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Tracking lake drainage events and drained
lake basin vegetation dynamics across
the Arctic

Yating Chen 1,2,3 , Xiao Cheng2,4 , Aobo Liu 1,2,3 , Qingfeng Chen1 &
Chengxin Wang1,5

Widespread lake drainage can lead to large-scale drying in Arctic lake-rich
areas, affecting hydrology, ecosystems and permafrost carbon dynamics. To
date, the spatio-temporal distribution, driving factors, and post-drainage
dynamics of lake drainage events across the Arctic remain unclear. Using
satellite remote sensing and surface water products, we identify over 35,000
(~0.6% of all lakes) lake drainage events in the northern permafrost zone
between 1984 and 2020,with approximately half being relatively understudied
non-thermokarst lakes. Smaller, thermokarst, and discontinuous permafrost
area lakes are more susceptible to drainage compared to their larger, non-
thermokarst, and continuous permafrost area counterparts. Over time, dis-
continuous permafrost areas contribute more drained lakes annually than
continuous permafrost areas. Followingdrainage, vegetation rapidly colonizes
drained lake basins, with thermokarst drained lake basins showing significantly
higher vegetation growth rates and greenness levels than their non-
thermokarst counterparts. Under warming, drained lake basins are likely to
becomemore prevalent and serve as greening hotspots, playing an important
role in shaping Arctic ecosystems.

The Arctic has been warming almost four times faster than the rest of
the world1, posing great challenges to ecosystem stability and the well-
being of indigenous communities and wildlife2,3. Lakes, an essential
part of Arctic ecosystems, play a key role in the carbon cycle and
regional energy balance through their life cycle of initiation, expan-
sion, drainage and re-initiation4–7. Satellite observations8–10 indicate
that Arctic lake-rich areas (areas with at least 5% lake coverage) have
experienced a decline in lake area over the last 20 years, contrary to
model projections11,12 that suggested an increase due to widespread
permafrost thaw. This indicates that the area of land exposed through
lake drainage currently surpasses the area of water gained through

lake initiation and expansion, enhancing the dominance of drained
lake basins (DLBs).

Lakes are natural sources of methane emissions and are highly
sensitive to climate change13,14. Lakes within permafrost regions are
susceptible to drainage through degradation of the surrounding and
underlying permafrost4,15. The transition from lakes to DLBs exposes
fresh land surfaces for permafrost aggradation and tundra vegeta-
tion colonization through reduced water storage16–18. This transition
not only significantly reduces carbon fluxes from DLBs but also
increases permafrost carbon sequestration, potentially transform-
ing them into net carbon sinks19,20 and diversifying the habitat
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mosaic in the northern permafrost zone4. Monitoring lake drainage
and subsequent DLB evolution in Arctic and Boreal regions through
detailed observations can provide valuable insights for studies of
permafrost ecosystem characteristics, vegetation dynamics and
carbon storage21–23.

Remote sensing is a valuable tool for large-scale monitoring of
lake dynamics, providing essential data support for analyzing surface
changes related to lake drainage processes and DLB evolution9. Exist-
ing remote sensing studies on lake drainage mostly focus on a limited
area within the northern permafrost zone24–30, which hinders their
capacity to provide a holistic understanding of the distribution pat-
terns and underlying drivers of drained lakes due to the presence of
spatial heterogeneity. Webb et al.8 conducted an analysis of surface
water trends at a 12-km pixel resolution and found that the drying
trend in lake area across Arctic lake-rich areas was correlated with
increasing annual air temperatures and autumn rainfall. However, the
spatio-temporal distribution of specific lake drainage events that
contribute to the observed drying trend remains unclear, which is
crucial for understanding the transition dynamics from lakes to DLBs
and accurately identifying the climatic and landscape attributes asso-
ciated with lake drainage.

Lake drainage is a complex process influenced by various factors
including surrounding permafrost properties, lake characteristics,
topography, climate andhuman activity4,15,31. Lakes across the northern
permafrost region can be divided into thermokarst and non-
thermokarst lakes, depending on their origin4,32. Thermokarst lakes
develop in ice-rich permafrost zones through the thawing of sedi-
ments, melting of ice wedges, and localized ground subsidence15,33,34,
while non-thermokarst lakes form by accumulating water in pre-
existing topographic depressions without significant thaw-induced
subsidence. Compared to non-thermokarst lakes surrounded by ice-
poor permafrost, thermokarst lakes usually undergo faster lateral
erosion and bottom talik (unfrozen ground) development31,35, making
themmore likely to drain4. Regional studies have shown that after lake
drainage, the tundra vegetation growing in themoist and nutrient-rich
sediments of thermokarst DLBs may be more luxuriant than in sur-
rounding areas16,17. Hence, distinguishing between thermokarst and
non-thermokarst lakes is essential to understand their distinct drai-
nage processes, evolution trajectories and vegetation dynamics, as
well as to investigate the differential impacts of climate change
on them.

In this study, we ask the questions: How many lakes in the
circum-Arctic permafrost region are experiencing drainage, and
what are the key driving factors behind this phenomenon? After
drainage events in these lakes, what are the growth dynamics of
vegetation in the DLBs, and which factors affect vegetation green-
ness levels? To answer these questions, we conduct a comprehen-
sive analysis of lake drainage events across the northern permafrost
zone over a span of three and a half decades (1984–2020). By
leveraging existing surface water products36,37 and satellite remote
sensing, we accurately detect over 35,000 lake drainage events and
are able to delineate their spatial distribution and determine the
corresponding drainage years. We distinguish between thermokarst
and non-thermokarst lakes based on the published thermokarst lake
coverage dataset33. We find that thermokarst lakes are more prone
to drainage compared to non-thermokarst lakes, but they contribute
a comparable amount to all drainage events. We further track the
year-to-year dynamics of vegetation greenness in DLBs following
lake drainage based on the detected drainage years for individual
lakes, and conduct spatio-temporal analyses to examine the varia-
tions. We find that there is a significant difference in the vegetation
dynamics between thermokarst and non-thermokarst DLBs. We
construct machine learning models to quantify the impact of
environmental factors on predicting lake drainage and vegetation
greenness in DLBs (details in Methods).

Results and discussion
Spatial patterns of drained lakes in the northern
permafrost zone
Using an object-based image analysis approach with well-established
surface water products36,37, we delineated lake objects in the northern
permafrost region and identified those that experienced varying
degrees of water loss during 1984–2020. Unlike the pixel-based ana-
lysis of surface water dynamics, our lake-object-based analysis allows
for the identification of specific lake drainage events, enabling us to
calculate regional lake drainage probabilities and provide more
detailed insights into the primary drainage years and post-drainage
vegetation dynamics for individual lakes. A total of 35,337 lake drai-
nage events were detected, the largest of which had an area of
approximately 6000ha. Here, lake drainage events refer to those that
involve lakes with an initial area of >1 ha and a loss of >50% of the
original lake area. By continuously monitoring the dynamics of each
lake using Landsat time series images, we are able to identify the main
years of drainage and track vegetation growth dynamics in DLBs
(Fig. 1a–c shows an example).

The distribution of drained lakes appears to exhibit spatial clus-
tering, with a concentration in coastal lowlands and river delta areas
(Supplementary Figs. S1–S3). These are generally lake-rich regions, as
lakes andDLBs account for 21%of the northernpermafrost regions and
49% of the lowland permafrost regions4,33. Typically, lake drainage is
thought to be dominated by thermokarst lake processes4, which cover
about 20% of the continuous permafrost zone33. However, we have
found that only about half of the drained lakes are situated within
thermokarst lake landscapes (Fig. 1d), with the other half having non-
thermokarst origins. The number of small (1–10 ha), medium
(10–100 ha), and large (>100ha) drained lakes accounted for 83.5%,
15.1% and 1.4% of the total, respectively, with a cumulative drainage
area share of 23.5%, 40.9% and 35.6%, respectively. Despite the rela-
tively small number of medium and large drained lakes, they account
for a relatively large proportion of the total lake drainage area. Surface
water in permafrost regions is critical to northern communities, with
lakes and DLBs being a focus of local agriculture, livestock, and
industrial activities4. Therefore, exploring the causes of drainage in
large lakes is of great value for the effective management and con-
servation of Arctic water resources.

