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Cell-type-specific Alzheimer’s disease poly-
genic risk scores are associated with distinct
disease processes in Alzheimer’s disease

Hyun-Sik Yang 1,2,3,4 , Ling Teng1,4, Daniel Kang2, Vilas Menon 5,6,
Tian Ge3,4,7,8, Hilary K. Finucane 3,4,9, Aaron P. Schultz2,3, Michael Properzi2,
Hans-Ulrich Klein 5,6, Lori B. Chibnik 2,4,10, Julie A. Schneider 11,
David A. Bennett11, Timothy J. Hohman 12, Richard P. Mayeux6,
Keith A. Johnson1,2,3,13, Philip L. De Jager 5,6 & Reisa A. Sperling 1,2,3

Many of the Alzheimer’s disease (AD) risk genes are specifically expressed in
microglia and astrocytes, but how andwhen the genetic risk localizing to these
cell types contributes to AD pathophysiology remains unclear. Here, we derive
cell-type-specific AD polygenic risk scores (ADPRS) from two extensively
characterized datasets and uncover the impact of cell-type-specific genetic
risk on AD endophenotypes. In an autopsy dataset spanning all stages of AD
(n = 1457), the astrocytic ADPRS affected diffuse and neuritic plaques (amy-
loid-β), whilemicroglial ADPRS affected neuritic plaques,microglial activation,
neurofibrillary tangles (tau), and cognitive decline. In an independent neu-
roimaging dataset of cognitively unimpaired elderly (n = 2921), astrocytic
ADPRS was associated with amyloid-β, and microglial ADPRS was associated
with amyloid-β and tau, connecting cell-type-specific genetic risk with AD
pathology even before symptom onset. Together, our study provides human
genetic evidence implicating multiple glial cell types in AD pathophysiology,
starting from the preclinical stage.

Alzheimer’s disease (AD) is themost commoncause of dementia and is
among the leading causes of death, but clinically effective disease-
modifying intervention has been challenging1. A major barrier to AD
drug discovery is the complex pathophysiology driven bymultiple cell
types interactingwith amyloid-β (Aβ) and tau proteinopathies1–4. Large
genome-wide association studies (GWAS) of AD dementia have iden-
tified dozens of candidate causal genes, many highly expressed in

microglia and astrocytes5–7. Further, numerous sub-threshold genetic
associations are also enriched in microglial genes8–13. Microglia are
resident immune cells of the central nervous system (CNS), implicated
in Aβ clearance, Aβ-related neuroinflammation, and Aβ- and tau-
relatedneurodegeneration1,2. Astrocytes are thehubof lipoprotein and
cholesterol metabolism in the CNS, a process closely related to Aβ
metabolism, and are also implicated in neurodegeneration2,14. Both
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activated microglia and astrocytes are found proximate to neuritic Aβ
plaques1,2,15, a pathologic hallmark of AD. With strong support from
human genetics and accumulating experimental evidence, microglia,
and astrocytes are emerging as promising cellular targets for potential
disease-modifying interventions in AD.

However, how and when the AD genetic risk localizing to these
cell types contributes to distinct processes in AD remains unclear,
making it very difficult to design clinical trials that can precisely target
the right cellularprogramat the right disease stage. Theprogressionof
AD is driven by multiple related yet distinct disease processes that
gradually progress over more than two decades, leading to a sub-
stantial clinical-pathological heterogeneity3. There is significant varia-
bility in the rate of in vivo tau accumulation in individuals with similar
Aβ burden16, and the rate of cognitive decline is highly variable even in
the setting of similar Aβ and tau burden (cognitive resilience)17–19,
which have been attributed to the differential cellular responses to
neuropathologic insults4,18,20–23. On the other hand, well-powered case-
control AD dementia GWAS focus on dementia diagnosis (the final
outcome of AD progression) and does not account for individual-level
AD endophenotype (e.g., Aβ, tau, cognitive decline) variability, lacking
the resolution to localize the cell-type-specific genetic association to a
specific AD endophenotype (“how”) at a specific stage of disease
progression (“when”). AD endophenotype GWAS in deeply character-
ized individuals is a promising approach to fill this gap, but despite
recent growth in sample size21,24–26, these studies are not yet powered
for robust cell-type-specific heritability analyses.

Therefore, we need an approach to combine well-powered AD
dementia GWAS results with deeply characterized individual-level data
in a cell-type-specific manner. Previous studies have identified direct
associations of several AD dementia GWAS variants with key AD
endophenotypes such as Aβ plaques27–29, tau tangles30, and cognitive
decline29,30. Yet, most AD dementia GWAS loci have small effect sizes,
and their association with the AD endophenotypes cannot be robustly
examined with moderate sample sizes of well-characterized datasets.
Aggregating genetic effects with AD polygenic risk scores (ADPRS) can
enable robust detection of overall genetic effects on AD
endophenotypes31–33, but conventionalADPRS lacks cellular specificity.
In this context, an emerging alternative is a gene-set-based PRS
approach13,34–38 to capture cell-type-specific AD genetic risk profiles
from each individual. Previous studies have applied gene-set-based
ADPRS to predict AD dementia in a pathway- or cell-type-specific
manner13,37,38. Nonetheless, the relationships between cell-type-specific
AD genetic risk and distinct AD endophenotypes (e.g., Aβ, tau, cogni-
tive decline) remain largely unknown.

Here, we derive single nucleus RNA sequencing (snRNA-seq)-gui-
ded cell-type-specific ADPRS from two extensively characterized
datasets and clarify how and when AD genetic risk localizing to each
major brain cell type contributes to distinct disease processes in AD.
We first leverage detailed post-mortem quantitative neuropathology
data from two community-based cohorts that span the full pathologic
and clinical disease severity spectrum. We observe specific associa-
tions of astrocytic (Ast) and microglial (Mic) ADPRS with distinct AD
endophenotypes and perform causal modeling analyses. Then, we
focus on the preclinical (asymptomatic) stage of AD and examine the
association between cell-type-specific ADPRS and neuroimaging AD
biomarkers in a clinical trial screening dataset, replicating our key
findings and establishing the early role of astrocytic and microglial
genetic risk in AD pathogenesis.

