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A CRISPR-drug perturbational map for
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commonly used chemotherapeutics
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Combination chemotherapy is crucial for successfully treating cancer. How-
ever, the enormous number of possible drug combinationsmeans discovering
safe and effective combinations remains a significant challenge. To improve
this process, we conduct large-scale targeted CRISPR knockout screens in
drug-treated cells, creating a genetic map of druggable genes that sensitize
cells to commonly used chemotherapeutics. We prioritize neuroblastoma, the
most common extracranial pediatric solid tumor, where ~50% of high-risk
patients do not survive. Our screen examines all druggable gene knockouts in
18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs,
resulting in 94,320 unique combination-cell line perturbations, which is
comparable to the largest existing drug combination screens. Using dense
drug-drug rescreening, we find that the top CRISPR-nominated drug combi-
nations are more synergistic than standard-of-care combinations, suggesting
existing combinations could be improved. As proof of principle, we discover
that inhibition of PRKDC, a component of the non-homologous end-joining
pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug
doxorubicin in vitro and in vivo using patient-derived xenograft (PDX)models.
Our findings provide a valuable resource and demonstrate the feasibility of
using targeted CRISPR knockout to discover combinations with common
chemotherapeutics, a methodology with application across all cancers.

Almost all curative cancer treatments result from combinations of
multiple chemotherapeutic agents. However, existing drug combina-
tions are often insufficient to provide a cure and cause severe side
effects. The development of improved combinations faces several
challenges. Firstly, the drug combinatorial search space is astronom-
ical, with, for example, all possible 2 drug combinations of only 600
drugs yielding 179,700 combinations (given by 6002/2 − 600/2). All
possible 3 drug combinations of 600 drugs yields approximately 100

millionunique combinations, far beyondwhat couldbe screenedusing
conventional approaches, without even considering variable com-
pound dosage and timing. This suggests that improved high-
throughput strategies are needed to capture this search space. Sec-
ondly, navigating drug approval for two investigational drugs simul-
taneously presents additional regulatory barriers and safety
considerations over single-agent approval, which is already a difficult
process1,2. This suggests that the development of combinations with
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compounds already in clinical use should be prioritized as this will
present the fewest hurdles to achieving rapid clinical impact. Combi-
nations with standard-of-care drugs could also improve patient out-
comes bymitigating toxicities if drug synergies mean that similar anti-
tumor activity could be maintained at a lower exposure to broadly
cytotoxic chemotherapeutics3,4.

Pediatric neuroblastoma represents a particularly pressing clinical
need. Neuroblastoma is the most common extracranial pediatric solid
tumor5, and despite intense study, survival in high-risk patients has
remained close to 50%6. In recent years, numerous clinical trials have
been conducted testing single-agent targeted chemotherapeutics.
Most of these clinical trials (generally conducted in the difficult-to-
treat relapse setting) havenot been successful6, typicallydue to limited
tumor response. This has been true even when preclinical and
mechanistic evidence has been very convincing; for example, for ALK
inhibitors in ALK gain-of-function neuroblastoma7, or IGF1R inhibitors
in IGF1R overexpressing tumors8,9. These examples are among the few
recurrentlymutated druggable oncogenes in this disease, which occur
in only a fraction of patients. Thus, the results of these trials suggest
that combinations of drugs eliciting synergistic effects need to be
considered, particularly in the recalcitrant and relapsed settings, if
there is to be any chance of making clinical progress in this hyper-
aggressive disease. This approach has demonstrated promise in other
highly aggressive pediatric cancers, with for example the synergistic
combination of PARP inhibitors with DNA-damaging agents in Ewing
sarcoma achieving complete responses in some relapsed patients10.
Despite this, large-scale drug combination screening studies in
pediatric cancers have never been reported.

Here, we have exploited recent observations that CRISPR knock-
out ofmanydruggable genesmimicspharmacological inhibitionof the
protein encoded by that gene11. Considering this, we design a CRISPR
knockout library targeting 655 known druggable genes, including 55
pan-essential positive control genes and 400 non-targeting gRNAs as
negative control. We screen this library to identify druggable gene
knockouts that sensitize cell lines to commonly used cancer drugs,
providing a large increase in throughput over conventional drug-drug
combination screening approaches. Leveraging the resulting dataset,
we propose therapeutics to combine with doxorubicin, topotecan,
cisplatin, and the experimental proteolysis-targeted chimaera (PRO-
TAC) agent JQAD1, which we show are effective using in vitro and (for
doxorubicin) in vivo experiments. Overall, this resource provides a
map for the discovery of chemotherapeutic combinations and
demonstrates clinical potential in a disease of high clinical need.

Results
Design of CRISPR-drug perturbational screen and selection of
cell lines
We first designed a targeted CRISPR gene knockout library (Supple-
mentary Data Table 1) against 655 druggable genes, targeting each
gene with 6 unique gRNAs (see Methods). Our list of druggable genes
was based on Behan et al.12 (Supplementary Data Table 1). Using Dep-
Mapdata13 as a reference,we removedgeneswith anexpressionof <0.1
log2(TPM+ 1) across the 10neuroblastomacell lines used inour screen.

We then set out to screen this gRNA library against a panel of 18
cell lines treated separately with each of 8 different drugs, or vehicle-
treated control. The resulting relative abundance of gRNAs targeting
each of these 655 genes in the drug-treated vs vehicle-treated cells
provides a readout of whether target gene knockout sensitizes a cell
line to a drug (Fig. 1a; Supplementary Data Fig. 1a; see Methods for
details). This indicates that pharmacological inhibition of this gene
product could also present a viable combination with the anchor
drug14,15. In total, this experimental design yielded 18 cell lines × 8 drugs
× 655 gene knockouts = 94,320 total unique combination-cell line
pairs. The specific 8drugswere doxorubicin, cisplatin, phosphoramide
mustard (PM, the active metabolite of cyclophosphamide), etoposide,

topotecan, vincristine, and all-trans retinoic acid (standard-of-care
neuroblastoma drugs that are all also used broadly to treat many
cancers), and the PROTAC JQAD116, which is an EP300 degrader in
preclinical development. We screened our gRNA library in 18
Cas9 stably expressing cell lines, 10 of which were neuroblastoma cell
lines, and 8 of which were non-neuroblastoma cell lines (Fig. 1b, Sup-
plementary Data Table 2). These included 4 cancer cell lines (from
melanoma, Ewing sarcoma, rhabdomyosarcoma, and colon cancer)
and 4 cell lines generated from normal tissues, specifically GM12878, a
lymphoblastoid cell line, AC16, a cardiomyocyte cell line, BJ-TERT
immortalized fibroblasts, and HEK293T cells17. The use of non-
neuroblastoma cell lines in our experimental design provides valu-
able information in its own right, but also serves as a statistical out-
group to evaluate the specificity of drug combinations. This provides a
baseline to understand whether drug-CRISPR combinations are selec-
tively lethal to neuroblastoma cells, or are simply broadly cytotoxic,
which would likely reduce the chance of achieving a therapeutic win-
dow in patients. Neuroblastoma cell lineswere chosen that already had
prior exome-wideCRISPR-cas9 screening in addition todense genomic
and perturbational data available in the Cancer Cell Line Encyclopedia
and DepMap. We used this information to nominate cell lines that
cover the highest clinical need, including 5 cell lines with TP53 muta-
tions, which are enriched at relapse18,19, and 4 mesenchymal-like cell
lines, characterized by a gene expression program associated with
chemotherapeutic resistance in neuroblastoma20–22 (Fig. 1b, Supple-
mentary Data Table 2).

Knockout of known drug-target genes are the top hits for drug
resistance
We were interested in assessing the validity of our 655 gene reduced
representation gRNA library and screening approach. Thus, we first
performed a targeted CRISPR screen using this gRNA library in CHP-
134 neuroblastoma cells treated with the chemotherapeutic CX-5461
and DMSO-treated controls, an experiment we have previously per-
formed using the Brunello genome-wide gRNA library23. Our previous
genome-wide screen identified that CX-5461 is a topoisomerase inhi-
bitor, with a high affinity for TOP2B. Encouragingly, in this re-screen
using our reduced representation library, the top hit for CX-5461
resistance was the primary drug target TOP2B (RRA = 2.48 × 10−9; Note:
robust ranking aggregation (RRA) scores are the default statistical
measure from MAGeCK, the de facto computational tool for CRISPR
data analysis, see Methods), followed by the secondary drug target
TOP2A (RRA = 8.46 × 10−9; Fig. 1c, d; Supplementary Data Table 3). We
also recovered the top sensitizing knockouts,ATM and TOP1 (Fig. 1c, d;
Supplementary Data Table 3). Thus, technical replicates screened
using our reduced representation targeted CRISPR gRNA library
delivered results consistent with a widely used genome-wide library,
supporting the robustness of our approach.