We used two metrics to calculate the density of drained lakes:
spatial density (number of drained lakes per unit area) and lake-wise
density (calculated as the ratio of drained lakes to the total number of
lakes in the region). These metrics aim to illustrate the spatial dis-
tribution patterns and likelihood of lake drainage events in different
regions. Based on the ecoregion delineation38 (Supplementary Fig. S4
and Supplementary Table S1), we categorized the region and per-
formed a statistical analysis of both the count and lake-wise density of
drained lakes, revealing notable spatial variability in the distribution of
lake drainage events (SupplementaryTable S2). For instance, along the
southernpermafrostmargin at theRussia-Mongolia border, this area is
densely populated with thousands of drained lakes (Fig. 1e), even
though it is not situated within the lake-rich areas. Here, the lake-wise
density reaches nearly 8%,which ismore than ten times higher than the
average level across the entire permafrost zone. In contrast, in the
Northeast Siberian coastal tundra ecoregion (Fig. 1f), although the
overall lake-wise density of drained lakes is lower at one-third of the
study area average, large drained lakes have a lake-wise density twice
the average, leading to more than half of the drained lakes being
medium to large in size. In addition, we have discovered previously
underreported spatial clusters of drained lakes, such as St. Lawrence
Island in the Bering Sea, where the spatial density of drained lakes is
approximately 80 times that of the entire permafrost zone, with 655
drained lakes densely distributed over an area of 4640 km2 (Fig. 1g).

We grouped drained lakes based on published geospatial datasets
of the Yedoma region39, permafrost extent40, ground ice content41 and
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thermokarst lake coverage33 (Supplementary Fig. S5), and calculated
their spatial density (Fig. 1h). On average, there have been approxi-
mately 1.7 × 10−3 lake drainage events per km2 in the circum-Arctic
permafrost region. The Yedoma region, discontinuous permafrost
zone, and lakes classified as very likely to have a thermokarst origin
(hereafter referred to as ‘very likely thermokarst lakes’) are densely

drained, with spatial densities approximately 2, 2.5, and 3 times higher
than average, respectively (Fig. 1h). Drained lakes in the northern
permafrost zone can be divided into two primary categories: lateral
drainage and internal drainage34. In the continuous permafrost zone,
lake drainage often results from lateral expansion of lakes into low-
lying areas, driven by mechanisms such as thawing of ice barriers,
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Fig. 1 | Spatial distribution of lake drainage events detected by remote sensing
in the northern permafrost zone. a–c Satellite images of an Arctic lake at 164°45′
W, 66°27′ N showing the occurrence of a lake drainage event and subsequent
vegetation growth. d Map of lake drainage events (n = 35,337) in the northern
permafrost region during 1984–2020, categorized by initial lake size (small, med-
ium, and large). The bottom map illustrates the permafrost zonation, with ther-
mokarst lake landscape highlighted. e–g Enlargedmaps illustrating the diversity of
drained lake distribution in different regions: southern permafrost margin at the

Russia-Mongolia border, Northeast Siberian coastal tundra, and St. Lawrence
Island. h Spatial density of drained lakes in relation to permafrost extent, ther-
mokarst lake likelihoods, ground ice content, and the Yedoma region. Yedoma is an
organic-rich, ice-rich Pleistocene-age permafrost found primarily in eastern Siberia,
Alaska, and the Yukon. The dashed line shows the average reference for the entire
study area. C: continuous, D: discontinuous, S: sporadic, I: isolated. Refer to Sup-
plementary Fig. S5 for classification distribution patterns and Supplementary Fig.
S6 for the proportion of drained lakes of different sizes in each region.
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headward stream erosion, coastal erosion, and bank overtopping due
to rapid snowmelt, extreme precipitation, and flooding30,42,43. While in
the discontinuous permafrost zone, in addition to lateral drainage,
internal drainage related to ice wedge degradation frequently occurs,
where taliks or thawed zones beneath lakes penetrate the permafrost,
allowing for drainage subterraneously24,34,44. Drained lakes are less
spatially dense in areas that are ice-poor and unlikely to form ther-
mokarst lakes (hereafter referred to as ‘unlikely thermokarst lakes’),
where lake abundance is relatively low and limited ice wedge melting
does not readily create drainage channels4.

Temporal patterns in lake drainage events for 2001–2020
Based on the identified lake drainage events, we employed a temporal
segmentation and change detection algorithm45,46 to determine the
primary years of drainage for individual lakes. We identified 6858 and
28,479 lake drainage events for the periods 1984–2000 and
2001–2020, respectively. However, the fractured nature of Landsat
observations across space and time36 prior to 2000 limited the

detection of lake drainage events that occurred during 1984–2000.
Therefore, in this study we only analyzed changes in the frequency of
lake drainage events over the period 2001–2020 (Fig. 2). The results
showed that the mean annual count of drained lakes in the northern
permafrost region was 1424 (range: 767–2073), with a standard
deviation of 332. Despite annual fluctuations, the lake drainage fre-
quency exhibited a slight upward trend (slope of 23; p = 0.08; unpaired
two-tailed Student’s t test) throughout the study period.

Regional statistics show that temporal peaks in lake drainage
frequency are not synchronized across landscape attributes (Fig. 2).
For example, in 2020, the number of drained lakes peaked in areas
with low ground ice content (1329) and for unlikely thermokarst lakes
(1305),while drained lakes in other categorized regions remained close
to the annual average level. In contrast, in 2016, likely (495) and very
likely (630) thermokarst lakes had a peak drainage frequency, while
the number of unlikely thermokarst drained lakes was below the
annual average. The elevated count of drained lakes in these specific
years suggests the potential prevalence of triggering factors for lake
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drainage. Thermokarst and non-thermokarst lakes making distinct
contributions to total drainage in various years. Despite comprising
over half of all drained lakes (Fig. 2c), non-thermokarst lakes have
garnered relatively less research attention4. The prevailing emphasis
on thermokarst-related phenomena7,11,33 has led to a comparative
scarcity of studies exploring the characteristics, dynamics, and eco-
logical implications of these non-thermokarst lakes4,28,47. Given their
substantial number and potential contributions to our understanding
of diverse ecosystems, there exists a compelling need for future
investigations to delve into the unique dynamics and roles of these less
explored lake types.

From 2001 to 2020, lake drainage events exhibited significant
upward trends (p <0.001) in discontinuous permafrost zones and very
likely thermokarst lakes, with slopes of 21 and 14, respectively. This
indicates that over the 20-year period, the mean annual number of
drained lakes increased by 420 in discontinuous permafrost zones and
280 for very likely thermokarst lakes. Over time, the contribution of
the discontinuous permafrost zone to the annual count of drained
lakes gradually surpasses that of the continuous permafrost zone
(Fig. 2f), suggesting that the impacts of climate change and permafrost
degradation on the stability of lakes in these sensitive regions appear
to be intensifying24,34,42. Permafrost acts as a barrier to water exchange
between surface and groundwater systems. In continuous permafrost
regions, suprapermafrost groundwater often accumulates above the
permafrost layer within the active layer, including closed subaerial and
open subaqueous taliks4. In discontinuous permafrost regions, where
permafrost continuity is lacking, direct connections between surface
and groundwater systems can occur, influencing the hydrological
dynamics of lakes24,44. Therefore, lake drainage events are influenced
by both the long-term legacy of permafrost characteristics, such as
permafrost properties, distribution, and degradation extent, as well as
short-term environmental features, including active layer dynamics,
ground thermal conditions, and variations in water supply4.

Environmental drivers of Lake drainage events
To reveal the key environmental drivers behind lake drainage events
from a variety of candidate explanatory variables such as climate,
topography, andpermafrost characteristics (Supplementary Table S3),
we developed a binary classification model to predict lake drainage.
We conducted a diagnostic evaluation of the lake drainage prediction
model and obtained an area under the curve (AUC) value of 0.92 and
an average precision (AP) value of 0.88 (Supplementary Fig. S7). The
results showed that the model has a strong classification ability and
can effectively use explanatory variables to predict whether or not
individual lakes will be drained.

