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A knowledge-guided pre-training framework
for improving molecular representation
learning

Han Li 1, Ruotian Zhang1, Yaosen Min1, Dacheng Ma2, Dan Zhao 1 &
Jianyang Zeng 1,3

Learning effective molecular feature representation to facilitate molecular
property prediction is of great significance for drug discovery. Recently, there
has been a surge of interest in pre-training graph neural networks (GNNs) via
self-supervised learning techniques to overcome the challenge of data scarcity
in molecular property prediction. However, current self-supervised learning-
based methods suffer from twomain obstacles: the lack of a well-defined self-
supervised learning strategy and the limited capacity of GNNs. Here, we pro-
pose Knowledge-guided Pre-training of Graph Transformer (KPGT), a self-
supervised learning framework to alleviate the aforementioned issues and
provide generalizable and robust molecular representations. The KPGT fra-
mework integrates a graph transformer specifically designed for molecular
graphs and a knowledge-guided pre-training strategy, to fully capture both
structural and semantic knowledge of molecules. Through extensive compu-
tational tests on 63 datasets, KPGT exhibits superior performance in predict-
ing molecular properties across various domains. Moreover, the practical
applicability of KPGT in drug discovery has been validated by identifying
potential inhibitors of two antitumor targets: hematopoietic progenitor kinase
1 (HPK1) and fibroblast growth factor receptor 1 (FGFR1). Overall, KPGT can
provide a powerful and useful tool for advancing the artificial intelligence (AI)-
aided drug discovery process.

The identificationofmoleculeswith desiredproperties presents oneof
the most significant challenges in the drug discovery field, given the
considerable time and resources required for experimentally deter-
mining molecular properties1,2. In recent years, artificial intelligence
(AI)-based approaches have played an increasingly pivotal role in
predicting molecular properties, offering remarkable efficiency and
cost-effectiveness3–5. One of the primary challenges of AI-based
approaches for molecular property prediction is the representation
ofmolecules6,7. The earlymachine learning-based approaches involved
preliminary attempts toward representing molecules using basic

handcrafted features8–10. Among these, the most prominent ones
include molecular descriptors11–13, which quantitatively characterize
the physical and chemical profiles of small molecules, and
fingerprints14–16, which utilize binary strings to signify the presence of
specific substructures within a molecular structure. The prediction
methods based on these representations are highly dependent on
complicated feature engineering strategies, consequently compro-
mising their generalizability and flexibility.

Recent years have witnessed the emergence of deep learning-
based methods as potentially useful tools for predicting molecular
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properties, primarily due to their remarkable capability of auto-
matically extracting effective features fromsimple input data. Notably,
a diverse range of neural network architectures, including recurrent
neural networks (RNNs)17–19, convolutional neural networks
(CNNs)20–22, and graph neural networks (GNNs)23–26, excel in modeling
molecular data across various formats, from the simplified molecular-
input line-entry system (SMILES)27 to molecular images and molecular
graphs. Nevertheless, the limited availability of labeled molecules and
the vastness of the chemical space have constrained their prediction
performance, particularly when handling out-of-distribution data
samples6,28,29. Along with the remarkable achievements of self-
supervised learning methods in the fields of natural language
processing30,31 and computer vision32,33, these techniques have been
employed to pre-train GNNs and improve the representation learning
of molecules, leading to substantial improvements in the downstream
molecular property prediction tasks28,34–42.

Current self-supervised learning methods, exemplified by
GraphLoG36, GROVER38, and GEM42, typically involve the modification
of molecular graphs by means of node or subgraph masking, followed
by the prediction of the masked components28,38, or the utilization of
contrastive learning objectives to align the modified graphs with their
corresponding originals in latent space35,37. Molecules inherently pos-
sess characteristics tightly linked to their structures, which implies that
even minor modifications of molecular graphs can lead to the loss of
their semantic information. This natural characteristic of molecules
potentially limits current self-supervised learning-based methods for
molecular graphs to capture structural similarity among molecules
and fails to capture the rich semantic information related tomolecular
properties encoded within their chemical structures (Supplementary
Fig. 1)43. Moreover, in the absence of semantic information on mole-
cular graphs, the only dependency between the masked nodes and
their adjacent nodes is the valency rules, which often fail to guide the
model to make accurate predictions for the masked nodes (Supple-
mentary Fig. 2). Consequently, this limitation can potentially result in a
model that simply memorizes the dataset. We hypothesize that
introducing additional knowledge that quantitatively describes mole-
cular characteristics into the self-supervised learning framework can
effectively address these challenges. There are many quantitative
characteristics of molecules, such as the aforementioned molecular
descriptors and fingerprints, that are readily accessible through cur-
rently established computational tools13,44. Integrating this additional
knowledge can introduce abundant semantic information about
molecules into self-supervised learning, thus substantially enhancing
the acquisition of semantic-enriched molecular representations.

Existing self-supervised learning methods generally rely on GNNs
(e.g., graph isomorphism network45) as backbone models. However,
GNNs can only provide limited model capacity, as they suffer from
over-smoothing when increasing their numbers of layers46,47. Addi-
tionally, GNNs might struggle to capture long-range interactions
between atoms, arising from their standard practice of exchanging
information only among one-hop neighbors during the message pas-
sing process48,49. Recent advancements in backbone networks, parti-
cularly transformer-based models50, have emerged as game-
changers50–52. These models, characterized by an increasing number
of parameters and the capability to capture long-range interactions,
present promising avenues to comprehensively model the structural
characteristics of molecules53–57.

In this study, we introduce KPGT58, a self-supervised learning
framework designed to enhance molecular representation learning,
and thus advance the downstream molecular property prediction
tasks. The KPGT framework combines a high-capacity model, called
Line Graph Transformer (LiGhT), particularly designed to accurately
model molecular graph structures, with a knowledge-guided pre-
training strategy aiming to capture both structural and semantic
knowledge of molecules. After pre-training on a large-scale dataset

consisting of approximately two million molecules, KPGT demon-
strated a significant performance enhancement on 63 molecular
property datasets. Moreover, we showcased the practical applicability
of KPGT by successfully utilizing it to identify potential inhibitors for
two antitumor targets, hematopoietic progenitor kinase 1 (HPK1) and
fibroblast growth factor receptor (FGFR1). In summary, KPGT offers a
powerful self-supervised learning framework for effective molecular
representation learning, thereby advancing the field of AI-aided drug
discovery.

