Article

Direct OC-CHO coupling towards highly C_{2+} products selective electroreduction over stable Cu^0/Cu^{2+} interface

Received: 26 November 2022 Accepted: 3 November 2023

Published online: 24 November 2023

Check for updates

Xin Yu Zhang^{1,6}, Zhen Xin Lou^{1,6}, Jiacheng Chen², Yuanwei Liu¹, Xuefeng Wu¹, Jia Yue Zhao¹, Hai Yang Yuan¹ \boxtimes , Minghui Zhu \mathbb{D}^2 , Sheng Dai \mathbb{D}^3 , Hai Feng Wang \mathbb{D}^4 , Chenghua Sun \mathbb{D}^5 , Peng Fei Liu $\mathbb{D}^1 \boxtimes$ & Hua Gui Yang $\mathbb{D}^1 \boxtimes$

Electroreduction of CO₂ to valuable multicarbon (C₂₊) products is a highly attractive way to utilize and divert emitted CO₂. However, a major fraction of C₂₊ selectivity is confined to less than 90% by the difficulty of coupling C-C bonds efficiently. Herein, we identify the stable Cu⁰/Cu²⁺ interfaces derived from copper phosphate-based (CuPO) electrocatalysts, which can facilitate C₂₊ production with a low-energy pathway of OC-CHO coupling verified by in situ spectra studies and theoretical calculations. The CuPO precatalyst shows a high Faradaic efficiency (FE) of 69.7% towards C₂H₄ in an H-cell, and exhibits a significant FE_{C2+} of 90.9% under industrially relevant current density (*j* = -350 mA cm⁻²) in a flow cell configuration. The stable Cu⁰/Cu²⁺ interface breaks new ground for the structural design of electrocatalysts and the construction of synergistic active sites to improve the activity and selectivity of valuable C₂₊ products.

The electrosynthesis of multicarbon (C_{2+}) products such as ethanol (C_2H_5OH) and ethylene (C_2H_4) from CO₂ is highly attractive because of the versatility of these products in the chemical and energy industries¹⁻⁴. However, the selective production of C₂₊ products from CO₂ reduction reaction (CO₂RR) is challenging, with competition from the hydrogen evolution reaction (HER) and C₁ products (e.g., CO, HCOOH, and CH₄) production⁵⁻⁷. Among all the nanostructured electrocatalysts reported thus far, copper-based materials are known to be the most selective for CO₂-to-C₂₊ production^{8,9}. Up to now, a variety of strategies have been proposed to improve CO₂-to-C₂₊ selectivity, including controlling oxidation states^{10,11}, constructing nanostructures^{12,13}, alloying^{14,15}, doping¹⁶, and molecular decorating¹.

Unfortunately, the selectivity of C_{2+} products is still low, especially at high current densities $(j)^{17}$.

Recently, manipulating oxidation states for constructing a synergistic Cu⁰/Cu¹⁺ interface has been demonstrated as an effective way to promote C₂₊ product conversion via stabilizing Cu¹⁺ species^{11,12,17-22}. For example, it's reported that a high concentration of Cu¹⁺ (8%) in the iodine-modified Cu catalyst was observed by the linear combination fitting (LCF) analysis of operando X-ray absorption spectra (XAS), which contributed to the high FE_{C2+} of about 80% at the *j* lower than 40 mA cm⁻² (ref. 12). Our group also constructed the stable Cu⁰/Cu¹⁺ interface via isolating Cu-S motif with C₂₊ selectivity over 80%²². By combining Cu⁰ and Cu¹⁺ synergistic species, the adsorption

¹Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. ²State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. ³Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. ⁴Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. ⁵Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. ⁶These authors contributed equally: Xin Yu Zhang, Zhen Xin Lou. e-mail: hyyuan@ecust.edu.cn; pfliu@ecust.edu.cn; hgyang@ecust.edu.cn

of *CO can take place at different active sites, resulting in the improvement of CO dimerization, i.e., the Cu⁰ site can activate CO₂ and facilitate the following electron transfers, while the Cu¹⁺ site strengthens the *CO adsorption and boosts C-C coupling, further endowing a lower Gibbs free energy for *OCCOH formation^{11,21,23-25}. Similarly, it was revealed that over the two adjacent Cu⁰ and positively charged Cu⁵⁺ atoms, the Cu⁰ site can adsorb CO₂ and the neighboring Cu⁵⁺ site is conducive to H₂O adsorption, thus promoting the activation of CO₂²⁶. Moreover, theoretical studies have shown that the subsurface O stabilized surface Cu⁵⁺ species indeed enhances the C₂ products selectivity through increasing the *CO coverage²⁷.

In addition to the widely reported Cu¹⁺ species in the field of CO₂RR, Cu²⁺ species with higher oxidation states than Cu⁰ or Cu¹⁺ sites feature the structure characteristics to easily bind CO or H₂O, which have been demonstrated in other heterogenous catalysis fields²⁸⁻³⁰. Recently, Qiao et al. have proved the feasibility of Cu²⁺ sites for promoting *CO hydrogenation in the Cu-Ce-Ox solid solutions, which facilitate the generation of *CHO intermediates instead of *CO dimerization on the single Cu²⁺ sites³¹. As a consequence, Cu-Ce-O_x delivered a high selectivity for CH₄ with significant suppression of the C₂ products. The above findings suggest the possibility of retaining Cu²⁺ sites through material structure design and promoting *CHO intermediate formation on Cu²⁺ catalytic active sites. Inspired by these works, we anticipate that the construction of Cu⁰/ Cu2+ interface may provide the possibility of direct OC-CHO coupling process compared with single Cu2+ sites; however, it still remains a grand challenge to build stable Cu⁰/Cu²⁺ interface under operando CO₂RR conditions.

Herein, we rationally screened the Cu-based precatalysts for constructing stable Cu⁰/Cu²⁺ interfaces, and elucidated their synergic roles in CO₂-to-C₂₊ conversion. Using Materials Project Database (MPD) and density functional theoretical (DFT) calculations therewith, we screened different Cu2+-containing compounds and found Cu2+ phosphorus oxysalts of Cu₂P₂O₇ and Cu₃(PO₄)₂ (collectively named CuPO) to be the most promising candidate for exhibiting the highest stability of Cu⁰/Cu²⁺ interface under the electroreduction condition; in consequence, the peculiar Cu^0/Cu^{2+} interfaces facilitate a low-energy pathway of *CHO coupling with *CO to form *OCCHO intermediate. Experimentally, we synthesized CuPO catalysts through a facile and scalable method, which achieved 69.7% FE for C₂H₄ in the neutral electrolyte, and 90.9% FE_{C2+} with a C₂₊ partial current density (j_{C2+}) of over 300 mA cm⁻² in a flow cell using the alkaline electrolyte. Our operando experimental characterizations unambiguously demonstrate the robust existence of Cu⁰/Cu²⁺ interfaces derived from CuPO during CO₂RR, and in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) in conjunction with DFT calculation testify that the Cu²⁺ sites are conducive to the formation of *CHO, which then facilely coupled with *CO on Cu⁰ surface to form *OCCHO intermediate, leading to high-efficiency CO_2 -to- C_{2+} conversion performance.