Since five of the eight drugs that we screened using the targeted
library have known direct protein targets, we next performed an ana-
lysis treating these targets as built-in positive controls to assess the
validity of our results. Specifically, doxorubicin and etoposide directly
target TOP224,25; all-trans retinoic acid directly interacts with the reti-
noic acid and retinoid receptor family (RARA, RARB, RARG, RXRA,
RXRB, and RXRG)26; topotecan targets TOP127 and JQAD1 degrades
EP300 by selective recruitment of the E3 ligase receptor cereblon
(CRBN)16. Cisplatin, PM, and vincristine act on DNA or microtubules
and were not included in this analysis. Thus, for each of these 5 drugs,
we calculated the mean resistance RRA scores (Z score normalized)
across the screens performed in all 18 cell lines. Encouragingly, in all
cases, loss of the known protein target of each of these drugs was
identified among the top resistance mechanisms, and in the cases of
retinoic acid, JQAD1 and topotecan were ranked #1 (Fig. 1e–i, see
Supplementary Data Table 4 for all RRA scores, positive and negative,
across the entire screen). These resistance mechanisms were
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recovered despite our screens being performed in IC20-IC30 drug
concentrations (Supplementary Data Fig. 1b, c), a dose range suited to
identifying drug-sensitizing knockouts, rather than resistance
mechanisms (see Methods).

Finally, in every screen we included 326 gRNAs targeting 55
DepMap-defined pan-essential genes, as well as 400 non-targeting

gRNAs as additional positive and negative controls respectively. As
expected, the pan-essential gRNAs strongly decreased cell viability
across the entire screen, but the non-targeting gRNAs did not
(Fig. 1j, P < 2.2 × 10−16 from Wilcoxon rank sum test; see Supple-
mentary Information for sequencing and QC metrics; Supplemen-
tary Data Table 1 for library sequencing details). Collectively, these

Fig. 1 | A CRISPR knockout library, targeted to druggable genes, is a viable
strategy to prioritize potential synergies with commonly used chemother-
apeutics. a Simplified schematic of CRISPR-sensitizer screens (detailed schematic
available in Supplementary Data Fig. 1a). b Summary of genomics features of cell
lines used in the screen. “ADR” refers to predominantly adrenergic neuroblastoma
cell lines and “MES” to predominantly mesenchymal cell lines20,22,92. Mutation pro-
files were obtained from DepMap (details in Supplementary Data Table 2). c Vol-
cano plot showing the log normalized gRNA fold change (LFC; x axis) and P-values
(y axis) for each gene knockout in a CX-5461 vs DMSO control treated CHP-134
neuroblastoma cell line. Results were obtained using our 655 gene reduced
representation library “SJ KnockOut nOn-Lethal (SKOOL)”. Positive controls, the
known sensitizing knockouts (ATM and TOP1) are highlighted as red circles and

known resistance knockouts (TOP2A and TOP2B) are highlighted as blue triangles
(P-values calculate using MAGeCK). d Like (c) but for results obtained for the same
genes using the genome-wideBrunello library. e–iWaterfall plots showing the gene
rank for resistance of the direct drug protein targets in our dataset. Genes are
rankedby themean Z scores across all 18 cell lines of their RRA score for resistance.
jBoxplot showing themedian log10 normalized gRNA readcount fromall screens in
all cell lines (y axis) for n = 400 non-targeting (nt) control gRNAs (green box) and
n = 326 gRNAs targeting 55 pan essential genes defined by DepMap (P-value from t-
test). In all boxplots, the center line represents the median, the bound of box is
upper and lower quartiles andwhiskers are 1.5× the interquartile range. Source data
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43134-0

Nature Communications |         (2023) 14:7332 3



analyses provide strong evidence of the integrity of the
screening data.

Systematic trends in the CRISPR screening data
While these screens recapitulated expected resistance mechanisms
and identified promising combinations (next subsections), the size of
this dataset also allowed us to study genetic perturbational effects on
chemotherapy response at a larger scale than previously possible. We
used t-SNE28 and UMAP29 to cluster the data, revealing an interesting
trend, with the data primarily clustered by cell line, rather thanby drug
or outgroup status (Fig. 2a; Supplementary Data Fig. 2a–d; UMAP
parameters were selected using an automated Monte Carlo approach,
seeMethods). This suggests a proportion of, but not all of the signal in
the data (see subsequent sections), may be cell line specific. We
investigated this by a simple and interpretable orthogonal analysis,
calculating the number of cell lines crossing a nominally significant
RRA <0.05 for each drug (Fig. 2b and Supplementary Data Fig. 2e) and
for each cell line (Fig. 2c and Supplementary Data Fig. 2f). While there
were no instances of a gene knockout sensitizingmore than 7 of the 10
neuroblastoma cell lines to any given drug (Fig. 2b), there were several
examples of CRISPR knockouts that sensitize a cell line to all drugs
screened. For example, knockout of the anti-apoptotic gene MCL1
sensitized SKMEL2melanoma cells to all 8 drugs (Supplementary Data
Table 4). These behaviors are consistent with previous observations
that the effect of pairs of gene knockouts are often cell line specific30,31,
and that targeted drug combination effects are highly specific to cel-
lular context12,32. Our results extend these observations to commonly
used chemotherapeutics and suggest that caution should be exercised
when extrapolating the results of drug combinatorial screens using
small numbers of biological replicates (see Discussion).

Ahierarchical Bayesianmodelcans identify gene knockouts that
robustly sensitize multiple cell lines to standard-of-care
chemotherapeutics
Because of our unique experimental design, and tomaximize power to
overcome cell line-specific effects, we developed a set of Bayesian
hierarchical models to analyze these data—methods that can be easily
implemented in future cohort-level screens. These models have been
engineered to account for the uncertainty associated with drug-
sensitization fold-changes, estimated from the differences in normal-
ized gRNA read counts in drug-treated vs vehicle-treated control cell
lines, which we treat as the model’s outcome variable (see Methods).

To identify the most potent drug-sensitizing gene knockouts
across the entire dataset, we first applied this model to all 18 cell lines.
Firstly, the resistance hits identified were similar to those identified
from RRA scores (Supplementary Data Table 5) and were again con-
sistent with the known drug targets, with the direct protein targets of
etoposide, JQAD1, retinoic acid, and topotecan (TOP2A, CRBN, RARA,
and TOP1 respectively) all recovered as the #1 resistance knockouts
when ranked by fold-change (Fig. 3a–h; Supplementary Data Table 5).
Importantly, the model also revealed multiple drug-sensitizing gene
knockouts. Many of the top sensitizing knockouts had a clear biolo-
gical rationale and several have strong existing experimental evidence:
These include PARP1, which was the #1 ranked hit (by fold change) for
sensitizing cells to the TOP1 inhibitor topotecan (Fig. 3g; Supplemen-
tary Data Table 5). The synergistic interaction between TOP1 and
PARP1 inhibitors has been validated in preclinical models33 and
represents one of the only standard-of-care drug synergies under
active study in pediatric clinical trials10. This combination was origin-
ally investigated based on biological rationale because TOP1 causes
single-stranded DNA breaks, which cannot be effectively repaired in
the absence of PARP1, but in our data, this was identified without any
prior biological knowledge. EP300 knockout was identified as the #6
ranked hit for sensitizing cells to the EP300 degrader JQAD1, sug-
gesting that reduced EP300 levels potentiates this drug’s activity

(Fig. 3d). PRKDC knockout was identified as themost potent sensitizer
to doxorubicin (Fig. 3a), an association recently also reported in
hepatoblastoma34 and others35,36, and a hit which we explore further in
a subsequent subsection. BCL2L1 knockout was the top-ranked sensi-
tizer for cisplatin (Fig. 3b), #4 for phosphoramidemustard (Fig. 3e), #8
for vincristine (Fig. 3h), and #2 for topotecan (Fig. 3g). BCL2L1 is an
anti-apoptotic protein targetable by navitoclax, which has shown
convincing synergy with several chemotherapeutic agents37. Combi-
nations of navitoclax with cyclophosphamide38, as well as regimens
containing doxorubicin and vincristine39, are in active clinical
investigation37. The #2 cisplatin hit DHFR (Fig. 3b) is targeted by
methotrexate, which is core therapy in osteosarcoma, combined in
sequence with cisplatin40, and #4 ranked cisplatin hit CDC7 (Fig. 3b) is
supported by existing in vitro results41. Doxorubicin has been shown to
be synthetic lethal in combination with inhibitors of its #7 ranked hit
CDK1 (Fig. 3a)42. MET knockout was ranked #2 for sensitization to
topoisomerase II inhibitors doxorubicin (Fig. 3a) and etoposide
(Fig. 3c) and was ranked #7 for sensitization to cisplatin (Fig. 3b). MET
overexpression has been widely implicated in chemotherapy
resistance43 and MET inhibition has already been reported to sensitize
various cancer cells to doxorubicin44,45 and cisplatin46,47. There is also
evidence that the screens successfully identified other known resis-
tance mechanisms beyond direct protein targets. For example, it was
recently shown that mTOR inhibition represents a general chemore-
sistancemechanism48, and this was identified as a top resistance hit for
several of our screened chemotherapeutics (Supplementary Data
Table 5). Overall, these results show that CRISPR-drug screens can
recover known synergies, supporting their utility in identifying
synergies with common chemotherapeutics in very high throughput
(Supplementary Data Table 6).