Results
Overview of KPGT
Our proposed KPGT framework (Fig. 1) comprises two main compo-
nents: a backbonemodel called Line Graph Transformer (LiGhT) and a
knowledge-guidedpre-training strategy. LiGhT is particularly designed
to comprehensively capture the complicated patterns within mole-
cular graph structures (Fig. 1b). This model builds upon a classic
transformer encoder50, consisting of multiple layers of a multi-head
attention module and a feed-forward network. LiGhT takes the mole-
cular line graphs as input, which represent the adjacencies between
edges of the original molecular graphs (Supplementary Fig. 3).
Representing molecules as line graphs allows LiGhT to fully take
advantage of the intrinsic features of chemical bonds, which are gen-
erally neglected in the previously defined transformer
architectures53–57. Moreover, in order to precisely model the structural
information of molecules, we introduce two positional encoding
modules, namely distance encoding and path encoding modules, into
the multi-head attention module.

Our proposed knowledge-guidedpre-training strategy is basedon
a masked graph model objective59, which initially masks a subset of
nodes in molecular graphs at random and subsequently learns to
predict these masked nodes (Fig. 1a). The most distinguishing feature
of our strategy is the incorporation of additional knowledge. Each
molecular graph is augmented with a knowledge node (K node) con-
nected to the original nodes within the graph. The raw feature
embedding of each K node is initialized using the corresponding
additional knowledge. During pre-training, the K node interacts with
other nodes in the multi-head attention module of each transformer
layer, thereby providing guidance for predicting the masked nodes.
This mechanism enables the backbone model to effectively capture
both structural and semantic information within molecular graphs.

We utilize around two million molecules from the ChEMBL29
dataset60 to pre-train LiGhT using the knowledge-guided pre-training
strategy. We then apply transfer learning to the pre-trained LiGhT
model to carry out downstreammolecular property prediction tasks. A
multiple-layer perceptron is integrated on top of the LiGhT model to
serve as a predictor. The transfer learning approach can be classified
into two settings based on whether the parameters of the pre-trained
LiGhT model are trainable: finetuning (Fig. 1c) and feature extraction
(Fig. 1d). In the finetuning setting, we introduce several finetuning
strategies, such as layer-wise learning rate decay61, re-initialization61,
FLAG62, and L2-SP63, thereby fully taking advantage of the knowledge
acquired by the pre-trained model. Further details about the KPGT
framework can be found in the “Methods” section.

KPGToutperforms the baselinemethods onmolecular property
prediction
We initially compared KPGT to 19 state-of-the-art self-supervised
learning-based methods (Supplementary Note 1.2) on 11 molecular
property datasets. Among these datasets, eight are designed for clas-
sification tasks, while the remaining three are designed for regression
tasks, collectively spanning a wide range ofmolecular properties, such
as biophysics, physiology, and physical chemistry. The comparison
was conducted under two settings: feature extraction, where the
backbonemodel wasfixed, and finetuning, where the backbonemodel
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was trainable. Detailed experimental settings are available in the
“Methods” section. In the feature extraction setting, KPGT exhibited
superior performance compared to baselinemethods across sevenout
of eight classification datasets and two out of three regression data-
sets, leading to overall relative improvements of 2.0% for classification
and 4.5% for regression (Fig. 2a and Supplementary Tables 4 and 5). In
the finetuning setting, KPGT outperformed baseline methods across
seven out of eight classification datasets and all three regression
datasets, resulting in overall relative improvements of 1.6% for classi-
fication and 4.2% for regression (Fig. 2b and Supplementary Tables 6
and 7). These results demonstrated that KPGT presents a more pow-
erful self-supervised learning framework in comparison with previous
methods for molecular representation learning. Moreover, among
these baseline methods, GROVER38, Supervised+Context Prediction
(ContextpredSup)

28, Supervised+Attribute Masking (MaskingSup)
28,

Supervised+Edgepred (EdgepredSup)
28, and Supervised+Infomax

(InfomaxSup)
28 also integrate additional knowledge by introducing

supervised graph-level pre-training tasks in their self-supervised
learning frameworks, such as predicting the presence of molecular
motifs or bio-activities of molecules. Although the self-supervised
learning strategies of these methods are not well-defined, they still
outperformed other baseline methods that do not incorporate addi-
tional knowledge. This observation demonstrated the significance of
integrating additional knowledge to enhance the efficacy of pre-
training on molecules.

Next, we compared the performance of KPGT with machine
learning and supervised deep learning-based methods using the
datasets from Therapeutics Data Commons (TDC)64,65 and

MoleculeACE66. TDC is a benchmarking platform that encompasses a
comprehensive set of 22 molecular property prediction tasks64,65.
These tasks span a broad spectrum of molecular properties, including
absorption, distribution, metabolism, excretion, and toxicity
(ADMET), which are pivotal in the field of drug discovery and devel-
opment. We conducted a comparison between KPGT and 28 baseline
methods from the TDC leaderboards. These baselines included 16
deep learning-basedmethods and 12machine learning-basedmethods
(Supplementary Note 1.2). Detailed experimental settings are available
in the “Methods” section. Based on the results, KPGT exhibited
superior performance compared to the baseline methods on 16 out of
22 datasets. Specifically, it outperformed the baselines on five out of
six absorption datasets, two out of three distribution datasets, six out
of six metabolism datasets, one out of three excretion datasets, and
two out of four toxicity datasets (Fig. 2c). These findings showcased
the capability of KPGT to provide robust and generalizable molecular
representations, making it versatile in predicting diverse aspects of
molecular properties. More comprehensive results are available in
Supplementary Figs. 4–8 and Supplementary Table 8.

