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High-resolution temporal profiling of E. coli
transcriptional response

Arianna Miano 1 , Kevin Rychel 1, Andrew Lezia1, Anand Sastry1,
Bernhard Palsson1,2 & Jeff Hasty1,3,4

Understanding how cells dynamically adapt to their environment is a primary
focus of biology research. Temporal information about cellular behavior is
often limitedby both small numbers of data time-points and themethods used
to analyze this data. Here, we apply unsupervised machine learning to a data
set containing the activity of 1805 native promoters in E. coli measured every
10 minutes in a high-throughput microfluidic device via fluorescence time-
lapse microscopy. Specifically, this data set reveals E. coli transcriptome
dynamicswhen exposed todifferent heavymetal ions.Weuse abioinformatics
pipeline based on Independent Component Analysis (ICA) to generate insights
and hypotheses from this data. We discovered three primary, time-dependent
stages of promoter activation to heavy metal stress (fast, intermediate, and
steady). Furthermore, we uncovered a global strategy E. coli uses to reallocate
resources from stress-related promoters to growth-related promoters fol-
lowing exposure to heavy metal stress.

Over the past fewdecades, various high-throughput technologies have
emerged to investigate how cellular transcription changes in response
to environmental perturbations1,2. Currently, RNA sequencing (RNA-
seq) is the most widely used method to determine the relative abun-
dance of each mRNA transcript in a cellular population3. However,
RNAseq requires the destruction of cells to harvest RNA, making it
challenging to obtain the necessary time resolution to study the
dynamics of transcription. Although sampling RNA from parallel cul-
tures at different times can partially overcome this limitation, many
protocols only sample mRNA levels at a few time points resulting in a
lack of information regarding transcriptional regulatory network
(TRN) dynamics4,5.

To overcome these limitations, we previously introduced
Dynomics, a microfluidic platform for monitoring Escherichia coli
promoter activity in real-time using fluorescence time lapse
microscopy6. This technology allows us to grow more than 2000
unique bacterial strains continuously in small cell “traps" in the pre-
sence of various nutrients and stressors. To monitor the dynamics of
theE. coliTRN,we combinedapre-existingE. colipromoter librarywith

Dynomics. The promoter library, created by Zaslaver et al., contains
approximately 2000 unique E. coli strains where each strain has a
different, native promoter driving the expression of green fluorescent
protein (GFP) on a low-copy number plasmid7. This library enables
highly accurate dynamic measurements of each promoter in the gen-
omeas initiallydemonstrated inanexperiment looking at the response
of E. coli during a diauxic growth shift7. By combining this library with
our microfluidic device and a custom imaging platform, we were able
to record transcriptional cellular responses to environmental pertur-
bations every 10 minutes for up to 14 days. Using this technology, we
observed the dynamics of all E. coli promoters with unprecedented
temporal resolution.

In the original Dynomics study, Graham et al. explored how E. coli
responds to heavymetal exposure. Heavymetal contamination, due to
industrial wastewater discharge, has become a significant threat to the
environment8. In response to the presence of these ions, many
microorganisms have evolved strategies to cope with high con-
centrations of toxic heavy metals. For instance, some bacteria express
enzymes that can reduceheavymetal ions, lowering their toxicity9. The
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breadth of metal-responsive promoters and genes found throughout
the microbial world have made bacteria a popular choice for engi-
neering heavy metal biosensors6 and bioremediation strategies10.
While the potential applications of studying bacterial responses to
heavy metals have received significant attention, we are interested in
the fundamental biological implications of the timing of transcrip-
tional responses to different types of heavy metals. This analysis has
the potential to shed light on TRN structure and to help hypothesize
on the cellular responses to specific metals based on the temporal
patterns of gene activations observed.

Transcriptomic methods such as RNAseq and Dynomics generate
complex, high dimensional data sets that require sophisticated ana-
lysis techniques to interpret11. Independent component analysis (ICA),
an unsupervised machine learning technique developed to deconvo-
lute mixed signals into individual sources12, has proven particularly
successful at extracting biologically relevant transcriptional modules
across the phylogenetic tree from a variety of transcriptomic data
sets13–17. In fact, ICA outperformed 42 similar methods in reproducing
known transcriptional modules18. Using ICA, we can identify groups of
genes, called iModulons, which are co-regulated throughout the data
and are associated with promoter activity levels in each sample. Gen-
erating iModulons has been useful for understanding TRNs and low-
resolution dynamics in RNAseq and microarray data19. For instance,
ICA was able to quantitatively summarize the major steps in Bacillus
subtillis sporulation by grouping relevant genes into specific
iModulons13. Moreover, ICA consistently identifies similar gene
groupings, even between RNAseq and microarray data sets19.