Gene set functional analysis reveals general chemoresistance
mechanisms
We next wondered whether further systematic insights could be
gleaned fromour data by assessing functional relationships among the
hits in the screen. To test this, we developed a gene set analysis
approach tailored for these data, which compares a null distribution of
fold-changes from randomly grouped non-targeting control gRNAs to
the distribution of groups of functionally related genes using a Wil-
coxon rank sum test (see Methods). We applied this approach to the
drug vs vehicle-treated gene-level gRNA fold-change estimates for
eachdrug individually and for the shared effect of the 6DNAdamaging
agents considered jointly, performing these functional enrichment
analyses at the level of (i) gene families, (ii) genes targeted by the same
drug, and (iii) themolecular signatures database (MSigDB) “Hallmarks”
gene sets, which represents a curated list of well-defined biological
processes/pathways49. For a combined model assessing the 6 DNA
damaging agents, groups of genes whose knockout is likely to slow
cell proliferation were most clearly implicated in drug resistance
(Fig. 3i; Supplementary Data Table 7). This included Hallmark gene
sets such as G2M checkpoint (FDR = 4.4 × 10−3) and MYC targets V2
(FDR = 2.9 × 10−2; Fig. 3j; Supplementary Data Table 7). It is known that
most common chemotherapeutics are more effective in fast-growing
cells because DNA damage is much more likely to be induced during
the cell cycle50,51, and these results support this. Interestingly however,
the EP300 degrader JQAD1 provides a compelling exception to this
trend, with knockout of genes likely to support cell division surpris-
ingly having the opposite effect and conferring drug sensitivity
(Fig. 3i–k, FDR = 2.5 10−2 for “MYC Targets V1” for sensitization to
JQAD1). Thus, knockout of some gene sets that confer chemoresis-
tance, appear to confer sensitivity to JQAD1. This activity may result
from JQAD1’s ability to downregulate MYC family proteins16—however
as an investigational compound, orthogonal drug activity compared to
the existing standard-of-care is a desirable characteristic, as it is sug-
gestive of potential to confer clinical benefit by independent action52.
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Broadly chemo-sensitizing gene knockouts can be identified by
using a Bayesian model that shares information across
related drugs
In addition to the MET and BCL2L1 examples discussed above, several
hits could be identified in the analyses where genes appeared among

the top sensitizers to multiple drugs that were independently
screened. This is consistentwith themechanistic convergenceofmany
chemotherapeutics on processes like DNA-damage, cell cycle, and
apoptotic pathways (Supplementary Data Table 7). This is also con-
sistent with the results of the functional enrichment analysis (Fig. 3i).

Fig. 2 | Systematic examination of the screens identifies cell line-specific
effects. a UMAP representation of all 18 cell lines × 8 drugs = 144 total screens
performed. Data are clustered based on fold-change of normalized read counts
following each of the 655 gene knockouts profiled. Data points are colored by cell
line and the symbol represents whether the cell line was treated with one of the 6
DNA damaging agents (solid circles; cisplatin, doxorubicin, etoposide, phosphor-
amide mustard, topotecan, or vincristine), all-trans retinoic acid (open circles), or
JQAD1 (triangles). b Scatterplot showing the number of neuroblastoma cell lines (x

axis) that are sensitized to some gene knockout (at RRA <0.05; y axis) for each of
the 8 drugs screened. Genes sensitizing the maximum number of cell lines to any
given drug have been highlighted. c Scatterplot showing the number of drugs (x
axis) that are sensitized to somegene knockout (RRA <0.05; y axis) for eachof the 4
different cell lines screened (all 18 cell lines are shown in Supplementary Data
Fig. 2f). Genes sensitizing each of these 4 cell lines to all 8 drugs screened are
highlighted.P-valueswere calculated bypermutation of all RRA scores. Figure 2a–c.
Source data are provided as a Source data file.

Article https://doi.org/10.1038/s41467-023-43134-0

Nature Communications |         (2023) 14:7332 5



Fig. 3 | Summary of drug sensitizing hits identified across the entire dataset.
a–hVolcanoplots for eachdrug showing the estimatedmeandrug vsmock-treated
control normalized gRNA log fold change across all 18 cell lines screened (x axis)
and the posterior probability this fold change value is different from 0 (y axis).
These values were estimated by fitting our Bayesian Hierarchical model (see
Methods) to the 18 fold-change values, and associated measurement uncertainty
estimate, obtained for each gene knockout, in each drug. Lower fold change values
imply a gene knockout has caused drug-sensitization, with top hits highlighted as
red circles. Key resistance knockouts have been highlighted as blue triangles. i Top
enriched mSigDB “Hallmark” gene sets from a joint model fit across the 6 DNA
damaging agents screened. The values in the columns labeled “Diff.” are the dif-
ference in fold change for themedian gene in the gene set versus themedian of the
non-targeting control genes; negative values in these “Diff.” columns imply
knockouts of genes from this gene set are associated with drug sensitization. The
final column shows the directionality of these hits for JQAD1, which are opposite of
the 6 DNA damaging agents for the top 3 gene sets. j Boxplot showing mean

estimated drug vs DMSO normalized gRNA log fold changes (y axis) for genes
annotated to the mSigDB’s Hallmark MYC targets gene set (blue box, black bar =
median (0.11)) vs non-targeting control genes (green box). For each gene, these
mean fold change estimates were calculated across all 18 cell lines screened using a
joint model that considered the 6 DNA damaging agents screened. (k) Like (j), but
for JQAD1 (Hallmark MYC targets gene set (red box, black bar =median (−0.05)).
lWaterfall plot ranking gene knockouts (x axis) by their shared sensitizing log fold
change effect (y axis) across the 6 DNA damaging agents, estimated using our
Bayesian hierarchical model.m Waterfall plot ranking gene knockouts (x axis) by
-log10 sensitizing RRA scores (y axis) in the AC-16 outgroup cell line. BCL2L1 and
MCL1, which are the top broad sensitizer genes in panel (l), are highlighted in red
and sensitize this cardiomyocyte cell line to doxorubicin. In all boxplots, the center
line represents the median, the bound of box is upper and lower quartiles and
whiskers are 1.5× the interquartile range. Source data are provided as a Source
Data file.
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To formally identify these broad sensitizers in a statistically coherent
framework, we extended our Bayesian model to share information
across related drugs (see Methods), specifically the 6 DNA damaging
agents which tended to co-cluster (Fig. 2a; doxorubicin, etoposide,
cisplatin, topotecan, vincristine and phosphoramide mustard). These
analyses revealed several broad sensitizers (Supplementary Data
Table 8) with the top-ranked gene being MCL1, followed by the
aforementioned BCL2L1 (Fig. 3l). This is interesting becauseMCL1 has
already been suggested as a potent sensitizer to several drugs in
multiple diseases. These include the cytotoxic chemotherapeutics
paclitaxel and docetaxel in breast cancer53,54, reviewed in Bolomsky
et al.55.

These broad hits can also be used to highlight an interesting
feature of our experimental design.MCL1 knockout, while synergizing
with multiple chemotherapeutics in neuroblastoma cell lines, also
promotes cytotoxicity in our outgroup; for example, it also has strong
synergy with doxorubicin in our cardiomyocyte cell line (Fig. 3m).
Cardiotoxicity is an often-fatal side effect of doxorubicin
treatment17,56–59 and such a result suggests that this risk may be
potentiated byMCL1 inhibition, an idea forwhich there is already some
support in the literature60. Thus, while a joint model applied to these
data can identify broadly synergizing knockouts, such targetsmay be a
high risk for toxicity if selectivity is not considered. Motivated by this
concept, we next introduce the idea of “selective drug synergy”, where
drug sensitization in our neuroblastoma cell lines is compared to our
outgroup, assessing a gene knockout’s potency and selectivity, which
could help identify drug synergies more likely to have a therapeutic
window in vivo.

Gene knockouts selectively sensitize neuroblastoma cell lines to
standard-of-care drugs
To test whether we could identify neuroblastoma-selective hits, we
further extended our statistical models to handle case/control designs
(see Methods), as well as probing covariates such as genomic features
(Fig. 4a–I; Supplementary Data Table 9).

Because of the limited scale of existing screens, prior
knowledge of the selective drug synergy landscape of neuro-
blastoma is currently almost non-existent. However, RRM1 and
RRM2, which we identified among the top hits sensitizing to
etoposide and vincristine, may represent partial exceptions to
this. Recently, combined RRM2 and CHK1 inhibition was shown to
be synergistic in neuroblastoma xenografts owing to replicative
stress due to stalled replication forks61, a process in which TOP2,
the target of etoposide, also plays a role62. However, most of the
neuroblastoma selective synergies identified in our study are
previously unreported. Interestingly, for some of the most potent
drug synergizing knockouts identified across the full dataset,
these results suggest their activity is stronger in the outgroup
than the neuroblastoma group. MCL1 and BCL2L1 represent two
examples of this, evident in the topotecan, vincristine, and cis-
platin screens (Fig. 4e–g). This suggests that combinations of
inhibitors of these targets with DNA-damaging agents should be
approached with caution in neuroblastoma because while there
may be potent synergistic activity in neuroblastoma cells, there is
also strong potential for activity in normal cell types. In the
context of other diseases, there is already some evidence that
pharmacological inhibition of these targets in combination with
DNA-damaging agents causes toxicities63–65.

