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Virtual lesions in MEG reveal increasing
vulnerability of the language network from
early childhood through adolescence

Brady J. Williamson 1, Hansel M. Greiner2,3 & Darren S. Kadis 4,5

In childhood, languageoutcomes followingbrain injury are inversely related to
age. Neuroimaging findings suggest that extensive representation and/or
topological redundancy may confer the pediatric advantage. Here, we assess
whole brain and language network resilience using in silico attacks, for 85
children participating in a magnetoencephalography (MEG) study. Nodes are
targeted based on eigenvector centrality, betweenness centrality, or at ran-
dom. The size of each connected component is assessed after iterated node
removal; the percolation point, or moment of dis-integration, is defined as the
first instance where the second largest component peaks in size. To overcome
known effects of fixed thresholding on subsequent graph and resilience ana-
lyses, we study percolation across all possible network densities, within a
Functional Data Analysis (FDA) framework. We observe age-related increases
in vulnerability for random and betweenness centrality-based attacks for
whole-brain and stories networks (adjusted-p < 0.05). Here we show that
changes in topology underlie increasing language network vulnerability in
development.

In childhood, functional outcomes following brain injury often have an
inverse relationship with age, a phenomenon frequently referred to as
the Kennard Principle (see, however1). In the domain of langauge, the
“pediatric advantage” is indeed well-established2–4. Neuroimaging has
shown that language is supported by a bilateral and diffuse network in
early childhood, which becomes increasingly left lateralized and focal
through adolescence5–9. The neuroimaging data suggest that either
extensive representation and/or topological redundancies confer the
advantage7.

Redundancy is a ubiquitous trait in neural circuits and allows for
flexible adaptations both in health and disease10. Redundancies may
provide network robustness to neurological and experiential pertur-
bations, especially early in development11. Brain network analysis
provides a framework in which to investigate topological redundancy.
Networks can be represented as graphs based on structural and/or
functional connections12. In silico attacks, involving targeted and

iterated removal of regions within networks can be used to simulate
lesion impact, and to assay robustness of the network. Robustness
metrics traditionally relate the size of the largest connected compo-
nent within a network to all nodes/regions available13. The point at
which the “lesioning”, or removal of regions leads to disintegration, or
fracture, of the largest connected component so that its size is 0, is
defined as the percolation point. However, there are both theoretical
and technical limitations of using this definition of percolation point in
finite systems, such as brain networks. Specifically, in finite systems,
the size of the largest connected component only reaches 0 when all
nodes are removed, meaning that there is no general/useful criterion
for determining the percolation point from the size of the largest
connected component14. An alternative that avoids this limitation and
captures the redundancy of neural circuits is using the second largest
connected component of the network that may subsume some of the
workload if there is damage to the system14.
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Two primary strategies can be used when assessing the effects of
in silico attacks on a brain network: random and targeted. For targeted
attacks, there are several possible metrics that can be used to rank
nodes in order of removal. The two strategies used in this work are
ranking nodes based on eigenvector centrality (EC) and betweenness
centrality (BC), metrics that assess the importance of a node for net-
work functioning15. EC captures the relative popularity of a node, and
can be thought of as an extension of degree, which is simply the
number of connections a node possesses. Eigencentrality (and related
metrics, such as PageRank), consider both the number of connections
a node has, as well as the number of connections its topological
neighbours possess12. The advantage of eigenvector centrality over
other higher-order metrics of importance based on popularity, is that
the metric is derived directly from the eigenvalue of the adjacency
matrix, requiring no tuning (cf PageRank, which requires setting
‘damping factors’ dependent on various assumptions). BC reflects the
critical positioning of a node within a network. Nodes with high
betweenness centrality serve as bridges, allowing for informational
flow to/from other nodes.

When performing brain network analyses, a ubiquitous problem
with no clear-cut solution is that of optimal thresholding. Certain
topological parameters of brain connectivity are connection-density
dependent, making selection of an optimal density nontrivial16. Typi-
cally, a constant threshold based on ametric of connection strength is
applied to brain graphs to reduce computational complexity and to
eliminate the weakest connections17. Additionally, researchers have
attempted to apply data-driven strategies, such as those based on
Minimum Spanning Trees (MSTs) or percolation analysis16,18. However,
these strategies still necessitate selection of an initial density for each
participant to calculate metrics that will be analyzed with group sta-
tistics. An alternative would be to fit a statistical model at several
common densities, independently, but this approach leads to the
problem ofmultiple comparisons, that if not corrected for, leads to an
inflated Type I error rate; if corrected for, investigtors may face
reduced power (increased Type II error).