Results
Study participants
Our study participants are from two independent datasets. First, we
examined the impact of cell-type-specific ADPRS on the longitudinal
cognitive and post-mortem neuropathology data from the Religious
Orders Study and the Rush Memory and Aging Project (ROSMAP)
(n = 1457, mean age 89.7 ± 6.5, 67% female, 69% with elevated Aβ, 45%
with dementia; Table 1). ROS and MAP are community-based cohorts
with annual cognitive exams and comprehensive postmortem neuro-
pathologic evaluation, and the full spectrum of pathologic and clinical
stages of AD are represented39. Second, we analyzed the genetic and
phenotypic data from the pre-randomization (screening) phase of the
Anti-Amyloid Treatment in Asymptomatic Alzheimer’s (A4) study40, a
secondary AD prevention trial. The A4 screening dataset consists of CU
older adults with florbetapir positron emission tomography (PET)
evaluation (n = 2921, mean age 71.4 ± 4.8, 60% female, 30% with ele-
vated Aβ; Table 1), enabling us to test whether cell-type-specific ADPRS
also impacts the in vivoADendophenotypes in the earliest stagesofAD.

Derivation of cell-type-specific ADPRS
We adapted and combined previously described
approaches10,11,13,34–38,41,42 to derive cell-type-specific ADPRS (Fig. 1a).We
first used a Bayesian regression approach (PRS-CS)41 to perform effect
size shrinkage on the base AD GWAS summary statistics (Bellenguez
et al., stage I)5. PRS-CS assigns posterior effect sizes for each genetic
variant based on the GWAS summary statistics and linkage dis-
equilibrium (LD) structure and does not prune the linked SNPs. Thus,
PRS-CS retains more SNPs and reduces information loss, compared to
the widely used LD clumping methods that only retain one lead SNP
per LD block (Supplementary Table 1). Further, PRS-CS only uses the
GWAS summary statistics for optimization, avoiding overfitting to the
target datasets (see Methods). Then, we used a previously published
neocortical snRNA-seq dataset from 24 controls43 (ROSMAP partici-
pants with no or very little pathology; no participant overlap with our
study) and derived cell-type-specific gene lists fromsixmajor brain cell
types: excitatory neurons (Ex), inhibitoryneurons (In), astrocytes (Ast),
microglia (Mic), oligodendrocytes (Oli), and oligodendrocyte pre-
cursor cells (Opc). After removing the APOE region (APOE ± 1 MB), we
defined a cell-type-specific gene list by selecting genes within the top
10% of expression specificity10,11 for each cell type (i.e., top 1343 genes).
Only a minor proportion of cell-type-specific genes were specific to
two or more brain cell types (Fig. 1b), and we allowed this overlap as
some genes may have important roles in multiple (but not all) cell
types. Each cell-type-specific ADPRSwas computed fromROSMAP and
A4, using 30 kb margins upstream and downstream of cell-type-
specific genes. The cell-type-specific ADPRSs included 7.6–10.4% of all
examined variants (Supplementary Table 1), and they were orthogonal
to each other (R2 < 0.1), except for the Mic- and Oli-ADPRS pair with a
strong positive correlation (R2 = 0.31 in ROSMAP, R2 = 0.26 in A4)
(Fig. 1c, d). Much of the shared variance between Mic- and Oli-ADPRSs

Table 1 | Study participant characteristics

ROSMAP (n = 1457) A4 (n = 2921)

Mean Age, years (SD) 89.7 (6.5) 71.4 (4.8)

Female (%) 973 (67) 1740 (60)

Mean Education, years (SD) 16.3 (3.6) 16.7 (2.7)a

APOE ε4 carrier (%) 376 (26) 1038 (36)

Mean Florbetapir, cortical
SUVR (SD)

NA 1.10 (0.19)

Elevated Aβ (%) 1008 (69) 890 (30)b

Pathological diagnosis of AD 954 (65) NA

Median MMSE (IQR) 24 (13) 29 (2)

All-cause dementia (%) 661 (45) 0 (0)

AD dementia (%) 539 (37) 0 (0)

AD dementia, AD with dementia, APOE apolipoprotein E, IQR interquartile range, MMSEMini-
Mental State Examination, SD standard deviation, SUVR standardized uptake value ratio (whole
cerebellar reference).
an = 2919 with data.
bn = 2920 with data.
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remained even when the PRSs were derived without genomic margin
(R2 = 0.21 in ROSMAP, R2 = 0.18 in A4), indicating that the correlation
between the two is likely due to overlapping genes rather than over-
lapping genomic margins. Mic-specific and Oli-specific gene sets
shared 136 genes (10.1% of each set), which include known AD risk
genes5, such as ADAM10, BIN1, CR1, and PICALM.

Cell-type-specific ADPRSs were associated with distinct AD
endophenotypes in ROSMAP
Then, we tested the association of cell-type-specific ADPRSs with
seven AD endophenotypes in ROSMAP: autopsy-confirmed AD

dementia, immunohistochemistry (IHC)-assessed Aβ and paired
helical filament tau (PHFtau), Bielschowsky silver stain-assessed
diffuse plaque (DP), neuritic plaque (NP), and neurofibrillary tangle
(NFT), and longitudinally assessed cognitive decline (Supplemen-
tary Table 2). IHC enables a molecularly specific and quantitative
assessment of Aβ and tau pathology, while the silver stain allows a
separate assessment of specific morphological subtypes of amyloid
plaques (DP vs. NP). The ADPRS derived from the entire autosomal
genome, excluding the APOE region (All-ADPRS), was associated
with all endophenotypes except for DP (Fig. 2 and Supplementary
Tables 3–9).

Fig. 1 | Cell-type-specificAlzheimer’s disease polygenic risk scores (ADPRS). aA
schematic of cell-type-specific PRS derivation. b An UpSetR plot of cell-type-
specific gene sets used to define cell-type-specific ADPRS. Each cell-type-specific
gene set includes genes within the top 10% of cell-type specificity (n = 1343). Each
row of the matrix represents each cell-type-specific gene set, and each column of
the matrix represents an intersection of one or more sets. Gene sets in each
intersectionwere indicated byfilled black circles connected by a black vertical line.
The vertical bar graph on the top shows the number of genes in each intersection.