In this study, we apply the ICA workflow to the gene expression
dataset originally generated by Graham et al., thereby leveraging pre-
existing data to derive insights into the temporal patterns of activation
of bacterial promoters in response to external heavy metal stress. The
data was previously generated using environmentally relevant con-
centrations of heavy metals, typically several orders of magnitude
smaller than theminimum inhibitory concentration (MIC) known for E.
coli20. Our results confirm previously known patterns of promoter
activation while also identifying additional gene associations. Impor-
tantly, to our knowledge, this is the first time ICA has been applied to a
time-series transcriptomic data set with measurements taken at reg-
ular short time intervals acrossmultiple days.Combining ICAwith high
temporal-resolutiondata enabled us to generate iModulons that reveal
the response patterns of different gene groups as a function of time.
This approach generates interesting hypotheses regarding transcrip-
tional dynamics.

Results
Dynamic transcriptional response to heavy metal exposure
The protocol used to acquire the GFP promoter library data analyzed
in this study is described in detail in the original Dynomics

publication6. In brief, each strain was induced with a heavy metal ion
for four hours and then left to recover in minimal media for 20 h
(Fig. 1). A custom fluorescence imaging system was used to record the
average GFP expression every 10min. The raw fluorescence data were
background-subtracted, median-filtered, and normalized using the
mean GFP intensity of a control strain. The fold change was calculated
as the log base 2 of the ratio of fluorescence values at selected time
points within the induction window to the fluorescence values at the
start of induction. To minimize noise while retaining temporal infor-
mation, six time points spaced forty minutes apart were selected for
each induction window. This data was then organized into a matrix, X,
where each of 1805 rows represented a different promoter and each of
36 columns represented the log2of the foldchange for each timepoint
during the six heavy metal inductions. Thus, a total of 36 conditions
were analyzed for each promoter (6 different heavy metals multiplied
by 6 different induction time windows) (Fig. 2a).

ICA was applied to the matrix, X, resulting in an M matrix of
promoter coefficients and an A matrix of activity coefficients (Sup-
plementary Data 1–3). The M matrix has dimensions of 1805 by 15,
which correspond to 1805 promoters and 15 independentlymodulated
sets of genes referred to as iModulons as suggested in previous
studies14. The activity profiles and corresponding gene weights for all
15 iModulons obtained from the bioinformatics pipeline are provided
in the Supplementary Information (Figs. S1 to 15). Out of the 15 iMo-
dulons, six (iModulons 0, 2, 4, 5, 9, and 13) were discarded because
they were dominated by a single high coefficient promoter. These
iModulons are uninformative and are usually the result of noisy pro-
moters in the data.

While the M matrix shows how much each promoter contributes
to each iModulon, the Amatrix shows the relative contribution of each
heavy metal induction window (e.g., zinc induction and time window
two) to each iModulon. We named each iModulon according to its
shape and the predominant environmental condition associated with
it (Fig. 2b). From the A matrix, we see that each iModulon was largely
specific to a single heavymetal suggesting that the underlying biology
is highly sensitive to which heavy metal is present (Supplementary
Fig. S52).

For lead, iron, cadmium, and chromium, a single iModulon per
metal was sufficient to capture the observed response, and these
iModulons represent promoters that became steadily activated over
the course of the induction. Zinc, on the other hand, had four separate
iModulons that captured unique activation patterns. We classified
these patterns as “Steady Activation" for promoters whose activity
steadily increased over the induction window, “Fast Activation" for
promoters that activated quickly after the beginning of the induction,
“Intermediate Activation" for promoters that were mostly active in the
middle of the activation window, and lastly “Partial Steady Activation"
for promoters that were steadily activated at the beginning of the

Fig. 1 | Dynomics experimental set up. a Illustration of the differences between
standard -omics technologies (left) and the Dynomics experimental set up using a
2176-strainmicrofluidic device (right).bDiagram to illustrate the experiment steps.
In chronological order the steps are: growth on rich media (LB) until cells

completely fill the traps, downshift to minimal media (M9) for 48h, induction with
the heavy metal of choice for 4 h, recovery with minimal media. After 20 h on
minimal media another cycle of induction and recovery can be performed.
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induction window and then suddenly repressed in the last part of the
induction window. A summary of the different activation patterns is
included in Supplementary Fig. S52. Copper exposure was associated
with two iModulons ("Steady" and “Late Activation" iModulons) based
on their activation profile pattern. The remaining heavy metal iMo-
dulons exhibited a single “Steady Activation” profile.