One possible framework for overcoming this limitation is func-
tional data analysis (FDA)19. As opposed to models that accommodate
single scalars as independent predictors of a response variable, FDA

allows for themodeling of functions as independent and/or dependent
variables. Applied to the current aims, network metrics can be mod-
eled across a broad range of initial densities to generate a function for
each study participant. The functions are then used in multivariate
statistical models. The technique overcomes the arbitrary selection of
initial graph density for subsequent attack analyses (i.e., node-based
attacks on network in silico), as well as multiple comparison problems
inherent in mass univariate approaches.

The current study sought to determine differences in percolation
point during typical development in a large cohort of children, 4 to less
than 19 years of age, using an FDA framework in which initial network
density is parameterized. We hypothesized that there would be an
inverse relationship between percolation point and age, indicating
greater robustness in the functional brain networks of young children,
consistent with literature on the pediatric advantage. Two important
contributions of thiswork include: utilization ofpercolation analysis to
assess brain network resilience in development, and implementation
of an analysis framework that circumvents the need to preselect net-
work thresholdings.

Results
Whole-brain results
Analyses revealed overall model significance for random attacks
(F = 5.99, p < 0.0001, R2 = 0.947, functional R2 = 1.3%). There was a sig-
nificant effect of age while controlling for sex, handedness, and mean
node distance on percolation point determined by random attacks at
densities below 15% (F = 31.44, p <0.0001). Bootstrapped betas for age
show a negative relationship (Fig. 1), where percolation point decrea-
ses with age, indicating younger children’s networks are more robust
to failure. There was no significant effect of sex or handedness while
controlling for age and mean node distance in this model. Results for
random attacks for the whole-brain parcellation are summarized in
Fig. 1, Supplementary Table 1, and Supplementary Fig. 3.

We observed a significant model for the BC-based attack strategy
(F = 6.82, p <0.0001, R2 = 0.934, functional R2 = 8.20%). There was a
significant effect of age (F = 126.38, p <0.0001). Across all densities,
bootstrapped betas showed a negative relationship between age and
percolation point (Fig. 2). There was no significant effect of sex or

Fig. 1 | Results for the Randomattack strategyon thewhole-brain parcellation.
Data are presented as the beta estimate across densities +/− 95%CIs (shaded). After
testing for significance of the overall model (see, Supplementary Table 1), analyses
showed Age (negative) as the only significant regressor at all densities below 15%

(F = 31.44, p <0.0001). Sex and Handedness did not meet the p-value threshold
(0.01) and 95% CIs contained 0 throughout the whole density range (Supplemen-
tary Fig. 3, panels c and d). Source data are provided as a Source Data file.
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handedness while controlling for age and mean node distance in this
model. Results for BC-based attacks for the whole-brain parcellation
are summarized in Fig. 2, Supplementary Table 1, and Supplementary
Fig. 4. There were no significant effects of age, sex, or handedness on
percolation point at any densities for EC based attacks (Supplemen-
tary Fig. 5).

To visualize the effects seen in the FDA results, we plotted regions
that were removed before network failure at 5% density, colored
according to frequency of removal across all participants. This density
was chosen as it was included in all analyses in which there was a
significant effect of age and provided enough sparsity for reasonable
interpretation of results. At higher densities, the node removal maps
became oversaturated, and at lower densities, there was not enough
variation among regions, making results difficult to interpret. To
compare across ages, we performed this visualization for the 1st age
quartile and 4th age quartile separately. Visualization of these “group-
level” hubs based for BC-based attacks showed a pattern in which
younger participants had more regions that were removed con-
sistently across subjects, i.e., goup-level hubs, at the point of network
failure (brighter regions in panel a of Fig. 3, panel a) compared to older
participants (Fig. 3, panel b). The younger participants had more dis-
tributed posterior (occipital/parietal) critical hubs, which may reflect
relative reliance on visualization strategies for the language tasks;
however, this has not been tested, experimentally. The distribution of
critical hubs becomes more focal in the older group as evidenced by
greater heterogeneity among neighboring regions. To show con-
sistency across different densities, plots at 2.5% (Supplementary Fig. 9,
left panel) and 7.5% densities were also generated (Supplementary
Fig. 10, left panel).