In general, while the number of screened cell lines and combi-
natorial perturbations in our screen is far larger than previous
screens in neuroblastoma, it is still not large enough to confidently
resolve the context specificity of many hits. However, there is some
tentative evidence of orthogonal activity of some nominated com-
binations, with differential activity emerging on the background of,
for example, the expression of mesenchymal-like genes—a putative

drug resistance state in neuroblastoma20. For example, the knockout
of PRKDC appears to have a greater sensitizing effect in adrenergic
neuroblastoma cell lines (Fig. 4j), whereas KEAP1’s effect on topote-
can (Fig. 4k), and HDAC2’s effect on JQAD1 (Fig. 4l), are both sensi-
tizing in mesenchymal-like cell lines (See Supplementary Data
Table 9 (final tab) highlighting neuroblastoma relevant combinations
for each drug). These observations provide tentative evidence that
such context-specific synergies may exist for standard-of-care drugs
in neuroblastoma, but broadly resolving these and deconvolving the
various confounding factors will require detailed prospective
experimental work. Thus, while we explore a selection of hits in detail
below, we have also made the data and processed results available in
a graphical web-based interface that can be used to motivate new
studies dissecting the promising selective hits (available at https://
stjude.shinyapps.io/CASAVA/).

Synergies identified in high-throughput pooled CRISPR-drug
screens translate to other genetic and pharmacological assays
We were next interested in assessing the robustness with which
CRISPR-drug nominated synergies couldbe recapitulatedwith other in
vitro and in vivo assays. We first assessed this using an orthogonal
genetic perturbational assay, specifically shRNA knockdown of the
CRISPR-nominated targets, for putative synergistic and non-
synergistic interactions. First, we tested the knockdown efficiency of
individual shRNAs againstPRKDC,HDAC2,KEAP1, andMET to select the
most efficient one (Supplementary Data Fig. 3a; see Methods). After
selection, we knocked down four individual genes in a subset of cell
lines (10 for PRKDC, 11 for HDAC2, KEAP1, and MET, a total of 43
knockdown experiments, Supplementary Data Fig. 3b) and treated
with the corresponding drugs (IC50 of doxorubicin in PRKDC knock-
down, IC50 or max 10 µM of JQAD1 in HDAC2 knockdown, IC50 of
topotecan in KEAP1 knockdown, and IC50 or max 10 µM of cisplatin in
MET knockdown). Encouragingly, we observed a strong positive cor-
relation between the shRNA and CRISPR-based perturbations
(Fig. 5a–d, Supplementary Data Fig. 3, Supplementary Data Table 10).
Thus, the results from the pooled CRISPR screen could be replicated in
a different low-throughput genetic perturbational assay.

Next, to test the translation of gene targets to pharmacological
inhibition of protein products, we used dense drug-drug rescreen-
ing for these same hits (PRKDC/doxorubicin, KEAP1/topotecan,
HDAC2/JQAD1, and MET/cisplatin). The drugs used to target the
CRISPR-nominated genes were AZD7648 for PRKDC, dimethyl
fumarate (DMF) for KEAP1, panobinostat for HDAC2, and cabo-
zantinib (CAB) for MET. For each pair of drugs, we used high-
throughput robotic handling screening in dense 10 × 10 matrices,
with 1:3 dilution (10 doses from 10 µM to 1 nM for AZD7648, DMF,
and CAB, and 10 doses from 0.01 µM to 0.5 pM for Panobinostat;
Fig. 5e–j). In all cases, strong synergy was observed (Fig. 5k; Sup-
plementary Data Figs. 4 and 5, Supplementary Data Table 11).
Overall, the results suggest that CRISPR-drug screening results can
translate to similar drug-drug combination screens, especially when
the compound has a high selectivity for its target. We also per-
formed similar dense 10 × 10 concentration drug-drug rescreens for
each pair of standard-of-care neuroblastoma drugs (Cisplatin, PM,
ATRA, Topotecan, Doxorubicin, and Vincristine; 15 total combina-
tions) using the BE2C cell line and compared the synergy scores of
the CRISPR-motivated compound pairs to synergy scores when
standard-of-care drugs are paired. Remarkably, the CRISPR-
motivated compound pairs were far more synergistic, as evi-
denced by much higher Zero Interaction Potency (ZIP) synergy
scores (P = 1 × 10−4, Fig. 5l–m). Thus, it is likely that the enormous
drug combinatorial search space contains drug pairings that can
improve upon the existing standard-of-care combinations and high
throughput drug-CRISPR screens represent a reasonable means to
identify these.
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PRKDC inhibition represents a mechanistically plausible com-
bination with doxorubicin in high-risk neuroblastoma, with
evidence of synergistic activity in vivo
The results above highlighted PRKDC inhibition as a particularly high-
potential combination with doxorubicin in neuroblastoma. The

synergistic relationship between doxorubicin and PRKDC inhibition is
plausible, as doxorubicin’s primary mechanism of cytotoxicity is DNA
double-strand breaks caused by trapping of TOP2 to DNA66,67. These
breaks are repaired in part by the non-homologous end joining (NHEJ)
pathway, where PRKDC plays a critical role. We performed several

Fig. 4 | Summary of differential drug sensitizing hits identified in neuro-
blastoma cell lines vs the outgroup cell lines. a–h Scatterplots for each drug
showing the estimated mean drug vs mock-treated control normalized gRNA log
fold change across in the 10 neuroblastoma cell lines (x axis) and the differential
sensitization effect between the 10 neuroblastoma and 8 outgroup cell lines (y
axis). Higher values on the x axis imply greater sensitization in neuroblastoma and
higher values on the y axis imply greater sensitization in neuroblastoma relative to
the outgroup. i Like (a–h) but for the shared effect for the 6 DNAdamaging agents,

estimated using our Bayesian hierarchical model. j Doxorubicin vs mock-treated
control normalizedgRNA log fold changes followingPRKDC knockout (y axis) for all
18 cell lines screened. Lower values imply sensitization. Neuroblastoma cell lines
are coloredblue andoutgroup cell lines are green. Theorderof the cell lines (x axis)
is the same as Fig. 1b.Whiskers represent the standard error of themean, estimated
from the 6 gRNAs targeting each gene. k Like (j) but for topotecan and KEAP1
knockout. l Like (j) but for JQAD1 andHDAC2 knockout. Sourcedata are provided as
a Source Data file.
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additional assays to assess the clinical tractability of this putative
combination.

Upon DNA damage, PRKDC undergoes phosphorylation of resi-
due ser-2056, causing a conformational change required for efficient
end processing andDNA repair68. Thus, weperformedwesternblots to
examine the induction of phosphorylation at ser-2056 (pPRKDC) fol-
lowing doxorubicin treatment in the neuroblastoma BE2C and GIMEN
cell lines (0.4μM inBE2C, 0.03μM inGIMEN – the approximate IC50 of
these cell lines used in all experiments in this section except where
otherwise indicated; PRKDC knockout strongly synergized with dox-
orubicin in BE2C, but not GIMEN, in the CRISPR screen). The blots
showed that single agent doxorubicin-induced pPRKDC in BE2C, but

not GIMEN, suggesting NHEJ was only strongly activated in BE2C, the
comparatively doxorubicin-resistant cell line (Fig. 6a). Additionally, we
confirmed the on-target activity of AZD7648, with single-agent treat-
ment at 3μMrepressing pPRKDC in both cell lines (neither cell linewas
sensitive to single-agent AZD6748). Surprisingly however, in BE2C, the
combination of doxorubicin and AZD7648 markedly increased
pPRKDC over doxorubicin alone at 72 h (Fig. 6a), suggesting NHEJ
activity had increased, an apparent contradiction worth further
investigation. Thus, we next tested induction of apoptosis in each cell
line using a luminescent caspase 3/7 assay and found that despite the
high pPRKDC levels in the doxorubicin/AZD7648 treated BE2C, these
cells also had the highest levels of apoptotic response (Fig. 6b,