Further feature importance assessment indicates that air tem-
perature and elevation are important drivers of lake drainage events
(Fig. 3a). The effect of annual air temperature trend on lake drainage
events is nonlinear (Fig. 3b), with the primary clusters between
0–0.04 °C/year inhibiting lake drainage, and secondary clusters near
0.1 °C/year promoting lake drainage. The relationship between annual
air temperature and the prediction of lake drainage demonstrates an
almost monotonically increasing trend (Fig. 3c). As the annual air
temperature rises, the risk of lakes experiencing drainage events also
increases. This can be attributed to variousmechanisms, including the
thermal erosion of permafrost around lakes and the formation of
drainage channels due to melting of ground ice27,31,48. Development of
terrestrial taliks is likely to result in widespread lake drainage when
mean annual air temperature approaches 0 °C43. In addition to pro-
moting lake drainage, this warmer regime may adversely affect per-
mafrost aggradation on newly exposed surfaces, inhibit ground ice
accumulation, and bring about substantial changes in the landscape
conditions of the DLB system4.

Increasing elevation has an overall negative impact on the like-
lihoodof lake drainage (Fig. 3d), with the primary cluster located in the

range of 0–150meters above sea level.We found that this lowland area
covers approximately 29.6% of the northern permafrost zone, yet
contributes to about 57.1% of the drained lakes, with both spatial and
lake-wise densities of drained lakes exceeding the average level (Sup-
plementary Fig. S8). We examined the impact of active layer depth on
lake drainage (Fig. 3e) and observed a consistent rise in lake drainage
likelihood as the active layer depth increases. Specifically, when the
active layer depth in the area exceeds 0.6meters, the likelihood of lake
drainage tends to be higher than the average level. This may be
attributed to increased erosion and other thermal processes, such as
the formation of taliks at the lake bottom47,49. The mechanisms and
factors driving lake drainage are highly diverse, and with future Arctic
warming and permafrost degradation, the frequency of lake drainage
will likely increase20,25,43.

Lake-wise density of drained lakes
For categorical features such aspermafrost extent, ground ice content,
and thermokarst lake likelihood, their relative importance may be
underestimated due to the fact that they are treated as time-invariant
attributes and the imbalanced distribution of categories. Given the
known importance of these landscape variables in driving surface
water changes associated with permafrost degradation, we conducted
an enumeration of all lake objects within our study area and calculated
lake-wise density (the ratio of drained lakes to the total number of
lakes in the region) for various sizes of drained lakes and geographical
regions (Fig. 4 and Supplementary Table S2). A total of approximately
5.83 million lakes (with an area larger than 1 ha) were identified across
the northern permafrost region. The average lake-wise density of
drained lakes in the study areawas0.61%, with 0.64%, 0.50% and0.38%
for small, medium and large lakes, respectively, indicating a relatively
lower likelihood of drainage for larger lakes. One potential explanation
for this is that smaller lakes, due to their shallower water columns and
lowerwater storage capacity29, aremore susceptible to lateral drainage
events triggered by extreme precipitation or rapid snowmelt43,50. In
contrast, larger lakes have the capacity to accumulate more heat and
water, thus showing greater resilience against hydrological
disturbances28. This provides a thermal inertia and water storage buf-
fer when temperatures and precipitation fluctuate, enabling larger
lakes to better maintain thermal equilibrium and shoreline stability
compared to smaller water bodies.

Significant spatial heterogeneity in lake-wise density of drained
lakes has been observed across ecoregions (Supplementary Table S2),
highlighting the complexity of lake drainage dynamics. For instance,
within the Canadian Aspen forests and parklands (spanning
1.6 × 104km²), 16.33% of lakes experienced drainage, while in the
Central Canadian Shield forests (spanning 16.5 × 104km²), only 0.11% of
lakes underwent drainage. This diverse lake-wise density of drained
lakes underscores the intricate interplay of local environmental fac-
tors. Further analysis indicates that lake-wisedensity of drained lakes is
associated with thermokarst lake likelihoods, permafrost extent, and
ground ice content (Fig. 4). Notably, for very likely thermokarst lakes
and the Yedoma region, the lake-wise density for drained lakes of all
sizes exceeds the regional averages, with large lakes anomalously
having higher lake-wise density than small and medium-sized lakes.
Large drained lakes are disproportionately concentrated in these
areas,with 6–8 times the average spatial density (Fig. 1h) and 3–4 times
the average lake-wise density (Fig. 4b, d), suggesting well-developed
erosional drainage systemsmayhave formed. The prevalent landscape
in these areas is amosaic of lakes and streams, interconnected through
an underground network of ice15,42. When expanding lakes encounter
the ice network, thermal erosion along the network results in the
melting of ice wedges, creating drainage channels through which the
lake water drains7,34.

The lake-wise density for likely thermokarst lakes fall between
those for very likely andunlikely thermokarst lakes (Fig. 4d), consistent
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different classifications of (c, d) thermokarst lake likelihoods, (e, f) ground ice
contents, and (g, h) permafrost extents. The left-hand panels depict kernel density
estimation plots with a logarithmic x-axis to display lake areas, along with

numerical annotations denoting the number of drained lakes. Boxplots show the
statistics – horizontal lines: median; boxes: interquartile range; whiskers: 1.5 times
the interquartile range. The right-hand panels present radar charts illustrating the
percentage of drained lakes relative to the total number of lakes within the
respective area or attribute type.
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with existing knowledge that thermokarst lakes are more susceptible
to drainage4. The impact of ground ice content on lake-wise density of
drained lakes is relatively intricate (Fig. 4f). In regions with medium
ground ice content, the lake-wise density of drained lakes is the
highest, approximately 1.4 times the average level. In regions with high
and low ground ice content, the overall lake-wise density is slightly
below average, while the lake-wise density for large drained lakes in
these regions are 1.6 and0.5 times the average, respectively. Variations
in the lake-wise density of drained lakes under different ground ice
content levelsmaybe associatedwith the thermal inertia of latent heat
fusion and the formation of subsurface drainage channels28,51. Con-
sidering that the ground ice content dataset covering the northern
permafrost region has not been updated for over 20 years, and during
this period, the permafrost region has undergone significant warming,
we need to exercise caution regarding the timeliness of the data and its
potential impact on the current researchfindings. In future studies, the
consideration of updating the ground ice content data may aid in a
more accurate assessment of the relationship between ground ice
content and lake drainage probabilities4.

Furthermore, the discontinuous permafrost zone exhibits the
highest overall lake-wise density of drained lakes (more than double
the average; Fig. 4h), with lake-wise density for small, medium, and
large lakes at 1.33%, 1.28%, and 0.78% respectively. There are over
13,000 drained lakes in the continuous permafrost zone (Fig. 4g), but
the lake-wise density in this area is lower than the average level
(Fig. 4h). However, the susceptibility is rising in certain southern areas
where permafrost is becoming more discontinuous due to climate
warming9,20.

Post-drainage vegetation dynamics in DLBs
After a lakedrains, plants colonize theDLB, shifting the landscape from
exposed lacustrine sediments to tundra vegetation. During the initial
colonization stage in the years following drainage, pioneer plant spe-
cies like sedges grow quickly in DLBs due to their strong adaptability
and high reproductive rates16,19,52. Edaphic conditions in DLBs change
as the pioneer plants thrive, creating a more hospitable environment
for plant succession. The early succession stage may last for decades,
with a diversity of plant species beginning to colonize the DLBs,
including dwarf shrubs, herbs, mosses, and lichens16,52. We quantified
the vegetation growth dynamics in DLBs using the Normalized Dif-
ference Vegetation Index (NDVI) (Fig. 5), which is sensitive to the
chlorophyll content of plants and can serve as a good indicator of
tundra plant productivity and aboveground biomass53,54. Taking into
account the potential modulation of NDVI by standing water, we
examined the Tasseled Cap Greenness (TCG) Index, which is less
affected by surface water than NDVI55, finding similar patterns (Sup-
plementary Fig. S9).