To identify the most significant promoters in each iModulon, we
employed a thresholding method. In this method, we iteratively
remove promoters with the highest absolute weighting from an iMo-
dulon until the D’Agostino K2 statistic of normality of the remaining
distribution falls below a predetermined cutoff. This cutoff distin-
guishes high-coefficient promoters from those with negligible influ-
ence that cluster around zero. By using a fixed threshold value across
all iModulons, weminimized bias and ensured a reliable analysis. More
details can be found in the original publications that used this
thresholding method21,22. After applying the calculated cutoffs, we
extracted and analyzed the promoters with the highest coefficients for
each iModulon. To better understand the overall bacterial response to
each heavy metal, we classified the promoters by phenotype (i.e., the
functions associated with each promoter based on existing literature)
and activation profile (i.e., how and when the promoter is activated)
(Fig. 3). In the following sections describing the features of the iMo-
dulons, when we state that a certain gene belongs to an iModulon, we
mean that the promoter activity for that gene matched the activation
profile for that iModulon.Wewill generally refer to genes as belonging
to iModulons for brevity and clarity with the understanding that it is
actually the activity of the gene promoters that we are analyzing.

Zinc iModulons
We observed that the zinc iModulons were associated with several
functions, including envelope stress response, oxidative stress
response, zinc resistance, the dissimilatory nitrate reduction to
ammonium pathway, and protein metabolism (Fig. 3a). Within this
iModulon, we identified a set of genes directly related to the envelope

stress response (yfeY, bacA, ropE) and to peptidoglycan stress that
werepresent in both fast and steady activationprofiles, consistentwith
previous literature23–25. Notably, we also found that two genes asso-
ciated with steady activation (mipA, cysQ) are directly involved in
peptidoglycan synthesis. This iModulon also includes the activation of
the glnW promoter, which transcribes glutamine tRNA. Given that
glutamine is important for fatty acid synthesis, we speculate that the
upregulation of glnW may help restore membrane damage caused by
zinc exposure. Our ICA analysis also revealed multiple genes involved
in the oxidative stress response, consistent with former studies26, and
distinguished between fast activation (yedY, yfcG, selC) and steady
activation (katE, lipA, aldH, nupG). Interestingly, the promoters for
yedY and yfcG specifically regulate genes that combat oxidative
damage27,28, indicating a targeted response against cellular damage.
However, the genes associated with steady activation are involved in
cellular processes unrelated to defense response. These include lipo-
ate biosynthesis29, nucleoside transport30, and hydrogen peroxide
detoxification31.

Our results also confirm the activation of the zntA gene which is
associated with zinc export as a detoxification mechanism when
excess levels of zinc are detected32. Interestingly, our analysis is also
able to detect the activation of two genes (narZ and nrfE) belonging to
the dissimilatory nitrate reduction to ammoniumpathway (DNRA)32. In
particular, we were able to observe the temporal dynamics of the
pathway activation since narZ (nitrate reductase) belonged to the fast
activation iModulon and nrfE (nitrite reductase) was associated with
the intermediate activation profile. The order of activation matches
the order required for nitrogen respiration, with nitrate first being
reduced to nitrite bynarZ, then nitrite being reduced to ammoniumby
nrfE33. This mechanism follows the “just-in-time” transcription pro-
gram in metabolic pathways that was previously suggested in the
literature34. To our knowledge, this is the first time that the activation
of DNRA pathway in E. Coli is linked to the presence of elevated zinc
concentrations. We hypothesize that in this context, DNRA activation

Fig. 2 | Independent Component Analysis (ICA) to analyze heavy metal induc-
tions data fromDynomics experiments. a Illustration of the different steps of our
data analysis pipeline. The analysis starts with raw fluorescence data which are
processed with a background signal removal algorithm, normalized by promoter-
less strains, and smoothed bymedian filtering. The log2 is taken to convert to fold
change, and the data is formatted as a matrix of genes versus conditions (heavy
metal inductions). ICA is applied to this matrix to obtain the M (promoter