Results

Theoretical calculation

The formations of *CO, *COH, and *CHO intermediates on Cu⁰, Cu¹⁺ and Cu²⁺ sites induce different coupling manners and probabilities for C₂₊ species formation on Cu⁰/Cu¹⁺ and Cu⁰/Cu²⁺, which provide guidance on designing the Cu-based catalysts for CO₂RR to C₂₊ products^{11,31}. Firstly, we explored the formation energy of *CHO or *COH (*CO + H⁺/e \rightarrow *CHO or *COH) on classical Cu⁰ (metallic Cu), Cu¹⁺ (Cu₂O), and Cu²⁺ (CuO) sites, respectively, which play key roles in the C₂₊ products. From Fig. 1a, one can see that on the Cu⁰ and Cu¹⁺ sites, the *CHO or *COH formation is relatively endothermic at the potential U = 0 V (all potentials were calibrated to the reversible hydrogen electrode (RHE) if not mentioned), indicating that *CO could be the primary intermediates. By comparison, the Cu²⁺ site has an excellent ability to hydrogenate *CO to form *CHO ($\Delta G = 0.10 \text{ eV}$) rather than *COH ($\Delta G = 1.33 \text{ eV}$). Accordingly, it can be expected that the Cu⁰ and Cu¹⁺ sites could be covered by CO intermediates, while the Cu²⁺ site contributes to *CO hydrogenation to form *CHO intermediates that can facilitate the direct OC-CHO coupling process to increase the selectivity of C₂₊ product (Fig. 1b).

Facing various Cu-based catalysts with Cu²⁺ sites, it is difficult and time-consuming to examine each one and locate the optimal one with superior electrochemical stability and catalytic performance using complex experimental methods. High-throughput screening as an efficient forecast method for a large group of candidate materials has been widely used to predict promising materials for experimental synthesis. Here, we extracted 83 Cu²⁺-containing compounds from Materials Project, and various criteria were utilized to filtrate candidates (details in the Supplementary Note 1). Firstly, the thermodynamic stability that is the intrinsic property of materials was considered, in which two criteria were used: (i) the formation energy $(E_{\rm f})$ should be less than 0 eV, and the more negative $E_{\rm f}$ means the higher thermodynamic stability; (ii) the energy above the convex hull (E_{hull}) should be less than 70 mV/atom³², which can further quantify the structural stability of materials, and the smaller E_{hull} indicates that the corresponding material is more stable. Accordingly, 26 candidates were screened out (Fig. 1c). Then, their electrochemical dissolution potential U_{diss} was further assessed (see details in the Supplementary Note 2), and a more positive $U_{\rm diss}$ means higher electrochemical stability. As shown in Fig. 1d, it can be found that 9 Cu²⁺-containing compounds exhibit good electrochemical stability, in which Cu₂P₂O₇ $(U_{\text{diss}} = 0.94 \text{ V})$ and $Cu_3(PO_4)_2$ $(U_{\text{diss}} = 0.77 \text{ V})$ process the optimal electrochemical stability. Meanwhile, the high formation energy of the O_{vac} on $Cu_3(PO_4)_2$ (0.82 eV) indicated that the phosphate group could play an important role in stabilizing the O atoms, thus limiting the reduction of Cu²⁺ (Supplementary Fig. 3). Therefore, Cu₂P₂O₇ and $Cu_3(PO_4)_2$ could be two promising candidates to construct Cu^0/Cu^{2+} interface for CO₂RR to C₂₊ products under the suitable reaction conditions.

In order to clarify the performance of the Cu^0/Cu^{2+} interface in catalyzing CO_2RR to produce C_{2+} products, we selected $Cu_2P_2O_7$ and $Cu_3(PO_4)_2$ as examples to construct the Cu^0/Cu^{2+} interface (Supplementary Fig. 1), and explored its ability to promote the C-C bond coupling in comparison with the common Cu⁰/Cu¹⁺ interface and the classical Cu(100) surface (Fig. 1e, f). Here, we considered all three general collaborative pathways: (i) $CO + CO \rightarrow OC - CO$, (ii) *CO + $^{\#}COH \rightarrow OC-COH$ and (iii) *CO + $^{\#}CHO \rightarrow OC-CHO$ (* and $^{\#}$ represent Cu⁰ and Cu²⁽¹⁾⁺ sites, respectively)⁸, and calculated their reaction energy energies, aiming to understand the C-C bond coupling mechanism in depth. As shown in Fig. 1e-g, CO₂RR on the Cu^0/Cu^{2+} interface always has a lower energy profile than that on the Cu⁰/Cu¹⁺ one, regardless of the C-C bond coupling pathways, implying the better acceleration of the Cu⁰/Cu²⁺ interface for the C-C coupling. In addition, although the OC-COH coupling process has a relatively low barrier of $0.71 \, \text{eV}$ at the $\text{Cu}^0/\text{Cu}^{2+}$ interfaces compared with the OC-CO coupling process ($E_a = 0.95 \text{ eV}$), COH formation is difficult and requires amount of energy, leading the high effective energy barrier (Fig. 1f). The formation of CHO is much easier compared with that of COH on Cu²⁺ sites; importantly, the #CHO intermediate only needs to overcome a low-energy barrier of only 0.46 eV to couple with *CO at the Cu⁰/Cu²⁺ interface (Fig. 1g), which is also lower than the energy barrier (0.54 eV) for OCCO dimerization on classical Cu(100). These indicate that the OC-CHO coupling process at the Cu⁰/Cu²⁺ interface constructed by Cu₂P₂O₇ (or Cu₃(PO₄)₂, Supplementary Fig. 2) has an evident superiority over the OC-CO or OC-COH coupling processes, and at the same time, the Cu²⁺ site can well facilitate the *CO hydrogenation to the CHO intermediate for high C_{2+} yield instead of C_1 (Supplementary Fig. 4).

Fig. 1 | **Theoretical calculations. a** Reaction energy of *CO hydrogenation to *COH or *CHO on Cu, Cu¹⁺ and Cu²⁺ sites, respectively. **b** Schematic diagram of different intermediates (CO or CHO) on the Cu⁰/Cu¹⁺ and Cu⁰/Cu²⁺ interfaces. **c** Thermodynamic stabilities of materials as a function of $E_{\rm f}$ and $E_{\rm hull}$. **d** Electrochemical stability of candidates, where $U_{\rm diss}$ is the dissolution potential of materials, larger and greener circles represent more stable materials (i.e., larger

 $U_{\rm diss}$), and the structures of the most stable Cu₂P₂O₇ and Cu₃(PO₄)₂. **e-g** Energy profiles of different C–C coupling processes (* and [#] represent Cu⁰ and Cu²⁽¹⁾⁺ sites, respectively), **e** CO-CO, **f** COH-CO, and **g** CHO-CO at the Cu⁰/Cu²⁽¹⁾⁺ interfaces and Cu(100), and the related transition state structures (TS1 - TS9) of different C-C coupling processes.

Catalysts synthesis and structure investigation

Based on the theoretical studies, CuPO catalysts were synthesized using a facile and scalable method, as illustrated in the "Methods", Supplementary Fig. 5 and Note 3. The XRD patterns of the catalyst powders investigated in this study are shown in Fig. 2a, b, with diffraction peaks well indexed to the triclinic phase of Cu₃(PO₄)₂ (PDF#97-006-8811) and the monoclinic Cu₂P₂O₇ (PDF#97-015-7107), respectively, without any impurities. After 1h (h) of CO₂RR at a potential of -1.40 V, both Cu₃(PO₄)₂ and Cu₂P₂O₇ are partially reduced to metallic Cu, indicating the coexistence of CuPO and metallic Cu components during CO₂RR. Furthermore, X-ray absorption fine structure (XAFS) analysis in conjunction with the XRD results proved the coexistence of Cu²⁺ and Cu⁰ species as the CO₂RR goes on for at least 10 h (Supplementary Figs. 6 and 7). CuO as a control sample was synthesized using the same method, and XRD characterizations were also carried out to identify the material components (Supplementary Fig. 8). The shape and microstructure of $Cu_3(PO_4)_2$, $Cu_2P_2O_7$, and CuO_4

were examined via transmission electron microscopy (TEM), and all the three nanoparticles possess irregular shapes (Supplementary Figs. 9-11a). Supplementary Figs. 9-11b give the related highresolution TEM (HRTEM) images of Cu₃(PO₄)₂, Cu₂P₂O₇, and CuO, and the clear lattice fringes with the spacing of 0.408, 0.316, and 0.252 nm are observed, corresponding to the (110) plane of triclinic phase $Cu_3(PO_4)_2$, the (202) plane of monoclinic phase $Cu_2P_2O_7$ and the (111) plane of monoclinic phase CuO, respectively. Further high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM, Supplementary Figs. 9c and 10c) and corresponding energy-dispersive spectroscopy (EDS) maps (Supplementary Fig. 9d-f and Supplementary Fig. 10d-f) verify that Cu, O, and P elements are homogeneously distributed along the Cu₃(PO₄)₂ and Cu₂P₂O₇ nanoparticles. Notably, after CO_2RR , the HAADF-STEM image of $Cu_3(PO_4)_2$ shows the agglomeration of small-size nanoparticles (Supplementary Fig. 12), and the HRTEM image exhibits that metallic Cu nanocrystal with a d-spacing of (111) plane is closely contacted to $Cu_3(PO_4)_2$ with a