Stories Network Results
Analyses showed a significant overall model effect for random attacks
within the stories network (F = 13.39, p < 0.0001, R2 = 0.965, functional
R2 = 2.7%). Modeling revealed a significant effect of age (F = 44.51,
p <0.0001). Bootstrapped betas showed a negative effect of age from
1-15% density (Fig. 4). Results for random attacks on the stories net-
work parcellation are summarized in Fig. 4, Supplementary Table 1,
and Supplementary Fig. 6.

There was also a significant overall model effect for the BC-based
attack strategy (F = 6.75, p <0.0001, R2 = 0.915, functional R2 = 5.7%).
The model again showed a significant effect of age (F = 86.25,
p <0.0001). Bootstrapped betas showed a negative effect of age
across all densities (Fig. 5). Results for BC-based attacks on the stories
network parcellation are summarized in Fig. 5, Supplementary Table 1,
and Supplementary Fig. 7. Therewere no significant effects of age, sex,
or handedness on percolation point at any densities for EC based
attacks (Supplementary Fig. 8).

Using the same visualization technique as in the whole-brain
results, we found that the younger children again had more regions
that were removed consistently, i.e., goup-level hubs, across subjects
(brightest regions of Fig. 6, panel a). Older participants had fewer of
these regions, (Fig. 6, panel b). Similar to the whole-brain results, plots
at 2.5% (Supplementary Fig. 9, right panel) and 7.5% (Supplementary
Fig. 10, right panel) densities showed broad consistencywith themaps
at 5% density.

Discussion
The current study sought to investigate the effects of age on brain
network robustness by utilizing a density-independent framework to
avoid problems inherent with network thresholding. Our results sug-
gest increased network vulnerability from childhood through adoles-
cence, which supports prior literature on the pediatric advantage2–4.

An interesting aspect of the current study is that the effect of age
on network vulnerability was observed for random and BC-based
attacks, but not EC-based attacks. Themost robust effectwas seenwith
betweenness centrality, a measure of nodal importance based on the
amount of influence the node has on the information flow through the
network. ThoughEC-based attackswere themost effective for network
dismantling, with an earlier percolation point than BC-based attacks
(Supplementary Figs. 1 and 2), our results suggest EC-based attacks are
equally effective across childhood. Thedistinctionbetweennodeswith
high BC versus those with high EC is largely consistent with the notion
of connector versus provincial hubs20, though the delineation may be
more appropriately characterized as domain-specific and domain-
general connector hubs. In functional brain networks, domain-general
regions facilitate long-range connections between domain-specific

Fig. 2 | Results for betweenness centrality-based attacks on the whole-brain
parcellation. Data are presented as the beta estimate across densities +/− 95% CIs
(shaded). After testing for significance of the overall model (see, Supplementary
Table 1), analyses showed Age (negative) as the only significant regressor at all

densities (F = 126.38, p <0.0001). Sex and Handedness did not meet the p-value
threshold (0.01) and 95% CIs contained 0 throughout the whole density range
(Supplementary Fig. 4, panels c and d). Source data are provided as a Source
Data file.
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clusters (also called “convergence zones”21). Since the local hubs of
these domain-specific clusters must go through domain-general
regions, their eigenvector centrality is high (i.e., domain-general
hubs are connected to many domain-specific hubs). Regions within
the language network with high betweenness centrality are most likely
involved in domain-specific functioning, as function-specific informa-
tion is passed through these regions from local functional clusters to
the primary coordinating areas (i.e., provincial/domain-general hubs).
Further, researchers have found a key aspect of brainmaturation is the
pruning of short range connections and an increase of long-range
connections that facilitate efficient information transfer between dis-
tant regions, leading to an overall increase in characteristic path
length22.

This, togetherwith our current findings and previous literature on
the pediatric advantage, suggests the increase of efficiency resulting
from the tradeoff between short- and long-range connections during
development comes with increased network vulnerability. Since BC-
based attacks were more effective for network dismantling in older
participants and EC-based attacks were equally effective for all ages, it
seems domain-specific hubs become increasingly important while
domain-general connector hubs remain stable across development,

consistent with the increase in long-range “expensive”, and seemingly
more vulnerable, connections. Our results within the language net-
work, specifically regarding participants in the 4th age quartile, are
consistent with our previous work on connector hubs in the language
network, defined by regions most involved in interfrequency com-
munication between regions23,24.