coefficients) and A (activity coefficients) matrices respectively. b iModulon activity
plots representing different response dynamics to the heavy metals investigated.
The x-axis represents five time points spaced 40min apart for each of the heavy-
metal shown. For illustration purposes only the first time point of each metal is
labeled on the x-axis. The y-axis is unitless as it represents the log2 of the fold
change of the normalized fluorescence data.
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is beneficial to the cells due to the generation of an electron sink that
can be used for NADH re-oxidation into NAD+ which is a key meta-
bolite in counteracting DNA damage and oxidative stress35,36. Future
experiments will be needed to validate this claim. Finally, we also
detect a “Partial Steady Activation” iModulon, characterized by an
initial steady response which is followed by a sudden repression in the
last phase of the induction window. Interestingly, we find that the
promoter which transcribes for the gene potA is enriched. This gene is
involved in the spermidine and putrescine transport system. Previous
studies found that putrescine and spermidine added to the culture
medium significantly increased expression of oxidative-stress related
genes oxyR and katG37. In line with these findings, we observe that zinc
exposure leads to the activation of both potA and katE promoters
(Fig. 3a). The same iModulon enriched for twogenes (hisS,pepB) which
are both related to protein metabolism. The hisS gene encodes
histidyl-tRNA synthetase, an essential enzyme in protein synthesis that
charges tRNA with the amino acid histidine38. The pepB gene encodes
endopeptidase PepB or leucyl aminopeptidase, involved in intracel-
lular protein degradation and amino acid recycling39.

Cadmium iModulons
The cadmium iModulon was characterized by a steady increase in
promoter activation and included promoters that are mainly asso-
ciated with cadmium resistance and oxidative stress (Fig. 3b). As
expected from the literature32, we found that the zntA gene was up-
regulated, which confers cadmium tolerance as well as zinc tolerance
as previously described. Furthermore, we detected the activation of
the sodBpromoter,whichencodes a superoxidedismutase that is a key
factor in defending the cell against oxidative stress through decom-
position of superoxide radicals. This finding agrees with previous
results reported in the literature, which showed that superoxide dis-
mutases (SODs) can protect E. coli from heavy metal toxicity, parti-
cularly from cadmium exposure40.

The iModulon also captures the cell’s response to two of themain
effects of oxidative stress: lipid peroxidation and DNA damage. In
particular, we report the activation of the promoter for mipA, which
encodes a scaffolding protein for murein synthesizing machinery41,
and the promoter for exfK (also known as bamA), which is involved in
the assembly and insertion of beta-barrel proteins in the outer
membrane42. Additionally, we identify three promoters which are
known to be involved in nucleotide catabolism repression (deoR43),
DNA replication (yejK44), and DNA recombination and repair (yhcG45)
respectively. Finally, we detect the activation of the phoA promoter,
which is responsible for the breakdown of organic phosphate esters46.

Copper iModulons
The copper iModulon was characterized by a “Steady” activation
profile and a “Late” activation profile (Fig. 3c). As expected, the Steady
iModulon contains the cueO promoter which encodes for a multi-
copper oxidase involved in copper tolerance under aerobic
conditions47. Furthermore, we detect the activation of promoters
known to be linked to the oxidative stress response (nrdH48, ytfE49) and
to the envelope stress response (yoaE50). Interestingly, we also detect
the activation of promotermgsAwhich is known to be activated during
phosphate starvation and glycolysis restriction51. Similarly, we report
the activation of promoter prpRwhich is part of the Pho regulonwhich
we also detected in the iron iModulon52.

The Late Activation iModulon is characterized by a late response
with increased promoter activity starting roughly halfway through the
induction window. Interestingly, we find that this iModulon was enri-
ched for multiple genes related to the cell’s response against phages
including mcrB, involved in a restriction-modification system for
defense against foreign DNA53; intB, encoding an integrase enzyme for
site-specific recombination54; prpR, a transcriptional regulator con-
trolling propionate catabolism55; and nfrB, part of the N4 phage outer
membrane transport system involved in phage DNA entry during

Fig. 3 | Illustration of significant promoters enriched by the ICA analysis
organizedby functionand activationprofile.Green dots indicate promoters that
drive genes related to transcription/translation/synthesis functions. Red dots
indicate promoters related to stress/damage responses. Grey dots indicate pro-
moters in neither of those categories. a Significant promoters associated to the

induction of zinc. Promoters are classified according to the physiological function
they are associated with. b Significant promoters associated to the induction of
cadmium. c Significant promoters associated to the induction of copper.
d Significant promoters associated to the induction of iron.
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infection56. It is interesting to note that three of these genes (mcrB,
intB, and nfrB) appear to be related to phage defense and interaction,
suggesting a potential coordinated response to phage infection or
other stressors that could impact the bacterial cell’s interaction with
foreign DNA. We hypothesize that the activation of genes related to
phage defense and interaction might reflect a broader stress response
aimed at protecting the cell from additional threats, such as foreign
DNA or phage infection, under conditions where cellular processes
and genomic integrity are already compromised by copper-induced
stress.