Fig. 2 | **Structural and compositional analyses. a**, **b** XRD patterns of **a** Cu₃(PO₄)₂ and **b** Cu₂P₂O₇ before and after CO₂RR at the potential of -1.40 V, indicating the coexistence of CuPO and metallic Cu components in both Cu₃(PO₄)₂ and Cu₂P₂O₇ samples during CO₂RR. **c** HRTEM images of the Cu₃(PO₄)₂ sample after CO₂RR at the potential of -1.40 V. **d** Enlarged HAADF-STEM image of Cu₃(PO₄)₂ after reaction and **e-g** its corresponding EDS elemental mapping images of **e** Cu, **f** P and **g** mixed

elements, respectively. **h** HRTEM images of the Cu₂P₂O₇ sample after CO₂RR at the potential of -1.40 V. **i** Enlarged HAADF-STEM image of Cu₂P₂O₇ after reaction and **i-l** its corresponding EDS elemental maps of **j** Cu, **k** P and **l** mixed elements, respectively, displaying the nanometric Cu/CuPO architecture in both Cu₃(PO₄)₂ and Cu₂P₂O₇.

d-spacing of (210) and (012) plane (Fig. 2c). False color further highlights the close contact between metallic Cu and Cu₃(PO₄)₂ (Supplementary Fig. 13a). As shown in the enlarged HAADF- STEM image (Fig. 2d) and the element mappings (Fig. 2e–g), the segregated Cu nanoparticles are observed, which is in agreement with the XRD result. As for Cu₂P₂O₇, the TEM images show that metallic Cu nanoparticles with sizes ranging from 3 ~ 25 nm that are featured by the d-spacing of (111) planes are distributed on Cu₂P₂O₇ that are featured by the d-spacing of (022) planes after the CO₂RR process (Fig. 2h and Supplementary Fig. 12b). The distribution of metallic Cu and Cu₂P₂O₇ was further confirmed by the false-color HRTEM (Supplementary Fig. 13b) and HAADF-STEM images (Fig. 2j–l). By contrast, the TEM images of the CuO control sample after CO₂RR show that the pristine CuO phase has been reduced to Cu⁰ during the test (Supplementary Fig. 14).

In order to identify the variation of surface valence states and chemical compositions of CuPO and CuO samples after CO₂RR, X-ray photoelectron spectroscopy (XPS) was conducted (Supplementary Figs. 15-18). As observed in Supplementary Fig. 15, the peaks detected at about 933.2 and 935.5 eV of initial Cu₂P₂O₇ and CuO can be ascribed to the Cu²⁺ component³³. After 1 h's CO₂RR at -1.40 V, the characteristic Cu⁰/Cu¹⁺ (932.5 eV) peak appears and occupies a dominant position in CuO, indicating the surface Cu²⁺ components of the CuO sample are mainly reduced to Cu^0/Cu^{1+} (ref. 33). While the $Cu_2P_2O_7$ sample continues to exhibit the main component of Cu²⁺ species after CO₂RR, which benefits from the stability at a negative potential of Cu₂P₂O₇. Due to the fact that the binding energies of the Cu^0/Cu^{1+} states are difficult to distinguish in the Cu 2p region, we further performed a Cu LMM auger peak analysis (Supplementary Fig. 16). The peaks at around 567.7 and 570.0 eV demonstrate that both Cu⁰ and Cu¹⁺ are formed in $Cu_2P_2O_7$ and CuO after CO_2RR^{34} . Furthermore, the feature around 570.4 eV confirms the dominant existence of Cu(OH)₂ (ref. 34), indicating the component Cu²⁺ species are preserved in the Cu₂P₂O₇ catalyst after CO₂RR. For the spectrum in the P 2p region (Supplementary

Fig. 17a), the characteristic P $2p_{1/2}$ and $2p_{3/2}$ peaks for P₂O₇⁴⁻ are detected at the BE of 134.8 and 133.8 eV, indicating the phosphate group persists during the test³⁵. Further evidence is derived from the O 1s spectrum, the peak located at 531.3 eV can be assigned to the nonbridging O in the phosphate group (P=O), and the peak at the BE of 533.1 eV can be attributed to the symmetric bridging O in P-O-P group (Supplementary Fig. 17b)³⁵. Fourier-transformed infrared (FTIR) and Raman spectroscopy are two powerful methods to analyze lowfrequency modes in the phosphates system. As shown in the FTIR spectrum of $Cu_2P_2O_7$, characteristic peaks that appear in 1100-900 cm⁻¹ region are attributed to symmetric and asymmetric P-O bonds, as well as the asymmetric P-O-P bridge vibration, confirming the phosphate group in the sample before and after CO₂RR (Supplementary Fig. 19)³⁶. The Raman spectrum of Cu₂P₂O₇ is displayed in Supplementary Fig. 20a, peaks located at the frequency areas of 1250-950 cm⁻¹ are known to be assigned to the P-O stretching modes of [P₂O₇]⁴⁻. The symmetric and asymmetric stretch of P-O-P bridge appear in 930-970 and 680-760 cm⁻¹ regions respectively, and characteristic peaks observed in the area of 600-500 cm⁻¹ (PO₂²⁻ radical) and 500-370 cm⁻¹ (P-O-P bridge) correspond to the P-O-P bending vibration³⁷. In addition, the P–O–P deformations, the PO₃ rocking and deformation modes, and the external and torsional modes are detected in the region of 430–180 cm⁻¹ (ref. 38). These characteristic peaks are confirmed as pyrophosphate compounds, and they further demonstrate the durability of the pyrophosphate group during CO₂RR. For comparison, the Raman spectra of CuO are given in Supplementary Fig. 20b, and the bands found at 293, 345, and 633 cm⁻¹ are attributed to the standard Ag, Bg (1), and Bg (2) mode, respectively³⁹. After being applied at -1.40 V for 1 h, no obvious peak could be detected in the Raman spectra, which proves that the CuO was totally reduced to Cu(0) during CO₂RR. We then implemented in situ Raman spectroscopy on the $Cu_3(PO_4)_2$ catalysts, which were measured under a constant potential of -1.40 V in the CO₂-saturated 0.1 M KHCO₃ electrolyte. Figure 3a shows the time-dependent in situ Raman spectra

Fig. 3 | Structural evolution investigation of CuPO and CuO catalysts during CO₂RR. In situ Raman spectra of a Cu₃(PO₄)₂ and b CuO catalysts, respectively, during CO₂RR at -1.40 V in CO₂-saturated 0.1 M KHCO₃, suggesting the existence of Cu₃(PO₄)₂ and the disappear of CuO during CO₂RR. XAFS characterization of c the normalized Cu *K*-edge operando XANES spectra, d Fourier-transformed Cu *K*-edge EXAFS spectra, and e, f Calculated ratio of Cu oxidation states in e CuO and f Cu₃(PO₄)₂ catalysts from linear combination fitting with respect to time during