The current findings have both clinical and theoretical implica-
tions. Clinically, arguments have been recently made that we should
reconsider traditional approaches to surgical resection (i.e., functional
localization) in favor of a network-based approach25. Twoof theprimary
features that can be used in this framework to guide surgical decision
making are: (1) whether there is tissue available that can subsume
functional load after resection (i.e., the plastic potential) and (2) what
are the downstream effects on the network of removing a particular
piece of cortex (i.e., potential for dismantling). This is especially rele-
vant in children as the language network is still bilateral and distributed,
becoming increasingly left-lateralized and focal with age7,9. It is crucial
to understand the specific role each piece of cortex is playing in the
larger network at a particular stage of development and the capacity of
other cortical areas to compensate for injury to that node before per-
forming resection to properly assess the risks of surgery.

Fig. 3 | Distribution of nodes removed prior to failure in whole-brain attacks.
Distribution of nodes removed in thewhole-brain for betweenness centrality-based
attacks for the 1st (panel a) and 4th (panel b) quartiles of age. Regions are colored by
the percentage of participants for which the node was removed prior to network
failure (dark to light). These results were displayed for 5% density across partici-
pants. Results show more consistently removed regions, i.e., group level hubs, in

the younger quartile (brighter regions in panel a) compared to older participants
(panel b). Also, distribution of critical hubs becomes much more focal in the older
group as evidenced by greater heterogeneity among neighboring regions. To show
consistency across densities, results are also plotted at 2.5% (Supplementary Fig. 9,
left panel) and 7.5% (Supplementary Fig. 10, left panel) density.
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Theoretically, our findings support the notion that there exists
both domain-specific and domain-general hubs that should be con-
sidered differently when assessing potential for residual tissue to sup-
port function24. The hubs that, when removed, led to dismantling of the
network most often in our youngest quartile were bilateral and con-
sistent across participants, especially compared to adjacent tissue
(Fig. 6, panel a, brightest regions). There is a clear shift in the oldest
quartile in which these regions are not as consistent, butmore adjacent
regions have comparable importance (Fig. 6, panel b). Our results for
these domain-specific hubs are consistent with previous findings that
language can reorganize both inter- and intra-hemispherically and is

more likely to reorganize intrahemispherically with age26,27. If we
maintain the hypothesis that greater importance, determined by the
current methods, suggests capacity to subsume functional load, then
these results lead to the conclusion that there aremore bilateral critical
sites in young children that can compensate if there is injury. In con-
trast, the “spread” of importance from strong hubs to adjacent regions
in the older participants is consistent with intra-hemispheric
compensation26 and inconsistency of recovery, since the remaining
hubsno longerhave thecapacity to subsume the functional load. Future
studies will aim to use these insights to design analytic pipelines for
mapping critical hubs for specific functions at the single subject level.

Fig. 4 | Results for randomattacks on the stories network parcellation.Data are
presented as the beta estimate across densities +/− 95% CIs (shaded). After testing
for significance of the overallmodel (see, Supplementary Table 1), analyses showed
Age (negative) as the only significant regressor at densities between 1 and 15%

(F = 44.51, p <0.0001). Sex and Handedness did not meet the p-value threshold
(0.01) and 95% CIs contained 0 throughout the whole density range (Supplemen-
tary Fig. 6, panels c and d). Source data are provided as a Source Data file.

Fig. 5 | Results for betweenness centrality-basedattacks on the stories network
parcellation. Data are presented as the beta estimate across densities +/− 95% CIs
(shaded). After testing for significance of the overall model (see, Supplementary
Table 1), analyses showed Age (negative) as the only significant regressor at all

densities (F = 86.25, p <0.0001). Sex and Handedness 95% CIs contained 0
throughout the whole density range (Supplementary Fig. 7, panels c and d). Source
data are provided as a Source Data file.
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Methods
Participants
Eighty-five typically-developing children and adolescents, ages 4 to
less than 19 years, were recruited for MEG language studies at Cin-
cinnati Children’s Hospital Medical Center (CCHMC) between 2014
and 2020. A total of 82 participants (45 female), ages 4 years 0months
to 18 years 7 months, provided high-quality MEG and MRI data that
contributed to the current analyses (Table 1). All participants were
native English speakers, free from history of neurological or hearing
impairment, speech- or languagedeficits, and learningdisability, asper
family report. Informed written consent from a parent or legal guar-
dian was obtained for all participants less than 18 years of age; parti-
cipants between the ages of 10 and 18 years also provided assent.
Participants older than 18 years provided informed written consent.
The study was approved by the Institutional Review Board at CCHMC
(data collection site), and the Research Ethics Board at the Hospital for
Sick Children in Toronto.