The 15 most frequent intersections were visualized. c, d Correlation matrix among
cell-type-specific ADPRS (c ROSMAP; d A4). Pearson’s correlation coefficient was
positive for all pairs, and the square of Pearson’s correlation coefficient (R2)
between pairs of cell types was visualized. Source data are provided as a Source
Data file. Ast astrocytes, Ex excitatory neurons, In inhibitory neurons, Mic micro-
glia, Oli oligodendrocytes, Opc oligodendroglial progenitor cells, snRNA-Seq sin-
gle nucleus RNA-sequencing.
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Mic-ADPRS was the only cell-type-specific ADPRS significantly
associated with increased odds of autopsy-confirmed AD dementia
(Fig. 2a and Supplementary Table 3), consistent with the previous
studies focusing on cell-type-specific heritability of AD dementia5–13.

Ast-ADPRS was the only cell-type-specific ADPRS significantly
associated with all three tested measures of post-mortem fibrillar Aβ
burden: IHC-assessedAβ and silver-stain assessedDP andNP (Fig. 2b–d
and Supplementary Tables 4–6). Oli-, and Mic-ADPRSs were more
specifically associated with the NP burden (Fig. 2d and Supplementary
Table 6). DP is an amorphous aggregation of Aβ with minimal cellular
reaction, while NP contains a dense core with surrounding neuroglial
reaction including dystrophic neurites, activated microglia, and reac-
tive astrocytes44,45. Although DP and NP burden are highly correlated
(Pearson’s r =0.69 in our study), only NP was associated with multiple
glial ADPRS, supporting that the observed cell-type-specific ADPRS—
trait association was not driven by the correlation between AD endo-
phenotypes. Thus, our finding suggests that astrocytic genetic pro-
grams contribute to Aβ accumulation starting from the early stages of
fibrillar Aβ formation, perhaps by shifting the balance between Aβ
production and clearance: this program might have the greatest
impact on the overall fibrillar Aβ level. On the other hand, microglial
and oligodendrocytic genetic programs may primarily contribute to
cellular reaction to Aβ leading to NP formation46–48.

Multiple cell-type-specific ADPRSs (Mic-, Oli-, Ast-, and Ex-
ADPRSs) were associated with IHC-assessed PHFtau burden, and the
strongest association was observed with Mic-ADPRS (Fig. 2e and
Supplementary Table 7). Oli-, Ast-, and Ex-ADPRS remained nominally
associated (p <0.05) with PHFtau even after adjusting for Mic-ADPRS

(Supplementary Table 10), and Oli-, Ast-, and Ex-ADPRS calculated
after excluding genes overlapping with microglia were all associated
with PHFtau (Supplementary Table 11). Mic-, Oli-, and Ast-ADPRS were
also associated with silver stain-assessed NFT burden, while Ex-ADPRS
—NFT association did not reach statistical significance (Fig. 2f and
Supplementary Table 8).

Mic- and Oli-ADPRS were significantly associated with cognitive
decline (Fig. 2g and Supplementary Table 9), but Oli-ADPRS was no
longer associatedwith cognitive decline after adjusting forMic-ADPRS
(p = 0.41). We note that cognitive decline in older adults is a complex
phenomenon: less than 50% of the variability can be explained even
after considering multiple pathologies and other known
contributors18,49. This complexity might have undermined statistical
power to detect the weaker associations, leaving Mic-ADPRS as the
only cell-type-specific ADPRS independently associated with cognitive
decline and dementia after accounting for multiple testing
corrections.

In a subset of ROSMAP participants with morphological assess-
ments of microglial activation (n = 201 MAP participants, demo-
graphics summarized in Supplementary Table 12), we explored
whether Mic-ADPRS is associated with the proportion of activated
microglia (PAM50). Histologically characterized microglial activation
from the neocortex has a strong association with AD pathology, but its
associations with known AD risk variants, including APOE ε4 (p = 0.85
in our study), were not significant at the single variant level50. Mic-
ADPRSwas associatedwith an increased PAM (Fig. 2h; beta = 9.2 × 10−3,
95% CI 8.4 × 10−4 to 0.017, p = 0.031). Thus, our cell-type-specific
ADPRS showed that a higher microglial AD genetic risk may lead to

Fig. 2 | Association of cell-type-specific AD polygenic risk scores in ROSMAP.
aAssociation of cell-type-specific ADPRSswith the odds of ADwith dementia (case:
n = 538, control: n = 248). bAssociation of cell-type-specific ADPRSs with overall Aβ
burden. c Association of cell-type-specific ADPRSs with overall diffuse plaque (DP)
burden. dAssociation of cell-type-specific ADPRSswith overall neuritic plaque (NP)
burden. e Association of cell-type-specific ADPRSs with overall paired-helical-
filament tau (PHFtau) burden. f Association of cell-type-specific ADPRSs with
overall neurofibrillary tangle (NFT) burden. g Association of cell-type-specific
ADPRSs with cognitive decline (the slope of annual change in antemortem mea-
sures of global cognitive composite). For a–g, the y-axis indicates -log10(p-value) of
each association, the black solid horizontal line indicates thep-value corresponding
to multiple comparisons-corrected statistical significance (FDR=0.025), and the
black dashed horizontal line indicates p =0.05. The p-values (two-sided, unad-
justed) are from regression models (a logistic regression, b–g linear regression)

adjusting for APOE ε4, APOE ε2, age at death, sex, genotyping platform, years of
education (only for a and g), and the first three genotyping principal components.
The effect size of each statistically significant PRS-trait association was quantified
with ΔR2 (difference of Nagelkerke’s R2 (a) or adjusted R2 (b–g) between the linear
models with and without the given PRS term; b–g) and indicated above the bar
graph. Also, see Supplementary Tables 3–9 for further details. Source data are
provided as a Source Data file. h Association of Mic-ADPRS (x-axis) and the pro-
portion of activated microglia (PAM, y-axis). On y-axis, residual PAM values
adjusting for covariates (APOE ε4, APOE ε2, age at death, sex, genotyping platform,
and the first three genotyping principal components) were shown. T-statistics and
p-values from linear regression (adjusting for the covariates) are shown. Created
with Biorender.com. Act. Mic. activated microglia, All full autosomal genome, Ast
astrocytes, Ex excitatory neurons, In inhibitory neurons, Mic microglia, Oli oligo-
dendrocytes, Opc oligodendroglial progenitor cells.
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dysfunctional microglial activation, a relationship that was not
apparent at the single AD GWAS variant level50.

