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Deep learning of cell spatial organizations
identifies clinically relevant insights in
tissue images

Shidan Wang 1 , Ruichen Rong1, Qin Zhou 1, Donghan M. Yang1,
Xinyi Zhang 1, Xiaowei Zhan1, Justin Bishop2, Zhikai Chi 2, Clare J. Wilhelm3,
Siyuan Zhang 2, Curtis R. Pickering4, Mark G. Kris3, John Minna 5,6,7,
Yang Xie1,8,9 & Guanghua Xiao 1,8,9

Recent advancements in tissue imaging techniques have facilitated the
visualization and identification of various cell types within physiological and
pathological contexts. Despite the emergence of cell-cell interaction studies,
there is a lack of methods for evaluating individual spatial interactions. In this
study, we introduce Ceograph, a cell spatial organization-based graph con-
volutional network designed to analyze cell spatial organization (for example,.
the cell spatial distribution, morphology, proximity, and interactions) derived
from pathology images. Ceograph identifies key cell spatial organization fea-
tures by accurately predicting their influence on patient clinical outcomes. In
patients with oral potentially malignant disorders, our model highlights
reduced structural concordance and increased closeness in epithelial sub-
strata as driving features for an elevated risk of malignant transformation. In
lung cancer patients, Ceograph detects elongated tumor nuclei and dimin-
ished stroma-stroma closeness as biomarkers for insensitivity to EGFR tyrosine
kinase inhibitors. With its potential to predict various clinical outcomes,
Ceograph offers a deeper understanding of biological processes and supports
the development of personalized therapeutic strategies.

Cells are the fundamental building blocks of tissue architecture. They
are organized into cellular components, which, in conjunctionwith the
extracellular matrix, form tissue structures1. Cell spatial organization
refers to the arrangement, distribution, and interactions of cells within
a tissue. This includes the relative positioning of different cell types,
their morphological features, and the relationships among them. Cell
spatial organization and tissue architecture offers critical insights into

disease states. For instance, the crosstalk between cancer cells and
stromal cells is essential for invasive growth and metastasis2,3. Fibro-
blastic and necrotic cells also play significant roles in tumor pro-
liferation and invasion4–6. The spatial heterogeneity of tumor-
infiltrating lymphocytes is associated with the molecular profile of
tumors and patient prognosis7,8. Examining the spatial organization of
multiple cell types within tumor tissues and their surrounding
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microenvironments is crucial for understanding how these cells
assemble and interact to produce diverse functional outcomes. Recent
studies in cancer research have highlighted the importance of inves-
tigating how cell spatial organizations impact cancer biology and
tumor progression8–10. Although recent advances in modeling cell-cell
spatial interactions and their impact on biomarker expressions are
noteworthy11, many studies have predominantly concentrated on the
spatial distance between two cells. This focus, although informative,
may neglect the more intricate facets of cell spatial architecture, such
as distinct cell types, cell structure alignment, and interactions among
multiple cells. Furthermore, a prevalent approach has been to amal-
gamate the influences of neighboring cells indiscriminately, poten-
tially overlooking distinct cell-cell interactions. Recent handcrafted
methods12–14 have delved into aspects of cell spatial organization.
Moreover, SpaGCN15, a graph convolutional network (GCN), integrates
gene expression, spatial location, and histology to discern spatial
domains and spatially variable genes in spatial molecular profiling
data. In this study, we developed a GCN to decipher intricate cellular
interactions at the single-cell scale. It underscores the importance of
computational methods that holistically understand cell spatial orga-
nization, emphasizing cell locations, proximities, and relationships
among various cell types, such as tumor cells, stroma cells, and
immune cells.

Advancements in imaging technology have made whole-slide
image (WSI) scanning of tissue slides a common clinical practice,
producing large volumes of high-resolution digital images that contain
in-depth information about tissue structures and cell interactions.
Furthermore, the recent development of deep learning algorithms in
digital pathology has enabled the automatic identification and classi-
fication of millions of cells from WSIs16,17. Studying cell spatial organi-
zations from these routinely available WSIs may enhance our
understanding of how cells are spatially organized to perform biolo-
gical functions and how this organization influences tumor histology,
progression, and treatment response. Convolutional Neural Networks
(CNNs) have been developed for tumor detection, subtype classifica-
tion, and mutation status prediction18 based on WSIs. However, exist-
ing image-based CNNs do not specifically focus on cell spatial
organization features; instead, they work with raw images that include
a mix of tissue structures and external factors, such as inconsistent
staining and scanning conditions. Consequently, interpreting image
features and identifying cell-cell interactions that predict patient
clinical outcomes become difficult. Traditional deep learning models
present further hurdles for interpretation by biologists or clinicians.
The mathematical outputs of these models often lack inherent
meaning, creating a need to translate these numerical vectors into
diagnostic or prognostic models that humans can understand. This
disconnection between accurate clinical outcome prediction and the
identification of influential factors underscores the need for innovative
deep learning structures. By explicitly modeling cell spatial organiza-
tion, we can significantly enhance the interpretability of deep learning
models. This advancement would not only deepen our biological
understanding but also improve the efficiency and stability of our
analyses.

In this study, we developed Ceograph, a cell spatial organization-
based GCN specifically designed to handle cell spatial interaction
information in tissue images. Ceograph utilizes a graph model to
represent cell spatial organization and incorporates features related to
nuclei morphology and distribution, such as unique cell-cell interac-
tions for different types, relative locations, and structural similarities.
By adopting this approach, the Ceograph method emulates the cog-
nitive process of the humanbrain, which first identifies cell types, then
takes into account cell-cell spatial interactions, and finally interprets
cell spatial organization, all while excluding potential noise. By asses-
sing the relationship between individual cell morphology and inter-
actions with diagnosis and clinical outcomes, Ceograph highlights

image features that correlate with potential biological significance.
This offers a starting point for further exploration into biological and
clinical interpretations.

We introduce Ceograph, a GCN-based approach designed to
decipher the complex interplay between cell morphologies and their
spatial interactions, and its potential utility in diverse clinical contexts.
With an increasing demand for methods that can characterize cell
spatial organization and predict clinical outcomes using tissue images,
Ceograph aims to bridge this gap. The versatility of this method is
explored across three critical applications: (1) lung cancer subtype
classification, (2) assessing the risk of malignant transformation in
patients with oral potentially malignant disorders (OPMD), and (3)
predicting treatment response in lung cancer. A unique strength of
Ceograph lies in its potential for interpretability. For instance, in the
context of lung cancer subtypes,weaim to see if Ceograph can capture
the nuanced differences in cell organization between lung squamous
cell carcinoma (SCC) and lung adenocarcinoma (ADC). Similarly, with
OPMD patients, it might be possible to discern if disruptions in epi-
thelial strata structure have implications for malignant transforma-
tions. Lastly, for lung cancer treatment response, understanding
cellular features such as tumor nuclei morphology and stroma-stroma
interactions could offer insights into treatment sensitivities. This work
represents an interpretable GCN model to characterize cell spatial
interaction for clinical outcome prediction and identification of cell
spatial organization features that predict clinical outcomes using tis-
sue images.