Data acquisition
MEGstories listening. Datawereacquiredona275-channelwhole-head
MEG system (CTFMEG Neuro Innovations, Inc., Coquitlam, BC, Canada;

Acq 5.4.2 software), at 1200Hz. All participants were studied in the
supine position, with memory foam pads and/or linens cushioning the
head to promote comfort and stability. Head position was monitored
continuously via localization coils placed over nasion and preauricular
locations. The stories listening paradigmhas beenused extensively (e.g.,
MEG28 fMRI29), and is described only briefly, here. Participants listened
to child-friendly stories, read aloud by a female-speaker in sentences
2-3 seconds in duration (stories trials). Alternately, children listed
to speech-shaped noise, matched for spectral content and amplitude
envelope, of identical duration (noise trails). A total of 48 stories, and 48
noise trials, were presented. Stimuli were delivered binaurally via a
calibrated audio system, comprisedofdistal transducers,flexible tubing,
and disposable foam insert earphones (Etymotic Research, Inc., IL, USA).

Structural MRI. In all cases, MRI was acquired after MEG. Radiopaque
markerswere placed over theMEG fiducial positions prior to scanning,
permitting precise coregistration across modalities. 3D T1-weighted
images (1.0 × 1.0 × 1.0mm voxels, MDEFT sequence) were acquired at
3.0 T for all participants, on either a Philips Achieva or Philips Ingenia
Elition scanner (Philips Medical Systems, International; Philips MR
release 5.1/5.6).

Fig. 6 | Distribution of nodes removed prior to failure in stories network
attacks. Distribution of nodes removed in the stories network for betweenness
centrality-based attacks for the 1st (a) and 4th (b) quartiles of age. Regions are
colored by the percentage of participants for which the nodewas removed prior to
network failure (dark to light). These results were displayed for 5% density across

participants. Like whole-brain analyses, we found that the younger children had
more regions thatwere removed consistently, i.e., group-level hubs, across subjects
(panel a). To show consistency across densities, results are also plotted at 2.5%
(Supplementary Fig. 9, panels c and d) and 7.5% (Supplementary Fig. 10, panels c
and d) density.
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Defining Whole Brain and Language Networks
Node positions were specified as the centroids of a ~ 200-unit random
parcellation scheme30; the parcellation yields 194 nodes for the
whole brain network. The language network was defined through
an automated neuroimaging meta-analytic tool, NeuroSynth
(neurosynth.org31), with the search term “language” (May 1, 2022
query). The resulting map, based on 1101 studies, represents fMRI
activation across a broad spectrum of research related to language,
including developmental studies. NeuroSynth can output maps based
on an association test (activations that are specifically related to the
search term), or a uniformity test (activations that co-occur with the
search term). We preferred the uniformity map (FDRq =0.01), which
was relatively extensive, and included bilateral perisylvian regions
known to support language in early childhood. The languagemap was
binarized, then assessed for overlap with the parcellation image; par-
cels with at least 10% activation occupancy (89/194 parcels; 52 in the
left hemisphere) were included in the language network (Fig. 7).

MEG Preprocessing and Source Localization
Preprocessing and source localization were carried out using
FieldTrip32 routines running inMATLAB (v 9.10.0; TheMathworks,MA,
USA). Continuous recordings were initially bandpass filtered from 0.1
to 100Hz, and power line noise (60Hz) was suppressed via a narrow
notch filter. Filtered continuous data were then subjected to inde-
pendent component analysis (ICA), and the spatio-temporal char-
acteristics of the first 20 components, ordered by variance, were
visually assessed; stereotypical ocular and cardiac artifact components
(0-9 components per subject, mean = 3.82) were identified and

rejected, prior to projection back to sensor space. The data were then
epoched 0-2000ms relative to the onset of each sentence (stories
trials) or speech-shaped noise (noise trials).