All 15 significant associations between cell-type-specific ADPRSs
andADendophenotypes remained similar evenwhenweuseddifferent
genomic margins for PRS (results from genes ±10 kb or ±100 kb; Sup-
plementary Table 13) or adjusted for the higher number of genotype
principal components (Supplementary Table 14). We also bench-
markedour results against the PRSet13, a previously published gene-set-
based PRS approach that uses an LD clumping approach. Our PRS-CS-
based cell-type-specific ADPRSs explained greater variances (ΔR2) than
PRSet scores in 14 out of 15 endophenotype-PRS associations (Sup-
plementary Table 15 and Supplementary Fig. 1; 10 with empiric boot-
strap p <0.05). Thus, our PRS-CS-based approach—that retains more
cell-type-specific variants (Supplementary Table 1) and local genomic
information—showed a superior statistical power than the existing LD-
clumping-based approach. None of the observed trait—cell-type-spe-
cific ADPRS associations showed significant statistical interactions with
age, sex, or APOE ε4 dosage (=no significant effect moderation).

To summarize, multiple cell-type-specific ADPRS were associated
with AD endophenotypes in ROSMAP, consistent with the view that
multiple cell types might contribute to AD pathophysiology1–4. We
performed causalmodeling analyses, as detailed in the next section, to
further clarify the relationship between cell-type-specific ADPRSs and
AD endophenotypes.

Causal modeling analyses mapped Mic- and Ast-ADPRS to dis-
tinct events in the AD pathophysiologic cascade
We performed causal modeling to map the contribution of each cell-
type-specific ADPRS to the sequence of events in AD pathophysiology,
focusing on Mic- and Ast-ADPRS that showed significant associations
with multiple AD endophenotypes. Although Oli-ADPRS was also
strongly associated with NP and tau, we had to exclude it from this
modeling approach, given the difficulty in statistically separating its
effect from the colinear Mic-ADPRS. Here, we leveraged genetic risk
scores that are assigned randomly at conception and are not subject to
reverse causation51. We also used the postulated sequence of AD pro-
gression as the prior for our model: Aβ accumulation starts as DP,
which evolves into NP with surrounding gliosis, triggering tau NFT
formation and cognitive decline4,44.

Wefirst performed causalmediation analyses todistinguishdirect
and mediated effects among cell-type-specific ADPRSs and AD endo-
phenotypes (Fig. 3a–d and Supplementary Table 16). Ast-ADPRS had a
direct effect on NP not fully mediated by DP (Fig. 3a), while the direct
Ast-ADPRS – NFT association was no longer significant after con-
sidering the NP-mediated effect (Fig. 3b). On the other hand, there
were significant direct effects of Mic-ADPRS on NFT and cognitive
decline even after accounting for the upstream processes (Fig. 3c, d).

Synthesizing these results, we constructed a structural equation
model (SEM) from n = 1392 ROSMAP participants with nomissing data
(Fig. 3e). This SEMhas an excellentmodel fit and highlights the distinct
contribution of each cell-type-specific ADPRS: Ast-ADPRS affects AD
pathophysiology mainly through its effect on Aβ (diffuse and neuritic
plaques), while Mic-ADPRS has a broader impact on multiple core
pathological and clinical endophenotypes of AD (NP, NFT, and cogni-
tive decline). Moreover, Mic-ADPRS influenced cognitive decline
above and beyond AD pathology, suggesting the role of microglia in
cognitive resilience. We acknowledge that this model derived using
post-mortem cross-sectional neuropathology data cannot prove a
causal relationship. Still, our approach provides a plausible model
based on human genetics that can inform future mechanistic studies.

Cell-type-specific ADPRSs were associated with in vivo AD bio-
markers in CU older adults
Then, we used in vivo neuroimaging biomarker data from CU older
adults in the A4 screening data and assessed the role of cell-type-

specific AD genetic risk in preclinical AD. We tested four AD endo-
phenotypes inA4 (Aβ PET, tauPET, hippocampal volume [HV; amarker
of neurodegeneration], and Preclinical Alzheimer Cognitive Compo-
site [PACC]52; Supplementary Table 17). All-ADPRS was associated with
all testedAD endophenotypes, while cell-type-specific ADPRSs showed
distinct association patterns (Fig. 4).

Ex-, Ast-, Mic-, and Oli-ADPRS were significantly associated with in
vivo Aβ (FDR <0.025; Fig. 4a and Supplementary Table 18). Ex- andAst-
ADPRS remained nominally associated with Aβ after adjusting for Mic-
ADPRS or excluding genes overlapping with ADPRS, while Oli-ADPRS—
Aβ association was no longer present (Supplementary Tables 19, 20).
These results indicate that the genetic architecture of Aβmeasured by
PET is more similar to NP (Fig. 2d, Ast/Mic/Oli-ADPRS associations)
rather than DP (Fig. 2c, only Ast-ADPRS association); this is likely
because the PET radiotracers for Aβ have a greater affinity to NP than
DP53,54. A larger sample size in A4 enabled us to detect the additional
Ex-ADPRS –Aβ association.

In a smaller subset with tau PET data (n = 302; demographics
summarized in Supplementary Table 21), only Mic-ADPRS was sig-
nificantly associated (FDR <0.025)with tau (temporal lobe composite)
(Fig. 4b and Supplementary Table 22). This differs from multiple cell-
type-specific ADPRS associations with PHFtau and NFT in ROSMAP.
Interestingly, in a subset of ROSMAP participants who were CU
(n = 454), only Mic-ADPRS was associated with PHFtau (beta = 0.16,
p = 1.0 × 10−4), while Oli-, Ast-, and Ex-ADPRS were not (p >0.05; Sup-
plementary Table 23). Thus, despite important differences in pheno-
type measurement, results from ROSMAP and A4 suggest a coherent
biology: microglia may exacerbate tau pathology starting from the
preclinical stage of AD, while other cell types may contribute to tau
pathology later in the symptomatic disease stages.