Results
A cell spatial organization-based tissue image analysis pipeline
Ceograph leverages cell spatial organization to model the impact of
individual nuclei and cell-cell spatial interactions on biological phe-
notypes and clinical outcomes. To explicitly characterize cell spatial
organization, we employed our Histology-based Digital (HD)-Staining
model16 to locate, segment, and classify each cell nucleus within a
tissue image patch. Additionally, based on the segmentation results,
we extracted well-defined nucleus morphology features, including
size, shape, and orientation. Through this process, we transformed a
tissue image into a spatial map of cells, where each cell’s nucleus
location, cell type, andmorphology are directly accessible for the deep
learning architecture. Furthermore, individual cell-cell spatial interac-
tion features are assessed as interaction types (determined by the type
of a pair of nuclei), structural concordance (quantified as parallelism
between a pair of nuclei), and interaction strength (quantified as nuclei
spatial closeness). All this information serves as input for Ceograph
(Fig. 1a). In contrast, traditional CNNmodels use the entire imagepatch
as input, which includes external noise and lacks explicit cell spatial
organization features.

For a specific tissue image, the Ceograph method was applied
through the following steps: (1) A set of image patches were randomly
sampled fromRegions of Interest (ROIs), which can be eithermanually
annotated by pathologists or automatically determined by another
computational algorithm. (2) Each nucleus within each image patch
was segmented and characterized. In this study, the HD-Staining
algorithm16 was used for nuclei detection and classification. However,
alternative nuclei or cell segmentation algorithms could also work, as
long as the cell spatial locations were determined, making Ceograph a
broadly applicable model for various spatial characterization tech-
nologies. (3) A cell spatial graph was constructed to represent the cell
spatial organization in each image. The computed cell locations were
used to determine the graph vertices and edges, with well-defined
nuclei morphological features serving as vertex features (Supple-
mentary Fig. 1), while cell types, concordances, and distances between
pairs of nuclei used as edge features. (4) Finally, a Ceographmodel was
trained by incorporating cell spatial organization information through
three cell spatial interaction-conditioned graph convolutional (CSIGC)

Article https://doi.org/10.1038/s41467-023-43172-8

Nature Communications |         (2023) 14:7872 2



HD-Staining
for nuclei segmentation

ADC vs. SCC

ROI

Ceograph
for graph classification

Computational Staining Spatial Graph

Digital Pathology Slide Image Patch Extraction

Lymphocyte Stromal CellTumor

Macrophage Karyorrhexis Red Blood Cell

Traditional model
such as CNN

Nuclear features (area, eccentricity, solidity, …)
Cell- cell interactions (interaction type, closeness, parallelism)

CSIGC

Cell spatial graph
Ceograph

…

CSIGC

…

CSIGC

Predict
Label

Interpret
n=10 n=10

Contribution

n=number 
of classes

……
Self-node 

feature

1st edge 
feature

1st neighborhood 
node feature

Mth neighborhood 
node feature

…
Mth edge 
feature

1st edge 
type

1st interaction 
feature

Embedding Feature-wise
linear 

modulation
Edge modulator

Message from the 
1st neighbor

Message from the 
self node

Fully connected

Message from the 
Mth neighbor

Av
er

ag
e

Su
m

m
at

io
n

Activation

Output node 
feature

M
at

rix
 

m
ul

tip
lic

at
io

n

a

b

c

Fig. 1 | Illustration of using Ceograph for pathology image classification.
a Flowchart of traditional image classification (upper arrow) andCeograph (bottom
arrow). The Ceograph method includes nuclei identification through HD-Staining,
graph construction, and classification. The application to lung cancer histology
subtype classification is used as an example. The image patches are 1024 × 1024
pixels under 40X magnification. b Ceograph structure designed in this study,

enabling both classification and model interpretation. c Flowchart of the detailed
computing process of one node feature (referred to as the self-node) through one
CSIGC Layer. Orange boxes indicate the learnable layers involved in back-
propagation. (ADC adenocarcinoma, SCC squamous cell carcinoma, CSIGC cell
spatial interaction-conditioned graph convolution).
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layers and another tumor cell-specific pooling layer (Fig. 1b). The
model was then used to predict the category, such as differential
treatment response, for each graph (constructed from an image
patch). By following these steps, the Ceograph method can effectively
analyze tissue images, considering cell spatial organization and inter-
actions to deliver valuable insights for a range of clinical applications.

In the Ceograph model, one CSIGC layer was designed to incor-
porate cell spatial organization by combining nuclei morphological
features with their spatial interactions (Table 1 and Fig. 1c). The CSIGC
layer employs an attention mechanism that incorporates cell-cell
spatial interaction information alongside nuclei morphological infor-
mation, enabling Ceograph to focus on crucial cell-cell spatial inter-
actions. Furthermore, the CSIGC layers integrate information from
neighboring nuclei while preserving cell-cell connection structures.
This approach allows for a focus on nuclei of interest (such as tumor
nuclei) in the pooling layer and contributes to Ceograph’s interpret-
ability. By incorporating both morphological and spatial interaction
features, the CSIGC layer enhances the model’s ability to analyze
complex tissue images and derivemeaningful insights from cell spatial
organization.

Ceograph accurately classifies pathology subtypes in testing
and independent external validation datasets
We evaluated Ceograph’s performance against traditional image-
based deep learning models in a classification task for lung ADC vs.
SCC pathology images. For each lung cancer WSI, we randomly sam-
pled 1024 × 1024-pixel image patches (with 0.25 microns per pixel)
from pathologist-annotated tumor regions. Using TCGA lung cancer
datasets (see Dataset Section), we created training, validation, and
testing sets containing 52,189 image patches from 593 slides, 7328
image patches from 83 slides, and 15,442 image patches from
172 slides, respectively (Supplementary Fig. 2), with at least 20 tumor
cells per patch. The independent National Lung Screening Trial (NLST)
dataset, with 36,400 graphs from 496 slides, served as an external
validation dataset.

We first analyzed each image patch using HD-Staining to segment
and classify six nuclei types: tumor nuclei, stroma nuclei, lymphocyte
nuclei, red blood cells, macrophage nuclei, and karyorrhexis (see the
Methods Section). We then derived cell spatial graphs from the HD-
Staining analysis results (see the Methods Section) and trained a

Ceographmodel to predict lung cancer subtypes in the TCGA training
set. We systematically assessed Ceograph’s performance in ADC vs.
SCC classification tasks for both the TCGA testing dataset and the
independentNLSTdataset at image-patch and slide levels. In the TCGA
testing dataset, patch-level accuracy reached 94.5%with anArea under
Curve (AUC) of 0.986; slide-level accuracy achieved 100%with an AUC
of 1.000 (Supplementary Fig. 3 and 4A). In the NLST external valida-
tion dataset, patch-level accuracy was 93.2% with an AUC of 0.976,
while slide-level accuracy was 99.0% with an AUC of 0.999 (Fig. 2a, b
and Supplementary Fig. 4A). In the lung cancer pathology subtype
classification task, Ceograph outperformed the other CNN-based deep
learning models that were investigated as part of this work and tradi-
tional feature-based machine learning methods (Table 2).

