSðEJ

yðrÞÞ*HJ
xðrÞ�.

Hence the maximum flux S(ω, T) equals the maximum of the function

FRHTðω,TÞ � Re
Z

dS EJ
xðrÞ

� �
*HJ

yðrÞ: ð18Þ

We use reciprocity to transfer the flux evaluation of Eq. (18) on
the surface S from sources in V to a field evaluation in V from
sources on S. The background Green’s functions are reciprocal, i.e.,
GEJ
ik ðr,r 0vÞ=GEJ

ki ðr 0v,rÞ, and GHJ
ik ðr,r 0vÞ= � GEM

ki ðr 0v,rÞ, so we can equate the
fields at r produced by sources at rv with fields at rv produced by
sources at r. In light of the correlations for currents sources inside the
volume, Eq. (17), we can define the correlations for reciprocal current
sources on the middle flux plane as

�
J*x ω, rð ÞMy ω0, r 0ð Þ	 � ωδðω� ω0Þδðr � r 0Þ: ð19Þ

The amplitudeω is chosen so that EJx
incðrvÞ

� �
*E

My

incðrvÞ is independent of
frequency, which will be important later. Simple insertion of the
Green’s functions into Eq. (18) and the usage of reciprocity and Eq. (19)
leads to a volume-field expression for FFHT:

FRHTðω,TÞ= Z ðω,TÞ
ω

Re
Z

VS

dV E Jx ðrvÞ
� �

*EMy ðrvÞ ð20Þ

where VS is exclusively the source volume. Equation (20) represents
the total flux from an infinite plane of sources between the infinite
bodies. An upper boundon thisflux is given by the upper boundon the
fluxgeneratedby a single set of point sources at a givenpositionon the
separating plane, multiplied by the (infinite) area of the plane. This
allows us to easily switch to the quantity of interest in large-area
NFRHT: the per-area radiative heat transfer, which is bounded above
by themaximumflux froma single set of sources at a single position on
the separating plane. This also resolves a second possible difficulty:
how to represent the T matrix for infinite, extended structures? For
point sources in the near field, there is no issue: the fields decay
sufficiently quickly that the response is guaranteed to bewell-behaved.
(Intuitively, one can imagine substituting large but finite-sized
structures at this stage, and later taking the limit as size goes to
infinity. The rapid field decay ensures that the subsequent integrals
converge, even in the infinite-size limit.)

We switch to vector notationnow, using the notation of lowercase
letterswithout the subscript v to represent field vectors on the domain
of both objects. For example, the volume integral over the lower body
in Eq. (20) becomes ev

Jx
� �yOev

My , whereO has ones on its diagonal in
the lower (source) volumeand zeros everywhereelse.We canwrite this
integral out in terms of the T matrix:

Re eJx
� �y

OeMy

h i
=

1

ε20jχj2
Re eJxinc

� �y
TyOTe

My

inc


 �

=
1

ε20jχj2
Tr TyOT E

� �
:

ð21Þ

Notice both T matrix and einc vectors are defined on the domain of
both the top and bottom bodies. In Eq. (21) we defined the function
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E=Re e
My

inc eJxinc
� �y
 �

which is a rank-2 matrix and can be decomposed

into one positive eigenvalue term and one negative eigenvalue term:

E= λ1q1q
y
1 + λ2q2q

y
2, ð22Þ

with eigenvector q1,2 and eigenvalues λ1,2 given by

q1,2 =
eJxincffiffiffi
2

p
jeJxincj

±
e
My

incffiffiffi
2

p
jeMy

incj
, ð23Þ

λ1,2 = ±
jeJxincjje

My

incj
2

= ±
1
ε0

3:45× 1016

d × 109
� �2 : ð24Þ

One can now see that our choice of source amplitudes in Eq. (19) leads
to frequency-independent eigenvalues of E.

To bound the expression of Eq. (21), we will relax it in a few ways.
(Interestingly, intensive numerical optimizations using manifold-
optimization techniques62,63 directly on Eq. (21) lead to the same
upper limits that we derive below, suggesting that these “relaxations”
are minimal and do not loosen the analysis given the constraints that
we use, such as sum rules.) First, the E matrix defined by the two
renormalized incident fields has one positive and one negative eigen-
value, per Eq. (22). Physically, we can interpret the negative sign of the
second eigenvalue via the power expression of Eq. (21) containingE, as
the difference in powers absorbed for the two renormalized incident
fields. This is of course bounded above by the absorption of only the
first incident field, dropping the subtracted term, leaving only the
contribution of the single positive eigenvalue of E. Thus we have:

Tr TyOTE
h i

≤Tr TyOT λ1q1q
y
1

h i
: ð25Þ

Next, we note that O indicates absorption only in the lower body; of
course this quantity is bounded above by the total absorption in both
bodies. This is representedmathematically as the constraint thatO≤ I,
which implies:

λ1 qy
1T

yOTq1
� �

≤ λ1 qy1T
yTq1

� �
: ð26Þ

Finally, the absorption in both bodies is less than the net extinction of
the two bodies (their far-field scattered powers are positive, and
essentially zero in the near-field case, so that this relaxation is
negligible). We can use a generalized “optical theorem” constraint to
bound this quadratic absorption-like quantity with a linear extinction-
like quantity. The idea is that absorption must be smaller than
extinction: Pabs≤Pext. Absorption is given in terms of T-matrix by
Pabs =