Fig. 5 | Synergies identified in high-throughput pooled CRISPR-drug screens
translate to other genetic and pharmacological assays. a Scatterplot of the
-log10 sensitizing RRA scores from the CRISPR -drug screens (x-axis) against the
-log10 fold change of cell toxicity percentage upon knockdown of PRKDC using
single shRNAs (y-axis) in 10 cell lines. For the shRNA knockdown, potency changes
were estimated from the IC50 of doxorubicin. See Supplementary Data Table 10 for
source data (P-valueswere calculated by Pearson correlation). b Like (a) butHDAC2
shRNA knockdown in 11 cell lines treated with JQAD1. c Like (a) but KEAP1 shRNA
knockdown in 11 cell lines treated with topotecan. d Like (a) but MET shRNA
knockdown in 11 cell lines treated with cisplatin. e Heatmap matrices of percent
cytotoxicity (1 - cell viability) in BE2C cells conferredby treatmentwith doxorubicin
(x axis) and AZD-7648 (y axis). Each matrix represents the average of three inde-
pendent experiments. f Heatmap matrices of synergy scores derived from cyto-
toxicity values in (e). All synergy scores δ were calculated based on the zero-
interaction potency (ZIP) model. Combinations conferring synergy have ZIP scores

of >0. g Like (e) but for the NGP cells. h Like (f) but for the NGP cells. i Bar plot
showing the cytotoxicity values for the region of max synergy in the BE2C cells
(panel (f)). The red dashed line shows expected cytotoxicity under additivity. j Like
(i) but for theNGPcells.k Scatterplotof sensitizationRRA scores in each cell line for
doxorubicin sensitization by PRKDC knockout (x axis) versus overall synergy scores
(y axis) from the AZD7648/doxorubicin drug-drug screen See Supplementary Data
Table 11 for source data (P-values were calculated by Pearson correlation. The
shaded band is a 95% confidence interval). l Boxplot of maximum synergy scores
achieved in our complete set of CRISPR-motivated drug combination screens
(green box, n = 72, median = 20.29) and standard-of-care (SOC, n = 15, median =
5.88) motivated drug combinations in the BE2C cell line (red box). P-values were
calculated from a 2-sided Wilcoxon rank sum test. m Like (l) but showing only
CRISPR-motivated drug combinations in the BE2C cell line (n = 4, median= 17.07).
Figure 5a–m. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-43134-0

Nature Communications |         (2023) 14:7332 9



P < 1 × 10−4 compared to doxorubicin alone). Unsurprisingly, the com-
bination had little effect in potentiating apoptosis in GIMEN. We
hypothesized these trends were likely due to much higher levels of
DNA damage in the combination-treated BE2C cells. Indeed, at 72 h
therewas a 4-fold increase in γH2AX foci and a clear increase in overall
DNA damage as estimated by a comet tail assay (Fig. 6c, d, P < 1 × 10−4

for doxorubicin treated vs combination treated in both assays, Sup-
plementary Data Table 12). Interestingly, the number of γH2AX foci in
BE2C was approximately 10 times higher than GIMEN when both cell
lines were treated with an approximate IC50 of doxorubicin (Fig. 6c;
Supplementary Data Fig. 6). This is consistent with BE2C being a TP53
mutant generally chemo-resistant cell line, requiring much higher
levels of DNA damage to induce cell death programs. Since the relative
use of DNA-repair pathways is also cell cycle-dependent, we further
tested the combination effects when arresting cells in G0/G1 or G2
phases of the cell cycle, but neither could explain the increase in
pPRKDC (Fig. 6e, Supplementary Data Fig. 7; see Methods). Finally, we
performed a cell-based NHEJ activity assay, collecting data at 6 time
points from 0 to 72 h. In BE2C, at later time points, NHEJ activity was
higher in the combination-treated cells than in cells treated with
doxorubicin alone and therewas little evidence of induction of NHEJ in
GIMEN (Fig. 6f, SupplementaryData Fig. 8). Rather, GIMEN induced the
homologous recombination pathway (Fig. 6g). Thus, it seems likely
that early DNA damage in the combination-treated BE2C cells leads
(counterintuitively) to higher NHEJ activity in surviving cells at later
time points, despite AZD7648 actively inhibiting NHEJ over the time
course. It is plausible that some of these behaviors, including ser-2056
pPRKDC, emerge, at least in part, as a direct consequence of
apoptosis69. Overall, these results suggest that differences in the reli-
ance on the NHEJ pathway could predict the effectiveness of PRKDC
inhibitors in combination with doxorubicin, and the main mechanism
driving synergy is massive potentiation of DNA damage in cells
dependent on NHEJ, which can be sufficient to induce cell death even
in generally chemoresistant cells. Thus, potentiating doxorubicin
activity in this context has the potential to address a clear clinical
need19.

As a final proof of principle, we tested this combination of dox-
orubicin and AZD7648 in vivo using mousemodels of neuroblastoma.
We used a pharmacologically relevant dosage of each drug based on
existing pharmacokinetics data of doxorubicin70,71 and AZD764836 (see
Methods). In the first set of experiments, we implanted the BE2C cell
line into NSG mice. We started drug treatment after tumor engraft-
ment and growth beyond 100mm3. We observed no significant effect
of eitherAZD7648ordoxorubicin alone, but a clear reduction in tumor
volumes when the combination was administered (Fig. 6h, Supple-
mentary Data Table 13), suggesting synergistic activity against this cell
line in vivo.

We conducted a second in vivo study, this time xenografting a
humanPDXmodel (NB14; previously established at St. Jude72) of high-
risk MYCN-amplified neuroblastoma. AZD7648 had no detectable
activity as a single agent, but, as in the previous experiment, strik-
ingly potentiated the activity of doxorubicin, exhibiting strong con-
trol over tumor growth in all mice (Fig. 6i, Supplementary Data
Table 13). Remarkably, this PDX is distinct fromour cell line discovery
cohort, suggesting broad relevance of this synergy in neuroblastoma
and that this combination should be further evaluated in this disease.
Overall, thesemechanistic and in vivo experiments show that a large-
scale CRISPR-drug perturbational map can be used to prioritize
potential synergies with common chemotherapeutics and that these
hits can be used to nominate drug combinations with clinical
potential.

Discussion
Drug combinations are required for essentially all curative cancer
treatment strategies. However, the number of possible drug

combinations is much larger than can be reasonably screened with
existing approaches. The two largest existing drug combinatorial
screens are the NCI’s ALMANAC study73, which screened the NCI60
cell line panel, and a very recent screen in 125 colorectal, breast, and
pancreatic cancer cell lines32. Both studies screened a total of
approximately 100,000 unique combination-cell line pairs (com-
pared to 94,320 here). These previous studies employed moder-
ately dense drug-drug combinatorial screening designs, where
drugs were screened in 384 well plates in 3 × 3 or 2 × 7 grids of drug
concentrations. Even with modern robotic handling, this approach
is resource intensive, thus limiting the number of cell lines cap-
tured. Hence it is not surprising that most cancer types are absent
from these studies, with, for example, almost no representation of
pediatric cancer. To broadly capture the astronomical drug-drug
combinatorial search space, resource-efficient approaches will need
to be developed and deployed. Here, we performed large-scale
targeted CRISPR knockout screens, creating amap of potential drug
synergies with commonly used chemotherapeutics. To address the
clear clinical need, we emphasized high-risk neuroblastoma cell
lines, although several additional cancer and normal cell types were
represented. We have made this dataset available to the research
community as a resource to prioritize potential standard-of-care
drug-drug synergies and to study drug mechanisms and resistance.
We have used this resource to discover drug combinations with
clinical potential, which we have demonstrated to be effective
in vivo for doxorubicin and PRKDC inhibition using patient-derived
xenograft models.

The observation that CRISPR knockout of a gene often mimics
pharmacological targeting of the gene’s protein product has now
been widely exploited as a massively high-throughput proxy for
single-agent drug screening (even when knockout does not mimic
pharmacological targeting, it is often due to unconventional drug
action, such as trapping an enzyme to DNA74). This has led to very
large dependency maps13, now profiling over 1000 cancer cell lines,
which have been an immensely successful resource for drug
repurposing75 and drug discovery76, especially in pediatric cancer77.
This includes neuroblastoma, motivating for example the investi-
gation of EZH2 inhibitors78. However, CRISPR knockout has not yet
been extensively deployed to increase the throughput of drug
combination discovery, although a few smaller-scale combinatorial
knockout studies have been performed13,32,79,80. Some of the trends
described in these previous studies were also evident in our data,
for example, that cell line-specific synergies appear to be common,
although we extend this idea to commonly used chemother-
apeutics. Additionally, broad synergies, evident across a range of
cell types are also common, which we were able to determine by
screening an outgroup, a step typically overlooked in drug combi-
nation screening. However, even given these “too narrow” or “too
broad” synergies, we still found many examples of synergies that
appear to have context specificity in neuroblastoma, which was in
part possible due to our statistical modeling. To promote the
widespread use of these models, we have made these analytical
tools available for future studies. Arguably, the major limitation of
our study may be that, while it is on par with the largest drug
combination screens ever performed, context specificity of syner-
gies could likely be resolved in greater detail if screens were carried
out using even larger numbers of cell lines in the future, or if data
from many screens were aggregated. Interestingly, the proposed
approach is highly scalable and effective and can be scaled up for
many (if not most) cancers where the drug-drug combinatorial
landscape remains almost entirely unexplored. Overall, CRISPR-
drug combinatorial screens are effective for the discovery of
potentially clinically relevant combinations with existing che-
motherapeutics, which has the potential to impact patient care
across a wide range of cancer types.
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Methods
Animals
All murine experiments were done in accordance with a protocol
(#615) approved by the Institutional Animal Care and Use Committee
of St. Jude Children’s Research Hospital. Around 5 weeks old female
NSG mice (NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ) were purchased from
St Jude Children’s Research Hospital Animal Research Resource and
housed in pathogen-free conditions with food and water provided ad
libitum. To establish SJNB14-PDXmodel, PDX tumor was finelyminced
with sterile scissors and blade in a sterile petri dish. ~50μl of minced
tumor tissue was subcutaneously engrafted on the right flank of NSG

mice. For generating BE2C xenograft, BE2C cells (5 × 106/mouse) in
100μl in Matrigel (Corning, 354230) were injected subcutaneously on
the right flank of NSG mice.