We also assessed the performance of KPGT on more challenging
tasks: predicting bio-activities for activity cliffs. Activity cliffs refer to
pairs of molecules exhibiting highly similar structures but displaying
substantial difference in potency, posing a significant challenge for
prediction models. MoleculeACE is a benchmarking platform that
provides 30 bio-activity datasets involving activity cliffs, derived from
30 macromolecular targets66. In this evaluation, we assessed KPGT
against 24 baseline methods from the MoleculeACE benchmarking
platform, comprising seven deep learning-based methods and 17

Fig. 1 | An illustrative diagram of KPGT. a A knowledge-guided pre-training
strategy based on a masked graph model and enhanced by additional knowledge.
Molecules are represented as molecular line graphs, which represent the adja-
cencies between the edges of the original molecular graphs. b A line graph trans-
former based on classic transformer architecture. c Transfer learning for
downstreammolecular property prediction under the finetuning setting, where the
parameters of the pre-trained LiGhT are trainable. Various finetuning strategies,
such as layer-wise learning rate decay, re-initialization, FLAG, and L2-SP are

introduced in this setting. d Transfer learning for downstreammolecular property
prediction under the feature extraction setting, where the parameters of the pre-
trained LiGhT are fixed. The neural fingerprints represent the molecular feature
representations generated by the pre-trained LiGhT, serving as informative and
discriminative representations of molecules. Multi-layer perceptron (MLP), linear
layer (Linear), matrix multiplication (MatMul), distance encoding (DE) module,
path encoding (PE) module.
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machine learning-based methods (Supplementary Note 1.2), as well as
all 19 self-supervised learning-based methods from our first bench-
marking test. Detailed experimental settings are available in the
“Methods” section. Fig. 2d and Supplementary Table 9 report the
results of KPGT and baseline methods. The results demonstrated that

KPGT outperformed baseline methods on 26 out of 30 datasets, with
an overall relative improvement of 3.9%. Figure 2e and Supplementary
Table 10 present the results of KPGT and baseline methods evaluated
exclusively on the activity cliffs within each test set. From the results,
KPGT achieved superior prediction performance in comparison with

Fig. 2 | Comparison assessments of KPGT and baseline methods on molecular
property prediction. a, b The averaged results of KPGT and self-supervised
learning-based baseline methods on eight classification datasets (measured in
terms of AUROC) and three regression datasets (measured in terms of RMSE),
under the feature extraction setting (where the backbonemodel was fixed) and the
finetuning setting (where the backbone model was trainable). The results were
reported based on three independent runs with different random seeds. Data are
presented asmean± standard deviation (SD). c The ranking results of KPGT on the
leaderboards from the TDC benchmarking platform for predicting absorption,
distribution, metabolism, excretion, and toxicity properties of molecules. The

ranking results were reported based on the averaged results derived from five
independent runs. Dashed lines are used to separate different molecular property
categories. d, e The averaged results of KPGT and baseline methods on the 30 bio-
activity datasets from MoleculeACE, measured in terms of RMSE on all molecules
from the test sets (denoted asMoleculeACEAll) and solely on activity cliffs from the
test sets (denoted as MoleculeACECliff), respectively. The violin plot displays the
minima and maxima (lower and upper ends), median (the white dot in the center),
interquartile range (lower and upper ends of the box), and 1.5 times of interquartile
range (whiskers). Source data are provided as a Source Data file.
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baseline methods on 22 out of 30 datasets, exhibiting an overall rela-
tive improvement of 1.2%. These observations demonstrated the effi-
cacy of KPGT in predicting molecular bio-activities, even when
handling activity cliffs.

Additionally, the results obtained on the datasets from TDC and
MoleculeACE revealed that traditional machine learning methods
based on handcrafted features (e.g., molecular descriptors and fin-
gerprints) exhibited highly competitive prediction performance, even
surpassing the previously designed deep learning-based methods in
multiple cases. For the datasets from TDC, machine learning-based
methods served as themost competitive baselinemethodson 13 out of
22 datasets (Supplementary Table 8). Similarly, for the datasets from
MoleculeACE, machine learning-based methods emerged as the most
competitive baseline methods on 18 out of 30 datasets (Supplemen-
tary Tables 9 and 10). These findings suggested that the previous deep
learning-basedmodelsmay struggle to capture the intrinsic features of
molecules, which aligned with observations of earlier studies67,68. Sig-
nificantly, our experimental findings consistently showcased the
superior performance of KPGT, surpassing these machine learning-
based methods by a substantial margin. In summary, the aforemen-
tioned discoveries provided compelling evidence that KPGT con-
sistently outperformed baseline methods on a total of 63 datasets,
thereby demonstrating its efficacy and reliability in the prediction of
molecular properties.

Investigating the knowledge acquired by KPGT in pre-training
and finetuning
After demonstrating the superiority of KPGT in predicting molecular
properties, we conducted further investigations to unveil the reasons
underlying its remarkable performance. We initiated this exploration
by analyzing the latent space constructed by KPGT after pre-training.
For this analysis, we employed a dataset comprising measurements of
bio-activity (i.e., inhibition or non-inhibition) for 12,328 molecules
targeting the CYP3A4 enzyme, which plays a crucial role in drug
metabolism69. We first generated neural fingerprints (i.e., molecular
feature representations) for molecules from the CYP3A4 dataset using
thepre-trainedKPGT.Next,we randomly sampled 200molecules from
the CYP3A4 dataset to form a test set, while the remaining molecules
constituted the training set. We then employed k-nearest neighbor
classification (kNN) based on the neural fingerprints to make predic-
tions for the molecules in the test set. We compared the performance
of KPGT with two classic fingerprints widely used in the field, namely
extended-connectivity fingerprints (ECFP)14 and RDKit fingerprint
(RDKFP)44, along with two neural fingerprints derived from two state-
of-the-art self-supervised learning-based methods, GROVER38 and
GraphCL35. Figure 3a illustrates the comparison performance of KPGT
and baseline methods in terms of accuracy and the area under
Precision-Recall (AUPRC). Notably, KPGT achieved relative improve-
ments of 1.3%-2.7% over baseline methods in terms of AUPRC. This

Fig. 3 | Investigating the knowledge acquired by KPGT in pre-training and
finetuning. a The accuracy and AUPRC of k-nearest neighbor classification for
predicting drugmetabolism on the CYP3A4 dataset given different values of k. The
error bands stand for the standard deviations across three independent runs.bThe
Pearson’s r between five descriptors (i.e., MolLogP, MolWt, TPSA, NumRotata-
bleBonds, QED, and SA) of 200 target molecules and their corresponding closest
molecules identified using fingerprints from KPGT and the baseline methods. The
results were based on three independent runs. Data are presented as mean ±

standard deviation (SD). c The distribution of the structural similarity of 200 target
molecules and their corresponding closest molecules, which were identified using
the fingerprints from KPGT and the baseline methods. d t-SNE visualization of
molecular representations from the CYP3A4 dataset produced by KPGT, accom-
panied by the visualization of critical nodes in activity cliffs identified by
SubgraphX71. Dashed circles highlight the distinguished substructures within the
activity cliffs. Source data are provided as a Source Data file.
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result indicated that neighboring molecules in the latent space con-
structed by the pre-trained KPGT may tend to establish more similar
characteristics.