To further evaluate Ceograph classification performance, a CNN
model with the popular ResNet101 architecture19 and a logistic
regression model were trained and evaluated on exactly the same
image patches, respectively (Table 2). As expected, ResNet101 per-
formed similarly to previous reports (0.966 slide-level AUC, Supple-
mentary Fig. 4B). Moreover, it is noteworthy that the logistic
regression model using the image patch-level averaging of image
features also achieves a comparable performance to CNN-based deep
learning models (0.914 slide-level AUC in the NLST dataset, Supple-
mentary Fig. 4C), which validated the informative and interpretable
nuclear features derived by HD-Staining. Importantly, the superior
performance of Ceograph indicated that the cell organization infor-
mation used in the cell spatial graph was critical to improving tumor
subtype classification accuracy (Table 2). The direct comparison of
different prediction methods once again demonstrated the superior
performance of Ceograph, which benefits from explicit usage of cell
spatial organization information based on histopathological
knowledge.

Understanding the prediction mechanism of ceograph
Neural networks are frequently criticized as a “black box” due to their
complex structures and massive number of parameters (up to 44.5
million20). Therefore, it is both challenging and intriguing to under-
stand how a deep neural network works. The Ceograph method uses
graph structure bymodeling each cell nucleus as a vertex and a pair of
neighboring cell nuclei as an edge. Ceograph represents cell nuclei
morphological features as vertex features, while incorporating cell

Table 1 | Algorithm of cell spatial interaction-conditioned graph convolutional layer (CSIGC)

Algorithm details Description

1 Input: layer ID i, node setwithNnodes, node features X(i)∈ℝN×x(i), edge features E∈ℝe×3 (three edge features are
edge type tn, m, nuclear closeness wn, m, and nuclear parallelism an, m), channel number of output layer c.
Output: node features X(i + 1) ∈ℝN×c

N: number of cells;
X: nuclear morphological features;
E: cell-cell interaction features.

2 for node n in N do To describe a single cell niche

3 # Step 1: Calculate message from neighbors Measure neighboring cells

4 for m in neighbors of node n do With regard to eachpair of the cell and one of its
neighbors

5 Embedding tn, m to edge modulator mon, m ∈ℝ(x×c) through edge type embedding EM ∈ℝ36×(x×c) Transfer categorical cell-cell interaction type
into continuous features

6 Update mon, m with wn, m, an, m, through feature-wise linear modulation Calculate cell-cell interaction-wise attentions

7 Reshape mon, m ∈ℝ(x×c) as mon, m ∈ℝx×c

8 Calculate message men, m = Xn ×mon, m; men, m ∈ℝ1×c Apply attention to cell features

9 # Step 2: Calculate message from the self node Measure the cell itself

10 men = Xn ×θ
i; men ∈ℝ1×c

11 # Step 3: Aggregate the messages from input layer i Combine neighbors and self measurement
together12 Output features X(i + 1)n =men + Ave(men, m)

13 # Step 4: Activation and training-specific dropout layer Add non-linearity for better network flexibility

14 X(i + 1)n = Dropout(ReLU(X(i + 1)n), training flag)

15 end for

ReLU Rectified Linear Unit.

Article https://doi.org/10.1038/s41467-023-43172-8

Nature Communications |         (2023) 14:7872 4



types, postures, and distances between nuclei as edge features. The
contributions of these vertices and edges are then summarized
through the use of CSIGC layers within the neural network. As a result,
Ceograph effectively harnesses the intricate and nuanced patterns in
cell spatial organization to characterize tissue images and to improve
prediction accuracy. By modeling image-derived features, we visua-
lized cellular level contributions to Ceograph’s classification of ADC/
SCC to understand how different cell spatial organization patterns
affect the histological determination byCeograph. The contribution of
each cell to the ADC/SCC classification was calculated (detailed in the
Methods) and depicted in Fig. 2c, d. Notably, regions with sheets of

polygonal cells contributed to SCC classification, reflecting the histo-
pathological feature of the SCC subtype21. As a result, the cell-level
contribution heatmap effectively highlights typical cell organization
patterns for ADC and SCC.

To better understand how Ceograph makes predictions, we ana-
lyzed the impact of different cell distribution features. We visualized
the contribution of each feature to the final classification of ADC vs.
SCC tumors in Fig. 3a, b and found that higher values of eccentricity
and solidity of tumor cells in both ADC and SCC graphs (Fig. 3a, b)
increased the likelihood of a region being classified as SCC. This aligns
withour prior knowledge thatSCC tumor cells havehigher eccentricity
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Screening Trial).
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and solidity thanADC tumor cells (Supplementary Fig. 5). Additionally,
we observed that the contribution from other cell types was con-
siderably lower (both p-values < 0.001, Fig. 3c). Furthermore, we dis-
covered that cell-cell spatial interaction features, such as nuclear
parallelism (Fig. 3d) and nuclear closeness (inverse of distance
between nuclei centroids as described in the Method Section), were
critical in predicting the pathological subtype. Interestingly, we found
that spatial interactions among tumor cells weremore significant than
interactions amongother cell types (allp-values < 0.001, Fig. 3c). These
results align with pathological observations that SCC tumor cells have
a more structured architecture with elongated nuclei shapes com-
pared to ADC tumor cells, confirming the interpretability of Ceograph.

Ceograph predicts risk of malignant transformation of OPMD
To explore Ceograph’s generalizability across different tissues and
clinical questions, we applied the method to a risk stratification task.
Specifically, OPMD are a group of oral cavity mucosal diseases with a
risk of progressing to oral SCC. Traditionally, risk assessment involves
a combination of clinical and histologic evaluation. Leukoplakia, a
common typeofOPMD, is assigned a histologic grading score, which is
supposed to correlate with its risk of progression. However, significant
intra- and inter-observer variability in dysplasia grading leads to
inconsistencies and uncertainties in risk assessment and treatment
planning. In this study, we employed the Ceograph method to predict
the risk of malignant transformation in skin tissue for OPMD
patients (Fig. 4a).

We utilized the morphological characteristics and spatial organi-
zation of the four major nuclei types within skin tissue: stratum cor-
neum, stratumbasale, other strata, and non-epithelium. Subsequently,
we trained a Ceograph based OPMD malignant transformation risk
prediction model using the OPMD1 dataset (refer to the Method Sec-
tion for a detailed description of the OPMD1 and OPMD2 datasets) to
distinguish between high-risk and low-risk groups (Supplementary
Fig. 6). In the OPMD2 independent testing set, the predicted high-risk
group demonstrated significantly shorter time to malignant transfor-
mation (defined as cancer-free survival time, CFS) compared to the
low-risk group (Fig. 4b, p = 0.012; high- vs. low-risk, Hazard Ratio
[HR] = 3.17, 95% Confidence Interval [CI] 1.22–3.22). Moreover, the
predicted risk scores (probability of being a high risk case) from this
Ceograph risk model are correlated with developing cancers within 24
months (AUC =0.915) and 50 months (AUC=0.797, Fig. 4c). The
reduction in AUC for the 50-month prediction, compared to the 24-
month prediction,maybe attributed to the accumulation of additional
confounding factors over the longer prediction timeline. These results
suggest that Ceograph risk model can identify OPMD patients at a

higher risk of cancer by discerning the differences in cell spatial
organization between OPMD tissues with a high risk of progressing to
cancer and those with a low risk.