On the other hand, there was a limited cell-type-specific ADPRS
associationwith neurodegeneration (HV) or cognition (PACC) in A4. In
a subsetwith structuralMRIdata (n = 1266; demographics summarized
in Supplementary Table 24), HV was not associated with any cell-type-
specific ADPRSs (Fig. 4c and Supplementary Table 25). PACC, a sensi-
tive cognitive composite optimized to detect early Aβ-related cogni-
tive decline52, was only associated with Ast-ADPRS (Fig. 4d and
Supplementary Table 26), and this association remained similar even
after adjusting for PET-measured Aβ (beta = −0.10, p = 0.015). The
A4 study is likely underpowered to detect the impact of cell-type-
specific AD genetic risk on neurodegeneration or cognitive impair-
ment because all participants in the A4 screening dataset were CU
without extensive AD-related neurodegeneration or cognitive decline.
Nonetheless, the Aβ-independent association between Ast-ADPRS and
PACC hints at a possible effect of Ast-ADPRS on early cognitive decline
above and beyond AD pathology.

All six significant associations between cell-type-specific ADPRS
and AD endophenotypes in A4 were robust to the size of genomic
margins (genes ±10 kb or ±100 kb; Supplementary Table 27) or the
number of genotype PCs adjusted for (Supplementary Table 28). Our
PRS-CS-based cell-type-specific ADPRSs explained greater variances
(ΔR2) than all corresponding PRSet scores (Supplementary Table 29,
Supplementary Fig. 2; 3 out of 6with empiricbootstrapp <0.05).None
of the observed trait—cell-type-specific ADPRS associations showed
significant statistical interactions with age, sex, or APOE ε4 dosage
(=no significant effect moderation).

Discussion
We derived cell-type-specific ADPRSs in two independent and well-
characterized datasets to show that AD genetic risk localizing to dif-
ferent neuroglial cell types makes distinct contributions to AD
pathophysiology. Our findings provide human genetics evidence to
support the disease model where astrocytes play an important early
role in Aβ clearance before plaque maturation, while microglia are
primarily involved in later phases of Aβ plaque maturation (i.e., NP
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formation) and abnormal tau accumulation. Lipoprotein and choles-
terol metabolism, primarily driven by astrocytes in the CNS, are
implicated in Aβ metabolism2. Further, Aβ clearance occurs through
the blood-brain barrier (BBB) and perivascular circulation, and astro-
cytes are among the main constituents of the BBB2. Thus, AD genetic
risk localizing to astrocyte-specific genes may collectively undermine
theAβmetabolismandperivascular Aβ clearance, which leads to initial
parenchymal fibrillar Aβ accumulation (DP). Then, dysfunctional
microglial activation—which the aggregate microglial AD genetic risk
may drive—and subsequent ineffective fibrillar Aβ removalmay lead to
NP formation, with additional contributions from astrocytes. On the
other hand, tau pathology accumulation is likely to be initially driven
by microglia in the preclinical stage, with later contributions of
astrocytes, oligodendrocytes, and cell-autonomous actions of excita-
tory neurons. Interestingly, a recent spatial transcriptomics study from
mice15 showed that Aβ plaques are surrounded immediately by

microglia and more distantly by astrocytes, while hyperpho-
sphorylated tau affects excitatory neurons in an environment enriched
with oligodendrocytes, providing a landscape coherent with what our
human genetics study suggests.

It is important to note that each cell-type-specific ADPRS
explained 3% or less of the variance in each AD endophenotype. Thus,
the current cell-type-specific ADPRS is unlikely to be a useful stand-
alone tool for clinical trial screening or disease risk stratification.
Nonetheless, our study demonstrates that cell-type-specific PRS can be
used to gain deeper pathophysiologic insights fromwell-characterized
cohorts andguide futuremechanistic and clinical-translational studies.
For example, cell-type-specific PRS couldbe leveraged for a genetically
guided sampling of induced pluripotent stem cell (iPSC) lines for
specific cell type differentiation, or it can be used for cell-type-specific
pharmacogenomic studies of anti-Aβ immunotherapies. Further, our
study provides genetic support to consider in vivo Aβ and tau PET—

Fig. 3 | Causal mediation analyses and structural equation modeling of cell-
type-specificADPRSandADendophenotypes. aDPpartiallymediates Ast-ADPRS
—NP association (n = 1452). bNPmediates most of the Ast-ADPRS—NFT association
(n = 1474), and thedirect effectofAst-ADPRSonNFT is not significant. cNPpartially
mediates Mic-ADPRS—tau association (n = 1474). d NFT partially mediates Mic-
ADPRS—cognitive decline association (n = 1392). The model included NP burden as
a covariate. Allmodels in a–d are linearmodels adjusted for age, sex, education (for
cognitive decline slope), APOE ε2 count, APOE ε4 count, genotype batch, and first
three genotype principal components, and non-parametric bootstrapping
(n = 10,000 iterations) were used to derive empiric two-sided p-values and 95%
confidence intervals for the average causal mediated effect, average direct effect,
and proportion mediated. Also, see Supplementary Table 16 for further details.
e Structural equation modeling (SEM) shows a probable causal relationship

between cell-type-specific ADPRS and AD endophenotypes. Black solid arrows
indicate phenotype-phenotype associations and red solid arrows indicate
genotype-phenotype associations. All depicted associations were nominally sig-
nificant (p <0.05). Numbers adjacent to each arrow indicate completely standar-
dized solutions (relative strength of the effect). Model fit metrics indicate an
excellent model fit. All linear associations in this SEM are adjusted for age, sex,
education (for cognitive decline slope), APOE ε2 count, APOE ε4 count, genotype
batch, andfirst threegenotypeprincipal components. CreatedwithBiorender.com.
CFI comparative fit index, DP diffuse plaque, Nobs number of observations (parti-
cipants), Nparameter number of model parameters, NP neuritic plaque, n.s. not sig-
nificant, RMSEA rootmean square error of approximation, SRMR standardized root
mean square residual, TLI Tucker Lewis Index.
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both associated with Mic-ADPRS in preclinical AD—as intermediate
biomarker read-outs in future AD prevention trials modulating
microglia.