We carried out additional tests to further verify our findings.More
specifically, we first retrieved the closest data point in the latent space
for each molecule from the sampled test set, yielding 200 pairs of
molecules. Next, we calculated five descriptors that play important
roles in drug discovery, including molecular LogP (MolLogP), mole-
cular weight (MolWt), topological polar surface area (TPSA), number
of rotatable bonds (NumRotatableBonds), quantitative estimate of
drug-likeness (QED), and synthetic accessibility (SA), for the sampled
molecules and queried ones. We then measured the correlation
between the pairs of sampled and queried molecules for each
descriptor in terms of Spearman’s rank correlation coefficient
(Spearman’s r) and Pearson correlation coefficient (Pearson’s r).
Figure 3b and Supplementary Fig. 9 report the results of KPGT and
baseline methods, which indicated that KPGT achieved higher corre-
lations on these five descriptors compared to baseline methods.
Additionally, we measured the structural similarities between the
sampledmolecules and the corresponding queried ones by calculating
the Tanimoto similarity between their RDKFP/ECFP fingerprints. From
the results, themolecules queried by KPGT exhibited higher structural
similarity in comparison with the self-supervised learning-based
baseline methods (Fig. 3c and Supplementary Fig. 10). These results
collectivelydemonstrated that in the latent space learnedbyKPGT, the
proximity of molecules not only implied similarity in their structures
but also signified similar semantics. This finding suggested that our
proposed knowledge-guided pre-training strategy enabled LiGhT to
effectively capture both structural and semantic information of
molecules, thus providing sufficient knowledge for the downstream
molecular property prediction tasks.

Next, we proceeded with the finetuning process of KPGT utilizing
the CYP3A4 dataset. To elaborate, we finetuned KPGT on the CYP3A4
dataset and employed t-distributed stochastic neighbor embedding (t-
SNE)70 to visualize the molecular representations within the test set.
From the results, KPGT provided a clear separation for the repre-
sentations of inhibitors and non-inhibitors, indicating that KPGT can
learn the distinguishable features of molecules with different proper-
ties in the finetuning process (Fig. 3d and Supplementary Fig. 11).
Subsequently, we assessed the ability of KPGT to classify activity cliffs
within the CYP3A4 dataset. Notably, KPGT outperformed the baseline
methods with a relative improvement of 7.1% in terms of AUPRC
(Supplementary Fig. 12). To gain deeper insights into the predictions
made by KPGT, we visualized two pairs of activity cliffs in the latent
space, denoted as pairs A+ and A−, and pairs B+ and B−, respectively.
As illustrated in Fig. 3d, despite possessing high fingerprint similarity
(0.87 and 0.96), the activity cliffs were correctly located in the latent
space. These results highlighted the remarkable sensitivity of KPGT in
capturing the semantic changes of molecules during the finetuning
process, even in caseswhere suchchanges arose from subtle structural
alterations. For a more comprehensive interpretation of the predic-
tions, we employed a graph-based explanation method named
SubgraphX71 to visualize the activity cliffs and provided interpretation
for the predictions (Fig. 3d). Our observations revealed that KPGT
successfully captured the key substructures that distinguished the
activity cliffs, demonstrating its ability to identify the discriminative
features of molecules with different properties in the finetuning stage
and thus provide meaningful interpretability for its predictions.

Uncovering potentially effective inhibitors for antitumor tar-
gets by KPGT
Hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor
receptor (FGFR1), which are implicated in a variety of cancer types,
have been extensively studied for antitumor therapy72–75. The avail-
ability of high-quality experimental data for HPK1 and

FGFR1 significantly facilitates the development and validation of the
AI-based computation model, providing adequate data for evaluating
the practicality and prediction performance of KPGT. In this section,
we carried out evaluation tests, drug repurposing, and docking ana-
lyses for both targets, serving as a proof-of-concept validation of the
effectiveness of KPGT in real-world drug discovery scenarios.

To facilitate the identification of potent inhibitors against HPK1,
we collected 4442molecules with experimentally determined potency
against HPK1 from previous patents and research, measured in terms
of the negative logarithm of the half maximal inhibitory concentration
(pIC50). We comprehensively evaluated the prediction performance
of KPGT on this dataset using three distinct splitting approaches,
including scaffold splitting, time splitting, and domain transfer
(“Methods”). Comparison results betweenKPGTand 19 self-supervised
learning-based baseline methods are detailed in Fig. 4b–d and Sup-
plementary Fig. 14. The results demonstrated that KPGT significantly
outperformed 19 self-supervised learning-based baseline methods in
terms of Spearman’s r and Pearson’s r. Remarkably, even in the time
splitting and domain transfer scenarios, where the molecules within
training and test sets were significantly different in their structures
(Fig. 4a), KPGT consistently achieved elevated correlation scores.
These observations validated the superior generalizability and relia-
bility of KPGT in the prediction of HPK1 inhibitors.

We next sought to use KPGT to identify potential HPK1 inhibitors
through drug repositioning. More specifically, we first obtained 2718
US Food and Drug Administration-approved (FDA) drugs (denoted as
the FDA dataset) collected from DrugBank76. Then we finetuned KPGT
on the pIC50 dataset of HPK1 inhibitors and made predictions for the
molecules from the FDA dataset. Supplementary Table 11 reports the
experimental evidence from previous studies for the top 20 predic-
tions of KPGT. The results revealed that 12 out of 20 drugs were
experimentally validated by previous assays as potential inhibitors of
HPK1. For example, sunitinib, identified by KPGT, is a multi-receptor
tyrosine kinase (RTK) inhibitor and a previous study reported its Ki
value against HPK1 kinase at approximately 16 nM through competi-
tion binding assays77.