Considering data availability and vegetation growth status, we
chose the tenth year after drainage as a reference point to conduct a
vegetation greenness assessment within DLBs and their surrounding
areas, along with an analysis of various potential influencing factors
(Fig. 5a–i). The results showed that the vegetation greenness in very
likely, likely, and unlikely thermokarst DLBs is higher, similar, and
lower than surrounding vegetation, respectively, suggesting that
vegetation greenness in thermokarst DLBs is generally greater than in
non-thermokarst DLBs (Fig. 5a). Chen et al.17 analyzed vegetation
dynamics in thermokarst DLBs in northern Alaska and found that
tundra vegetation growing on wet and nutrient-rich lake sediments
wasmore luxuriant (with 0.15 or 25% higher NDVI) than in surrounding
areas. Here we find that across the northern permafrost region, the
NDVI of very likely thermokarst DLBs is higher by 0.06 or 10% com-
pared to the surrounding areas,while theNDVI of unlikely thermokarst
DLBs is lower by 0.09 or 15% than the surrounding areas (Fig. 5a).

We analyzed the annual differences in NDVI between DLBs and
surrounding vegetation, revealing significant variations in

vegetation dynamics between thermokarst and non-thermokarst
DLBs (Fig. 5j). For very likely thermokarst lakes, vegetation rapidly
spread and covered DLBs after drainage16,22, leading to a rapid
increase in NDVI, reaching levels similar to the surrounding areas
approximately 2 years after drainage. As succession progressed, the
relative abundance of high-productivity plant communities in ther-
mokarst DLBs increased, resulting in a slow NDVI growth that
reached slightly higher levels than the surrounding vegetation. In
contrast, the NDVI of likely thermokarst DLBs reached a stable state
similar to the surrounding vegetation around the 6th year after
drainage, while the NDVI of unlikely thermokarst DLBs exhibited
very slow growth, remaining significantly lower than the surround-
ing levels even 15 years after drainage (Fig. 5j). Note that the vege-
tation dynamics beyond our analysis period remain uncertain due to
the limitations of observations. In the tenth year after lake drainage,
the (likely and very likely) thermokarst and non-thermokarst DLBs
had median NDVI values of 0.72 and 0.42, with corresponding
25%–75% ranges of 0.64–0.77 and 0.29–0.59, and 5%–95% ranges of
0.39–0.83 and 0.15–0.79, respectively.

The median areas of very likely, likely, and unlikely thermokarst
drained lakes are 4.4 (25%–75% range: 2.0–12.7), 2.9 (1.6–7.1), and 2.1
(1.4–4.1) ha, respectively (Fig. 4c). Moreover, the lake-wise density of
large and medium-sized thermokarst drained lakes is markedly higher
than that of non-thermokarst lakes (Fig. 4d), leading to proportions of
small lakes within very likely, likely, and unlikely thermokarst drained
lakes of 70%, 82%, and 90%, respectively (Supplementary Fig. S6). For
drained lakes of various sizes, the greenness variability of DLBs tends
to be higher than that of the surrounding vegetation, and the overall
trend is that the vegetation greenness of large DLBs is higher than that
of small DLBs (Fig. 5b). Large DLBs, with more extensive lakebed
sediment exposure, can support more diverse plant communities4,
resulting in NDVI around 0.04 higher than the surrounding areas
(25%–75% range: −0.09–0.08). Additionally, vegetation greenness in
DLBs is related to drainage area ratio (Fig. 5c): a higher ratio corre-
sponds to greener vegetation than the surrounding area, while a lower
ratio indicates less greenness than the surrounding area. A higher
drainage area ratio implies a greater amount of exposed land for plant
growth, and in these areas, earlier summer thaw and elevated con-
centrations of dissolved soil carbon and nitrogen create favorable
conditions for promoting vegetation growth56.

Regionally, DLBs in discontinuous permafrost regions exhibit
higher greenness, while DLBs in isolated permafrost regions display
lower greenness (Fig. 5d). In the tenth year after lake drainage, the
median NDVI values for DLBs in Alaska, Canada, and Russia are 0.73
(25%–75% range: 0.68–0.78), 0.47 (0.28–0.70), and 0.69 (0.56–0.75),
respectively (Fig. 5e). TheNDVI values forDLBs inAlaska andRussia are
approximately 0.03 (−0.03–0.10) and 0.02 (−0.06–0.08) higher than
the surrounding vegetation, while the difference between the NDVI of
DLBs in Canada and the surrounding vegetation is −0.07 (−0.17–
−0.01). The NDVI of DLBs was noticeably lower in Canada, which may
be attributed to the thin, rocky soils and barren complex vegetation in
the Canadian Shield region57. These soil conditions could pose drai-
nage challenges58, which may lead to increased waterlogging and
periodic inundation of vegetation, ultimately resulting in a lower NDVI
within DLBs compared to the surrounding areas. Additionally, the
proportion of small drained lakes is higher in Canada compared to
other regions, potentially contributing to less lush vegetation in
Canadian DLBs (Supplementary Table S2). We examined the NDVI of
DLBs in flood-prone and non-flood-prone areas and did not find sig-
nificant differences (Fig. 5f). Regions with higher soil carbon and
nitrogen content support more vigorous vegetation growth59,
making vegetation in DLBs appear greener than the surrounding areas
(Fig. 5g, h). This couldpartially explainwhy thermokarstDLBs33 and the
Yedoma region39,60 exhibit greener vegetation compared to the sur-
rounding areas (Fig. 5a, i).

Article https://doi.org/10.1038/s41467-023-43207-0

Nature Communications |         (2023) 14:7359 8



Ve
ge

ta
tio

n 
gr

ee
nn

es
s 

(re
pr

es
en

te
d 

by
 N

D
VI

)

a b c

d e f

g h i

<70%
Drainage area ratio (%)

≥ 70%

Region
Alaska Canada Russia

Soil C content (kg/m2)
<25 ≥ 25

Soil N content (kg/m2)
<0.5 ≥ 0.5

Is yedoma region?
No Yes

Is floodplain region?
No Yes

Permafrost extent
C D S I

Lake size
Large Medium Small

Thermokarst lake
Very likely Likely Unlikely

j
Legend Drained lake basin area Surrounding vegetation

R
el

at
iv

e 
gr

ee
nn

es
s 

ch
an

ge
(m

in
us

 s
ur

ro
un

di
ng

 N
D

VI
)

0.0

0.1

-0.2

-0.3

Thermokarst lake
Very likely

Likely
Unlikely

-4 -2 0 2 4 6 8 10 12 14
Year since lake drainage

-0.1

n = 3,114
n = 3,193

n = 7,884 n = 221 n = 2,205 n = 11,765 n = 7,698 n = 6,493

n = 5,298

n = 4,065

n = 2,078

n = 2,750

n = 2,069

n = 6,224

n = 5,898 n = 3,897n = 10,294

n = 7,827

n = 6,364

n = 9,183

n = 5,008

n = 13,218

n = 973

Fig. 5 | Differences in vegetation greenness between DLBs and
surrounding areas.NDVImeasured in the tenth year after lakedrainage for various
classifications of a thermokarst lake likelihoods, b lake sizes, c drainage area ratios,
d permafrost extents, e regions, f floodplain status, g soil carbon contents, h soil
nitrogen contents, and i Yedoma region. Boxplots show the statistics – horizontal

lines: median; dots: mean; boxes: interquartile range; whiskers: 1.5 times the
interquartile range. Sample sizes are indicated below each plot. j Time series of
changes in relative greenness of very likely, likely and unlikely thermokarst DLBs,
represented by NDVI differences compared to surrounding vegetation. Solid lines
show median values, while shaded areas indicate upper and lower quartile ranges.
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Environmental influences on NDVI in DLBs
We used machine learning models to analyze the drivers of NDVI
change in DLBs, and evaluated the relative importance of explanatory
variables (Supplementary Table S4) on NDVI predictions. The diag-
nostic evaluation (Supplementary Fig. S10) indicate that our trained
model is capable of capturing a substantial portion of NDVI variations

in DLBs (R2 =0.83). The assessment of feature importance reveals that
ecological zoning and the years since lake drainage are the most
important influencing factors for NDVI predictions (Fig. 6a). Different
ecoregions host distinct local species pools50, leading to variations in
vegetation greenness levels and successional trajectories. High spatial
variability in vegetation dynamics of DLBs has been observed across
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ecoregions, with NDVI values ranging from around 0.5 to 1.2 times the
surrounding average (Supplementary Table S2). The specific years
since lake drainage emerged as a key driver of NDVI predictions, as
they potentially reflect the progression of ecosystem succession. This
underscores the importanceof accurately identifying the specific years
of lake drainage events for analyzing the vegetation dynamics
within DLBs.