Our approach significantly extends and improves previously
published methods to determine cell type specificity in AD dementia
heritability5–11 in the following aspects. First, we derive individual-level
PRS to not only assess cell-type-specific genetic contributions to the
final outcomeofADdementia but alsoexamine the impactof cell-type-
specific AD genetic risk on key pathophysiologic events in AD. This is a
significant advancement toward the genetic dissection of distinct AD
endophenotypes in humans. Second, by combining summary
statistics-driven optimization of Bayesian LD shrinkage (PRS-CS) with
cell-type-specific partitioning of PRS, our approach improved statis-
tical power while avoiding overfitting during the target dataset-based
p-value thresholding. Third, our approach allows straightforward
adjustment of other cell-type-specific ADPRS or AD endophenotypes
in the analysis by simply including them as a covariate, which is
another significant advantage over purely summary statistics-based
computationalmethods. This strength enabled us to perform complex
multivariate causal modeling that included multiple cell-type-ADPRSs
andAD endophenotypes in the samemodel, thereby clarifying the role
of each cell-type-specific genetic risk in AD pathophysiology.

Several limitations should be considered in interpreting our results.
First, our results establish associations between the cell-type-specific

genetic risk and AD endophenotypes but do not directly identify the
mechanisms of these associations. Second, our study is underpowered
to detect weaker cell-type-specific ADPRS–endophenotype associations
or weak statistical interactions between the PRS and age, sex, or APOE
ε4. Third, our results may have been affected by the parameters and
base datasets we chose, such as the number of genes to be considered
cell-type-specific (top 10%), genomic margin near the target genes
(30kb), the snRNA dataset, and the base GWAS. To maximize compar-
ability, we followed the convention adopted by previous studies on cell-
type-specific heritability of AD dementia9–11 (e.g., using top 10% of the
cell-type-specific genes). The rationales for choosing the particular
snRNA dataset43 and the base GWAS5 are detailed in Methods, and we
showed that the association between cell-type-specific ADPRS and AD
endophenotypes was robust to the genomic margins selected. Fourth,
our cell-type-specific ADPRS excludes the larger APOE region and can-
not assess the cell-type-specific impact of genes within this region. Also,
our study focuses on common variants and does not consider rare
variants that may have strong effects on AD endophenotypes. Fifth, our
study focuses on comparing acrossmajor cell types, but it is well known
that diverse cell states (subtypes) exist within each cell type, including
disease-associated cell states43,55. Also, we could not examine AD genetic
risk localizing to endothelial cells and pericytes in this study, given the
small number of vascular niche cell types profiled in a typical snRNA-seq
study. With increasing sample size and newer methods56, we hope to

Fig. 4 | Association of cell-type-specific AD polygenic risk scores in A4.
a Association of cell-type-specific ADPRSs with cortical Aβ (florbetapir PET cortical
composite SUVR). b Association of cell-type-specific ADPRSs with temporal lobe
tau (flortaucipir PET temporal lobe composite SUVR). c Association of cell-type-
specific ADPRSs with hippocampal volume (HV). d Association of cell-type-specific
ADPRSs with screening Preclinical Alzheimer Cognitive Composite (PACC). The y-
axis indicates -log10(p-value) of each association. The black solid horizontal line
indicates the p-value corresponding to statistical significance (FDR=0.025), and
the black dashed horizontal line indicates p =0.05. The p-values (two-sided,

unadjusted) are from linear regressionmodels adjusting forAPOE ε4,APOE ε2, age,
sex, intracranial volume (only for c), years of education (only for d), and the first
three genotyping principal components. Effect size of each statistically significant
PRS-trait association was quantified with ΔR2 (difference of adjusted R2 between
the linearmodelswith andwithout the given PRS term) and indicated above the bar
graph. Also, see Supplementary Tables 18, 22, 25, and 26 for further details. Source
data are provided as a Source Data file. Created with Biorender.com. SUVR stan-
dardized uptake value ratio.
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assess cell-state-specific AD risk targeting rarer cell states—including
endothelial and pericytes subtypes—in the near future. Finally, we lim-
ited our study to participants of European ancestry, as well-powered AD
GWAS summary statistics were only available from individuals of Eur-
opean ancestry. Our current results may not generalize to other
ancestries, and well-powered AD GWAS from non-European ancestries
are urgently required to address the racial and ethnic disparities in AD
genomics research.

Despite these limitations, our study leveraged two well-
characterized datasets to reveal robust and coherent direct associa-
tions of AD genetic risk localizing to different glial cell types with
distinct disease processes in AD, including in the preclinical stage.
Further, our cell-type-specific PRS can be extended to any other phe-
notypes beyond AD, as far as there are available GWAS summary sta-
tistics and well-characterized target datasets. Future studies
combining cell-type-specific polygenic approaches with large-scale
multimodal data from deeply phenotyped cohorts andmodel systems
could enable further causal dissection of the cellular contributions to
AD pathogenesis.

Methods
ROSMAP: participants and phenotypic characterization
The Religious Orders Study (ROS) and the Rush Memory and Aging
Project (MAP) were approved by an Institutional Review Board (IRB) of
Rush University Medical Center. The ROS started in 1994 and is
enrolling Catholic priests, brothers, and nuns across religious com-
munities in the United States39. The MAP started in 1997 and is enrol-
ling diverse participants from northeastern Illinois39. Each participant
signed an informed consent, Anatomic Gift Act, and Repository Con-
sent allowing their data to be repurposed. Both studies enrolled older
participants who did not have known dementia at enrollment and
agreed to organ donation after death (overall autopsy rate >85%). ROS
and MAP (ROSMAP) were designed for combined analyses, and the
same teamof investigators at Rush Alzheimer’s Disease Center (RADC)
performed coordinated clinical and neuropathological assessments.
By the time of their death, ROSMAP participants exhibit a broad and
continuous spectrum of cognitive and functional impairment (ranging
from cognitively unimpaired to dementia) and neuropathology bur-
den (ranging from no pathology to severe neurodegenerative/cere-
brovascular pathology), representing the general aging population39.
Deceased participants of European ancestry who had quality-
controlled genome-wide genetic data and immunohistochemistry
evaluation of either Aβ or tau burden were included in our
study (n = 1457).