To strengthen our findings, we further conducted docking ana-
lyses for the top20predictions fromKPGT. AutodockVina78,79, awidely
used docking software, was employed for these tests. The reference
protein-ligand structure (PDB ID: 7SIU80) guided the identification of
the binding pocket. As depicted in Fig. 4f, all the molecules achieved
docking energies below −7 kcal/mol, a commonly used threshold for
drug-like molecules81–84, signifying the substantial potential for these
molecules as HPK1 inhibitors. Additionally, we conducted an in-depth
analysis of the protein-ligand interactions for all the molecules that
had not been reported in the literature using a widely applied protein-
ligand interaction profiler named PLIP85. Figure 4g illustrates the
protein-ligand interaction profile of the ligand gilteritnib with the
protein HPK1. The analysis revealed the formation of three hydro-
phobic interactions and six hydrogen bonds between the ligand and
the protein. Remarkably, the hydrogen bonds formed with residues
94A and 97A were also reported in the reference protein-ligand
structure (PDB ID: 7SIU80). These observations showcased that the
molecules can tightly bind to HPK1, validating the reliability of the
docking results. Supplementary Fig. 16 provides additional protein-
ligand interaction profiles for other molecules, including palbociclib,
ripretinib, trilaciclib, rucaparib, selpercatinib, alatrofloxacin, and ver-
iciguat. Collectively, these results highlighted the superior ability of
KPGT to identify potential inhibitors for HPK1.

Next, as a second prototypical example, we conducted tests on
FGFR1, another promising druggable target associated with tumor
progression and invasion74,75. We first collected 12,461 existing mole-
cules for FGFR1 from patents and previous studies with experimental
pIC50 values. We evaluated the prediction performance of KPGT on
the FGFR1 dataset under the scaffold splitting and time splitting
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settings. Figure 5a, b and Supplementary Fig. 15 illustrate the perfor-
mance of KPGT and 19 self-supervised learning-based baseline meth-
ods. KPGT achieved high correlation values under both scaffold
splitting (Pearson’s r = 0.924) and time splitting (Pearson’s r = 0.716)
scenarios. Next, we carried out drug repurposing utilizing the FDA
dataset. The results revealed that 13 out of 20 top predicted small
molecules were experimentally validated by previous studies as high
affinity or effective FGFR1 inhibitors (Supplementary Table 12). For the
docking tests, the protein-ligand structure (PDB ID: 5A4C86) was
employed as a reference for the binding pocket identification. As
shown in Fig. 5d, all the top 20molecules identified by KPGT achieved
docking energies below -7 kcal/mol. By profiling the protein-ligand

interactions utilizing PLIP85, the ligand brigatinib was tightly bound to
the protein FGR1. Specifically, it formed four hydrophobic interac-
tions, one hydrogen bond, and one salt bridge with FGFR1 (Fig. 5e).
Among these interactions, the hydrogen bond formed with residue
641A was also reported in the reference protein-ligand structure (PDB
ID: 5A4C86). In Supplementary Fig. 17, we also displayed additional
protein-ligand interaction profiles for other molecules, including
ripretinib, encorafenib, elagolix, baricitinib, enasidenib, and rux-
olitnib. All these observations collectively reinforced the general-
izability of KPGT in accelerating the identification of potential drug
candidates, thus establishing its utility as a valuable tool in drug
discovery.

Fig. 4 | Identifying HPK1 inhibitors using KPGT. a Visualization of molecular
ECFPs via t-SNE in the time splitting and domain transfer scenarios, respectively.
b–dThe performanceof KPGT and baselinemethodson predictingHPK1 inhibitors
in the b scaffold splitting, c time splitting, and d domain transfer scenarios, mea-
sured in terms of Pearson’s r. All the prediction results were reported based on
three independent runs. Data are presented as mean± standard deviation (SD).
e Visualization of molecular representations of molecules from the HPK1 pIC50
dataset and the FDA dataset derived from KPGT. The top ten predictions of
potential inhibitors against HPK1 from the FDA dataset derived from KPGT are

delineated in dashed circles, and their corresponding molecular structures are
listed in the right panel. The check symbols indicate that the molecules had been
previously identified as inhibitors of HPK1 in previous studies. f The docking scores
of the top 20 molecules identified by KPGT as potential inhibitors against HPK1,
measured by Autodock Vina78,79. g The interactions between gilteritnib and HPK1
profiled by PLIP85. The protein-ligand structure (PDB ID: 7SIU80) was utilized as a
reference for binding pocket identification. The red line at −7 kcal/mol represents a
commonly used threshold for identifying drug-like molecules. Source data are
provided as a Source Data file.
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Ablation studies on KPGT
To validate the effectiveness of the specific design choices of KPGT,we
conducted comprehensive ablation studies. Specifically, we intro-
duced several modified frameworks based on KPGT with specific
restrictions: KPGT-Pretrain (without pre-training), KPGT-KN (without
knowledge nodes), KPGT-PE (without path encoding module), KPGT-
DE (without distance encoding module), KPGT-LG (replacing mole-
cular line graph with original molecular graph), KPGT-LiGhT+Gra-
phormer (replacing backbone model LiGhT with Graphormer57), and
KPGT-LiGhT+GIN (replacing backbone model LiGhT with GIN45).
Additionally, for a fair comparison, we ensured that all models had
approximately the same number of parameters (around 3.5 million).
Supplementary Table 13 reports the performance of KPGT and mod-
ified frameworks on the datasets fromour first benchmarking test. The
results showcased the superiority of KPGT over KPGT-LG, resulting in
an overall relative improvement of 2.3%. This observation demon-
strated the enhanced informativeness of the molecular line graph
utilized in KPGT, in contrast to the original molecular graph used in
previous studies. KPGT also outperformed KPGT-LiGhT+Graphormer
with an overall relative improvement of 1.8%, indicating the enhanced
capacity of our proposed backbone model, LiGhT, in effectively cap-
turing the inherent structural information in comparison with Gra-
phormer. Moreover, KPGT surpassed KPGT-PE and KPGT-DE with

overall relative improvements of 2.7% and 3.0%, respectively, provid-
ing empirical validation for the significant role played by the distance
encoding and path encodingmodules. Overall, KPGToutperformed all
the modified frameworks, highlighting the significant contributions of
the individual design components of KPGT to its superior
performance.