Realistic single-shell sourcemodels were constructed from seg-
mented 3D T1 weighted images33. Network node positions were non-
linearly warped from template to individual subject space using SPM12
(https://www.fil.ion.ucl.ac.uk/spm/) routines. Stories and noise trials
were concatenated for covariance estimation, and construction of a
common spatial filter; activity at each location estimated via a linearly
conststrained minimum variance beamformer34, with 0.1% regulariza-
tion. Source activity for stories listening trials, only, were used in
functional connectivity and subsequent attack analsyes.

Functional Connectivity
Recently, we have shown that connectivity patterns differ across fre-
quencies, in children completing language tasks in MEG (Kadis et al.,
2016; Sharma et al., 2022); likewise, we have seen spectrally-focused
connectivity differences in several patient populations completing
language tasks in EEG and MEG (e.g., Barnes-Davis et al., 2018, 2021a,
2021b; Farah et al., 2019). To retain sensitivity to spectrally-focused
effects, we assess connectivity in narrow frequency bins, rather than
within canonical bands or broadband. Trial-wise Fourier representa-
tions were obtained for 0.5-100Hz signal in 0.5Hz steps with ±2Hz
smoothing via discrete prolate Slepian sequencemultitapers. Pair-wise
functional connectivity was assessed using weighted phase lag index
(wPLI35) for each frequency bin, and aggregated in the L2 norm
(Euclidian distance) to estimate total coupling across the spectra.
Adjacency matrices were established for whole brain and language

Fig. 7 | Distribution of language network nodes. Nodes were derived from
NeuroSynth byusing auniformity test (FDRq <0.01) on all resulting activationmaps
with the search term “language”. Panel a represents the volumetric regions

contained in the parcellation. Panel b is a 3D-rendered representation showing the
centroid of each node.

Table 1 | Age, Sex, and Handedness of all participants, by age quartile

First (n = 21) Second (n = 20) Third (n = 20) Fourth (n = 21) Overall (n = 82)

Age

Mean (SD) 5.46 (0.69) 8.41 (1.77) 13.1 (1.07) 17.0 (0.80) 11.0 (4.61)

Median [min, max] 5.67 [4.0, 6.4] 7.00 [6.59, 11.0] 13.0 [12.0, 15.0] 17.0 [16.0, 18.7] 11.5 [4.0, 18.7]

Sex

Male 6 (28.6%) 11 (55.0%) 11 (55.0%) 9 (42.9%) 37 (45.1%)

Female 15 (71.4%) 9 (45.0%) 9 (45.0%) 12 (57.1%) 45 (54.9%)

Handedness

Left 1 (4.8%) 1 (5.0%) 1 (5.0%) 0 (0%) 3 (3.7%)

No Preference 3 (14.3%) 3 (15.0%) 1 (5.0%) 0 (0%) 7 (8.5%)

Right 17 (81.0%) 16 (80.0%) 18 (90.0%) 21 (100%) 72 (87.8%)
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networks. To control for potential differences related to field spread
effects on small (young) versus larger (adolescent) brains36, mean
Euclidean distance was calculated for all node pairs, and included as a
covariate in statistical models.

Attack Analyses
Whole brain and language network attack analyses were carried out
separately. Networks were proportionally thresholded, with densities
ranging from 100% to 0.25%, in 0.25% steps. At each density, we
removed nodes at random, or removednodes based on their centrality
(eigenvector, betweenness) values in sequential order from those
nodes with highest centrality to those with the lowest. The Brain
Connectivity Toolbox (BCT) was used to compute all graph
metrics12.With each node removal, we compute the size of the largest
and second largest connected components. The percolation point was
defined as the fraction of nodes removed for which the size of the
second largest connected component peaked in size14. The attacks
were iterated 100 times, to establish robust percolation point esti-
mates (essential for the random approach; to account for possible ties
in the targeted attacks, we randomly select among the set of nodes
sharing maximal centrality). Mean percolation point for each density
was recorded.

Functional data analysis - preprocessing
To prepare the data for multivariate modeling, data were pre-
processed to identify and remove outliers. First, participants that had
a “spike” of percolation point at the lowest density (0.25%), likely due
to instability in the percolation point calculation when there are so
few nodes, were removed by extracting the last value of the function
for all participants, calculating the z-scores for these values, and
removing any participant for which this last value had a z-score > 2.
Next, percolation point by density functions were calculated using a
4th order b-spline with 402 (number_of_densities+order-2) basis
functions. First, these initial functions were trimmed based on the
first derivative of the mean group function to reduce computational
requirements. Since we were interested in the point (i.e., number of
nodes removed) at which group differences were most apparent,
we focused on the precipitous decline in the generated functions
where percolation point varied from a static range of values. To
calculate this point, we identified the initial network density at which
the standard deviation of the first derivative (i.e., velocity) of the
function became negative.