Each participant got a comprehensive annual cognitive evaluation
including the following 19 tests spanningmultiple cognitive domains39:
Word List Memory/Recall/Recognition, East Boston Immediate/
Delayed Recall, Logical memory immediate/delayed, Boston Naming
Test, Category Fluency, reading test (10 items), Digit Span forward/
backward/ordering, Judgment of Line Orientation, Standard Pro-
gressive Matrices, Symbol Digit Modalities Test, Number Comparison,
Stroop Color Naming, and Stroop Word Reading. Each participant’s
annual global cognitive function was defined as the average z-scores
from these tests (standardized to baseline measures). Longitudinal
cognitive decline was captured by a random slope of global cognitive
function from a linear mixed-effect model adjusting for baseline age,
sex, and years of education and their time interaction terms39,57. Final
clinical diagnoses (cognitively unimpaired,mild cognitive impairment,
and dementia) were assigned by a neurologist using all available
antemortem clinical data without access to the postmortem neuro-
pathologic evaluation58.

A comprehensive post-mortem neuropathological evaluation was
performed to quantify AD pathology (amyloid-β [Aβ] plaques and tau
neurofibrillary tangles)59,60. Immunohistochemistry was used to assess
the overall Aβ and paired helical filament tau (PHFtau) across eight

brain regions (hippocampus, entorhinal cortex, mid-frontal cortex,
inferior temporal cortex, angular gyrus, calcarine cortex, anterior
cingulate cortex, and superior frontal cortex). Quantitative Aβ and
PHFtau burdenswere defined as the percentage area occupied by each
pathology, averaged across the eight brain regions. In addition,we also
analyzed both diffuse plaques (DP) and neuritic plaques (NP)—that are
thought to reflect varying decree of local neuroglial reaction to Aβ
accumulation44,45—and neurofibrillary tangles (NFT; tau pathology)
assessed with silver-stained slides from five brain regions (entorhinal
cortex, hippocampus [CA1], mid temporal cortex, inferior parietal
cortex, and midfrontal cortex). Then, the count from each region was
scaled with the corresponding standard deviation and averaged to
derive quantitative summary measures of DP, NP, and NFT. All quan-
titative AD pathology variables were square-rooted for further ana-
lyses, given their positively skewed distributions. “Elevated Aβ” was
defined as the Consortium to Establish a Registry for Alzheimer’s Dis-
ease (CERAD) neuritic plaque score of “definite” or “probable.” A
pathologic AD diagnosis was made using the modified National Insti-
tute on Aging-Reagan Institute criteria61. A diagnosis of AD with
dementia (autopsy-confirmed AD dementia) was made when a parti-
cipant with pathologic AD also had the final clinical diagnosis of
dementia3. The control group was defined as individuals without
pathologic AD, who were also deemed to be cognitively unimpaired
(CU) per the final clinical diagnosis.

Microglial density was assessed usingmicroscopic examination in
a subset ofMAPparticipants,with the followingmorphologic criteria50:
stage 1, not activated (thin, ramified processes); stage 2, activated
without macrophage-like appearance (rounded cell body >14μmwith
thickened processes); stage 3, activated with macrophage-like
appearance (cell body >14μm). The proportion of activated micro-
glia (PAM) was defined as the square root of the proportion of stage 3
microglia50. We used average PAM from two neocortical regions
(inferior temporal andmid-frontal) that showed significant association
with AD pathology in a previous study50.

A4 screening data: participants and phenotypic
characterization
The A4 study protocol was approved by IRBs at each participating
site, and all participants signed informed consent before the study
procedures. The A4 study is a secondary prevention trial that
enrolled CU older adults (between age 65 and 85) with evidence of
cortical Aβ accumulation on PET imaging from 67 sites in the United
States, Australia, Canada, and Japan40,62. Inclusion criteria to select
CU older adults included Clinical Dementia Rating global score of 0,
Mini-Mental State Examination (MMSE) score of 25 to 30, and
Logical Memory Delayed Recall (LMDR) score of 6 to 18. Six thou-
sand seven hundred sixty-three participants underwent cognitive
screening, and 4486 participants who met the cognitive inclusion
criteria (i.e., CU) had a screening positron emission tomography
(PET) to quantify the fibrillar Aβ burden. Although only those
determined to have elevated Aβ were eligible to be randomized in
the A4 clinical trial, we used all available data from the screening
visits for this study. Of note, while the A4 study has recently
concluded63, the longitudinal post-randomization data, which is
solely in participants who had elevated Aβ and were otherwise eli-
gible for treatment, is not yet available for general use outside of
clinical trial outcome analyses as of August 2023. Participants of
European ancestry with florbetapir PET and genetic data were
included in our study (n = 2921).

The Preclinical Alzheimer Cognitive Composite (PACC)52, a cog-
nitive composite optimized to detect early Aβ-related cognitive
changes, was calculated by averaging z-scores of the following four
cognitive tests at screening: MMSE, the Free and Cued Selective
Reminding Test (total recall), LMDR, and the Digit Symbol
Substitution Test.
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We used 18F-florbetapir PET as a biomarker of Aβ. The florbetapir
PET was acquired between 50 and 70min after injecting florbetapir,
and a mean cortical standardized uptake value ratio (SUVR) was cal-
culated using a whole cerebellar reference. “Elevated Aβ” was defined
as with florbetapir PET cortical SUVR≥ 1.15, or 1.15 > SUVR> 1.10 and a
positive visual read62. We used 18F-flortaucipir (FTP) PET as a biomarker
of tau. The FTP PET was acquired between 80 and 110min after
injecting FTP, and tauwasquantifiedusing FTP SUVR from thebilateral
temporal composite region of interest (ROI), which includes the
entorhinal cortex, parahippocampal gyrus, fusiform gyrus, and infer-
ior temporal cortex. These are among the earliest regions to accu-
mulate cerebral tau pathology in AD, and the tau burden in these
regions is associated with cognitive decline16,64,65. We did not apply
partial volume correction (PVC). 3D T1-weighted brain MRI was done,
and the image was processed with NeuroQuant (http://www.
cortechslabs.com/neuroquant) for automated segmentation and seg-
mental volume calculation. We used bilateral hippocampal volume
(HV) as a marker of neurodegeneration, adjusting for intracranial
volume (ICV).