We also investigated the effect of different masking rates on the
prediction performance of KPGT. We individually pre-trained KPGT
with masking rates of 15, 30, 50, and 60%, and subsequently evaluated
their prediction performance. From the results, setting the masking
rate to 50% achieved the best prediction performance (Supplementary
Fig. 19)58. This optimal masking rate was notably higher than that uti-
lized in the previous methods (15%). This discrepancy indicated that
the additional knowledge incorporated in KPGT effectively guided the
model to predict themasked nodes, thereby enabling it to capture the
rich semantics of molecules. Moreover, this observation aligned with
the finding in the field of CV that applying larger masking rates in self-
supervised learning can yield improved performance on downstream
tasks32.

Discussion
In this study, we develop and establish KPGT, a self-supervised learning
framework that offers improved, generalizable, and robust molecular

Fig. 5 | Identifying FGFR1 inhibitors using KPGT. a, b The performance of KPGT
and baseline methods on predicting FGFR1 inhibitors under the a scaffold splitting
and b time splitting scenarios, respectively, measured in terms of Pearson’s r. All
the prediction results were reported based on three independent runs. Data are
presented as mean± standard deviation (SD). c Visualization of molecular repre-
sentations of molecules from the pIC50 dataset of FGFR1 inhibitors and FDA
dataset derived from KPGT. The top ten predictions of potential inhibitors against
FGFR1 from the FDA dataset derived from KPGT were delineated in dashed circles,
and their corresponding structures were listed in the right panel. The check

symbols indicate that themolecules had been previously identified as inhibitors of
FGFR1 in previous studies. d The docking scores of the top 20molecules identified
by KPGT as potential inhibitors against FGFR1, measured by Autodock Vina78,79.
e The interactions between brigatinib and FGFR1 profiled by PLIP85. The protein-
ligand structure (PDB ID: 5A4C86) was utilized as a reference for binding
pocket identification. The red line at −7 kcal/mol represents a commonly used
threshold for identifying drug-likemolecules. Source data are provided as a Source
Data file.
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property prediction through significantly enhanced molecular repre-
sentation learning. By leveragingahigh-capacitybackbonemodel called
LiGhT, KPGT comprehensively captures the inherent structural infor-
mation within molecular graphs. More importantly, KPGT introduces a
knowledge-guided pre-training strategy that can robustly address the
limitations of previously ill-defined pre-training approaches, empow-
ering our model to provide semantic-enriched molecular representa-
tions. In addition, KPGT incorporates several finetuning strategies that
effectively integrate the acquired knowledge from the pre-trained
model, leading to improved performance on downstream molecular
property prediction tasks. With these advancements, KPGT achieved
great improvement on 63 datasets compared with several baseline
methods. Remarkably, KPGT showed practical applications in the
identification of multiple potential inhibitors for two antitumor targets.

Despite the advantages of KPGT for effective molecular property
prediction, there remain a few limitations. First, the integration of
additional knowledge is the most distinguishable feature of our pro-
posedmethod. Except for the 200molecular descriptors and 512RDKFP
employed in KPGT, there is potential to incorporate various other types
of additional informative knowledge. For instance, Mordred13 can cal-
culate over 1800 molecular descriptors, presenting an opportunity to
incorporate a broader range of knowledge to further enrich the repre-
sentation learning of molecules. Moreover, further studies could
encompass the integration of three-dimensional (3D) molecular con-
formations into the pre-training process, thus enabling the model to
capture vital 3D information regarding molecules, and potentially
enhancing the representation learning capabilities. Additionally, while
KPGT currently employs a backbone model with approximately one
hundred million parameters, along with pre-training on two million
molecules, exploring larger-scale pre-training could offer even more
substantial benefits for molecular representation learning. Overall, we
anticipate our proposed method will offer a general self-supervised
learning framework for accelerating AI-aided drug discovery.

Methods
Molecular graph construction
Given a SMILES representation of a molecule, we first abstract it as a
molecular graph G= ðV,EÞ, where V = fvigi2½1,Nv � stands for the set of
nodes (i.e., atoms), E = fei,jgi,j2½1,Nv �

stands for the set of edges (i.e.,
chemical bonds), and Nv stands for the number of nodes. We initialize
the features of nodes andedges in themoleculargraph via RDKit44. The
atom and bond features used in this work are summarized in Supple-
mentary Tables 1 and 2, respectively. We represent the initial features
of node vi and edge ei,j as xv

i 2 RDv and xe
i,j 2 RDe , respectively, where

Dv and De stand for the dimensions of features of nodes and edges,
respectively.

Line graph transformer
To fully exploit the structural information from molecules, especially
the chemical bonds that have been neglected in the previously defined
transformer architectures53–57, we transform the molecular graph
G= ðV,EÞ to molecular line graph Ĝ = fV̂, Êg as the following two steps
(Supplementary Fig. 3):

• For each edge ei,j in G, create a node v̂i,j in Ĝ;
• For every two edges in G that have a node in common, create an

edge between their corresponding nodes in Ĝ.

We calculate the initial feature embedding hv̂i,j
2 RDv̂ of node v̂i,j

in Ĝ as follows:

hv̂i,j
= concatðW vx

v
i +W vx

v
j ,W ex

e
i,jÞ, ð1Þ

whereDv̂ stands for the dimension of the initial feature embeddings of

nodes in molecular line graphs, W v 2 R
Dv̂
2 ×Dv and W e 2 R

Dv̂
2 ×De stand

for the trainable projection matrices, and concat(⋅) stands for the
concatenation operator. For clarity, we denote the nodes in a mole-

cular line graph as V̂ = fv̂igi2½1,Nv̂� in the following sections, where Nv̂

stands for the number of nodes in the molecular line graph.