Among the climatic variables, summer air temperature and annual
air temperature trend stand out as the most important influencing
factors for NDVI predictions (Fig. 6a). Their increase has an overall
positive impact onNDVIwithin DLBs, primarily due to the extension of
the growing season and the enhancement of photosynthetic
efficiency50,61. Temperature serves as a primary constraint for the
greenness of Arctic ecosystems, with vegetation greening most fre-
quently occurring in regions where summer air temperatures and
annual soil temperatures are increasing53. The relationship between
summer air temperature and NDVI predictions displays an almost
monotonically increasing trend, suggesting that warmer locations
tend to show enhanced plant growth. When summer air temperatures
fall below 10 °C, vegetation greenness is suppressed, evident by
negative Sharpe values (Fig. 6b). The impact of the annual air tem-
perature trend is more intricate, with two major clusters at 0.01 and
0.06 °C/year exerting negative effects on NDVI, while two minor
clusters at 0.12 and 0.18 °C/year promote greening of vegeta-
tion (Fig. 6c).

Floodplain and thermokarst lake stand out as the most important
categorical features for predicting NDVI (Fig. 6a). Floodplain areas and
non-thermokarst lakes have an overall negative impact on predicting
NDVI in DLBs, while non-floodplain areas and thermokarst lakes have a
positive influence (Fig. 6d, e). These findings reveal how vegetation
dynamics in DLBs are jointly influenced by species pools, vegetation
succession patterns, regional climate and hydrological conditions, as
well as landscape attributes. Additionally, due to permafrost aggra-
dation and ice wedge growth, DLBs exhibit a highly heterogeneous
geomorphic mosaic characterized by fine-scale variations in
topography22. The micro-topography of DLBs effectively directs run-
off, facilitates nutrient accumulation, and supports vegetation growth
within DLBs17,22. Simultaneously, it fosters diverse tundra ecosystems
within DLBs, making them ecological hotspots in the permafrost
regions4,16.

Implications of lake drainage and vegetation growth in DLBs
In summary, our study leveraged remote sensing data to capture
spatial and temporal distribution patterns of lake drainage events in
the extensive northern permafrost regions, extending our compre-
hension of the post-drainage vegetation dynamics within DLBs. This
technological advancement holds valuable implications for predicting
the scale of lake drainage in permafrost regions in the 21st century.
Annual air temperature and its trend, active layer thickness, and per-
mafrost extent are key environmental drivers of lake drainage events
(Fig. 3c), suggesting thatwith Arctic warming, deeper active layers and
increased permafrost discontinuity are expected to lead to more fre-
quent lake drainage events. Our statistical analysis of spatial and lake-
wise density shows that smaller lakes, thermokarst lakes, and lakes in
discontinuous permafrost areas are more prone to drainage than lar-
ger lakes, non-thermokarst lakes, and those in continuous permafrost
regions (Fig. 4).

Our dataset of 35,337 detected lake drainage events can serve as a
starting point for further research, such as investigating potential
catastrophic flooding in DLBs62,63 and improving simulations of per-
mafrost hydrology linkages in Earth system models20,64. Analyses of
mega-lake drainage events and drained lake clusters allow for more
specific investigation of the role of climate change in triggering lake
drainage. For example, approximately 60% of lake drainage events
observed on St. Lawrence Island (Fig. 1g) have occurred since 2018, a

period characterized by historically low sea ice coverage65 and wide-
spread seabirdmortality66, indicating that the local climatic conditions
may have reached a tipping point.

Lake drainage is essentially the abrupt thawing of permafrost
intensified by climate change, reflecting permafrost degradation and
instability11,20. Drainage events reduce the water storage capacity of
lakes, impacting local hydrological conditions67–69. Drainage of large
lakes often leads to catastrophic flooding due to the peak of snowmelt
promoting the formation of ephemeral lakes and resulting in rapid and
sustained flood peaks4,63,70. Such hydrological events can adversely
affect infrastructure like Arctic roads andpipelines. Species dependent
on lake habitats for survival, such as migratory birds and aquatic life,
are threatened71. As more lakes are drained, access to clean freshwater
may become evenmore challenging for many Arctic communities and
indigenous populations72. Lake drainage impacts regional hydrology
and ecology while also generating intricate feedbacks on carbon bal-
ance. After the lake drains, previously submerged organic matter is
exposed to the atmosphere where it can be oxidized rather than
consumed throughmicrobial methanogenesis11,12. Climate changemay
exacerbate the loss of Arctic lakes, reduce lakemethane emissions, and
expose areas for tundra colonization and permafrost aggradation.
While the overall impact of these processes on climate change is
uncertain, vegetation is expected to play a significant role in many
feedback mechanisms that may arise17,73–75. Vegetation growth in DLBs
directly increases carbon sequestration, while also promotes perma-
frost aggradation by providing thermal insulation23. As a result, the
carbon fluxes in DLBs are lower by 1–3 orders of magnitude compared
to pre-drainage20, and may even exhibit net carbon sinks for certain
periods19,34.

Based on a recent study59, the average increase inNDVI in the high
Arctic region was approximately 3.9% between 2000 and 2020. While
in newly drained DLBs, the slope of NDVI was 1–2 orders of magnitude
higher than the average level of arctic greening (Fig. 5j). The greening
events observed within DLBs can be embedded within the overall
greening trend of the Arctic, although they may not be the primary
driver of this trend54. It’s important to note that while NDVI typically
corresponds well with vegetation characteristics, surface water can
impact NDVI values54. Specifically, in partially drained basin areas,
standing water can lead to underestimated NDVI values, despite vig-
orous sedge growth in developing aquatic environments. In this study,
we used the 90th percentile of NDVI values from annual image col-
lections to generate a stable vegetation greenness assessment. Sub-
sequently, we conducted median extraction of the annual 90th
percentile NDVI time series after masking water bodies within DLBs
and their surrounding areas. A comparison with the results of the TCG
index (Supplementary Fig. S9), which is less affected by surface water,
indicates that our method effectively mitigates the impact of standing
water on NDVI estimates within DLBs.

DLBs, as hotspots of Arctic greening, have profound implications
for vegetation composition of tundra ecosystems and permafrost
carbon feedbacks4,43. The clustered DLBs may yield habitats at various
stages of succession, supporting ecosystems ranging from aquatic to
dry tundra within basins over time, thus enhancing ecosystem
diversity4,76. Vegetation in DLB ecosystems can alter species compo-
sition, abundance, and distribution in Arctic vegetation, thereby driv-
ing interspecies competition within tundra vegetation17,59.
Environmental benefits from vegetation also include enhanced sedi-
ment stability, erosion prevention, improved water quality, habitat
creation for wildlife, increased biodiversity, and support for indigen-
ous pastoral activities50. By tracking vegetation dynamics following
lake drainage, we have found that vegetation greenness in DLBs
exhibited high spatial variability, and analyzed the differences in
greenness between DLBs and surrounding vegetation under various
environmental conditions. Our findings indicate that DLBs in ther-
mokarst lakes, larger lakes, and lakes with higher drainage area ratios
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exhibit higher vegetation greenness compared to DLBs in non-
thermokarst lakes, smaller lakes, and lakes with lower drainage area
ratios (Fig. 5). We quantified the influence of environmental factors on
predictingNDVI inDLBs and analyzed temperature andflooding as key
environmental constraints. These findings can help with the manage-
ment of DLBs as shifting habitat mosaics77, and facilitate future con-
servation efforts for Arctic biodiversity.