30 min of reaction at -1.45 V. The in situ Raman spectra along with operando XAFS analysis demonstrate the coexistence of Cu²⁺ and Cu⁰ components in Cu₃(PO₄)₂ and the reductive process of oxide Cu species to the metallic Cu⁰ states in the CuO control sample. **g** Morlet WT of the k^3 -weighted operando EXAFS data for the Cu₃(PO₄)₂ and CuO samples with standard Cu foil and CuO powder as controls, suggesting the coexistence of Cu–O and Cu–Cu bond in Cu₃(PO₄)₂ during CO₂RR.

of Cu₃(PO₄)₂. The stretching of the PO₄³⁻ unit is observed at around 1000–1100 cm⁻¹, and the bands around 450–650 cm⁻¹ are attributed to the bending vibration of the PO₄³⁻ unit³⁸. Considering that a moderate decrease in Raman spectra is observed in 60 minutes (min), we concluded that metallic Cu⁰ formed as the reduction of Cu₃(PO₄)₂ started, whereas residual Cu₃(PO₄)₂ remained present in the bulk. Noticeably, the atop-adsorbed CO (CO_{atop}) peak, acting as an important intermediate for the C–C coupling process, was detected at about 2060 cm⁻¹ (ref. 40). As for the CuO control sample in Fig. 3b, the Raman peaks of CuO disappeared after 30 min, which indicated its entire reduction; moreover, no obvious *CO peak was detected. The in situ Raman measurement result suggests that sufficient coverage of CO* could be built on the Cu/Cu₃(PO₄)₂ catalyst, promoting further dimerization during CO₂RR.

To explore the oxidation state evolution of the electrocatalysts during CO_2RR , we carried out operando XAFS measurements under the electrochemical condition at -1.45V (details in the Methods, Supplementary Fig. 21). The operando X-ray absorption near edge structure (XANES) spectra clearly show that the CuO sample appears

metallic Cu⁰ during CO₂RR and kept its metallic Cu⁰ state after test, while $Cu_3(PO_4)_2$ stays in higher valence states than metallic Cu(0) in the whole course of CO₂RR (Fig. 3c). Figure 3d exhibits the operando extended region of the XAS (EXAFS) spectra, and peaks at about 1.5 Å and 2.1Å are attributed to the coordination of Cu-O and Cu-Cu, respectively^{41,42}. A distinct peak of Cu–O coordination can be detected in CuPO at about 1.4 Å, indicating the existence of oxygen-bearing Cu species, and the peak shifts to a smaller radial distance gradually when CO_2RR takes place, implying the partial reduction of Cu^{2+} . The enhancement of peak (Cu-Cu) in the samples (solid lines) suggests the emergence of Cu⁰, and Cu₃(PO₄)₂ catalyst shows a higher Cu-O coordination number and a lower Cu-Cu coordination number compared with CuO indicating the stability of $Cu_3(PO_4)_2$ at a negative potential to a certain extent. Meanwhile, we fitted the EXAFS data of $Cu_3(PO_4)_2$ during CO_2RR , and the fitting results further show that Cu-O coordination and Cu-Cu coordination exist simultaneously in the $Cu_3(PO_4)_2$ catalyst under reaction conditions (Supplementary Fig. 22 and Table 1). To quantitatively analyze the evolution of oxidation states during CO₂RR, we processed in situ spectra using an LCF of the CuO and $Cu_3(PO_4)_2$ samples (Fig. 3e, f). The LCF spectra and data prove that the fitting results are reliable (Supplementary Fig. 23 and Table 2). From the LCF results, we calculated the ratios of Cu oxidation species presented at each 6 min under -1.45 V. After 6 min, the majority of CuO (96%) and Cu₃(PO₄)₂ (95%) were both in the Cu²⁺ oxidation state, while they had respectively decreased to 25% and 72% after a further 12 min, which revealed that the transition between Cu2+ and Cu^0 for CuO was more rapid, while the reduction for $Cu_3(PO_4)_2$ was slower. After the catalysts had been electrochemically reduced via CO₂RR for 30 min, the majority of the CuO sample had been almost entirely reduced to Cu^0 (73%), while the $Cu_3(PO_4)_2$ sample was still 49% composed of the Cu^{2+} . These results show that Cu^{2+} of $Cu_3(PO_4)_2$ may be stabilized so that Cu2+ and Cu0 could be coexistent under -1.45 V for over 30 min. Solid support for the coexistent metallic Cu⁰ and Cu²⁺ during the CO_2RR process in $Cu_3(PO_4)_2$ was also provided through the additional analysis of the Morlet wavelet transform (WT). As shown in Fig. 3g, a WT maximum at $6-8 \text{ Å}^{-1}$ assigned to Cu–Cu bond is visible in the CuO sample during CO₂RR at -1.45 V, which indicates the metallic Cu⁰ species occupy the main composition in the bulk during the test. By contrast, the Cu₃(PO₄)₂ catalyst exhibits a distinct feature at 5-10 Å⁻¹ besides the WT maximum at 6-8 Å⁻¹, which represents the coexistence of Cu-O and Cu-Cu bond, demonstrating the component of Cu oxidation species still remained under the same reaction condition⁴¹. The operando XAFS analysis in conjunction with in situ Raman results clearly proved the specific coexistence of Cu²⁺ and Cu⁰ species in CuPO samples under CO₂RR condition which could affect the selectivity.

Electrochemical CO₂ conversion

The activity of CuPO catalysts for electrocatalytic CO₂RR was evaluated in an H-cell with CO₂-saturated 0.1 M KHCO₃ solution as an electrolyte, and the electrodes were prepared by dropping casting ink solution onto the glassy carbon electrodes (GCE, see more details in the "Methods"). The linear sweep voltammetry (LSV) curves of the Cu₃(PO₄)₂/GC, Cu₂P₂O₇/GC, and CuO/GC in the CO₂-saturated (full line) or Ar-saturated (dotted line) environments are shown in Fig. 4a. The Cu₃(PO₄)₂ and Cu₂P₂O₇ catalysts exhibited larger geometric reduction i in the CO₂ atmosphere, which demonstrated the reaction priority to CO₂RR. Thereafter, Cu₃(PO₄)₂/GC, Cu₂P₂O₇/GC, and CuO/ GC were measured over a range of potentials for catalytic activity (Supplementary Fig. 24). Cu₃(PO₄)₂/GC shows a marked selectivity for C_2H_4 (FE_{C2H4} > 60%) under potentials from -1.25 to -1.50 V, with a topmost FE_{C2H4} reaching 69.7% at -1.45 V (Fig. 4b), corresponding to a j_{C2H4} of -23.0 mA cm⁻², similar to what is tested on Cu₂P₂O₇/GC (FE_{C2H4} of 64.0% and j_{C2H4} of -17.6 mA cm⁻² at -1.40 V (Fig. 4c). As a comparison, the CuO/GC is less selective and its CO2RR catalysis yields CO (<8% FE) and CH₄ (<18% FE), as well as C₂H₄ (<8% FE) in -1.20 ~ -1.50 V (Fig. 4c and Supplementary Fig. 24). In particular, the ratios of C₂H₄ and C1 products for Cu3(PO4)2/GC and Cu2P2O7/GC reach about 12.4 and 7.8 at -1.5 V, which is overwhelmingly superior to CuO/GC (Fig. 4d). Specific values for all products are given in Supplementary Tables 3 and 4.