We then propose Line Graph Transformer (LiGhT) to encode
features of the molecular line graph. LiGhT is built upon a classic
transformer encoder50, which consists of multiple transformer layers.
More specifically, given the node feature matrix H 2 RNv̂ ×Dv̂ of a
molecular line graph, the transformer layer l first feeds it into a multi-
head self-attention module:

Ql,k =H l�1W l,k
Q ,K l,k =H l�1W l,k

K ,V l,k =H l�1W l,k
V ,

Al,k = softmax Ql,k ðK l,k ÞT
ffiffiffiffiffi

Dh

p
� �

,H l,k =Al,kV l,k ,

H l = concatðH l,1,H l,2, . . . ,H l,Nh Þ,

ð2Þ

where Hl−1 stands for the node feature matrix at the (l − 1)-th layer,
W l,k

Q 2 RDv̂ ×Dh , W l,k
K 2 RDv̂ ×Dh and W l,k

V 2 RDv̂ ×Dh stand for the train-
able projection matrices of the k-th head at layer l, Dh =

Dv̂
Nh

stands for
the dimension of each self-attention head,Nh stands for the number of
self-attention heads, and softmaxð�Þ stands for the softmax operator.
The output Hl is then passed to an FFN:

^H l = LNðH l�1 +H lÞ,
H l = LN W l

2GELUðW l
1
^H lÞ+ ^H l

� �

,
ð3Þ

where LNð�Þ stands for the LayerNorm operator87, GELU(⋅) stands for
the GELU activation function88, and W l

1 2 R4Dv̂ ×Dv̂ and W l
2 2 RDv̂ ×4Dv̂

stand for the trainable projection matrices at layer l.
Directly applying the above classic transformer architecture can

lead to a significant loss of structural information of molecules since it
ignores the connectivity of graphs. Therefore, we further employ path
encoding and distance encoding modules to introduce the structural
information into the multi-head self-attention layer.

Path encoding module. For each pair of nodes v̂i and v̂j in the mole-
cular line graph, we first derive the shortest path between them and
then encode the path features to an attention scalar ap

i,j in a path
attention matrix Ap 2 RNv̂ ×Nv̂ as follows:

ðv̂p1 , v̂p2, . . . , v̂pNp
Þ=SPðv̂i, v̂jÞ,

ap
i,j =W

p
a

1
Np

P

Np

n = 1
W p

nhvpn
,

ð4Þ

where SP(⋅) stands for the shortest path function implemented by
networkx89, ðv̂p1 ,v̂p2, . . . ,v̂pNp

Þ stands for the shortest path between v̂i and

v̂j,Np stands for the length of the path, hvpn
stands for the feature of the

n-th node in the shortest path, W p
n 2 RDp ×Dv̂ stands for the trainable

projectionmatrix for the n-th node in the path,W p
a 2 R1 ×Dp stands for

a trainable projection matrix to project the path embedding to an
attention scalar, and Dp stands for the dimension of the path
embedding.

Distanceencodingmodule. Following refs. 54,57,we also leverage the
distances betweenpairs of nodes to further encode the spatial features
of themolecular line graphs.More specifically, given nodes v̂i and v̂j in
a molecular line graph, we encode their distance to an attention scalar
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ad
i,j in a distance attention matrix Ad 2 RNv̂ ×Nv̂ as follows:

di,j =SPDðv̂i,v̂jÞ,
ad
i,j =W

d
2GELUðW d

1 di,jÞ,
ð5Þ

where SPD(⋅) stands for the shortest path distance functoin, di,j stands
for the derived distance between v̂i and v̂j , W

d
1 2 RDd × 1 and W d

2 2
R1 ×Dd stand for the trainable projection matrices, and Dd stands for
the dimension of the distance embedding.

Then, to introduce the encoded structural information into the
model, we rewrite the formula of the attention matrix Al,k 2 RNv̂ ×Nv̂ in
the Eq. (2) as follows:

Al,k = softmax Ql,k ðK l,k ÞT
ffiffiffiffiffi

Dh

p +Ap +Ad
� �

: ð6Þ

where Ap and Ad are the path encoding matrix and the distance
encoding matrix, respectively.

Here, we discuss the main advantages of our proposed model
compared with the previously defined graph transformers:

First, by representing molecular graphs as line graphs, LiGhT
emphasizes the importance of chemical bonds inmolecules. Chemical
bonds are the lasting attractions between atoms, which can be cate-
gorized into various types according to the ways they hold atoms
together, resulting in different properties of the formed molecules.
However, the previously defined transformer architectures either omit
the edge features or only introduce chemical bonds as the bias in the
self-attention module, ignoring the rich information from chemical
bonds53–57. In our case, LiGhT fills this gap and fully exploits the
intrinsic features of chemical bonds.

Second, although strategies like path encoding have already been
proposed in previous graph transformer architectures53,57 when
encoding the paths, they only consider the edge features and ignore
the node features in the paths. On the other hand, our path encoding
strategy incorporates the features of the complete paths betweenpairs
of nodes, thus encoding the structural information more precisely
compared to the previous methods.

In summary, LiGhT provides a reliable backbone network for
accurately modeling the structural and semantic information of
molecular line graphs.

The knowledge-guided pre-training strategy
Knowledge. In this study, we define knowledge as any quantifiable
information that characterizes the features ofmolecules. This includes
various types of information, such as molecular descriptors and fin-
gerprints that are easily accessible through current cheminformatics
tools13,44. Additionally, knowledge can encompass the experimentally
measured characteristics of molecules, such as the comprehensive
information on the bio-activities of 456,000 molecules across 1310
bioassays in the preprocessed ChEMBL dataset90. We employed 200
molecular descriptors and 512 RDKit fingerprints in our proposed
method, which can be readily generated using RDKit44, a widely used
cheminformatics tool. The complete list of these molecular descrip-
tors and examples of RDKit fingerprints can be found in Supplemen-
tary Table 14 and Supplementary Fig. 20, respectively.

Pre-training strategy. Our pre-training strategy is based on a gen-
erative self-supervised learning scheme, which first randomly selects a
proportion of nodes in graphs. Then for each selected node, it
is replaced with a mask token, a random node or the unchanged node
with a ratio of 8:1:1. Finally, the model learns to predict the type of the
original node with a cross-entropy loss. In the pre-training, we also
randomlymask a proportion of the initial features of K nodes and learn
to predict the masked molecular descriptors and fingerprints. The
prediction of the masked molecular descriptor is formulated as a

regression task equipped with an RMSE loss, while the prediction of
fingerprint is formulated as a binary classification task equippedwith a
cross-entropy loss.