To further translate the information learned by Ceograph into
pathological knowledge, we visualized the contributions of cellular-
level features to Ceograph’s risk assessment of malignant transfor-
mation (Fig. 4d). Feature contributions were consistent across graphs
for both low-risk (Fig. 4d, upper panel) and high-risk (Fig. 4d, bottom
panel) patients, and are summarized in Supplementary Fig. 7. Malig-
nant transformation risk increases with larger nuclear areas in the
stratum basale, aligning with previous pathological knowledge that
increased nuclear area is a characteristic of dysplasia22. Comparative
analysis of the OPMD1 dataset also shows that the nuclear area of
stratum basale (p <0.001), rather than any other stratum, was sig-
nificantly higher in the high-risk group than in the low-risk group
(Supplementary Fig. 8). To better comprehend the impact of cell
spatial interactions and organization on malignant transformation
risks, we visualized the contributions from edge features (Fig. 4d) and
summarized them (Supplementary Fig. 7). In epithelial strata other
than the stratum basale, reduced parallelism and increased closeness
were associated with higher risk, consistent with pathological obser-
vations of disrupted cellular architecture in epithelial dysplasia. Our
comparison studies confirmed decreased parallelism in epithelial
stratawithin thehigh-risk group, andnuclearparallelism inother strata
showed the most significant difference between high- and low-risk
groups (p <0.001, Supplementary Fig. 8).

In summary, the distinct contributions of cells in different epi-
thelial layers demonstrate that Ceograph accurately and interpretably
captures the morphological and structural characteristics of various
epithelial strata.

Ceograph predicts EGFR TKI Ttx response
Although epidermal growth factor receptor (EGFR) tyrosine kinase
inhibitor (TKI) Targeted therapy (Ttx) is considered first-line therapy
for patients with metastatic lung cancer with EGFR mutation, only
60%–80% of patients with sensitizing EGFRmutations respond to such
therapy23,24. Developing predictive models to predict patients’
response to treatment before actual administration is of great clinical
importance. This might help improve treatment outcomes and
potentially reduce side effects. It could also offer clinicians insights to
potentially avoid less effective treatments. Given Ceograph’s state-of-
the-art performance in histological classification and its success in risk
stratification, we further evaluated the value of Ceograph in predicting
response to EGFR TKI Ttx using the tissue pathology slides collected
before the treatment, which is widely regarded as a more challenging

Table 2 | Performance comparison of different lung ADC vs. SCC classification models

Model Training Set Testing set Slide-level AUCa

Bagging of multiple traditional machine learning models28 TCGA training set TCGA testing set 0.75

Inception V1 at 40X30 TMA and TCGA training set TMA and TCGA testing set 0.83

ResNet31 TCGA training set TCGA testing set 0.857

Inception V3 at 20X32 TCGA training set TCGA testing set 0.87

Inception V3 at 20X29 TCGA training set NYU-LMC 0.905

Logistic regression using HD-Staining derived image featuresb TCGA training set NLST 0.914

Inception V3 at 5X29 TCGA training set NYU-LMC 0.933

PathCNN at 20X33 TCGA training set TCGA testing set 0.957

ResNet at 40Xb TCGA training set NLST 0.966

Ceographb TCGA training set NLST 0.999

ADC adenocarcinoma, AUC area under curve, SCC squamous carcinoma, NLST national lung screening trial, NYU-LMC New York University Langone Medical Center dataset, TCGA the cancer
genome atlas, TMA tissue microarrays.
aReportedAUCs in independent testing dataset are recorded (if no independent testing result is reported, testing result in the samedataset is used in the table instead). Ifmultiple AUCs are reported,
average value among all datasets is used. For the purpose of comparable comparison, in reporting AUC of the Inception V3 model29, only frozen sections and formalin-fixed paraffin-embedded
(FFPE). sections are included.
bSame data settings are used as direct comparison for Ceograph.
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task than risk stratification. A pipeline similar to Fig. 1a was designed
and applied to the task (Fig. 5a, Supplementary Fig. 9). The predictive
Ceograph was trained to predict the benefitting score for each input
cell spatial graph in the Lung Cancer Mutation Consortium 1 (LCMC1)
dataset where all patients with EGFRmutation were treated with EGFR
TKI Ttx. Patients with overall survival (OS, defined as time from

diagnosis of metastatic disease to death or last contact) >31 months
(median OS time in this cohort is 31.2 months) were labeled as bene-
fitting; otherwise, patients with OS ≤ 31 months were labeled as non-
benefitting.

We applied the predictive Ceograph to patients with EGFR
mutation in the independent LCMC2 testing dataset. First, the

Fig. 3 | Visualizationof theworkingmechanismforCeograph. a,bContributions
of input features of individual cells and edges are calculated aspartial derivatives of
an objective function of being predicted as ADC with respect to the input features,
which includeboth nucleimorphologies and edge attributes. The contributions are
plotted for example ADC image patch (a) and SCC image patch (b), respectively.
For better visualization, the contribution of edge attributes is colored in the graph
edges of the upper panels. Redder color represents positive partial derivative and
contribution to SCC subtype, while bluer color represents negative partial

derivative and contribution to ADC subtype. c Boxplots to summarize feature
contributions across the entireNLSTdataset (N = 229,157 cells andN = 1,314,332 cell
interactions). Positive value indicates contribution to SCC subtype, while negative
value indicates contribution to ADC subtype (Statistical details included in Sup-
plementaryData 1).d Illustrationof thedefinition of “parallelism”. Absolute value of
Cosine θ is used to evaluate the orientation parallelism between a pair of nuclei.
(ADC adenocarcinoma, SCC squamous cell carcinoma, NLST National Lung
Screening).
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Fig. 4 | Prognostic value of Ceograph in risk stratification of malignant trans-
formation. a Flowchart of risk prediction from pathology slides of Oral Potentially
Malignant Disorders (OPMD) patients. The image patches are 2048 × 2048 pixels
under 40Xmagnification. b Kaplan–Meier curves (Two-sided log-rank test without
adjustment) of predicted high- vs. low-risk patient groups in theOPMD2 testing set.
c ROC-curves of predicting malignant transformation events at 24 months and
50 months, respectively, in the OPMD2 testing set. d Model interpretation of