Cell culture and generation of Cas9 stably expressing cell lines
18 cell lines and their associated Cas9-expressing cell lines (total 36)
were cultured in the indicated culture condition (Supplementary
Data Table 14, MHHNB11 (DSMZ, ACC157), BE2C (Easton@St.Jude,
In-house), NGP (DSMZ, ACC676), KELLY(Sigma, 92110411), CHP212
(Shelat@St.Jude, In-house), GIMEN (DSMZ, ACC654), SKNAS (ATCC,
CRL-2137), TGW (JCRB, JCRB0618), SKNFI (ATCC, CRL-2142), SKNS
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(Sigma, 86012802), SKES1 (Dyer@St.jude, In-house), SKMEL2
(Dyer@St.jude, In-house), RH30 (ATCC, CRL-2061), HCT116 (NCI),
HEK293T (Chen@St.jude, In-house), AC16 (Millipore, SCC109), BJ-
TERT (ATCC, CRL-4001), GM12878 (Easton@St.Jude, In-house)) and
maintained in a mycoplasma-free condition. For CRISPR screens,
Cas9 stably expressing cell lines were generated or obtained. Cas9
expressing SKNFI, TGW, SKNSH, SKES1, SKMEL2, RH30, HEK293T,
BJ-TERT, AC16, and GM12878 were generated by transducing lenti-
viral Cas9-2A-Blast, followed by blasticidin selection. Cas9 expres-
sing MHHNB11, BE2C, NGP, KELLY, CHP212, GIMEN, and SKNAS
were provided by Dr. Adam Durbin. Cas9 expressing HCT116
was purchased from Horizon Discovery (Cat # Cas9-002). Cas9
activity in 18 Cas9-expressing cell lines were verified and it was over
85% on average using the Cas9 activity assay described at Method
details.

Generation of CRISPR KO lentiviral library
sgRNAs for the human CRISPR KO library were first designed using
CRISPick, which designs and scores potential gRNAs based on sev-
eral parameters from “Rule Set 3”81,82. The top 30 sgRNAs for each
gene then underwent an additional round of filtering using in-house
off-target analysis to identify highly unique sgRNAs. To balance
library size with the statistical power of having multiple gRNAs, up
to 6 sgRNAs per gene were selected for the library along with non-
targeting controls making up ~10% of the final library. The sgRNA
sequences are described in Supplementary Data Table 1. Library
oligos were designed according to Sanson et al.81. The oligo pool
was synthesized by TWIST Bioscience. Library amplification and
Golden Gate cloning into the pLentiGuide-Puro backbone (Addgene
#52963) were performed according to Sanson et al.81. The plasmid
library was amplified and validated in the Center for Advanced
Genome Engineering at St. Jude as described in the Broad GPP
protocol. The only exception being the use of Endura DUOs elec-
trocompetent cells. The St. Jude Hartwell Center Genome Sequen-
cing Facility provided all NGS sequencing. Single end 100 cycle
sequencing was performed on a NovaSeq 6000 (Illumina). Valida-
tion to check gRNA presence and representation was performed
using calc_auc_v1.1.py (https://github.com/mhegde/) and
count_spacers.py83. Viral particles were produced by the St. Jude
Vector Development and Production laboratory. CRISPR KO screens
were analyzed using Mageck-Vispr/0.5.784.

Cas9 activity assay
Using a Cas9 activity assay kit (Cellecta, CRUTEST), Cas9 activity
was measured by following the manufacture’s protocol. Briefly,

Cas9-expressing cells were infected by CT-active [CT-A] or CT-
background [CT-B] premade lentiviruses and maintained the
infected cells for 10 days to avoid 100% confluency. After 10 days,
the cells were analyzed by flow cytometry tomeasure the changes in
GFP levels and Cas9 activity was determined (Supplementary Data
Fig. 9 and Supplementary Data Table 15).

Compounds and pharmacological profiling
Six standard drugs, cisplatin (CDDP, HY-17394), doxorubicin HCl(HY-
15142), etoposide (HY-13629), topotecan HCl (HY-13768A), vincristine
sulfate (VCR, HY-N0488), and all-trans retinoic acid (ATRA, HY-14649)
were obtained from Medchemexpress (USA), and phosphoramide
mustard (PM, D-18846) was obtained from Niomech IIT GmbH (Ger-
many). JQAD1 was provided by Dr. Jun Qi (Dana-Farber Cancer Insti-
tute). As a broad-spectrum cell death compound (positive control for
cell death), staurosporine (Medchemexpress, HY-15141) was used for
evaluating cell viability. All compounds were reconstituted in DMSO,
except CDDP. CDDPwas reconstituted in normal saline or amixture of
DMSO and HCl (30 v:1 v). For pharmacological profiling, individual
standard drugs were dispensed by Echo 650 (Labcyte) into white 384-
well plates in a dose-dependent manner, followed by plating Cas9
expressing cells with desired numbers (500 or 1000 cells per well).
After 3 days (CDDP, PM, doxorubicin, etoposide, topotecan, VCR) or
6 days (ATRA, JQAD1) incubation, CellTiter-Glo (Promega) assay was
performed to determine viability and IC20, IC30, and IC50 was calcu-
lated by fitting Hill Slope equation (Supplementary Data Fig. 10). An
IC20 to IC30 was used for negative selection in our CRISPR screens. For
the combinatorial drug screen, selectedpartner compounds, AZD7648
(PRKDC inhibitor, HY-111783), Panobinostat (HDAC2 inhibitor, HY-
10224), dimethyl fumarate (KEAP1 inhibitor, HY-17363), and cabo-
zantinib (MET inhibitor, HY-13016) were purchased from
Medchemexpress.

CRISPR screening
Our Cas9-expressing cell lines were infected with our SKOOL library
at MOI (~0.3), followed by puromycin selection. In between days
10–12, once survived knockout cells reached at desired numbers to
maintain representation, they were treated with individual standard
drugs (IC20-30) for 3 days (CDDP, PM, doxorubicin, etoposide,
topotecan, VCR) or 6 days (ATRA and JQAD1). Genomic DNA was
extracted using the PureLink genomic DNA kit (Invitrogen) and the
sgRNA sequences were recovered by genomic PCR analysis, fol-
lowed by deep sequencing using NovaSeq for paired-end minimum
length 75 bp read (Illumina). Sequencing data were analyzed using
MAGeCK-VISPR84.

Fig. 6 | PRKDC inhibition represents a mechanistically plausible combination
with doxorubicin in neuroblastoma, with evidence of synergistic activity
in vivo. a Western blot for phosphorylated PRKDC (active PRKDC) in BE2C and
GIMEN cell lines. Results are quantified in the lower panel, where doxorubicin
(0.4 µMinBE2C,0.03 µMinGIMEN, samedoseused inpanelsa–g) activatedPRKDC
compared to control (veh) whereas AZD7648 (3 µM, same dose used in panels a–g)
inhibited PRKDC. The upper band represents the full-length protein and the
N-terminus fragment of PRKDC is indicated by the triangle Data in lower panel
presented asmean± SEM, **P =0.00113, unpaired t-test (two side), n = 2 per group,
two independent. b Luminescent caspase 3/7 assay quantifying the level of apop-
tosis (y axis) in vehicle, doxorubicin, AZD-7648, or combination (x axis) treated
cells. The results for BE2C are shown in the upper panel and GIMEN in the lower
panelData presented asmean± SEM, ****P <0.0001, unpaired t-test (two side),n = 5
per group, two independent. c Like (b) but for γH2AX foci from immuno-
fluorescence assay. See Supplementary Data Table 12 for source data (Data pre-
sented as ratio of mean number of γH2AX over mean number of nuclei ± SEM,
****P <0.0001, unpaired t-test (two side), n = 4 images per group, two indepen-
dent).d Like (b) but for comet tail assay (Data presented as individual tailmoments,
*P <0.05, ****P <0.0001, unpaired t-test (two side), n = 4 images per group, two

independent). e Bar plot showing the percentage of cells (y axis) in different phases
of the cell cycle (colors), following either cell cycle arrest, 24 h following release, or
treatment with vehicle, doxorubicin, AZD7648, or the combination for 72 h (x axis).
f Line plot showing the results of a cell-based assay for NHEJ using i-GFP quantifying
the activity of NHEJ (y axis) in BE2C and GIMEN cells over 72 h (x axis), at 2 h
intervals (Data presented as mean ± SEM, n = 25 of relative intensity of green per
group (veh, doxorubicin, AZD7648, and combo), two independent). g Line plot
showing the results of a cell-based assay for HR using i-GFP quantifying the activity
of HR (y axis) in BE2C (left panel) and GIMEN (right panel) cells over 72 h (x axis) at
2 h intervals (Data presented asmean ± SEM,n = 25of relative intensity of green per
group (veh, doxorubicin, AZD7648, and combo), two independent). h Changes in
tumor growth for BE2C xenografts (vehicle = 3, AZD7648= 4, Doxorubicin = 5,
Combo = 5). Data presented as mean ± SEM. Unpaired t-test (two-side) for com-
parison of doxorubicin with combination therapy: P-values: 3.5 × 10−2 (day 8),
1.2 × 10−2 (day 12), 1.6 × 10−4 (day 15). i Changes in tumor growth for SJNB14 PDX
xenografts (vehicle = 4, AZD7648= 4, Doxorubicin = 4, Combo = 5). Data presented
as mean± SEM. Unpaired t-test (two-side) for comparison of doxorubicin with
combination therapy: P-values: 5.4 × 10−2 (day 11), 6 × 10−5 (day 15). *Fig. 6a–i. Source
data are provided as a Source Data file.
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Basic data analyses
UMAP plots were created using the M3C85 package in R, which auto-
matically selects the typically-user-defined UMAP plotting parameters
using aMonte Carlo approach. Basic analysis of the CRISPR results was
performed using MAGeCK-VISPR84. The visualization of cell line
genomic featureswas created using ProteinPaint (https://proteinpaint.
stjude.org/)86. All other basic analysis and statistical tests were per-
formed using R version 4.0.287. False discovery rates were estimated
using the Benjamini and Hochberg method.