To further improve the CO₂RR current density, we constructed gas diffusion electrodes (GDE) with the Cu₃(PO₄)₂ catalyst deposited on the Cu-coated polytetrafluoroethylene gas diffusion layers (Cu₃(PO₄)₂/Cu/PTFE) and evaluated CO₂RR performance utilizing a flow cell (details in the "Methods"). The 2.0 M KOH alkaline electrolyte was used to enhance the conductivity and improve the CO₂RR kinetics by suppressing H₂ evolution. As shown in Fig. 4e, the Cu₃(PO₄)₂/Cu/PTFE catalyst was screened at different current densities and reached a maximum FE_{C2+} of 90.9% (52.8% ethylene, 30.7% ethanol, 5.9% acetic acid, and 1.5% n-propyl alcohol) with *j*_{c2+} of -318.2 mA cm⁻² corresponding to experiments performed at *j*_{tot} = -350 mA cm⁻². Supplementary Fig. 25 exhibits the chronopotential curves obtained at different *j*. Meanwhile, the bare Cu/ PTFE showed FE_{C2+} of 58.9 ~ 77.2% with the j_{tot} ranging from -100 to -400 mA cm⁻² (Supplementary Fig. 26), proving the Cu₃(PO₄)₂ catalyst has excellent CO₂-to-C₂₊ conversion performance intrinsically. Electrochemical stability is also a key parameter for CO₂RR performance. Remarkably, Cu₃(PO₄)₂/Cu/PTFE unveils a desirable stability in the flow cell during CO₂RR for 18 h (Fig. 4f). The total current density keeps at -300 mA cm⁻², and FE_{C2+} remains above 80% after 18 h of reaction, representing that the catalyst is stable during CO₂RR. Furthermore, we compared the maximum FE_{C2+} of 90.9% for Cu₃(PO₄)₂/Cu/PTFE with that for other Cu-based electrocatalysts (Fig. 4g and Supplementary Table 5), which was found to possess a remarkable C₂₊ production selectivity compared to the reported Cu-based catalysts^{10,12,17,43-57}.

Insights into CO₂-to-C₂₊ electroreduction

The CO₂RR intermediates chemisorbed on CuPO and CuO were assessed via SEIRAS to determine the mechanism for boosted C₂₊ selectivity (details in the Methods, Supplementary Fig. 27). As shown in Fig. 5a, the in situ SEIRAS differential spectra of $Cu_3(PO_4)_2$ exhibit peaks at about 2065 cm⁻¹ and 1025 cm⁻¹, which are associated with the absorbed *CO and the nonplanar vibration (O=C-H) of *CHO on the catalyst surface, respectively^{58,59}. Additionally, the peaks detected at about 1255 and 1385-1410 cm⁻¹ could be attributed to the C-O stretch and symmetric vibration (vibration of O-C=O) of *COOH, respectively⁵⁹. Prominently, based on reported experimental and theoretical studies, the distinctive 1180 and 1520 cm⁻¹ peaks can demonstrate the existence of *OCCHO intermediate; it increased on scanning to more negative potentials, which is consistent with the trend of C_{2+} products' formation rates⁵⁹⁻⁶¹. To support the band assignments of the IR to *OCCHO theoretically, we simulated the IR of *OCCHO intermediates that adsorbed at the Cu^0/Cu^{2+} ($Cu_3(PO_4)_2$) interface. As shown in Supplementary Fig. 28, a band peak with strong oscillator strength is located at 1189 cm⁻¹, which is close to our experiment result (1180 cm⁻¹) for *OCCHO. Moreover, the peak intensity of *CO peaks on Cu₃(PO₄)₂ enhances first as *CO increases, and then gradually decreases as the applied potential continues to turn negative, suggesting the *CO is consumed as dimerization accelerates. In comparison, the absorbed *CO continues to accumulate and the C-C coupling bond is not detected on the CuO sample, which would be entirely reduced to Cu⁰ during CO₂ reduction (Fig. 5b). As illustrated in the schematic diagram (Fig. 5c), the in situ SEIRAS study in conjunction with theoretical research reveals that the stable and abundant Cu⁰/Cu²⁺ interfaces derived from Cu phosphate-based electrocatalysts can facilitate the pathway of *CHO coupling with *CO to form *OCCHO, thus improving the selectivities of C₂₊ products during CO₂ reduction.

Discussion

In summary, we have theoretically predicted and experimentally constructed the in situ formation of nanometric Cu/CuPO with rich and stable Cu^{0+}/Cu^{2+} interfaces to be the efficient electrocatalyst for highly selective CO_2 -to- C_{2^+} products conversion. The resultant nanometric Cu/CuPO could obtain a high FE_{C2H4} of 69.7% in a neutral medium and perform a maximum $FE_{\text{C2+}}$ above 90% with industrially relevant current densities in a flow cell configuration. The Cu^{2+} sites of Cu^{0+}/Cu^{2+} interfaces were revealed to be available for the formation of *CHO, which then facilely coupled with *CO on the adjacent Cu⁰ surface to form *OCCHO, leading to high-efficiency CO_2 -to- C_{2+} conversion performance. Our work highlights the role of the peculiar Cu^0/Cu^{2+} interfaces in promoting selectivity toward C_{2+} products, and we believe that this finding will contribute to the design of improved Cu-based electrocatalysts for future CO₂RR, with high selectivity and underlying mechanisms for its conversion to valuable products.

Fig. 4 | **Electrochemical performance evaluation of CuPO and CuO catalysts for CO₂RR. a** LSV curves of CuPO/GC and CuO/GC catalysts with respect to RHE at a scan rate of 1 mV/s in the CO₂- or Ar-saturated 0.1 M KHCO₃ electrolyte, indicating the occurrence of CO₂RR. **b** FEs of C₂H₄ of catalysts at different applied potentials in CO₂-saturated 0.1 M KHCO₃, suggesting the superior C₂H₄ selectivity for CuPO. Error bars above were all based on the standard deviation of three measurements at each potential. **c** Potential dependence of *j*_{C2H4} on CuPO/GC and CuO/GC, exhibiting higher C₂H₄ activity for CuPO. **d** FE_{C2H4}/FE_{C1} ratios of catalysts at different applied potentials, suggesting the superior C₂H₄ selectivity for CuPO/GC.

Methods

DFT calculation

All the calculations were performed using the Vienna Ab-initio Simulation Package (VASP) package⁶²⁻⁶⁴. The exchange-correlation functional was described by the Perdew–Burke–Ernzerhof (PBE) functional⁶⁵ within the generalized gradient approximation (GGA)⁶⁶. The project-augmented wave (PAW) method⁶⁷ was employed to treat core electrons, and the cut-off energy of the plane-wave basis was set to 450 eV. A vacuum layer of 15 Å was applied to separate each periodic unit cell. In the structural optimizations, the Brillouin zone was sampled by $2 \times 2 \times 1$ Monkhorst–Pack mesh k-points, and the bottom two layers of the slab were fixed, and the top three layers and adsorbates were fully relaxed. The empirical correction in Grimme's scheme was used to describe the van der Waals interactions⁶⁸. Considering the solvation environment, we constructed an explicit solvation model with one layer H₂O molecules in calculation models.

Catalyst preparation

medium; violet triangle: acidic medium.

For Cu₃(PO₄)₂, 12 mmol Cu(NO₃)₂·3H₂O and 8 mmol NH₄H₂PO₄ were dissolved in H₂O and stirred well to form a suspension in a beaker. Then, added 6 mmol C₆H₁₀O₈ to beaker and stirred until the suspension was clear. The beaker was completely covered with tin foil, with some small holes punched in the top, then placed in the oven and dried at 120 °C. Finally, the dried material was transferred to a crucible and calcined at 700 °C for 1 h in a muffle furnace at a heating rate of 5 °C/min. The preparation method of Cu₂P₂O₇ was the same as the above procedure except for changing the mass of Cu(NO₃)₂·3H₂O to 8.5 mmol. The preparation method of CuO was the same as that of Cu₃(PO₄)₂ except that NH₄H₂PO₄ was not added. All reagents were commercially available as analytical grade (Supplementary Note 3).

a flow cell reactor with 2.0 M KOH as the electrolyte. f FEs of various products

produced by $Cu_3(PO_4)_2/Cu/PTFE$ at the applied *j* of -300 mA cm⁻² for 18 h in the

2.0 M KOH electrolyte (refresh electrolyte for every 2 h), and the liquid products

were collected after the reaction run for more than 30 min. **g** Maximum FE_{C2+} of