Ceograph via partial derivatives of an objective function of being predicted as low-
risk class. Redder color represents contribution towards higher risk score with
increasing the input value (e.g., area). Upper panel, an example image patch pre-
dicted as low-risk from a patient with good prognosis (cancer-free survival time
CFS> 71.5 months); bottom panel, an example image patch predicted as high-risk
from a patient with poor prognosis (CFS= 20.2 months).
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prognostic value of the predicted benefitting score was confirmed in
the patients who received EGFR TKI Ttx, with the predicted benefitting
group showing significantly better OS than the non-benefitting group
(Fig. 5b, p =0.005; benefitting vs. non-benefitting, HR =0.30, 95% CI
0.12–0.79). More importantly, the predictive value of the Ceograph
analysis was assessed by comparing the benefits of EGFR TKI Ttx in the
benefitting group and non-benefitting groups. Within the predicted

benefitting group, patients who did not receive EGFR TKI Ttx showed
significantly worse OS than patients who received EGFR TKI Ttx
(Fig. 5b, p <0.001; wo Ttx vs. w + Ttx, HR = 16.60, 95% CI 3.43–80.33).
In contrast, within the predicted non-benefitting group, no significant
survival difference between Ttx-treated and non-treated patient
groups was observed (Fig. 5b, p =0.40; wo Ttx vs. w + Ttx, HR = 1.44,
95% CI 0.59–3.49). After adjusting for potential clinical confounders,
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including age, gender, smoking status, surgery, and stage at diagnosis,
a high benefitting score calculated by Ceograph was still predictive of
prolongedOS in patients with EGFRmutations who received EGFR TKI
Ttx (p =0.0027 for the interaction termbetweenbenefitting group and
EGFR TKI Ttx, Fig. 5c). Given the heterogeneity of EGFR TKI Ttx
response23,24, our predictive model has the potential for personalized
treatment selection to maximize the benefit of EGFR TKI Ttx.

To understand the relationship between cell spatial organization
features and sensitivity to EGFR TKI Ttx, we interpreted the predictive
Ceograph by determining how increasing individual input features
would affect the predicted benefitting score. We quantified the graph
feature contributions,with a positive value indicating a contribution to
the non-benefitting group (Fig. 5d, Supplementary Fig. 10). Interest-
ingly, increasing tumor cell eccentricity generally raised the likelihood
of being predicted as non-benefitting from EGFR TKI Ttx. This obser-
vation aligns with comparative study results in the LCMC1 dataset,
which showed significantly higher tumor cell eccentricity in the non-
benefitting group compared to the benefitting group (p <0.001, Sup-
plementary Fig. 11). The observation that increasing tumor cell
eccentricity generally leads to a higher likelihood of being predicted as
non-benefitting fromEGFR TKI Ttx suggests a connection between the
elongated morphology of tumor nuclei and the epithelial-
mesenchymal transition (EMT) process25. The EMT process has been
associated with EGFR TKI-resistant tumors26, and thus, a higher tumor
cell eccentricity in the non-benefitting group may indicate EMT activ-
ity, providing a possible explanation for the observed resistance.
Furthermore, the model revealed that decreased stroma-stroma clo-
seness generally correlated with an increased likelihood of non-
benefitting from EGFR TKI Ttx, consistent with observations in the
comparative study (p <0.001, Supplementary Fig. 11). Decreased
stroma-stroma closeness may suggest the activation of cancer-
associated fibroblasts (CAFs) with increased cell size, which has been
linked to tumor progression and poor prognosis27. This implies an
additional role for CAF activation in EGFR TKI resistance.

Discussion
In this study, we developed Ceograph, a GCN-based deep learning
model to characterize cell spatial organization in tumor tissues. Ceo-
graph captures the subtle but coordinated changes in cell spatial
organization, leading to state-of-the-art prediction performance in
histology classification, as well as in prognostic and predictive tasks.
We validated the performance of Ceograph in three applications: (1)
lung cancer subtype classification, (2) malignant transformation pre-
diction in patients with OPMD, and (3) treatment response prediction
in lung cancer. Our results demonstrate that Ceograph achieves state-
of-the-art performance in lung cancer subtype classification, surpass-
ing both traditional machine learning models28 and CNNs29–33. More-
over, Ceograph can predict clinical outcomes across various tissue
types. We also demonstrated the interpretability of Ceograph models
through the following examples: (1) In lung cancer subtype classifica-
tion, Ceograph identifies features that align with existing histo-
pathology knowledge, showing that lung SCC has a more structured
architecture than lung ADC. (2) In OPMD patients, Ceograph reveals
that a disruption in the structure of epithelial strata, apart from the

stratum basale, is associated with a high risk of malignant transfor-
mation. (3) In lung cancer treatment response prediction, Ceograph
finds that elongated tumor nuclei and decreased stroma-stroma clo-
seness are linked to reduced survival benefits from lung cancer tar-
geted therapy (Ttx), providing new insights into the biological
mechanisms of treatment insensitivity by demonstrating their con-
tributions. To the best of our knowledge, this is the first study to
develop comprehensive clinical outcome prediction models by char-
acterizing cell spatial organization using graph models at the single-
cell level.

Using the proposed Ceograph model, we demonstrated that cell
spatial organization features, including cell spatial distribution, cell-
cell interaction, and nuclei morphological features at different loca-
tions, contain sufficient information for various patient outcome pre-
diction tasks. These tasks encompass predicting tumor histological
subtypes, malignant transformation, and therapeutic response. Our
findings highlight the importance of cell spatial organization in dis-
tinguishing tumor subtypes and patient outcomes.

In this study, we designed the Ceograph model to use nuclei
morphological and distribution features as input based on pathologi-
cal knowledge, mimicking the human brain’s hierarchical image
recognition and classification process. The model first “recognizes”
cells using the HD-Staining model and then discerns comprehensive
but subtle patterns in cell organization and morphological character-
istics to classify tissue into categories associated with histology sub-
type or potential patient outcomes. This “cell recognition” step
reduces the effect of variations in staining or lighting conditions,
improving stability in the “classification” step.

TheproposedCeographmodel represents a successful attempt to
combine human knowledge with a neural network. As a result, the
Ceograph model outperforms traditional CNN models while utilizing
far fewer parameters. The proposed histology classification Ceograph,
in particular, has only 9912 parameters, which is roughly 1/5000th of
the popular ResNet101 model (#parameters = 44.5 million)20 and 1/
2500th of the InceptionV3 model (#parameters = 23.9 million)34.
Decreasing the number of parameters improves portability, compu-
tational load, and interpretability while reducing the risk of overfitting.
Although the Universal Approximation Theory35 proves that neural
networks can approximate any Borel measurable functions given
enough hidden layers, large numbers of trainable parameters have
long been contradictory with the constraints of limited training sam-
ples. Increasing signal-to-noise ratio and utilizing existing knowledge
are important for resolving this contradiction, in addition to collecting
and augmenting training data.

Understanding how a neural network makes a decision is impor-
tant. Guided by the occlusion- and gradient-based methods, which
have been utilized to estimate marginal attributes of an input feature
applied to CNNs36,37, we propose that calculating partial derivatives of
output with regard to each individual input feature is a simple and
effective way to understand the contribution of each feature to the
decision making process of Ceograph. The consistency of knowledge
generated by Ceograph and direct comparative study demonstrates
the validity of this method. More importantly, the results suggest that
Ceograph models offer interpretability, indicating potential

Fig. 5 | Predictive value of GCN in EGFR TKI Target therapy (Ttx) response
prediction. a Flowchart of EGFR TKI treatment response prediction from pathol-
ogy slides of lung adenocarcinoma patients. b Visualize patient survival outcomes
using Kaplan–Meier curves (Two-sided log-rank test without adjustment) in the
Lung Cancer Mutation Consortium 2 (LCMC2) testing dataset. Patients with EGFR
mutations are grouped based on their predicted benefitting score as well as whe-
ther or not they received EGFR TKI Ttx. In patients who received EGFR TKI, the
significantly better survival outcome of the predicted benefitting group over the
non-benefitting group (p value = 0.02) demonstrates the prognostic value of the
benefitting score. The improved survival outcome for patients who received EGFR

TKI Ttx is detected only in the predicted benefitting group (p value < 0.001) rather
than the non-benefitting group (p value = 0.30), demonstrating the predictive value
of the benefitting score. c Forest plot (N = 126 patients) of multivariate Cox Pro-
portionalHazardmodel adjustedbypotential confounders, including age, smoking
status, gender, surgery, and stage. d Model interpretation of the predictive Ceo-
graph via partial derivatives of an objective function of being predicted as bene-
fitting group. Redder color represents contribution of increased value (e.g., nuclear
eccentricity) to decreased benefit. Upper panel, an example image patch predicted
asbenefitting; bottompanel, an example imagepatchpredicted as non-benefitting.
(HR hazard ratio).
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correlations in how cells assemble and interact across various con-
texts. This provides avenues for further exploration into their func-
tional implications.