Methods
Surface water products
In this study, we utilized two of themost comprehensive surfacewater
products available to assist in identifying drained lakes in the Arctic
permafrost zone. These two data products, both based on archived
Landsat imagery at 30m resolution, are published by the Joint
Research Centre (JRC) of the European Commission36 and the Global
Land Analysis and Discovery (GLAD) team at the University of
Maryland37, respectively. We identified drained lakes in permafrost
regions by selecting pixels labeled as “lost permanent” in the JRCwater
transition map and as “water loss” in the GLAD water dynamics map,
which both represent the transition from lakes to DLBs. However,
there are notable differences in the identificationmethods used by the
two datasets.

The JRC map identifies the start year of transition for each water
pixel as the first year between 1984 and 2000 that has sufficient
observations to characterize the presence of water, while the GLAD
map uses 1999 as the start year. The JRC map identifies water pixel
changes based on the initial and final states of the time period, with
intervening years considered for the presence of ephemeral perma-
nent (year-round) or seasonal water only if the initial and final years
represent land. Consequently, the JRC map can classify cyclical water
inundation as ephemeral water, permanent/seasonal water, water loss
or water gain. In contrast, the GLAD map evaluates seasonal and
interannual fluctuations of water pixels over the entire time series,
classifying only pixels with a stable trajectory of loss as “water loss”. To
mitigate short-term annual anomalies and inter-annual observation
variability, the GLAD dataset employed a 3-year mean moving window
to smooth the annual open water percentage time series.

Both the GLAD and JRCmaps offer valuable insights for this study.
It is worth noting that while the JRC and GLAD products mark the
spatial distribution of these water loss pixels, they do not provide
information on the timing of transition from permanent water to land
for each pixel. In addition, we used the global floodplain dataset78

based on 250m resolution MODIS satellite images to analyze the
impact of flood inundation on vegetation dynamics in DLBs.

Object-based lake analysis
The detection of lake drainage events requires calculating the pro-
portion of lake drainage at the lake object level, but existing water
products are in raster format andonly provide pixel-by-pixel water loss
information. We used the object-based analysis function provided by
the Google Earth Engine (GEE) cloud platform79 to create lake objects
and identify lake drainage events. First, we used the JRC product’s
thematic map of water extent as a mask to identify persistent water.
Morphological operations, involving erosion followed by dilation with
a 1-pixel radius and 2 iterations, were conducted on the water extent
raster image to separate finely connected water bodies and eliminate
isolated pixels. We converted the set of connected pixels into water
objects with unique identifiers via GEE and calculated the number of
water pixels for each lake object.

To avoid missing drained lakes, we performed spatial union of
water loss pixels from JRC and GLAD products and calculated the
proportion of lake drainage within the scope of each lake object. After
screening, we found approximately 2.3×105 lake objects larger than 1
hectare in the northern permafrost region with varying degrees of
water loss during 1984–2020. We identified lake objects as having

undergone a drainage event only if their proportion of surface area
loss exceeded 50%, which is a more stringent criterion than that used
in previous studies31,34,42,43, given focus on investigating drastic altera-
tions in Arctic lake systems. Here, we have not imposed constraints on
the time span of lake drainage events, as there is no universally
accepted quantitative definition for the specific duration of lake drai-
nage events in existing literature25. In some cases, lakes can gradually
drain over multiple years (Fig. S11).

Circum-Arctic maps of permafrost, soil and ground ice
conditions
Weutilized themost up-to-date data products (Supplementary Fig. S5)
available on thermokarst lake coverage (released in 2016)33, perma-
frost extent (2019)40, Yedoma region (2021)39, ground ice content
(2002)41, soil carbon content (2013)80 and soil nitrogen content
(2020)81 to investigate the influence of permafrost-related properties
on lake drainage and post-drainage vegetation growth. Olefeldt et al.
(2016)33 provided a thermokarst lake distributionmapbased on expert
judgment, categorized into five levels: very high (60–100%), high
(30–60%), medium (10–30%), low (1–10%) and none (0–1%). For ana-
lytical convenience, we reclassified thermokarst lake likelihoods into
three categories: very likely (60–100%), likely (1–60%), and unlikely
(0–1%). This classification is map-based and not an assessment of the
origin for individual drained lakes.

We used the global permafrost map40 with 1 km resolution to
classify permafrost extent into continuous (>90%), discontinuous
(50–90%), sporadic (10–50%) and isolated (<10%) permafrost zones
based on area percent. The circumpolar ground ice product41 classifies
ground ice content into three classes based on volume percentage:
high (>20%), medium (10–20%), and low (0–10%). Yedoma is an
organic-rich (~2% carbon by mass), ice-rich (>50% ice content by
volume) permafrost formed during the Pleistocene,mainly distributed
in eastern Siberia, Alaska and the Yukon, and the landscape is char-
acterized by glacial plains and hills with sparse vegetation cover39.
While it is worth noting that these datasets do not provide temporal
information,wewould like to emphasize that the overall impact onour
analysis is generally limited. This can be attributed to the relatively
modest changes in permafrost-related properties over the course of a
decade, with the exception of ground ice content, which represents
the only dataset currently available.

In this study, the spatial density of drained lakes (Fig. 1h) was
calculated by overlaying the spatial layers delineated from collected
data products with the detected drained lakes, representing the
number of drained lakes per unit area in different regional units. The
lake-wise density of drained lake (Fig. 4) is calculatedbasedon the ratio
of drained lakes to all lakes within a specific region unit or attribute
type. These methods enable us to visually depict the spatial distribu-
tion pattern and occurrence probability of lake drainage events across
various regions. In addition, we analyzed the spatial heterogeneity of
drained lakes and vegetation dynamics in the circum-Arctic perma-
frost region using the ecoregion map38. Ecoregions are defined as vast
terrestrial or aquatic domains characterized by unique ensemble of
species, communities, and environmental conditions that are geo-
graphically distinct. The circumpolar permafrost region was parti-
tioned into 50 ecoregions (see Supplementary Fig. S4 and
Supplementary Table S1), primarily composed of tundra and boreal
forest biomes.

Acquisition and preprocessing of Landsat data
This study utilized long-term time series of orthorectified Landsat
surface reflectance imagery archives, provided by the GEE platform79,
to detect the occurrence years of lake drainage events and track
vegetation growth dynamics in DLBs. The complete coverage data
spanned from 2000 to 2020 andwasderived fromLandsat-5 Thematic
Mapper (TM), Landsat-7 Enhanced Thematic Mapper-plus (ETM+) and
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Landsat-8 Operational Land Imager (OLI). Regions like Alaska have had
enough observation density to analyze the seasonal and interannual
dynamics of surface water since 1984, but the first observation in
Siberia was not until around 200036. Therefore, despite the JRC pro-
duct providing valuable isolated observations of surface water
dynamics prior to 2000, our evaluation of lake drainage and vegeta-
tion growth dynamics is limited to the period 2001–2020.

We utilized an open-source toolkit (https://jdbcode.github.io/EE-
LCB/) called Earth Engine Landsat Collection Builder for preprocessing
the satellite image archive. This toolkit is deeply integrated into the
GEE platform and is specifically designed for Landsat image pre-
processing, offering analysis-ready images through customizable
preprocessing chains. The preprocessing workflow employed in this
study encompassed imagefiltering, cloud and shadowmasking, sensor
harmonization, multispectral index calculation, and image
compositing.