Finetuning strategies
To fully take advantage of the abundant knowledge captured in the
pre-training stage, KPGT introduces four finetuning strategies,
including layer-wise learning rate decay (LLRD)61, re-initialization
(ReInit)61, FLAG62 and, L2-SP63. LLRD and ReInit are proposed mainly
based on the fact that different layers of a model capture different
kinds of information, where the bottom layers tend to encode the
informationmore general to the downstream taskswhile the top layers
tend to encode information related to the pre-training tasks. More
specifically, LLRD implements the discriminative learning rates for
different layers of a model. This is achieved by setting an initial
learning rate of the top layer and using a multiplicative decay rate to
decrease the initial learning rate layer-by-layer from top to bottom.
ReInit re-initializes the parameters of the top-n layers of a model
before finetuning. FLAG is a data augmentationmethod that iteratively
augments the node features by injecting the gradient-based adver-
sarial perturbations during finetuning. L2-SP proposes a regularization
scheme to explicitly promote the similarity of the finetuned model
with the initial one in the finetuning process.

Training details
All models were implemented in PyTorch91 version 1.10.0 and DGL92

version 0.7.2 with CUDA version 11.3 and Python 3.7. We imple-
mented a 12-layer LiGhT as the backbone network with 768 hidden
units and 12 self-attention heads. A mean pooling operation that
averaged all the nodes in individual graphs was applied on top of the
model to extract the molecular feature representations. An Adam
optimizer with weight decay 1e−6 and learning rate 2e−4 was used to
optimize the model. The model was trained with a batch size of 1024
for a total of 100,000 steps. The KPGT had around 100 million
parameters. We set the masking rate of both nodes and additional
knowledge to 0.5. The pre-training of KPGT took about two days on
four Nvidia A100 GPUs. More detailed configurations of KPGT in the
pre-training and finetuning processes are summarized in Supple-
mentary Table 3.

Statistics and reproducibility
In our first benchmarking test in the “Results” section, we employed 11
molecular property datasets, including eight classification datasets
and three regressiondatasets.Detailed informationof thesedatasets is
available in Supplementary Note 1.1. For this evaluation test, following
the established practice from previous research6,38, a scaffold splitting
scheme was utilized to partition each dataset into training, validation,
and test sets with a ratio of 8:1:1. This splitting scheme ensured the
molecules in the test sets differed structurally from those in the
training set, offering an ideal scenario to evaluate the robustness and
generalizability of prediction models. We utilized the area under the
receiver operating characteristic curve (AUROC) to evaluate classifi-
cation tasks, while for regression tasks, we employed the root-mean-
square error (RMSE) as the evaluation metric. The results were
reported based on three independent runs with different
random seeds.

The TDC benchmarking platform provides 22molecular property
prediction datasets. These datasets span a broad spectrum of mole-
cular properties, including absorption, distribution, metabolism,
excretion, and toxicity (ADMET). We strictly adhered to the evaluation
protocols provided by the original TDC benchmarking platform. Each
dataset was split into training, validation, and test sets with a ratio of
7:1:2 using a scaffold splitting scheme. Themean absolute error (MAE)
or Spearman’s rank correlation coefficient (Spearman’s r) was
employed to evaluate the prediction performance of KPGT on
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regression tasks, while AUROC or the area under the precision-recall
curve (AUPRC) was used to evaluate the prediction performance of
KPGT on classification tasks (the specific metric used for each dataset
can be found in Supplementary Table 8). The results were reported
based on five independent runs with different random seeds.

MoleculeACE provides datasets that measure the bio-activities of
molecules against 30 macromolecular targets. We followed the same
evaluation protocols as provided by the benchmark. For each dataset
from the benchmarking platform,moleculeswere first clustered based
on their extended-connectivity fingerprints (ECFPs)14 using spectral
clustering93. Then for each cluster, molecules were split into training
and test sets with a ratio of 8:2 using stratified random sampling based
on their activity cliff labels66.

For the tests on the datasets forHPK1,weevaluated the prediction
performance of KPGT on this dataset in three distinct scenarios: (1)
scaffold splitting, i.e., splitting the dataset as training, validation, and
test sets with a ratio of 8:1:1 using scaffold splitting; (2) time splitting,
i.e., splitting the dataset according to the time that the corresponding
patents were published (the molecules from the patents published
before 2021 were used as training while those molecules published
after 2021wereused as testing); and (3) domain transfer, i.e., collecting
1615 molecules with the negative logarithm of inhibitory constants
(pKi) against HPK1 as an independent test set. We excluded the
molecules that overlapped with the pre-training data employed by
KPGT in this test. Spearman’s r and Pearson correlation coefficient
(Pearson’s r) were employed as the evaluation metrics. The results
were reported based on three independent runs with different
random seeds.

For the tests on the datasets for FGFR1, we evaluated the predic-
tion performance of KPGT in the scaffold splitting and time splitting
scenarios. We excluded the molecules that overlapped with the pre-
training data employed by KPGT in this test. Spearman’s r and Pear-
son’s r were employed as the evaluation metrics. The results were
reported based on three independent runs with different
random seeds.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The pro-
cessed ChEMBL29 dataset and the datasets from the first bench-
marking tests in the “Results” section can be accessed via Figshare
(https://doi.org/10.6084/m9.figshare.19914811). The datasets from the
TDC benchmark platform are available at https://tdcommons.ai/
benchmark/overview/. The datasets from the MoleculeACE bench-
mark are available at https://github.com/molML/MoleculeACE. The
HPK1 and FGFR1 datasets canbe accessed via Figshare (https://doi.org/
10.6084/m9.figshare.24290899). The FDA dataset is available at
https://go.drugbank.com/releases/5-1-10/downloads/approved-
structure-links. The reference protein-ligand complex structures for
HPK1 and FGFR1 used in this study are available in the Protein Data
Bank under accession codes 7SIU [https://www.rcsb.org/structure/
7SIU] and 5A4C [https://www.rcsb.org/structure/5A4C], respectively.
Preliminary results from this study have been reported in the con-
ference proceedings of ref. 58. Source data are provided with
this paper.

Code availability
The source code of KPGT can be downloaded from the GitHub repo-
sitory at https://github.com/lihan97/KPGT or the Zenodo repository at
https://doi.org/10.5281/zenodo.841881894.
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