Iron iModulons
The iron iModulon is also characterized by a steady state activation
profile (Fig. 3d). Interestingly, we found three enriched genes (ugpB,
phnC and phoB) which all belong to the Pho regulon, a group of genes
in E. coli that are involved in the regulation of phosphatemetabolism57.
In particular, phoB is the response regulator in a two component reg-
ulatory system with phoR (or creC) and regulates inorganic phosphate
(Pi) uptake. The gene phnC is part of the ABC transporter complex
PhnCDE involved in phosphonates, phosphate esters, phosphite and
phosphate import. Finally, gene ugpB codes for a binding protein-
dependent sn-glycerol-3-phosphate transport system which is under
the control of the Pho regulon. In particular, ugp-dependent G3P
transport activity is present only after growth at limiting concentra-
tions of Pi

58. Previous literature indicates that excess iron can cause the
formation of toxic reactive oxygen species (ROS) through Fenton
chemistry59. Both iron stress and oxidative DNA damage are success-
fully prevented by polyphosphates which are polymers formed by
covalently linked inorganic phosphates59. Therefore, we hypothesize
that the genes enriched in the Iron iModulon reflect the need for the
cell to import additional phosphate in order to form polyphosphates
which can be used as a defense mechanism against iron. When excess
iron is present, E. colican transport it into the cell and store it within the
polyphosphate granules, which act as a sink for the iron60. Basedon the
lack of specific iron toxicity genes in the iModulon, we propose that
the concentration of iron used was too low to induce specific
responses.Nonetheless, it is still informative that phosphate chemistry
accounts for the ROS-related effects of an increase in iron.

Transcriptional response of the recovery post-induction
The primary advantage of the Dynomics technology is the ability to
track promoter activity over an extended period of time. This enabled
us to analyze not only the effect of the heavy metal exposure during
the induction window, but also to explore how the bacteria responded
during the recovery period post-induction. In this case, we calculated
the log2 of the fold change with respect to the end of the induction
window (Fig. 4a). We took into consideration 20 time points spaced
40minutes apart (Supplementary Data 4). Applying the ICA algorithm
to this dataset we found 35 iModulons (Figs. 4b, S16 to 50, Supple-
mentary Data 5 and 6).We focus our analysis on a subset of iModulons
whose activity seemed particularly interesting and biologically sig-
nificant (Fig. 4c, Methods).

Zinc iModulons
We report four iModulons whose activity profiles show activation
following zinc exposure. In line with the induction response, we
identify a few promoters associated with stress responses such as the
SOS response (recX), peptoglycan stress (yjfQ, helD, skp) and oxidative
stress (katE). We also report the activation of promoters which are
related to transcription and translation processes such us RNA pro-
cessing and decay (rne), purine metabolism (yneF), proline tRNAs
(proL), methionine synthesis (metF), and DNA ligation (ligB). Addi-
tionally, we find that one of the zinc-related iModulons (iModulon 16)
transcribes mRNA for monothiol glutaredoxin (ydhD, also known as
grxD) which is involved in the biogenesis of iron-sulfur clusters61. This

confirms previous studies that have shown that excess zinc is asso-
ciated with the disruption of iron–sulfur clusters in E. coli62. Interest-
ingly, the same iModulon contains the edd promoter which encodes
the enzyme phosphogluconate dehydratase which is the first reaction
in the Entner-Doudoroff pathway and uses the [4Fe–4S] iron-sulfur
cluster as a cofactor63.

Cadmium iModulons
The ICA analysis also identifies two iModulons whose activity profiles
aremostly active post cadmiumexposure (Fig. 4c). Similar to the trend
we observed for the zinc iModulons, we find that there are several
promoters associated with biosynthesis and protein translation pro-
cesses. This bolsters our prediction that the cells mainly activate stress
response processes during the induction itself and switch to recovery
and growth processes when the inducer is removed. In particular, for
the post-induction cadmium iModulon we report the activation of
promoter asd which is involved in L-lysine, L-methionine, and
L-threonine biosynthesis, promoter tufBwhich codes for anelongation
factor for protein biosynthesis and ykgM which encodes a ribosomal
protein. Interestingly, ykgM was previously found to be upregulated
upon zinc starvation64,65. This physiological response is further sup-
portedby the activationof promoter znuCwhichdrives expressionof a
zinc import ATP-binding protein. Our results therefore align with
previous studies based on the analysis of genome-wide temporal gene
expression data which suggested that the molecular mechanisms of
cadmium toxicity could be partially explained by the disruption in the
transcription of genes encoding ribosomal proteins and zinc-binding
proteins66.