Cu₃(PO₄)₂/Cu/PTFE and recently reported Cu-based CO₂RR catalysts (details in

Supplementary Table 5). Blue rhombus: alkaline medium; yellow circle: neutral

Working electrodes preparation

For the $Cu_3(PO_4)_2/CP$, $Cu_2P_2O_7/CP$, and CuO/CP used for XRD, XPS, Raman, FTIR, and XAFS measurements. The sample ink was prepared

Fig. 5 | Insights into CO_2 -to- C_2 + electroreduction. In situ SEIRAS differential spectra of the a $Cu_3(PO_4)_2$ and b CuO sample in CO_2 purged 0.1 M KHCO₃ electrolyte in real-time condition. c Schematic illustration on proposed role of Cu(II)/

Cu(0) interfaces in CO₂-to-C₂₊ conversion. Red: oxygen; gray: carbon; white: hydrogen; origin: Cu^0 ; golden: Cu^{2+} .

by dispersing 10 mg of catalyst (Cu₃(PO₄)₂, Cu₂P₂O₇, or CuO) and 100 µL of Nafion solution into 0.5 mL of H₂O and 1.5 mL of iso-propanol, followed by sonication for more than 1 h. The sample ink was sprayed on carbon paper using an air-brush, and the total catalyst loading was about 2.0 mg cm⁻². For the GCE working electrode used in H-Cell electrochemical measurements, the sample ink was prepared by dispersing 5 mg catalyst (Cu₃(PO₄)₂, Cu₂P₂O₇ or CuO) and 50 µL Nafion solution into 0.125 mL H₂O and 0.375 mL iso-propanol followed by sonication for more than 30 min. 2.5 µL ink was dropped on GCE (with a diameter of 3 mm) and dried in the air for 2 times, with the total loading amount of catalyst about 0.7 mg cm⁻².

For Cu/PTFE, bare PTFE with an average pore diameter of 0.22 μ m was used. Approximately 600 nm nominal thick Cu films were constructed by vacuum evaporation method on the PTFE substrate using Cu target material (99.999%) at an evaporation rate of around 0.5 Å s⁻¹ in an OMV FS300-S6 evaporating tool at a base pressure of <6*10⁻⁴ Torr. For Cu₃(PO₄)₂/Cu/PTFE, the sample ink was prepared as above mentioned on carbon paper and sprayed on the Cu/PTFE films electrodes using air-brush, with the total loading amount of catalyst about 1.0 mg cm⁻².

Materials characterizations

The crystal structure was determined using X-ray diffraction (Bruker D8 Advanced Diffractometer with Cu K α radiation). The morphology and structure were characterized by scanning electron microscope (Hitachi S4800) and transmission electron microscopy (TEM, JEOL JEM 2010, operated at 200 kV). Scanning transmission electron microscopy (STEM) characterization was performed using a ThermoFisher

Talos F200X. High-angle annular dark-field (HAADF)-STEM images were recorded using a convergence semi angle of 11 mrad, and innerand outer collection angles of 59 and 200 mrad, respectively. Energydispersive X-ray spectroscopy (EDS) was carried out using 4 in-column Super-X detectors. The chemical state was analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Escalab 250), and the binding energy of C 1s peak at 284.8 eV was taken as an internal standard. Raman analysis was carried out using a Leica DMLM microscope (Renishaw) with the 514 nm laser. FTIR spectroscopy was characterized on a Nicolet 6700 spectrometer with a spectral range of 4000–400 cm⁻¹. XAFS spectra at the Cu K-edge were performed on the 1W1B beamline station of the Beijing Synchrotron Radiation Facility (BSRF), China. Cu foil, Cu₂O and CuO were used as references. LCF were processed using the ATHENA module implemented in the IFEFFIT software packages.

The in situ XAS measurement was performed in a homemade plastic electrolytic cell. The graphite rod (spectral purity, 3 mm in diameter) and the Ag/AgCl electrode acted as the counter electrode and the reference electrode in the three-electrode system, respectively. The carbon paper coated with specific catalysts was used for the working electrode, and a gas inlet for purging CO_2 into the electrolyte (0.1 M KHCO₃) was also contained in the cell. A window (1.1 cm × 1.8 cm) was designed on the cell for the working electrode that enabled XAS measurement under a sensitive fluorescence model while the working potentials were applied. A spectrum can be acquired on average every 1.5 min, and the in situ curves of the samples in Fig. 3c, d were taken at around 36 min of reaction.

The in situ Raman measurement was performed on the Raman spectrometer (LabRAM HR) utilizing an excitation laser with a wavelength of 514 nm and a 50× microscope objective with a numerical aperture of 0.5, 10.6 mm. Before the experiments, calibration was carried out based on the peak at 520 cm⁻¹ of a silicon wafer standard. To acquire information about the electroreduction process of Cu₃(PO)₄ and CuO, we utilize a spectroelectrochemical cell and detect the in situ Raman of the cathode GDE through a quartz window. The GDEs of Cu₃(PO)₄ and CuO were taken as the working electrodes, which were prepared by the catalyst sprayed on carbon paper. Platinum wire and Ag/AgCl were used as the counter electrode and reference electrode, respectively. During the in situ experiment, a peristaltic pump was used to control the flow rate of CO₂-saturated 0.1 M KHCO₃ electrolyte at 10 mL/min, while the flow rate of CO₂ was kept at 10 sccm with a mass flow controller.

In situ surface-enhanced infrared absorption spectroscopy (SEIRAS) was recorded in a homemade reflection accessory with internal reflection configuration using an FTIR spectrometer equipped with a PerkinElmer spectrum 100 detector. FTIR spectra were obtained by averaging 16 scans with a resolution of 8 cm⁻¹ at the selected potential. Every spectrum was obtained by applying a single potential step compared to the reference potential (0 V). For the spectroelectrochemical measurements, a thin Au film with a thickness of ~10 nm is prepared on a Si prism using electroless deposition⁶⁹. The sample ink was prepared as mentioned above on GCE. 25 µL ink was dropped on Au underlayer and dried in the air for 2 times. The catalystcoated Si crystal was placed in a three-electrode spectroelectrochemical cell as the working electrode, and the counter and reference electrodes were platinum wire and Ag/AgCl electrode (3.5 M KCl), respectively. A gas inlet for purging CO₂ was also contained in the cell. Electrolyte (0.1 M KHCO₃) was injected into the cell and gassed with high-purity CO₂ (99.9999%) prior to electrochemical measurements. A CHI1242C potentiostat was used to record electrochemical responses. Spectra were expressed as absorbance, with positive and negative peaks showing an increase and decrease in signal, respectively.

Electrochemical measurements

All electrochemical studies were performed using an electrochemical station (CHI 660E). The H-type gas-tight reactor consisted of two compartments separated by a Nafion 117 membrane. In the three-electrode system, a custom-made GCE was used as working electrode with a surface area of 0.07 cm² and a catalyst mass loading of 0.7 mg cm⁻². Ag/AgCl electrode (3.5 M KCl) and platinum mesh were used as reference electrode and counter electrode, respectively. CO₂-saturated 0.1 M KHCO₃ (pH \approx 6.75) was used as electrolyte. All measured potentials were calibrated to the RHE reference scale using $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.205$ (all potentials were not *iR*-corrected if not mentioned). Linear sweep voltammetry (LSV) at a scan rate of 1 mV s⁻¹ were performed in Ar and CO₂-saturated 0.1 M aqueous KHCO₃. The current density was calculated by normalizing the current to the corresponding geometric surface area.