One limitation in this study is that the proposed Ceograph uses
only nuclei features rather than cytosolic or plasma membrane fea-
tures. Although cellular architecture is an important factor in the
subtyping process by pathologists, cytosolic features are also helpful.
For example, the cytosolmorphologyof signet ringADCandmucinous
ADC differs38, and the presence of obvious plasma membrane is a
marker for SCC. Although we demonstrated that the morphological
features and nuclei distributions are useful for distinguishing between
ADC and SCC, predicting risk of malignant transformation of OPMD
patients, and predicting treatment response to EGFR TKI Ttx, com-
bining cytosolic and membranous features may be useful in
other tasks.

In the process of training our model, we employed a deliberate
stratification approach: patients who developed cancer quickly were
categorized as the high-risk group, while those who remained cancer-
free over anextended follow-up periodweredesignated as the low-risk
group. This strategy aimed to reduce ambiguity in survival outcomes
during model training. However, this method has a notable limitation:
it does not fully utilize on the information frompatients with censored
outcomes. As highlighted by recent studies39, coupling a neural net-
work with a loss function specifically designed for survival analysis
could potentially improve predictive performance for survival
outcomes.

The edge effect is a known challenge in image analysis that
focuses on ROIs, particularly with our Ceograph method that utilizes
k-Nearest Neighbors for graph construction. When cells lie on the
boundaries of ROIs, they’re constrained to have neighbors only within
that ROI. This design can introduce biases for these boundary cells.
However, considering the substantial size of our typical ROIs con-
taining a large number of cells, while the number of cells affected by
the edge effect is relatively small. It is important to recognize this
inherent limitation and consider it in future methodological
refinements.

Methods
Dataset
TCGA and NLST datasets for histology classification. Pathology
images that support the lung cancer subtype classification results of
this study are available online in TCGA (https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageId=6881474)
and NLST (https://biometry.nci.nih.gov/cdas/nlst/). The H&E-stained
pathology images (40X), together with the corresponding clinical
data, were obtained from the NLST and TCGA cohorts: 469 pathology
slides for 422 lung ADC patients and 379 pathology slides for 379 lung
SCC patients were acquired from the TCGA Lung SCC dataset; 327
pathology slides for 193 lungADCpatients and 169pathology slides for
93 lung SCC patients were acquired from the NLST dataset (there
could bemultiple pathology slides for a single patient). Dataset details
are summarized in Supplementary Table 1. To refineour analysiswithin
the tumor region, the tumor ROI for each of the pathology slides were
labeled and confirmed by pathologists using the ImageScope software
(Fig. 1a). All samples in TCGA have been collected and utilized fol-
lowing strict human subjects protection guidelines, informed consent
and IRB review of protocols. All participating sites obtained local IRB
approval for participation in this study.More information canbe found
at TCGA website (https://www.cancer.gov/ccg/research/genome-
sequencing/tcga). All the TCGA imaging data are available at NCI
Imaging Data Commons (https://datacommons.cancer.gov/
repository/imaging-data-commons). All participating sites obtained
local IRB approval for participation in this study. All samples in TCGA
have been collected and utilized following strict human subjects pro-
tection guidelines and informed protocols.

OPMD1 and OPMD2 datasets for malignant transformation
prediction. Patients with baseline OPMD were biopsied and mon-
itored at the Department of Head and Neck Surgery at The Uni-
versity of Texas MD Anderson Cancer Center (MDACC). The OPMD
pathology images, reviewed by expert pathologists and scanned at
40X magnification, were acquired in two distinct batches. These
batches are referred to as the OPMD1 and OPMD2 datasets,
respectively. The risk of malignant transformation was quantified
using the Cancer-free Survival (CFS) time, defined as the duration
from the diagnosis of OPMD to the diagnosis of oral cancer or the
last follow-up. Patients with concurrent cancers were excluded
from the OPMD datasets. For OPMD datasets, written informed
consent was obtained from patients included in the study. This
study was approved by the Institutional Review Board at MD
Anderson Cancer Center.

In this study, for OPMD, patients who do not develop oral cancer
within 60months are categorized as low-risk, while thosewhodevelop
oral cancer within 42 months are considered high-risk. Based on this
criterion, and in conjunction with the set exclusion criteria, we iden-
tified 17 patients who had a follow-up duration exceeding 60 months
without developing oral cancer (the shortest follow-up time among
these patients was 68.5 months). On the other hand, six patients who
developed oral cancer within a span of 42 months (with
CFS < 42 months and an event status of true) were classified as high-
risk and included in the OPMD1 training data. For validation, we used
the OPMD2 dataset, we used data from 53 patients in the Erlotinib
Prevention of Oral Cancer (EPOC) trial at MDACC. This group
encompasses patients with a range of CFS durations and varying
censoring/progression statuses. The most extended follow-up dura-
tion record ed was 126 months. Written informed consent was
obtained frompatients included in the study. This studywas approved
by the Institutional Review Board at MD Anderson Cancer Center.
Written informed consent was obtained from patients included in
the study.

LCMC1 and LCMC2 datasets for EGFR TKI Ttx response prediction.
The LCMC140 and the LCMC241 datasets aremulti-institutional datasets
established to study different oncogenic drivers and corresponding
target therapies. Patients who had stage IV or recurrent lung ADC,
Southwest Oncology Group performance status 0, 1, or 2, more than
6 months of expected survival, and tissue adequate for molecular
analyses were considered eligible for LCMC1 and LCMC2. Biopsy slides
and clinical information for patients who carried EGFR mutation were
collected for this study. 115 biopsy slides from 98 patients were col-
lected from the LCMC1 dataset and 137 biopsy slides from 126 patients
were collected from the LCMC2 dataset. Patient characteristics are
summarized in Supplementary Table 2. Fourteen clinical sites partici-
pated in the LCMC (Supplementary Table 3). All participating sites
obtained local IRB approval for participation in this study. Fourteen
clinical sites participated in the LCMC. All participating sites obtained
local IRB approval for participation in this study. Written informed
consent was obtained from patients included in the study.