Iron iModulons
Furthermore, we report two iModulons containing promoters that
activate following iron induction. We find that one of the promoters
enriched in these iModulons is ompW which transcribes mRNA for an
outer membrane protein whose expression has been previously
observed to be down-regulated in iron limited growth conditions67.
Our results show that the expression of ompW is greatly increased
post-induction when the toxin is removed from the media. Addition-
ally, we find a second iron iModulon with a steeper activation profile
which is associated with the activation of two genes: rfbB (involved in
biogenesis of the bacterial outer membrane) and ydcL (uncharacter-
ized lipoprotein).

Copper iModulons
Finally, we report a copper recovery iModulon linked to the activation
of five genes, two of which are involved in amino acid biosynthesis
(metF) and DNA replication/transcription processes (helD). We cate-
gorized the promoters according to their function in three main
groups which are identified with dots of different colors in Fig. 4.

Analyzing the data across the induction and post-induction win-
dow, we report a clear shift from an enrichment of promoters driving
genes related to stress and damage responses (45% during induction
versus 23%post induction) to promoters associatedwith transcription,
translation and synthesis functions (18% during induction versus 42%
post induction)(Fig. 4d).

Discussion
This study presents the integration of a genome-scale platform for
monitoring temporal gene expression with the analytical power of
ICA6,14. Previous studies showed that ICA is highly effective at
extracting biologically significant transcriptional modules (called
iModulons) from a wide range of datasets, but these datasets lacked
information on the time-dependent activation of genes. Instead, most
studies have relied on static data obtained from RNA-seq, proteomics,
and metabolomics experiments13,19,68,69. The Dynomics microfluidic
platform enabled sampling of promoter activity every 10min for
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Fig. 4 | ICA analysis of the recovery period following heavy metal inductions.
a Diagram illustrating the steps involved in the analysis pipeline. The ICA was
applied to the data collected from the endof the inductionwindow.We considered
20 timepoints at a distanceof 40min each.bMatrix decompositionafter applycing
ICA. Overall, the ICA analysis identifies 33 iModulons, a selection of which is shown
in panel C. cActivity plots and related significant genes for a selection of iModulons
associated to the post-induction response. The x-axis represents five time points

spaced 40min apart for each of the heavy-metal shown. For illustration purposes
only the first time point of each metal is labeled. The y-axis is unitless as it repre-
sents the log 2 of the fold change of the normalized fluorescence data. Green dots
indicate promoters that drive genes related to transcription/translation/synthesis
functions. Red dots indicate promoters related to stress/damage responses. Grey
dots indicate promoters in neither of those categories. dComparison of number of
promoters grouped by function during and after heavy metal induction.
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multiple days, which is unrivaled by any transcriptome-scale analysis
method to our knowledge.

By applying ICA to this data set, we demonstrated the importance
of time-dependent analysis in providing insights into the dynamic
nature of gene expression in response to environmental stressors. By
splittingdifferent heavymetal inductions into separate 40minute time
windows, we were able to apply ICA to time-series transcriptomic data
for the first time. We observed the richest response for the zinc
inductions. Specifically, we found four different iModulons which
differentiate fast responders (genes that are activated at the start of
the induction window) from intermediate responders (genes that are
maximally active in the middle of the induction window), steady
responders (genes whose expression steadily increases throughout
the induction window) and partially steady responders (genes that
steadily increase over timeuntil they are repressed in the last window).
The zinc data demonstrates the ability of this analysis method to
resolve the activation sequence of promoters involved in the same
metabolic pathway. We detect the activation of promoter narZ as an
early responder and promoter nrfE as a late responder which are
involved in the first and second step of dissimilatory nitrate reduction
to ammoniummetabolic pathway. This result is a clear example of the
power of this platform when used for metabolic pathway reconstruc-
tion which is a topic of great interest in systems biology70.