The electrocatalytic performance of $Cu_3(PO_4)_2$ was determined in a flow cell configuration. The device consists of $Cu_3(PO_4)_2/Cu/PTFE$ as the working electrode, nickel foam as the anode and an anion exchange membrane. They were assembled using PTFE gaskets with 2.0 M KOH as the liquid electrolyte flowing (10 mL per min) in the chambers between membrane and working electrode, and membrane and anode. CO_2 gas was flowed behind the PTFE layer at a rate of 20 sccm, which was decreased to 19 sccm at the outlet due to the consumption of the alkaline electrolyte. Chronopotentiometry experiments were performed at currents of -100 mA cm⁻², -150 mA cm⁻², -200 mA cm⁻², -250 mA cm⁻², -300 mA cm⁻², -350 mA cm⁻², and -400 mA cm⁻², showing consistent gas product distributions. The liquid products were collected after the reaction run for more than 30 min.

Products analysis

The gas products of CO₂ electroreduction were analyzed by gas chromatography (GC online test, RAMIN, GC2060), equipped with a flame ionization detector (FID to detect CO, CH₄ and C₂H₄) and a thermal conductivity detector (TCD to detect H₂). Ar was used as a carrier. CO₂ was continuously sparged through the electrolyte (30 mL of catholyte and anolyte in each compartment) at a rate of 20 sccm and was routed into the gas chromatograph. The Faradic efficiencies were tested online and averaged for multiple data.

The liquid products were quantified by ¹H nuclear magnetic resonance (NMR) (Varian 700 MHz spectrometer, 16.4 T). In a typical analysis, the mixture of 500 mg of the electrolyte and 100 mg of 149 ppm DMSO (used as internal standard) in D₂O solution was used as measured sample after 2 h of CO₂RR with *j* applied at -300 mA cm⁻². The ¹H spectra were obtained by suppressing the water peak using the pre-saturation method.

Assuming that 12 electrons are required to generate one C_2H_4 molecule, the FE and the partial current densities of C_2H_4 formation were calculated as below:

$$FE = \frac{12FvGP_0}{i_{\text{total}}RT} \times 100\%$$
(1)

where v = volume concentration of C₂H₄ obtained from gas chromatography (GC) data, p_0 = 1.013 bar and T = 298.15 K, G = 20 sccm is the CO₂ flow rate (19 sccm for 2 M KOH in a flow cell), i_{total} (mA) = steady-state cell current, F = 96485 C mol⁻¹, R = 8.314 J mol⁻¹ K⁻¹. Then:

$$j_{C_2H_4} = FE_{C_2H_4} \times i_{\text{total}} \times (\text{electrode area})^{-1}$$
(2)

Data availability

Source data are provided with this paper.

References

- Li, F. et al. Molecular tuning of CO₂-to-ethylene conversion. *Nature* 577, 509–513 (2019).
- Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. *Nat. Energy* 4, 732–745 (2019).
- Zhou, Y. et al. Long-chain hydrocarbons by CO₂ electroreduction using polarized nickel catalysts. *Nat. Catal.* 5, 545–554 (2022).
- 4. Xu, Y. et al. A microchanneled solid electrolyte for carbon-efficient CO₂ electrolysis. *Joule* **6**, 1333–1343 (2022).
- Li, Y. et al. Atomically dispersed single Ni site catalysts for highefficiency CO₂ electroreduction at industrial-level current densities. *Energy Environ. Sci.* **15**, 2108–2119 (2022).
- Zhang, X. Y. et al. Selective methane electrosynthesis enabled by a hydrophobic carbon coated copper core-shell architecture. *Energy Environ. Sci.* 15, 234–243 (2022).
- Dey, S., Masero, F., Brack, E., Fontecave, M. & Mougel, V. Electrocatalytic metal hydride generation using CPET mediators. *Nature* 607, 499–506 (2022).
- Wang, Y., Liu, J. & Zheng, G. Designing copper-based catalysts for efficient carbon dioxide electroreduction. *Adv. Mater.* 33, 2005798 (2021).
- Kim, C. et al. Tailored catalyst microenvironments for CO₂ electroreduction to multicarbon products on copper using bilayer ionomer coatings. *Nat. Energy* 6, 1026–1034 (2021).
- Zhou, Y. et al. Dopant-induced electron localization drives CO₂ reduction to C₂ hydrocarbons. *Nat. Chem.* **10**, 974980 (2018).

Article

- Yuan, X. et al. Controllable Cu⁰-Cu⁺ sites for electrocatalytic reduction of carbon dioxide. Angew. Chem. Int. Ed. 60, 15344–15347 (2021).
- Gao, D. et al. Selective CO₂ electroreduction to ethylene and multicarbon alcohols via electrolyte-driven nanostructuring. *Angew. Chem. Int. Ed.* 58, 17047–17053 (2019).
- Scholten, F., Sinev, I., Bernal, M. & Roldan Cuenya, B. Plasmamodified dendritic Cu catalyst for CO₂ electroreduction. ACS Catal. 9, 5496–5502 (2019).
- 14. Zhong, M. et al. Accelerated discovery of CO₂ electrocatalysts using active machine learning. *Nature* **581**, 178–183 (2020).
- Sultan, S. et al. Interface rich CuO/Al₂CuO₄ surface for selective ethylene production from electrochemical CO₂ conversion. *Energy Environ. Sci.* 15, 2397–2409 (2022).
- 16. Wang, X. et al. Efficient upgrading of CO to C_3 fuel using asymmetric C-C coupling active sites. *Nat. Commun.* **10**, 5186 (2019).
- 17. Yang, P.-P. et al. Protecting copper oxidation state via intermediate confinement for selective CO_2 electroreduction to C_{2+} fuels. J. Am. Chem. Soc. **142**, 6400–6408 (2020).
- Chou, T.-C. et al. Controlling the oxidation state of the Cu electrode and reaction intermediates for electrochemical CO₂ reduction to ethylene. J. Am. Chem. Soc. **142**, 2857–2867 (2020).
- 19. Kim, D. et al. Insights into an autonomously formed oxygenevacuated Cu_2O electrode for the selective production of C_2H_4 from CO_2 . *Phys. Chem. Chem. Phys.* **17**, 824–830 (2015).
- Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C₃-C₄ compounds by conversion of CO₂ on a chloride-induced Bi-phasic Cu₂O-Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015).
- Wang, J., Tan, H.-Y., Zhu, Y., Chu, H. & Chen, H. M. Linking the dynamic chemical state of catalysts with the product profile of electrocatalytic CO₂ reduction. *Angew. Chem. Int. Ed.* 60, 17254–17267 (2021).
- Wen, C. F. et al. Highly ethylene-selective electrocatalytic CO₂ reduction enabled by isolated Cu–S motifs in metal–organic framework based precatalysts. *Angew. Chem. Int. Ed.* 61, e202111700 (2022).
- De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. *Nat. Catal.* 1, 103–110 (2018).
- Xiao, H., Goddard, W. A., Cheng, T. & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO₂ activation and CO dimerization for electrochemical reduction of CO₂. *Proc. Natl Acad. Sci.* USA **114**, 6685–6688 (2017).
- Chang, C.-C., Li, E. Y. & Tsai, M.-K. A computational exploration of CO₂ reduction via CO dimerization on mixed-valence copper oxide surface. *Phys. Chem. Chem. Phys.* **20**, 16906–16909 (2018).
- Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO₂ to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).
- 27. Favaro, M. et al. Subsurface oxide plays a critical role in CO₂ activation by Cu(111) surfaces to form chemisorbed CO₂, the first step in reduction of CO₂. *Proc. Natl Acad. Sci. USA* **114**, 6706–6711 (2017).
- Woertink, J. S. et al. A [Cu₂O]²⁺ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. *Proc. Natl Acad. Sci. USA* 106, 18908–18913 (2009).
- Xu, S. et al. Sustaining metal-organic frameworks for water-gas shift catalysis by non-thermal plasma. Nat. Catal. 2, 142–148 (2019).
- Wang, W. et al. Photocatalytic C–C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 143, 2984–2993 (2021).
- Zhou, X. et al. Stabilizing Cu²⁺ ions by solid solutions to promote CO₂ electroreduction to methane. J. Am. Chem. Soc. 144, 2079–2084 (2022).
- Liu, H. et al. Screening stable and metastable ABO₃ perovskites using machine learning and the materials project. *Comp. Mater. Sci.* **177**, 109614 (2020).