Nuclei segmentation and classification using HD-Staining
Identification and classification of different cell types is a prerequisite
for constructing cell graphs. An automatic deep learning model, HD-
Staining, was trained to identify six different cell types in the lung
cancermicroenvironment: tumor cells, stromal cells, lymphocytes, red
blood cells, macrophages, and karyorrhexis42. The model was directly
applied to image patches within tumor ROIs of pathology images
(Fig. 1a) and produced information about each identified nucleus,
including centroid position, cell type, confidence of prediction,
nuclear orientation (defined as the angle between x-axis andmajor axis
of nucleus), and 10 well defined nuclear morphological features (area,
convex area, eccentricity, extent, filled area, major axis length, minor
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axis length, perimeter square divided by area, perimeter, and solidity).
The model is available online as a web-server at http://lce.biohpc.
swmed.edu/maskrcnn/. Since HD-Staining was trained on pathology
slides at 40X magnitude, pathology images at 20X magnitude were
resized to 40X using SR-GAN43. For 40X images, the spatial resolution
is 0.25microns per pixel (mpp).

In order to characterize the epithelial microenvironment for
OPMD patients, we further generalized HD-Staining to oral epithelial
tissues.The epithelialHD-Stainingwas trained to identify fourdifferent
cell types: stratum corneum, stratum basale, other stratums, and non-
epithelium. The same set of information as described before was
extracted for each identified nucleus. Board-certified clinical pathol-
ogists have reviewed and approved theHD-staining results for datasets
from all three examples used in this study.

Graph construction using k-Nearest neighbors
The spatial organization of all cells within an image patch naturally fits
in the graph concept. Thus, a directed graph was constructed for each
image patch using k-Nearest Neighbors based on Euclidean distance
with the direction pointing from a cell to its neighbors (Fig. 1a). K was
set to 8 to cover the adjacent neighbors of each nucleus. Each graph
consisted of two components: nodes (representing nuclei) and edges
(representing spatial interactions among nuclei). To further describe
cell types,morphological features, and cell-cell spatial interactions as a
graph, two feature matrixes were defined for nodes and edges,
respectively. The node feature matrix contained 11 features: con-
fidence of prediction and the 10 aforementioned morphological fea-
tures generated by HD-Staining. The node features were globally
centered and scaled before being fed into the Ceograph model. The
edge feature matrix contained three features: categorical edge type
based on cell types of starting node and ending node (yielding
6 * 6 = 36 edge types for 6 cell types in lung cancer microenvironment
and 4 * 4 = 16 edge types for 4 cell types in epithelial microenviron-
ment), nuclear parallelism defined as the absolute value of cosine of
angle between major axes of the starting node and the ending node (a
greater value indicates greater parallelism, Fig. 3d), and nuclear clo-
seness defined as the reciprocal of Euclidean edge length in pixels.

Lung ADC vs SCC classification using Ceograph
We hypothesized that instead of directly using images, which are high-
dimensional, a much simpler graph representation of cell spatial
organization and nuclei orientation would be informative enough to
distinguish the twomainhistological subtypes of lung cancer,ADCand
SCC. Thus, Ceograph, a GCN, was designed to utilize graph data
instead of aCNN,which is only able to analyze structureddata (Fig. 1b).
Ceograph was constructed with three cell spatial interaction-CSIGC
layers44 followed by a Subgroup Mean Pooling layer and a Softmax
layer. The Ceograph consisted of nodes (nuclei) and edges (repre-
senting their spatial interactions). For each node, 11 nuclear morpho-
logical features were utilized as input data: nuclear area, convex area,
eccentricity, extent, filled area, major axis length, minor axis length,
the ratio of perimeter squared to area, perimeter, solidity, and pre-
diction confidence. For each edge, three features were used: the
categorical edge type determined by the cell types of both the starting
and ending nodes resulting in a total of (n × n types for n cell types),
nuclear parallelism, andnuclear closeness. The computationalgorithm
of a CSIGC layer is illustrated in Fig. 1c and Table 1. The interaction-
conditioned graph convolution makes the convolution operation
conditioned on the spatial interactions (i.e., edge attributes). Through
the SubgroupMeanPooling layer, only features for tumornuclei nodes
were averaged to focus on contributions from tumor nuclei.

The classification Ceograph model was trained, validated, and
tested using the TCGA dataset, and independently tested in the NLST
dataset. To construct the training/validation/testing datasets, 100

1024 × 1024 pixels image patches were extracted from the ROI of each
pathology slide (Supplementary Fig. 2) and transformed into 100
graphs individually; onlygraphs containing at least 20 tumor cellswere
considered as informative enough to be classified as ADC/SCC and
kept in the datasets. The TCGA ADC dataset contains 40,971 graphs
(28,522 graphs from 328 slides were assigned to the training dataset,
3985 graphs from46slideswereassigned to the validationdataset, and
8464 graphs from 95 slides were assigned to the testing dataset); the
TCGA SCC dataset contains 33,998 graphs (23,667 graphs from
265 slides were assigned to the training dataset, 3353 graphs from
37 slideswere assigned to the validationdataset, and6978graphs from
77 slides were assigned to the testing dataset). Graphs from the same
slide were assigned to the same dataset to avoid data leakage. The
independent NLST testing dataset contains 24,204 graphs from 327
ADC slides and 12,196 graphs from 169 SCC slides.

To train the ADC vs. SCC classification Ceograph, cross-entropy
was used as loss function; Stochastic Gradient Descent (SGD) with
learning rate = 0.0001 and momentum=0.9 was used as optimizer.
Themodelwith highest classification accuracy in the validation dataset
was selected and applied to the testing datasets. Majority voting
among all graphs from labeled ROI was used to determine the histol-
ogy subtype of a slide. Both patch-level and slide-level accuracies and
receiver operating characteristic (ROC) curves were calculated to
evaluate the classification performance.

Ceograph for malignant transformation prediction
Given the limited sample availability for OPMD malignant transforma-
tion research, our modeling strategy relied on a select set of cases with
clear clinical phenotypes as the training dataset (OPMD 1 data) and a
larger, independent cohort (OPMD 2 data) mirroring real-world clinical
scenarios for validation. The training data utilized a binary outcome—
categorized as high-risk or low-risk. A Ceograph-based classification
model was developed to predict a new case as a high risk or low risk
case. The prediction performance was then validated in the indepen-
dent cohort by examining the association between predicted risk
groups and the observed time to cancer using K–Mcurves and log-rank
tests. CFS time and event status (progress to oral cancer or not) were
used to quantify risk of malignant transformation and defined as time
from diagnosis of OPMD to diagnosis of oral cancer, or last follow-up.

Patients at MDACC with OPMD were biopsied and monitored.
Within the OPMD1 dataset, 17 patients who did not develop cancer
over a span of 60 months were tagged as low-risk, while six patients
who exhibited cancer signs within 42 months were considered high-
risk. The OPMD2 dataset, derived from 53 patients involved in the
Erlotinib Prevention of Oral Cancer trial, was designated for validation,
comprising patients with diverse CFS durations (refer to the Dataset
Section). During each training epoch, a unique 2048 × 2048 pixel
image patch containing a minimum of 50 epithelial nuclei was ran-
domly chosen from each patient. Hence, image patches from the same
patient varied across epochs. For the testing set, 100 distinct
2048 × 2048 pixel image patches were randomly selected from each
OPMD2 dataset patient, ensuring each patch had at least 50 epithelial
nuclei. Image patches from both OPMD1 and OPMD2 were each
transformed into individual graphs.