Additionally, the data in this study were generated using envir-
onmentally relevant heavy metal concentrations which are sig-
nificantly lower than the concentration range known to be toxic for E.
coli71. This allowed us to study the bacterial response to elevated, but
non-toxic, levels of iron in the environment. Our ICA analysis suggests
that in this scenario the bacteria activate several genes in the Pho
regulon (which regulates phosphate uptake and metabolism) in
response to elevated concentrations of iron. We hypothesize that
bacteria accumulate phosphate as an early response to excess iron in
preparation for polyphosphate synthesis. Several studies have shown
that polyphosphates can sequester iron in E. coli and other micro-
organisms, limiting its bioavailability and protecting cells from iron
toxicity59,72. Further studies need to be conducted to experimentally
verify this hypothesis.

Lastly, this study expands our understanding of the recovery
process E. coli following the removal of stressors such as heavymetals.
Our findings indicate a marked shift in the cellular functions of enri-
ched promoters during and after heavymetal induction.Wequantified
a transition from the activation of promoters associated with stress
defense mechanisms and detoxification processes to the activation of
promoters involved in ribosome biosynthesis, tRNA synthesis, mRNA
processing and decay, amino acid biosynthesis, and replication.

While the library of 1805 E. coli promoters employed in this study
represents the most comprehensive collection currently available and
allows for substantial insights into gene expression dynamics, we
acknowledge that it encompasses less than half of the total known
promoters in E. coli. This limitation signifies that our analysismight not
fully capture all the potential regulatory mechanisms at play, and we
advocate for future studies to incorporate amore expansive promoter
library to offer a more encompassing view of E. coli gene expression.

Using concentrations that are several orders of magnitude lower
than theminimum inhibitory concentrations (MICs) for E. coli led us to
the observe distinct gene expression patterns compared to those
reported in previous studies66,71,73,74. We speculate that by utilizing
lower heavy metal concentrations, we are better able to reveal the
subtle and nuanced responses of bacteria to these stressors, which
might otherwise be overshadowed by the more pronounced effects at
higher concentrations. This, in turn, contributes to a more compre-
hensive understanding of bacterial behavior and adaptation mechan-
isms under more environmentally relevant conditions, expanding our
knowledge of how bacteria cope with heavy metal exposure in real-
world scenarios. Overall, we believe that combination of Dynomics

promoter activity data with our approach to applying ICA to time-
series data will continue to serve as a valuable tool for generating
hypotheses on how cells respond to various external stimuli, unco-
vering fundamental principles of transcriptional regulation.

Methods
Data collection
Detailed description of the Dynomics experimental set up can be
found in the original study6. In brief, data was obtained from fluores-
cence values extraction from flat-field corrected images gathered
using a custom optical set up. The first step of the experimental set up
is arraying the cells using a Singer ROTOR robot so that they could be
spotted onto the microfluidic device before glass bonding. Once the
device was ready, it was set up inside a custom box kept at 37 °C for
imaging. Formediaflow, the inlet andoutletwere connected to 140mL
syringes. The concentrations of the heavy metals tested in this study
can be found in Fig. S51.

Data processing
Detailed information on how the raw data was processed can be found
in the original study6. In summary, the data was first processed by
subtracting the local background signal and then dividing the result by
the background signal again in order to create a measure of the
amplification of the signal over the background. Specifically, fluores-
cence values measured at a location outside the cell trap were sub-
tracted from those obtained within the cell-containing regions. This
method effectively removes signal noise not associated with the cells,
thereby providing a more reliable representation of the cellular
fluorescence signals. Then, the data were passed through a median
filter (scipy.signal.medfilt, kernel_size = 11) and normalized by sub-
tracting and dividing the average expression values of the promoter-
less strains. The code used to process data from the original study is
available on GitHub. The original data files post-processing for each
heavy metal are also available on GitHub. The data were further pro-
cessed by calculating the log base 2 of the fold change of the ratio of
six time points (spaced 40min apart) with respect to the start of the
induction window for the data plotted in Figs. 2 and 3. On the other
hand, for the dataset used to produce the results shown in Fig. 4 the
data was converted in the log base 2 of the fold change of the ratio
between 20 points (spaced 40 minutes apart) with respect to the end
of the induction window. All python scripts used to produce these
datasets are available in the “ICA_dynomics" GitHub repository. The
final dataset which was fed to the ICA algorithm consisted of a matrix
where the rows represented all the different promoters (1805) and the
columns represented the different conditions (i.e. the type of metal
and the specific time point). Therefore, for the analysis in Figs. 1 and 2
the final dataset had a total of 36 columns representing 6 heavy metal
inductions, each with 6 time points. Similarly, the dataset behind the
results of Fig. 4 had dimensions of 1805 rows and 100 columns
representing 6 heavy metal inductions, each with 20 points.