Hierarchical Bayesian model to identify neuroblastoma selec-
tive hits and to borrow information across mechanistically
related drugs
First, gRNAs acting as outliers were filtered using a Dixon outlier test.
For each gene, this test was applied to log drug vs vehicle fold-changes
of normalized read counts, andmisbehaving gRNAswere removed at a
nominal P-value threshold of 0.05. We filtered single gRNAs in the
cases where the directionality of that single gRNA was different from
the other 5 gRNAs targeting the same gene. We also filtered gRNAs
with very low (<5) read counts in both the drug and treatment groups,
as these produce very unstable fold change estimates. Drug vs vehicle
fold changes were calculated for each remaining gRNA in each sample.
These gRNA-level fold changes were then grouped by gene to estimate
gene level fold changes and their associated standard error (yi and SE2

yi
respectively in Eq. 1 below).

The differential synergizing effect of a gene knockout and the
potency of that effect in neuroblastoma was estimated using the fol-
lowing hierarchical Bayesian model:

yijdi,xi,α,β,σ
2,ν ∼ t ν,αdi

+βdi
xi,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2
yi
+ σ2

di

q
� ��

ð1Þ

Where yi is the normalized mean gRNA fold change calculated for each
gene (typically the average of 6 independent gRNA fold change esti-
mates).di indicates thedrug, xi indicates case/control status encodedas
0 or 1, α are the estimates of synergizing potency in the neuroblastoma
group and β are the estimates of the differential drug synergizing effect
of a knockout between theneuroblastomacell lines and theoutgroup, ν
and σ2 represent the degrees-of-freedom and the variance of the
t-distribution respectively. SE2

yi
is the standard error squared associated

with each fold change estimate yi, and the model formulation above
allows these error estimates to be accounted for in the estimation of
this model’s parameters. Sharing of information across DNA-damaging
agents was achieved using the following hierarchical structure, where
the α and β parameters for each drug are assumed to be drawn from
shared parameterized Normal distributions:

βdi
jμβ,σ

2
β ∼N

�

μβ,σ
2
β

�� ð2Þ

αdi
jμα ,σ

2
α ∼N μα ,σ

2
α

� �� ð3Þ

The μα and μβ parameters can then be interpreted as the shared
sensitizing effect of a gene knockout on this entire group of drugs,
described for example in Fig. 4i for DNA-damaging agents. Each of
these hierarchical parameters are assigned a weakly informative prior:

μβ,μα ,σ
2
α ,α

2
β ∼N ð0,5Þ ð4Þ

We used a gamma prior distribution for the degrees of freedom
parameter of the t-distribution, with the following previously pro-
posed shape and rate parameter values, which are suitable to

implement a model reasonably robust to outliers88:

ν ∼Gamma ð2,0:1Þ ð5Þ

For the joint model sharing information across the 6 DNA-
damaging agents and 6 × 18 = 108 cell lines, the following indices were
used:

di 2 f1, . . . ,6g ð6Þ

i= 1, . . . ,108 ð7Þ

The description and equations above specifically describe the
most complex model we used, jointly modeling the DNA damaging
agents. In practice, we also employed several simpler iterations of this
model. For example, independent models can be fit for each drug by
dropping this model’s hierarchical structure (i.e. Equations 2–4) and
fitting the resulting model for each drug independently and the gen-
eral drug sensitizing effect of a knockout, irrespective of neuro-
blastoma/outgroup status, can be estimated by dropping the model’s
βparameter. TheparameterswereestimatedusingHamiltonianMonte
Carlo, implemented in the R package rstan (http://mc-stan.org/).

Finally, the gene set level analyses were performed by comparing
thedrug vs vehicle fold changes of genes in the relevant set (apathway,
a process, etc.) against a null distributionderived froma set of negative
control genes (approach conceptually similar to Makrooni et al.)89. In
this context, these negative control genes were created by randomly
grouping the 400 non-targeting control gRNAs included in all screens
into 66 negative control genes (6 gRNAs per gene). A non-parametric
Wilcoxon rank sum test was then used to test the difference of the fold
changes observed in each gene set against these negative control
genes, which provides an estimate of the expectation under the null.
Note that in this context the power of any gene set analysis approach
to detect true positive associations will be restricted to groups of
genes that are reasonably represented in the 655 gene library.

Cisplatin-DNA adduct assay
Cells were treated with vehicle (normal saline or DMSO-HCl), cisplatin
in normal saline, and cisplatin inDMSO-HCl for 24h.GenomicDNAwas
extracted from treated cells and blotted in nitrocellulose membrane.
Themembranewas baked at 80 °C to immobilize blotted gDNA for 2 h.
The bakedmembrane was blocked by TBST at room temperature (RT)
for 30min, followed by incubation of primary anti-cisplatin DNA
adducts antibody (1:1000, Millipore, MABE416) at 4 °C overnight. The
next day, the membrane was rinsed three times with TBST and incu-
bated with secondary HRP-conjugated anti-rat at RT for 30min. After
rinsing three times, themembrane was imaged by Licor Odyssey XF to
measure DNA adduct (Supplementary Data Fig. 11).

Genetic validation of sensitized candidates
Three shRNAs per gene (PRKDC, HDAC2, KEAP1, and MET), were
purchased (Sigma, Supplementary Data Table 14, PRKDC shRNA1
TRCN0000194985, shRNA2 TRCN0000195491, shRNA3
TRCN0000006258, HDAC2 shRNA1 TRCN0000004819, shRNA2
TRCN0000004823, shRNA3 TRCN0000195198, KEAP1 shRNA1
TRCN0000154656, shRNA2 TRCN0000154657, shRNA3
TRCN0000155340, MET shRNA1 TRCN0000040044, shRNA2
TRCN0000121087, shRNA3 TRCN0000121090, and non-targeting
SMARTvector hEF1a-None (Horizon Discovery, VSC11723). Lenti-
viruses of each shRNA were produced at our institutional core facility,
including non-targeting control. 10 or 11 cell lines were transduced by
individual shRNA lentiviruses for 3 days and followed by puromycin
selection to isolate the cells with the desired knockdown. Knockdown
efficiency was verified by western blot analysis. We tested the
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knockdown efficiency of individual shRNAs against PRKDC, HDAC2,
KEAP1, andMET to select themost efficient one (TRCN0000194985 for
PRKDC, TRCN0000004819 for HDAC2, TRCN0000154657 for KEAP1,
and TRCN0000121087 for MET). Knockdown cells were treated with
the corresponding drugs (IC50 or 10 µM) for 3 days (doxorubicin/
PRKDC knockdown, JQAD1/HDAC2 knockdown, topotecan/KEAP1
knockdown, CDDP/MET knockdown) to test whether the potency of
four drugs was increased.

Dense drug-drug synergy screening assays using high through-
put robotic handling
Doxorubicin, AZD7648, cisplatin, cabozantinib, topotecan, dimethyl
fumarate, JQAD1, and panobinostat were added into 384-well Perkin
Elmer Culture plates (Perkin Elmer #6007688) using Labcyte Echo 555
and 655 T acoustic liquid dispensers moving a total volume of 80 nL
into each well to generate desired combinations with an equivalent
final DMSO concentration of 0.2%. Each assay plate contained ten-
point dose-response curve with 1:3 dilution intervals for each com-
pound, three replicates of the pairwise drug combination matrices,
three replicates of each compound alone, and twelve replicates of each
control (DMSOand20 µMstaurosporine to represent 0%and 100% cell
death, respectively). Seeding densities were determined a priori by
growth assays for each of the 18 cell lines. Cell lines were plated into
assay plates in volumes of 40μL using a Multidrop Combi reagent
dispenser to reach desired the final desired concentrations, and then
settled for 20 s at 200 × g in a Sorvall Legend XTR centrifuge. Plates
were then incubated at 37 °C in 5% CO2 for 72 h in a High Resolution
Biosolutions Steristore incubator. After incubation the plates were
moved to a Liconic STX220 incubator, at 37 °C in 5% CO2, integrated
onta an Agilent BioCell, to determine viability. The plates were each
placed at room temperature for 20min before viability assessment.
25μL of CellTiter-Glo reagent (Promega #G9241) was added to each
well using aMultidrop Combi tomeasure viability, and the plates were
incubated for an additional 20min at room temperature. Lumines-
cence was then measured with an EnVision 2102 Multilabel Plate
Reader.