Landsat images were first screened for acceptable data quality,
with cloud coverage less than 50% to reduce cloud and shadow
interference, and acquired during June to September each year to
maintain phenological consistency andminimize the impact of ice and
snow. The quality assessment band (pixel_qa) of Landsat images was
then used tomask out observation noise such as clouds, ice and snow,
and shadows in the image collection to improve image quality. Landsat
images from different sensor sources (TM, ETM+, and OLI) were pro-
cessed based on the statistical transformation function to correct
spectral differences and improve spectral continuity of the images.
Three multispectral indices were calculated at pixel-level to detect
long-term changes in lakes and vegetation, including the Tasseled Cap
Greenness index (TCG), the Normalized Difference Vegetation Index
(NDVI), and the Automated Water Extraction Index (AWEI). TCG and
NDVI provide insights into vegetation status and greenness55, while
AWEI is useful for accurately distinguishing between water and non-
water pixels82. Finally, for each pixel and each index of the processed
Landsat image collection, annual composite images are generated
using the percentile composite method (ee.Reducer.percentile). We
employed the annual time series of TCG and NDVI to analyze post-
drainage vegetation dynamics and utilized AWEI time series as the
basis for lake drainage year detection. Note that multispectral indices
are calculated prior to image compositing to ensure the reliability of
analysis based on individual observations. The processed data forms
the foundation for consistent monitoring of lake dynamics and quan-
tification of vegetation changes over a 20-year period.

Detection of lake drainage year
Based on the JRC and GLAD maps and object-based lake analysis
method, we identified lakes that underwent drainage events. We then
employed the Landsat-based Detection of Trends in Disturbance and
Recovery (LandTrendr) algorithm45 to detect themain occurrence year
of lake drainage events. The LandTrendr algorithmwas integrated into
the GEE cloud platform in 2018, and has been demonstrated to accu-
rately detect the timing of thermokarst lake drainage events in
northern Alaska46,83. The algorithm effectively leverages the high-
frequency multi-temporal analysis capabilities of Landsat imagery to
capture change trends and disturbance dynamics reflected in spectral
trajectories, thereby accurately identifying and recording the occur-
rence year, disturbance intensity, and duration of disturbance events.

The core of the LandTrendr algorithm is the pixel-level spectral-
temporal segmentation, which simplifies the spectral trajectory into a
series of breakpoints and linear segments through iterative piecewise
linear fitting, to describe change trends and disturbance events more
concisely. We constrained the LandTrendr algorithm by adjusting the
fitting parameters to focus on capturing the spectral variation char-
acteristics of the drained lakes and carried out pixel-by-pixel dis-
turbance year detection (refer to Supplementary Table S5 for the
control parameters of the Landtrendr algorithm). For lakes

experiencingmulti-year drainage, LandTrendr accurately detected the
annualprocessof lakedrainage (SupplementaryFig. S11).We identified
the yearwith themost drained pixels as the occurrence year of the lake
drainage event.

Validation of detected lake drainage events
Remote sensing detection of lake extent and identification of drainage
events in the circum-Arctic permafrost region is a difficult challenge
because the spectralproperties ofwater can vary due to factors suchas
chlorophyll concentration, total suspended solids, colored dissolved
organic matter, water depth, and observation conditions84,85. The JRC
and GLAD products reported the following accuracies on a pixel-by-
pixel basis: JRC with a user’s accuracy of 49.8% (±19.3%) and a produ-
cer’s accuracy of 65.5% (±11.4%), and GLAD with a user’s accuracy of
30.0% (±6.5%) and a producer’s accuracy of 86.2% (±7.4%). The GLAD
product exhibits a higher producer’s accuracy (corresponding to a
lower omission error) compared to the JRC product in capturing the
transition from water to land, although this comes at the cost of a
lower user’s accuracy (corresponding to ahigher commission error). In
this study, we improved the detection rate by combining water loss
pixels from the JRC and GLAD products, and filtered out false lake
drainage information by setting the criteria of lake area (>1 ha) and
drainage area ratio (>50%).

Validation of detected lake drainage events was performed on an
individual lake basis through visual interpretation using TimeSync86, a
visualization tool based on Landsat images and with a similar frame-
work as the LandTrendr algorithm. The accuracy evaluated through
the TimeSync tool only reflects the false positive rate of the drained
lake’s spatial location and occurrence time. The false negative rate of
lake drainage events is challenging to accurately assess due to the
relatively small proportion of drained lakes (less than 1% of all lakes)
and the absenceof a comprehensive referencedataset of drained lakes
with the same temporal coverage.We randomly selected and validated
10% of the 35,337 detected lake drainage events, specifically distin-
guishing the accuracy of detection for small and medium-large lakes.
This distinction was made considering the inherent difficulty in clas-
sifying transitions in small water bodies. The results of spatial valida-
tion for drained lakes showed that the accuracy of detection (i.e., the
percentage of lakes that actually drained versus all lakes mapped as
drained) for small and medium-large drained lakes was approximately
82.6% and 96.1% respectively. The temporal accuracy (i.e., the per-
centage of mapped drained lakes where the major drainage year was
correctly identified) of the LandTrendr algorithm’s detection year for
small and medium-large drained lakes was found to be 63.8% and
89.2%, respectively.

The detection errors of drainage years were mainly due to the
anomalous fluctuations of the spectral features of remote sensing
images that caused the LandTrendr algorithm to fail to correctly
identify the disturbance years. In some cases, the LandTrendr algo-
rithm may have incorrectly mapped the disturbance years to the first
and last years of the study period, resulting in larger errors in the
detected lake drainage events in 2001 and 2020 than in other years46.
Additionally, the issue of underdetection in the spatial recognition of
drained lakes primarily occurs in dense lake regions along the coastal
lowlands. When dividing lake objects, multiple lakesmay be combined
into a single entity due to pixel adhesion, resulting in an under-
estimation of the drainage area ratio and underdetection of
drained lakes.

Track vegetation dynamics in DLBs
To track the dynamics of vegetation growth following lake drainage,
within the preprocessing of Landsat image archives, we utilized the
90th percentile of NDVI values from annual image collections to
generate a robust NDVI time series. This approach yields a value
resembling the second highest NDVI value, which might perform
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better than the maximum and median NDVI values considering the
potential influence of shadow masking and standing water in the
lake basin.

Based on the generated 90th percentile NDVI annual time series,
we pixel-wise acquired NDVI values within the lake basin area for each
drained lake, masked out values below 0, and computed the median
NDVI for the region. This step furthermitigated the impact of standing
water on NDVI assessment in DLBs. We also calculated the median
NDVI of the surrounding vegetation to compare its greenness differ-
ence with DLBs. The surrounding vegetation was defined by a circular
buffer of twice the lake diameter centered at the lake center, and
masked to exclude the lake and other water bodies. Lastly, based on
the identified drainage year for each lake, we transformed the time
series of NDVI values from 2000 to 2020 into vegetation dynamics
recorded by years after drainage.

Additionally, we applied the same approach to extract the TCG
index from both DLBs and the surrounding areas for comparison
(Supplementary Fig. S9). The results indicate that despite being based
on different image bands and algorithms, the vegetation greening
trends and patterns reflected by TCG are basically consistent with
those of NDVI, underscoring the reliability of our method in capturing
the vegetation dynamics in DLBs.

ERA5-Land reanalysis data
Due to the lack of fully covered high spatial resolution meteorological
products in the northern permafrost regions, we used ERA5-Land
monthly reanalysis dataset87 for the period 2000–2020 to analyze the
climate factors affecting lake drainage and vegetation growth. ERA5-
Land is a land-enhanced product from the fifth generation of European
ReAnalysis (ERA5), with a spatial resolution of 0.1° (resampled to
~11 km in the GEE platform). It is considered a state-of-the-art global
reanalysis dataset for land applications that efficiently reconstructs
surface states and process parameters through advanced data assim-
ilation techniques87. A recent study noted that ERA5-Land showed a
high degree of global consistency with MODIS satellite products in
terms of surface temperature88.

Despite the relatively coarse spatial resolution of ERA5-Land, the
analysis based on a 0.1° × 0.1° grid reveals that 35,337 drained lakes are
distributed in 20,132 grid cells, most of which contained 1–2 drained
lakes (Supplementary Fig. S12a). Over 99% of the grid cells exhibit
fewer than 10 drained lakes (Supplementary Fig. S12b). The highest
count of drained lakes in a grid cell is 33, occurring at St. Lawrence
Island (Fig. 1g). Therefore, for lake drainage events occurring between
2000 and 2020, ERA5-Land can provide sufficiently differentiated cli-
matic information for lake drainage prediction and post-drainage
vegetation dynamics analysis. It should be noted that utilizing coarse-
resolution ERA5-Land data introduces uncertainties into the modeling
and relationships established between climate drivers and observed
changes for individual lakes.