ω
2 ImðeypÞ= ω

2ε0
Imχ
jχ j2 e

y
incT

yTeinc. Similarly extinction is given by
Pext =

ω
2 ImðeyincpÞ= ω

2 e
y
incðImTÞeinc. Thus the “optical theorem” condi-

tion implies that for any T matrix,

Imχ

ε0jχj2
TyT≤ ImT: ð27Þ

Hence we can write

λ1 qy1T
yTq1

� �
≤ λ1

ε0jχj2
Imχ

qy
1 ImTð Þq1, ð28Þ

without introducing much relaxation. We can now rewrite Eq. (20) as

FRHTðω,TÞ≤ Z ðω,TÞ
ω

1

ε20jχj2
λ1

ε0jχj2
Imχ

qy1 ImTð Þq1 ð29Þ

=
4λ1
π

Θðω,TÞqy
1 ImTð Þq1: ð30Þ

Surprisingly, the various transformations to this point have removed
all explicit dependencies on material susceptibility χ1,2(ω), with the
only implicit dependence embedded in ImT. We will now focus on the
upper bound for HTC, and the upper bound for RHT can be found by
taking similar steps. To switch from the RHT to HTC bound compu-
tation, we just need to take the temperature derivative of the last
expression to get

FHTCðω,TÞ≤ 4λ1
π

∂Θðω,TÞ
∂T

qy1 ImTð Þq1: ð31Þ

In our oscillator representation, we know that ωImTðωÞ is exactly the
real-symmetric positive-semidefinite matrix XðωÞ, which must satisfy
the low-frequency sum rule

R1
0 XðωiÞ=ω2

i ≤αID. (The nonreciprocal
part of ωImTðωÞ cannot contribute, as the NFRHT objective is
symmetric around ω =0, so that it can be written as the linear
combination of positive-frequency contributions and their negative-
frequency counterparts. The positive- and negative-frequency con-
tributions cancel for the nonreciprocal part due to its anti-symmetry in
frequency.) We renormalize X to simplify the sum rule:
XðωiÞ ! αðπ=2Þω2

i XðωiÞ, so that
R1
0 XðωiÞ≤ ID. In terms of XðωiÞ, the

total frequency-integral HTC is

HTC≤ 2ε0αλ1Tr q1q
y
1

Z 1

0
XðωÞ ω

∂Θðω,TÞ
∂T


 �
dω

� �
: ð32Þ

The optimization of Eq. (32), subject to the passivity constraint
(XðωÞ≥0) and the sum-rule constraint (

R1
0 XðωÞdω≤ ID) is actually

simple, thanks to the structure of the objective and representation.We
form a basis Q whose first column is q1, with all other columns
orthogonal to q1. If wewrite at every frequencyXðωÞ=QX0ðωÞQy, then
Tr q1q

y
1XðωÞ

h i
=qy

1QX0ðωÞQyq1 = X0ðωÞ� �
11. Hence only the (1, 1) ele-

ment ofX0ðωÞ contributes to the objective (due to the rank-one nature
of the excitation). Thepositive semidefinite property aswell as the sum
rule for XðωÞ are equivalent for X0ðωÞ (as the transformation was
unitary). Hence we can rewrite the HTC bound as:

HTC≤ 2ε0αλ1

Z 1

0
X0ðωÞ� �

11 ω
∂Θðω,TÞ

∂T


 �
dω, ð33Þ

subject to the constraints X0
11ðωÞ≥0 and

R1
0 X0

11ðωÞdω≤ 1. The max-
imization of an inner product subject to a “probability simplex”
constraint64 has a simple solution: concentrate all of the response into
the single degree of freedomwhere the objective vector ismaximized.
In particular, in this case, the optimal X0

11 is a delta function with unit
amplitude at the frequency where ω ∂Θðω,TÞ

∂T is maximized. A simple
calculation shows that this occurs for

ωopt =
2:57kBT

_
=
xoptkBT

_
, ð34Þ

which is exactly the near-fieldWien frequency thatwe found fromHTC
optimization for planar, unpatterned geometries43. In terms of the
dimensionless variable xopt = 2.57, the HTC bound is:

HTC≤ 2ε0αλ1 ωopt

∂Θðωopt,TÞ
∂T


 �
ð35Þ

= 2ε0αλ1
k2
BT
_

x3opte
xopt

exopt � 1ð Þ2
: ð36Þ
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Inserting the numerical prefactors, we arrive at the final bound:

HTC≤0:11α
k2
B

_

T

d2 =β
T

d2 , ð37Þ

where β = 3.8 × 105Wnm2/m2/K2. For T = 300K and d = 10 nm,
HTC ≤ 1.1 × 106W/m2/K, which is 5X the optimal planar performance.
Hence this theoretical framework offers a close prediction to the best
known designs, it predicts the optimal resonance frequencywhere the
oscillator-strength should be concentrated, and it explains why
previous material-dependent predictions were incorrect.

Data availability
The datasets generated in this study are available at https://github.
com/PhotonDesign/ScatteringOscillatorsResults.

Code availability
The simulation code used in this study is available at https://github.
com/PhotonDesign/ScatteringOscillatorsResults.
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