Analysis of dense drug-drug synergy screening data
The raw luminescent data was imported into R. Background-
subtracted values in RLU were assigned to the appropriate drugs and
concentrations. All replicates were normalized to the mean of their
respective inter-plate controls (vehicle for 0% cell death and staur-
osporine for 100% cell death). Normalized drug-only data were fit with
log-logistic regression to produce dose-response curves using the
DR4PL package90,91. Matrices of the percent cell death values were
constructed using means of normalized data from each of the repli-
cates per treatment combination as input. From these normalized
values, synergy scores were calculated for all tested concentration
combinations, using the Zero Interaction Potency (ZIP) model imple-
mented using the SynergyFinder package in R. The resulting synergy
matrices were used to extract the highest- and lowest-scoring con-
centration pairs to represent the most significant synergy and
antagonism.

AZD7648 (PRKDCi) and Doxorubicin treatment in SJNB14-PDX
and BE2C Xenograft models
Doxorubicin was purchased from Selleckchem (Selleckchem, S1208).
AZD7648were purchased fromChemietek (Chemietek, CT-A7648) and
formulated in 0.5% hydroxypropyl methylcellulose (Sigma, H3785-
100)/0.1%Tween80 (Sigma, P4780–500mL) (HPMC/T) for oral gavage.
Tumor size was measured with electronic calipers. The tumor volume
was calculated using the formula π/6 × d3, where d is the mean of two
diameters taken at right angles. The tumor volume and mice weight
were measured twice a week. When tumor size reached up to
~100–200mm3, the animalswere randomized into four groups (n = 4–5

mice per group). Mice were treated with vehicle (HPMC/T), doxor-
ubicin (0.75mg/kg, intraperitoneal, twice weekly), and AZD7648
(50mg/kg, twice/day, oral gavage every day and the time between the
morning and evening doses was 8 h) and combination of doxorubicin
and AZD7648 for two weeks. On the day of doxorubicin treatment,
doxorubicin was dosed 1 h after the morning dosing of AZD7648. The
humane endpoints were monitored and decided by ARC (Animal
Resources Center) staff of St. Jude and informed to euthanize themice.
All measured tumor volume was reported at Source Data file provided
in this study. The maximal tumor burden permitted was 20% of mouse
bodyweight or 4000mm3, and in our experiments, themaximal tumor
burden was not exceeded. For therapy studies in subcutaneous xeno-
graft mousemodels, themice were euthanized through CO2 inhalation
with 3 Liters/min in the mouse cage and followed by cervical disloca-
tion when the tumor volume reached or exceeded 4000mm3 (~20%
body weight which was in a range 20–25 g) or mice becamemoribund.

Western blot analysis
Cells were treated with vehicle (DMSO) or drug for 72 hrs. Total pro-
teins were extracted by using a modified RIPA buffer (HEPES, NaCl,
EDTA, PI cocktail tablet, PPi cocktail tablet, PMSF, DTT). Total 30μg of
proteins were resolved at gradient gels (Biorad). Resolved proteins
were transferred to nitrocellulose membrane by using iBlot (Invitro-
gen). The membrane was blocked by TBST at room temperature (RT)
for 30min, followed by primary antibodies (1:1000, anti-Cas9 (Cell
signal technology, 14697 S), anti-Actin (Sigma, A2228), anti-PRKDC
(Cell signal technology, 38168 S), anti-phospho PRKDC (S2056) (Cell
signal technology, 68716 S), anti-HDAC2 (Santacruz Biotech, sc-9959),
anti-MET (Cell signal technology, 8198 S), anti-KEAP1 (Cell signal
technology, 8047 S)) at 4 °C for overnight. The next day, the mem-
brane was rinsed three times with TBST and incubated with secondary
antibodies at RT for 1 h. After rinsing three times, the membrane was
imaged by Licor Odyssey XF to measure the level of target protein
levels.

Immunofluorescent staining
72 h after treatment with vehicle (DMSO) or drug, the cells were fixed
with 4% paraformaldehyde at RT for 10min and rinsed with 1× PBS
three times. The rinsed cells were permeabilized with 0.1% Triton-X
100 in 1× PBS at RT for 10min, blocked with 0.5% fetal bovine serum,
0.01% Triton-X 100 in 1× PBS at RT for 30min. After blocking, the cells
were incubated with mouse anti-γH2AX (1:500, Cell signal technology,
80312 S) or rabbit anti-phospho PRKDC (S2056) (1:200, Cell signal
technology, 68716 S) at 4 °C overnight. The next day, cells were rinsed
with 1× PBS three times and incubated with anti-mouse Alexa488 or
anti-rabbit Alexa594 at RT for 60min. Fluorescent images were taken
by Nikon Ti Eclipse and analyzed by CellProfiler (https://
cellprofiler.org).

Caspase 3/7 assay
Apoptosis was measured by luminescent caspase 3/7 assay (Promega).
Briefly, 72 hrs after treatmentwith vehicle (DMSO) or drug inBE2C and
GIMEN in 96 well plates, 100 µL of caspase 3/7 reagent was directly
added to the cell plates. The cells were incubated in the dark at room
temperature for 60min, followed by reading luminescence using a
CLARIOstar plate reader (BMG Labtech).

Cell cycle arrest and drug treatment
BE2C and GIMEN were incubated with serum free medium for 48 h to
arrest G0/G1. 48 h after starvation, the cells were released by adding
fresh complete growth medium. BE2C and GIMEN were treated with
100ng/mL of nocodazole (NOC, Medchemexpress, R17934) for 18 h to
arrest G2/M phase. 18 h after treatment, the cells were released by
washingoutNOC three times and replacedwith fresh complete growth
medium. 24 h after release of each synchronization, the cells were
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treated with vehicle (DMSO) or drugs for 72 h. The treated cells were
harvested at 1000 RPM for 10min, fixed with 70% ethanol at −20C for
2 h, then washed with 1x PBS, and staining with propidium iodide
(50ug/mL, BD PI/RNase staining buffer, BD Biosciences, 550825)
for FACS.

NHEJ, HR,and PRKDC-related assays
Non-homologous end joining (NHEJ) and homologous recombination
(HR) in BE2C and GIMEN neuroblastoma cell lines was visualized by
using a custom cell-based kit for NHEJ (Topogen, Cat # DR5000A) and
HR (Topogen, Cat # DR3000A). Following the manufacturer’s guide,
the cells were transfected with a modified GFP reporter, along with a
plasmid encoding I-SceI, or empty vector by using TransIT (Mirus, Cat
# MIR5400) in 6-well plates. 24 h after incubation, the cells were
trypsinized, and replated into 12-well plates for single treatment of
doxorubicin, AZD7648, vehicle (DMSO), and combination treatment
of doxorubicin and AZD7648. The changes in GFP of cells in 12-well
plates were monitored by using IncuCyte SX5 (Sartorius) for 72 h.

Comet assay
Comet assay was performed according to themanufacturer’s protocol
(Abcam, ab238544). Vehicle or drug treated BE2C and GIMEN cells
were harvested and resuspended in cold 1x PBS at 100 cells/uL. The
cells were mixed with comet agarose (1:10 volume ratio) and trans-
ferred to slides. The slideswere lysedwith alkaline buffer (0.3MNaOH,
1mM EDTA) at 4 °C for 60min. Slides were then subjected to elec-
trophoresis at 35 V for 30min in alkaline buffer, then fixed with 70%
cold ethanol for 5min. After fixation, the slides were stained with Vista
DNA dye (Abcam, ab238544) to visualize DNA/nuclei. The images of
the slides were taken by Nikon Ti Eclipse and analyzed by OpenComet
tool (https://cometbio.org/).

Statistics and reproducibility
Sample size for each experiment is indicated in the legend although no
statistical method was used to predetermine sample size. All experi-
ments were conducted on at least 2–3 independent biological repli-
cates. Measurements were biological replicate samples. For in vitro
experiments, cell cultures are randomly assigned to each experimental
group. For tumor-growthmeasurement, mice were randomly assigned
to each experimental group with various treatments. Data are pre-
sented as mean± SEM from at least three biological replicates unless
otherwise stated. For comparisons of two experimental groups,
unpaired t-test (two-side), or non-parametric Wilcoxon rank sum test
was used. Statistical significance is represented by asterisks corre-
sponding to *p <0.05, **p <0.01, and ****p <0.0001. GraphPad Prism
software (version 9.0) or R package (4.2) was used to generate graphs
and perform statistical analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data was generated for this study and have been
deposited in GEO (GSE223991). Summarized gRNA and gene level data
are included as Supplementary Data Tables. Detailed information on
materials is in the Supplementary Data Table 14. All remaining data can
be found in the Article, Supplementary, and Source Data files. Source
data are provided with this paper (Source data file.xlsx). Source data
are provided with this paper.

Code availability
The code to reproduce the analyses have been deposited on Open
Science Framework (https://osf.io/d9xgn/) and https://stjude.
shinyapps.io/CASAVA/.
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