Furthermore, we evaluated the temperature and precipitation of
ERA5-Land dataset using the 1 km resolution Daymet dataset89 cover-
ing North America (Supplementary Fig. S13). This analysis compares
climate data of Daymet and ERA5-Land for the year in which the lakes
were drained using 16,104 drained lakes detected in North America as
sample points. The results indicate overall consistency and relatively
low variability between Daymet and ERA5-Land reanalysis data in
simulating temperature and precipitation (Supplementary Fig. S13).

The parameters extracted from the ERA5-Land monthly reanalysis
dataset in this study include: air temperature, soil temperature, soil
moisture, precipitation, evaporation, snowfall, snowmelt, wind speed,
and solar radiation. Specifically, the air temperature was taken at a
height of two meters above the ground, and the soil temperature and
soil moisture were taken at the first soil layer (0–7 cm). Additionally, we
used “total_precipitation” minus snowfall to obtain rainfall, and used
“total_evaporation” toobtain evaporationwith theeffectof transpiration

included. We calculated annual averages, summer averages (June, July,
August), and Sen’s slope values for these climatic parameters.

Machine learning models
In this study, we trained a binary classification model for predicting
lake drainage (Fig. 3) and a regression model to predict NDVI within
DLBs (Fig. 6). We utilized CatBoost90, a categorical-feature-based gra-
dient boosting method, for model training. This choice wasmotivated
by several advantages: (a) CatBoost can effectively handle hetero-
geneous data comprised of both continuous and categorical variables,
(b) it demonstrates resilience against outliers and noise data, and (c) it
generates enhanced models with reduced bias and variance through
ensemble learning, as opposed to individual tree-based models90.

The training and testing samples for the binary classification
model were derived from all drained lakes (~28,000) between 2001
and 2020 and a randomly selected 1% subset of undrained lakes
(~58,000). The candidate explanatory variables for the model are
detailed in Supplementary Table S3. For drained lakes, the climate
parameters were extracted using values corresponding to their iden-
tified primary drainage year, while for undrained lakes, climate para-
meters were randomly sampled between the years 2001 and 2020,
aiming to maximize coverage across different climate conditions. We
used 70% of the samples for model training and the remaining 30% for
independent testing of predictive performance. We utilized the
Python-based Scikit-learn library91 to fit CatBoost models and deter-
mined the optimal model hyperparameters through random search
and ten-fold cross-validation. The initial model includes all candidate
explanatory variables, which might exhibit collinearity, meaning that
introducing certain variables may lead to considerably changes in the
importance estimates of other variables. To address this issue, during
the iterative training process, we removed features that had negligible
contributions to model performance and features highly correlated
(Pearson correlation coefficient r >0.5) with the most important vari-
ables for model performance. The important variables were identified
through preliminary feature importance evaluations through the
Shapley additive explanations model interpretability approach92. We
tested training separate models for very likely and unlikely thermo-
karst lakes for drainage prediction but did not observe an improve-
ment in model accuracy. Therefore, we included thermokarst lake
likelihoods as a categorical feature in the final model. The final model
achieved an AUC score of 0.92, indicating its effectiveness in distin-
guishing drained lakes from undrained lakes. The model’s precision is
0.84, recall is 0.72, and average precision is 0.88, demonstrating its
ability to maintain high accuracy while effectively capturing drained
lake samples. The remaining explanatory variables of the final model
are shown in Fig. 3a, and the optimalmodel hyperparameters are listed
in Supplementary Table S6.

The training process of the regression model for predicting NDVI
in DLBs is similar to the binary classification model described earlier,
with the distinction that the predicted variable is a continuous value
between 0 and 1 (NDVI), rather than a binary value (0 or 1). Addition-
ally, the loss function used is Root Mean Square Error (RMSE) instead
of Logarithmic Loss. The training and testing samples of themodel are
based on the annual NDVI values of all drained lakes and the climate
data of the corresponding years, recordedwith reference to the yearof
lake drainage. In other words, the model predicts the NDVI values in
DLBs for the 0–15 years after lake drainage. Just like the binary classi-
ficationmodel, we followed a similar approach for training and testing
the regressionmodel, utilizing theCatBoost algorithm and conducting
a 70–30 split of the dataset for training and independent testing. The
initial model included all candidate explanatory variables (Supple-
mentary Table S4), and the feature selection process was also applied
to remove negligible or highly correlated variables based on Shapley
values and Pearson correlation coefficients. The optimal hyperpara-
meters for the model were determined through methods like random
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search and ten-fold cross-validation (Supplementary Table S7). The
final model’s RMSE is 0.08, R2 is 0.83, mean absolute error is 0.06, and
mean bias is 0.00, indicating that the regressionmodel can effectively
predict NDVI values in DLBs based on relevant climate and environ-
mental variables, supporting a deeper understanding of post-drainage
vegetation dynamics.

We employed two importance evaluation methods, namely
Shapley values and Permutation importance, to interpret the machine
learning model and quantify the contribution of each explanatory
variable. The Shapley value is a contribution score for each feature,
indicating its expected marginal contribution on the prediction task.
The calculation method of Shapley value is to average the feature
contribution of all possible feature alliances and consider all possible
interaction combinations between features. It’s important to note that
the range of Shapley values differs between classification and regres-
sion models, making them non-comparable. Therefore, the focus
shouldbeon analyzing the importance rankingof variableswithin each
model. The calculation of Permutation importance involves randomly
altering the value of a single feature while keeping the values of the
other features unchanged. The subsequent observation of how this
affects the final model performance metric indicates the feature’s
importance. The greater the reduction in themetric after permutation,
the more crucial the feature is for the model’s predictive ability.
Together, these two approaches provide a fair and comprehensive
assessment of feature importance, taking into account both main
effects and interactions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The drained lakes data generated in this study have been deposited in
the Zenodo database under accession code https://zenodo.org/
record/7632013#.Y-d7iHZBxD8. The United States Geologic Survey
Landsat 5, 7, and 8 Surface Reflectance data used in this study are
available from Google Earth Engine at https://developers.google.com/
earth-engine/datasets/catalog/LANDSAT_LT05_C02_T1_L2, https://
developers.google.com/earth-engine/datasets/catalog/LANDSAT_
LE07_C02_T1_L2, https://developers.google.com/earth-engine/
datasets/catalog/LANDSAT_LC08_C02_T1_L2. The surface water pro-
ducts published by the Joint Research Centre (JRC) of the European
Commission36 and the Global Land Analysis and Discovery (GLAD)
team37 are available at https://global-surface-water.appspot.com/
download, https://www.glad.umd.edu/dataset/global-surface-water-
dynamics. The global floodplain dataset78 based on MODIS are avail-
able at https://developers.google.com/earth-engine/datasets/catalog/
GLOBAL_FLOOD_DB_MODIS_EVENTS_V1. The maps of permafrost
extent40, lake thermokarst landscape33, Yedoma39, ground ice
content41, ecoregion map38 are available at https://doi.pangaea.de/10.
1594/PANGAEA.888600, https://doi.org/10.3334/ORNLDAAC/1332,
https://maps.awi.de/awimaps/projects/public/?cu=ice_rich_yedoma_
permafrost, https://doi.org/10.7265/skbg-kf16, https://www.
worldwildlife.org/publications/terrestrial-ecoregions-of-the-world.
The storage of soil organic carbon80 is available at http://bolin.su.se/
data/ncscd/, and the nitrogen content81 at https://bolin.su.se/data/
hugelius-2020. The ECMWF Climate reanalysis ERA5-Land87 Monthly
data is available at https://developers.google.com/earth-engine/
datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR. Source data
are provided with this paper.

Code availability
Google Earth Engine code used to detect lake drainage events and
Python code used to performmachine learning analysis93 are available
at https://doi.org/10.5281/zenodo.10043131.
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