To access the utility of Ceograph in predicting risk of malignant
transformation of OPMD patients, we adapted the pathology image
analysis pipeline proposed in Fig. 1a to oral epithelial tissues (Fig. 4a).
To increase the receptive field of Ceograph, we increased the number
of CSIGC layers to 4; to focus on epithelial cells, only features for
epithelial stratum nuclei nodes were averaged through the Subgroup
Mean Pooling layer (Supplementary Fig. 6).

To train themalignant transformation riskpredictionmodel, cross-
entropy was used as loss function; SGD with learning rate =0.0005 and
momentum=0.9 was used as optimizer. The model with highest
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classification accuracy in theOPMD1 setwas selected. Theprobability of
the graph predicted as high-risk group was used as the risk score of
malignant transformation. The graph-level risk scores were averaged
across all 100patches for each individual patient to be summarized into
patient-level risk scores. Patients were dichotomized into high- and low-
risk groups with the patient-level risk score cutoff = 0.5.

Ceograph for EGFR TKI Ttx response prediction
To assess the utility of Ceograph in predicting treatment response to
EGFR TKI Ttx in patients with lung ADC, a deep learning-based
pathology image analysis pipeline similar to Fig. 1a was used (Fig. 5a).
To adapt for patient-level treatment response, the pipeline was mod-
ified in the following ways: (1) the categorical outputs were defined as
non-benefitting and benefitting groups; (2) all connected graphs from
one pathology slide were included in a single disconnected graph; (3)
the subgroup mean pooling layer was replaced with a global mean
pooling layer to take all cell types within the tumormicroenvironment
into consideration (Supplementary Fig. 9).

The predictiveCeographmodelwas trainedon the LCMC1 dataset
and independently tested on the LCMC2 dataset. OS, defined as time
from diagnosis of metastatic disease to death or last follow-up, was
used as the outcome. Within the LCMC1 dataset, patients who died
within 31 months (OS ≤ 31 months and event = true) were categorized
as non-benefitting, while those who survived longer than 31 months
(OS > 31 months) were classified as benefitting (Supplementary
Table 2). The cutoff was selected based on the median OS time, which
is 31.2 months, to ensure that the non-benefitting and benefitting
groups are relatively balanced.

To train the response prediction Ceograph model, cross-entropy
was used as the loss function; AdaDelta45 with scaling factor = 2 was
used as the optimizer. The model with the highest classification
accuracy in the LCMC1 dataset was selected. The probability of
belonging to thebenefitting groupwasused as thebenefitting score. In
the testing dataset, the benefitting scores were averaged into patient-
level; then, the patients were dichotomized into benefitting and non-
benefitting groups according to the median benefitting score.

Ceograph interpretation
The workingmechanism can be interpreted in two aspects. First, since
graph level supervision works as cellular level weakly-supervision,
cellular level predictions can be computed to understand local con-
tribution to the global prediction:

xgraph,k =
1
N

XN

i = 1

xnucleus,i,k8k 2 1, 2, . . . ,K ð1Þ

Pgraph = Sof tmax xgraph
� �

ð2Þ

Pnucleus,i = Sof tmax xnucleus,i
� � ð3Þ

where K is the number of prediction categories, N is the number of
nuclei involved in the SubgroupMean Pooling Layer, and P represents
the predicted probability vector. Mapping and visualizing Pnucleus

spatially enabled understanding of how local cell spatial organization
patterns affect the whole graph determination (Fig. 2c, d).

Second, feature-wise contribution to the graph prediction can be
computed in a model agnostic way37:

Contributionf =
∂L
∂f

ð4Þ

L=Cross EntropyðPgraph,Presumptive category kÞ ð5Þ

where f represents either node (nucleus) or edge (cell-cell spatial
interaction) feature of an individual node or edge, and L is an objective
(loss) function. Hereby, partial derivative is used to conveniently cal-
culate how increasing f by a small amount affects the objective func-
tion. A positive partial derivative indicates that increasing f results in a
larger loss value; thus, feature f contributes negatively to the category
k in this case. In practice, the partial derivative for all features could be
calculated simultaneously, making this strategy a quick and efficient
way to assess the contribution of each derivable feature. Mapping the
node or edge level contributions back to the spatial locations enabled
understanding of how local cell organizations contribute to the graph
level prediction. A boxplot grouped by different nucleus or cell-cell
connection types and across an entire dataset allowed for further
comparison with pathological knowledge and identification of the key
nucleus or cell-cell connection types and features that could be
important biomarkers.

Survival analysis
Kaplan–Meier (KM) curves, log-rank tests, and Cox Proportional
Hazard (CoxPH) models were used to evaluate the survival difference
between two patient groups: between high- and low-risk groups to
evaluate the performance of Ceograph riskmodel in predicting risk of
malignant transformation, and between EGFRTKI Ttx treated and non-
treated patients in the benefitting group and non-benefitting group,
respectively, to evaluate performance of predictive Ceograph in pre-
dicting response of EGFR TKI Ttx. ROC curves were plotted and AUC
scores were calculated to evaluate the performance of the risk strati-
fication Ceographmodel in predicting 24- and 50-months cancer-free-
survival probability for patients with OPMD, respectively. Multivariate
CoxPH model was used to adjust for potential confounders, including
age, gender, smoking status, surgery, and stage at initial diagnosis. The
differences were considered significant when the two-tailed p-value
was less than 0.05. Python libraries “scikit-learn” (v0.20.3), “torch”
(v1.0.1.post2)46, “torch-geometric” (v1.0.3) were used for graph crea-
tion and Ceograph implementation; the R library “survival” (v2.41-3)
was used for survival analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Pathology images that support the findings of this studywere available
online in NLST (https://biometry.nci.nih.gov/cdas/nlst/) and The Can-
cer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD, https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageId=6881474).
The LCMC1 and LCMC2 datasets are sourced from the Lung Cancer
Mutation Consortium (LCMC). The LCMC1 and LCMC2 datasets are
controlled access. Controlled access to the LCMC datasets is imple-
mented to protect the privacy and confidentiality of research partici-
pants and to complywith ethical and legal standards governing the use
of human genomic data. Access is restricted to qualified researchers
who have been approved to access and use the data for legitimate
research purposes. Data requests should be directed to the Dr. Paul
Bunn (paul.bunn@ucdenver.edu) for Lung Cancer Mutation Con-
sortium. Typically, a response will be received within one month. The
OPMDdataset is subject to controlled access to ensure the responsible
and ethical use of this sensitive data. Access is restricted to qualified
researchers who have been approved to access and use the data for
legitimate research purposes. To request access to the OPMD dataset,
interested researchers should contact Dr. Vassiliki Papadimi-
trakopoulou (vali.papa@pfizer.com)with a formal request. Typically, a
response will be received within one month. Source data are provided
with this paper.
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Code availability
Scripts for Ceograph model is available at https://github.com/
sdw95927/Ceograph/.
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