- Platzman, I., Brener, R., Haick, H. & Tannenbaum, R. Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C 112, 1101–1108 (2008).
- Lee, S. Y. et al. Mixed copper states in anodized Cu electrocatalyst for stable and selective ethylene production from CO₂ reduction. J. Am. Chem. Soc. 140, 8681–8689 (2018).
- Chang, Y. et al. Coralloid Co₂P₂O₇ nanocrystals encapsulated by thin carbon shells for enhanced electrochemical water oxidation. ACS Appl. Mater. Interfaces 8, 22534–22544 (2016).
- 36. Gupta, S. K., Mohapatra, M., Godbole, S. V. & Natarajan, V. On the unusual photoluminescence of Eu³⁺ in α -Zn₂P₂O₇: a time resolved emission spectrometric and Judd–Ofelt study. *RSC Adv.* **3**, 20046–20053 (2013).
- Boonchom, B. & Baitahe, R. Synthesis and characterization of nanocrystalline manganese pyrophosphate Mn₂P₂O₇. *Mater. Lett.* 63, 2218–2220 (2009).
- Baitahe, R. & Vittayakorn, N. Phase formation and evolution of Cu:Zn partials in binary metal pyrophosphates Cu_(2-x)Zn_(x)P₂O₇; x≈1. Thermochim. Acta 596, 21–28 (2014).
- Mukherjee, N. et al. CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. *Mater. Lett.* 65, 3248–3250 (2011).
- 40. Deng, Y. et al. On the role of sulfur for the selective electrochemical reduction of CO_2 to formate on CuS_x catalysts. ACS Appl. Mater. Interfaces **10**, 28572–28581 (2018).
- Zhang, W. et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO₂ reduction. *J. Am. Chem.* Soc. **142**, 11417–11427 (2020).
- Weng, Z. et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. *Nat. Commun.* 9, 415 (2018).
- 43. Xie, Y. et al. High carbon utilization in CO₂ reduction to multi-carbon products in acidic media. *Nat. Catal.* **5**, 564–570 (2022).
- 44. Zhong, D. et al. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols. *Angew. Chem. Int. Ed.* **60**, 4879–4885 (2021).
- 45. Ma, W. et al. Electrocatalytic reduction of CO₂ to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper. *Nat. Catal.* **3**, 478–487 (2020).
- 46. Kibria, M. G. et al. A surface reconstruction route to high productivity and selectivity in CO_2 electroreduction toward C_{2+} hydrocarbons. *Adv. Mater.* **30**, 1804867 (2018).
- Zhang, X. et al. Selective and high current CO₂ electro-reduction to multicarbon products in near-neutral KCl electrolytes. *J. Am. Chem.* Soc. **143**, 3245–3255 (2021).
- 48. Wang, P. et al. Boosting electrocatalytic CO₂-to-ethanol production via asymmetric C-C coupling. *Nat. Commun.* **13**, 3754 (2022).
- 49. Wang, P. et al. Synergized Cu/Pb core/shell electrocatalyst for highefficiency CO_2 reduction to C_{2+} liquids. ACS Nano **15**, 1039–1047 (2020).
- 50. Song, Y. et al. B-Cu-Zn gas diffusion electrodes for CO_2 electroreduction to C_{2+} products at high current densities. *Angew. Chem. Int. Ed.* **60**, 9135–9141 (2021).
- Pham, T. H. M. et al. Enhanced electrocatalytic CO₂ reduction to C₂₊ products by adjusting the local reaction environment with polymer binders. *Adv. Energy Mater.* **12**, 2103663 (2022).
- Miao, R. K. et al. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO₂. Joule 5, 2742–2753 (2021).
- Wu, Z.-Z. et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO₂ electroreduction. *J. Am. Chem. Soc.* 144, 259–269 (2022).
- Zheng, M. et al. Electrocatalytic CO₂-to-C₂₊ with ampere-level current on heteroatom-engineered copper via tuning *CO intermediate coverage. J. Am. Chem. Soc. **144**, 14936–14944 (2022).

- Sang, J. et al. A reconstructed Cu₂P₂O₇ catalyst for selective CO₂ electroreduction to multicarbon products. *Angew. Chem. Int. Ed.* 61, e202114238 (2022).
- Li, H. et al. High-rate CO₂ electroreduction to C₂₊ products over a copper-copper iodide catalyst. *Angew. Chem. Int. Ed.* 60, 14329–14333 (2021).
- Niu, Z.-Z. et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO₂ electroreduction to multicarbon products. J. Am. Chem. Soc. 143, 8011–8021 (2021).
- Gunathunge, C. M., Ovalle, V. J., Li, Y., Janik, M. J. & Waegele, M. M. Existence of an electrochemically inert CO population on Cu electrodes in alkaline pH. ACS Catal. 8, 7507–7516 (2018).
- Qiu, X.-F., Zhu, H.-L., Huang, J.-R., Liao, P.-Q. & Chen, X.-M. Highly selective CO₂ electroreduction to C₂H₄ using a metal-organic framework with dual active sites. *J. Am. Chem. Soc.* 143, 7242–7246 (2021).
- 60. Chen, X.-M. et al. A porous π - π stacking framework with dicopper(I) sites a nd adjacent proton relays for electroreduction of CO₂ to C₂₊ products. J. Am. Chem. Soc. **144**, 13319–13326 (2022).
- Wei, Z. & Sautet, P. Improving the accuracy of modelling CO₂ electroreduction on copper using many-body perturbation theory. *Angew. Chem. Int. Ed.* **61**, e202210060 (2022).
- 62. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **47**, 558–561 (1993).
- Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. *Phys. Rev. B* 49, 14251–14269 (1994).
- Kresse, G. & Furthmüller, J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 54, 11169–11186 (1996).
- Kresse, G. & Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* 6, 15–50 (1996).
- Perdew, JohnP., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865 (1996).
- Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* 59, 1758–1775 (1999).
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. *J. Comput. Chem.* 27, 1787–1799 (2006).
- Heyes, J., Dunwell, M. & Xu, B. CO₂ reduction on Cu at low overpotentials with surface-enhanced in situ spectroscopy. *J. Phys. Chem.* C **120**, 17334–17341 (2016).

Acknowledgements

This work was financially supported by the Key Program of National Natural Science Foundation of China (22239001), the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China (51920105003), the National Natural Science Foundation of China (22379043, 22309053), the Science and Technology Commission of Shanghai Municipality (21DZ1207101, 22ZR1416400, 23YF1408500, 23ZR1416800), the Innovation Program of Shanghai Municipal Education Commission (E00014), the China Postdoctoral Science Foundation Funded Project (2022M721137), the Shanghai Engineering Research Center of Hierarchical Nanomaterials (18DZ2252400), and the Fundamental Research Funds for the Central Universities. The authors also thank the Frontiers Science Center for Materiobiology and Dynamic Chemistry. The authors also thank the crew of the BL14W1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF) and the 1W1B beamline of Beijing Synchrotron Radiation Facility (BSRF) for their constructive assistance with the XAFS measurements and data analyses.

Author contributions

H.G.Y. and P.F.L. directed the research. X.Y.Z. performed the experiments and data analyses. Z.X.L. performed the DFT calculations. M.Z. and J.C. assisted with the in situ SEIRAS tests and data analyses. S.D. and X.W. provided assistance with the HAADF-STEM characterization. Y.L. and J.Y.Z. performed the XAFS test and analyses. C.S., H.F.W. and H.Y.Y. guided the DFT calculations. All the authors participated in writing and editing the manuscript, and contributed their efforts to the discussion.

Competing interests

The authors declare no competing interest.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-43182-6.

Correspondence and requests for materials should be addressed to Hai Yang Yuan, Peng Fei Liu or Hua Gui Yang.

Peer review information *Nature Communications* thanks the anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2023