Independent component analysis
We used the pipeline for ICA implementation that has been described
in previous studies14,22. In brief, we run the Scikit-learn70 (v0.19.2)
implementation of the FastICA algorithm 100 times with random
seeds, a convergence tolerance of 10−6. The number of components in
each iteration was set to the number of components that reconstruct
99% of the variance as calculated by principal component analysis. The
resulting source components (M) from all runs were clustered using
the Scikit-learn implementation of the DBSCAN algorithm which does
not require predetermination of the number of clusters. In our
DBSCAN analysis, we used the following parameters: DISTANCE para-
meter, analogous to the epsilon parameter in traditional DBSCAN
applications, was set to its default value of 0.1, determining the max-
imum distance between two points to be considered as in the same
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cluster. Meanwhile, the MIN_FRAC parameter, which specifies the
minimum fraction of total data points required to form a valid cluster,
was maintained at its default setting of 0.5. This implies that each
cluster in our analysis contains at least 50% of the total data points
present in the dataset. The final independent components were
defined as the centroid of each cluster in M, and the weightings were
defined as the centroid of their corresponding weighting vectors in A.
To ensure that the final components were consistent across multiple
runs, we computed the clustered components 100 times, and selected
the components that were identified in every run. The previously
published code used to compute robust independent components is
publicly available at github.com/SBRG/precise-db. We also added the
scripts specifically used in this paper in the “precise_db" folder within
the “ICA_dynomics" GitHub repository.

Determination of the gene coefficient threshold
The dataset M contains all the genes coefficients associated with each
iModulon. Most of these coefficients have values close to zero which
indicates they are not significantly enriched for that iModulon. In order
to extract the genes that belong to each iModulon we computed the
D’Agostino K2 test statistic which is a measure of the skew and kurtosis
of a sample distribution. Genes with the largest absolute value were
iteratively removed and the D’Agostino K2 test statistic was computed
for the resulting distribution14. The statistic cutoff was kept fixed at 800
for the entire analysis.We only considered positively correlated genes in
this analysis. The code to calculate the threshold was originally devel-
oped by the Palsson lab at UCSD and can be found at the GitHub
repository pymodulon.We also included the scripts used specifically for
this paper in the pymodulon folder at the ICA_dynomics repository.

Identification of primary heavy metal associated to each
iModulon
We used a simple computational strategy that involved the analysis of
the activationmatrix data of each iModulon to associate themwith the
heavymetal that induced thehighest aggregate expressionover the six
time points within the corresponding induction window. This
approach allowed us to pinpoint the condition under which each
iModulon exhibited the most pronounced change, thereby facilitating
a data-driven classification. The script used to implement this classi-
fication can be found in the ICA_dynomics GitHub repository.

Classification of iModulons based on patterns in activity
coefficients
In our study, we employed a simple computational method to classify
the iModulons based on the shape of their activity coefficients within
the induction window of heavy metal enrichment. This method
involved calculating the center of mass (CM) and identifying the high-
est peak (HP) within the specified window for each iModulon, wherein
the center of mass represents the mean position of a given function.
The iModulons were categorized into three groups based on these
calculations: Steady (CM ≤ 5 and HP ≥4), Intermediate (CM≤ 4 and
HP ≤4), and Fast (CM≤4 and HP ≤ 3). iModulons that did not conform
to these parameters were labeled as “other,” with plans for further
characterization on a case-by-case basis. We have made the corre-
sponding code block available in the “iModulon_identification” script
within our GitHub repository, and illustrated the calculated values and
resultant classifications in Supplementary Fig. S54. It’s noteworthy that
themethodology applied is tailored to the specific shapes encountered
in our study. For future studies, especially where the shape of activity
coefficients is unknown or difficult to categorize, we advocate for
exploring more generalized approaches. Machine learning methodol-
ogies, particularly those centered around shape recognition, could
offer a robust and adaptable solution for classifying transcriptional
profiles regardless of the inherent patterns within the data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data is available in the paper, Supplementary Materials and on
Figshare.

Code availability
The code used is available on GitHub with identifier ICA_dynomics.
Citation:Miano, A. (2023). High-Resolution Temporal Profling of E. coli
Transcriptional Response. Zenodo. We also link the other repositories
which were used for different parts of data processing: •precise-db -
https://github.com/SBRG/precise-db •pymodulon—https://github.
com/SBRG/pymodulon •dynomics_public—https://github.com/
GarrettCGraham/dynomics_public.
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