Each individual function was then smoothed by term λ, that
optimally penalizes the roughness of the second derivative, deter-
mined empirically by testing an exponential range of options (e−5–12)
then finding the value that minimizes generalized cross validation
(GCV)19,23. The sum of square residuals was calculated for each
smoothed function and used to determine outliers. In this case, out-
liers represented poor fits to the smoothed function on an indivi-
dual basis.

Functional data analysis—modeling
Function-on-scalar (FoSR) regression19,37, specifically the penalized
flexible functional regression approach (PFFR38,39,), was performed to
determine the effects of age, sex, andhandedness onpercolation point
by density. Mean Euclidean node distance (See Methods–Functional
Connectivity) was included as a nuisance regressor in all models. Pre-
vious work suggests “raw”, or unsmoothed, functions should be used
in modeling because pre-smoothing the data eliminates potentially
important variability and measurement error in the functional
responses38. Following this recommendation, we used the
unsmoothed functions as the dependent variable (DV) in our model
and let the correct smoothing parameters be chosen during the
regression. Because the functions are still smoothed/penalized during
the regression, the smoothing and related outlier detection during

preprocessing is still important to remove ill-fitting functions prior to
modeling.

Beta estimates for each independent variable (IV) were allowed to
vary across densities and smoothed with the same parameters as the
DV. All variables in the model were smoothed using 5 cubic b-splines
with a first order difference penalty (i.e., P-splines39). Model assump-
tions were checked using Q-Q, Residual vs Regressor, and Response vs
Fittedplots, aswell as assessing thedistributionof themodel residuals.
K-basis dimension checking was performed to ensure the number of
splines used for modeling was adequate40.

Functional data analysis—hypothesis testing
Because FoSR techniques treat each observation as independent, sig-
nificance is commonly overestimated, i.e., p is usually <0.0001. While
permutation based approaches circumvent this issue for the overall
model, they fail to provide estimates of significance of each regressor
(i.e., partial effects). One of the recommendedmethods for obtaining a
reasonable F-statistic and related p-value from a functional model is
the Likelihood Ratio (LR) test, in which the mean squared error is
compared between the original model and a modified model,
where the beta estimates are kept constant across the functional
domain39. This method was employed to test for significance of the
overall model.

In addition to reporting the adjusted R2 for the model, we also
report the functional R2, which is an adjusted estimate of the variance
explained beyond the intercept by comparing the R2 of a model only
containing the intercept to a larger model41. Functional R2 was calcu-
lated for the fullmodel and for each IV (i.e., intercept only compared to
intercept plus one regressor). Semi-partial correlations were also cal-
culated using the square root of the difference in R2 between the full
model and a model without the each regressor individually. The last
step in the FDA was estimating confidence intervals (CIs) for the beta
estimates in the PFFR model. Pointwise 95% CIs were calculated using
bootstrap resampling of points along the functional response with
1000 iterations. This technique corrects for cases in which the resi-
dulas along the functional domain (i.e., density range in this case) are
dependent or heteroskedastic.

To summarize our statistical approach, an IV was determined to
have a significant associationwith percolation point for a given density
range if: (1) the overall model was significant based on the LR test, (2)
the IV was significant in the overall model, and (3) the 95% CIs did not
contain 0. This analysis was repeated for all three attack strategies
(eigenvector centrality, betweenness centrality, random) both at the
whole brain level and within the predetermined language network.
Given the high degrees of freedom for modeling, a conservative p-
value of 0.001 was used for both overall model significance and
assessing partial effects of each regressor.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The percolation point by density data (.mat files) generated in this
study, along with minimal linked demographic data, have been
deposited in the github repository (https://github.com/willi3by/MEG_
FDA). The raw imaging data contain potentially identifiable informa-
tion, and cannot be shared. Source data are provided with this paper.

Code availability
Our code has been deposited in a github repository with relevant
instructions for reproducing our findings (https://github.com/
willi3by/MEG_FDA). The code may need minor modifications (e.g.,
changing paths to data), but has otherwise been tested and should be
immediately ready for use.
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