Genetic data acquisition, processing, and study participant
selection
In ROSMAP, DNA was extracted from blood or postmortem brain tis-
sue. Codons 112 and 158 from APOE exon 4 were sequenced to deter-
mine APOE haplotypes (ε2, ε3, or ε4). Genome-wide genotyping was
performed on the Affymetrix GeneChip 6.0 platform (n = 1878),
the Illumina OmniQuad Express platform (n = 566), or the (Illumina)
Infinium Global Screening Array (n = 494)66. Data from each genotyp-
ing platform were processed using the same quality control (QC)
pipeline, using PLINK67: genotype call rate (SNP) > 95%, minor allele
frequency (MAF) > 0.01, non-random missingness (SNP) p < 10−9,
Hardy–Weinberg equilibrium p < 1.0 × 10−6, genotype success rate
(individual) <95%, concordant sex, and no excess heterozygosity
(individual). Closely related individuals (identity-by-descent pi-hat >
0.1) were excluded. Principal components (PCs) of the genotype
covariance matrix were derived using EIGENSTRAT68, and population
outliers (including all participants of non-European descent) were
removed (using the default setting) to avoid confounding by popula-
tion structure. This resulted in a total of n = 2496 participants with
quality-controlled genetic data. The variants were phased using Eagle
v2.469, and palindromic variants were removed before imputation.
Imputation was performed separately for each genotyping platform
using Michigan Imputation Server70 and the Haplotype Reference
Consortium (HRC) reference panel (r1.1 2016, lifted-over to GRCh38
coordinates)71, and variants with MAF>0.01 and imputation quality
R2 > 0.8 from all three platforms were retained. We merged imputed
data from all three genotyping platforms, and after removing EIGEN-
STRAT outliers from the merged dataset, we had n = 2385 participants
with 6,577,494 genetic variants. We included n = 1457 deceased parti-
cipants with APOE genotypes and immunohistochemistry quantifica-
tion of AD pathology (Aβ or tau), who were not part of the single
nucleus RNA-sequencing (snRNA-seq) dataset43 used to define cell-
type-specific gene sets.

In the A4 screening data, DNA was extracted from blood.
Targeted genotyping was used to derive APOE ε2, ε3, and ε4
haplotypes. Genome-wide genotyping was performed for 3465
consenting A4 screen participants using Illumina Global Screen-
ing Array, resulting in 700,078 genotyped variants26. We used the
same genetic data QC pipeline as ROSMAP. We limited our ana-
lyses to non-Hispanic Whites and removed ancestry outliers
identified with the genotype PCs. We used the same imputation
procedures as ROSMAP, resulting in 7,269,997 variants (GRCh38)
in 3025 participants. Among these participants, 2921 participants
who also had florbetapir PET and APOE genotypes were included
in our analysis.

Imputed genotype dosages from both datasets were rounded to
integers (0, 1, or 2) before use in further analyses.

Derivation of cell-type-specific ADPRS
Derivation of cell-type-specific ADPRS requires (1) base GWAS sum-
mary statistics, (2) LD reference panel, (3) cell-type-specific gene sets,
and (4) a target dataset with individual-level genotype data.

(1) Base GWAS summary statistics and (2) LD reference panel: We
used the summary statistics from a large genome-wide association
study of AD dementia and AD dementia by proxy (parental history of
AD dementia)5. Among multiple AD GWASs that were recently pub-
lished, we chose the study by ref. 5 because it used the European
Alzheimer & Dementia Biobank (EADB) and the UK Biobank (UKBB)
datasets for stage I, and thus ROSMAP or A4was not a part of its stage I
summary statistics (i.e., no sample overlap). Further, the Bellenguez
et al. study5 included the largest number of cases and identified the
most genome-wide significant loci among theGWASspublishedbefore
the time of our analysis. We used PRS-CS41, a Bayesian regression
approach using continuous shrinkage prior, to performeffect estimate
shrinkage and derive the posterior effect size of each single nucleotide
polymorphism (SNP) included in the AD GWAS summary statistics
(stage I of ref. 5) while minimizing information loss. We used the 1000
Genome Project Phase 3 European subset (1000G EUR)72 as the LD
reference panel and used the “PRS-CS-auto” option to estimate the
global shrinkage parameter (φ)—that reflects the sparsity of the
genetic architecture—for each chromosome. From the base ADGWAS’5

stage I summary statistics (limited to the variants assessed in >50% of
the stage I participants), φ was 1.2 × 10−4 ± 1.7 × 10−5 (calculated per
each chromosome). This parameter optimization step only uses the
base GWAS summary statistics and the LD reference panel, indepen-
dent of the target dataset characteristics, thereby avoiding an over-
fitting problem.

We only used the HapMap373 SNPs (~1 million SNPs) included in
the 1000G EUR reference panel for a computationally tractable esti-
mation ofφ from the ADGWAS summary statistics, as described in the
original implementation of PRS-CS41. While HapMap3 is a relatively
small reference panel, it effectively captures heritability attributable to
common haplotypes when used in Bayesian genetic effect size
shrinkage methods: in a previous study, PRS-CS has outperformed
other PRS approaches that used the full 1000G EUR panel (>4 million
SNPs), and the PRS-CSmodel performance only slightly improved even
when a denser reference panel was used41.

(3) Cell-type-specific gene sets: We used published snRNA-seq
data of 34,987 cells (nuclei) from the prefrontal cortex of n = 24 con-
trol participants from ROSMAP (no to very little pathology at
autopsy)43 to derive cell-type-specific gene sets. At the time of the
analyses, this dataset was one of the largest snRNA datasets published
from older adults with no to little pathology. These participants were
excluded fromour study toprevent reserve causation.Weused the cell
type annotation from the snRNA-seq study reported this data43, and
included six major brain cell types in our analyses: excitatory neurons
(Ex), inhibitory neurons (In), astrocytes (Ast), microglia (Mic), oligo-
dendrocytes (Oli), and oligodendrocyte precursor cells (Opc). Similar
to the previous study43, we excluded endothelial cells and pericytes
from analyses as only a small number of cells were profiled from these
cell types. We adapted a previously published method10,11 to derive
the top decile of the genes specifically expressed in each cell type.
First, we identified 13,438 autosomal genes expressed in >1% of cells
fromone ormore cell types.We excluded geneswithin the largerAPOE
region (APOE ± 1Mb: GRCh38 19:43,905,781–45,909,393), as APOE ε4
has a disproportionately large effect size that would dwarf the effects
of other common variants. Second, a gene expression specificity
metric (“Sg”) was calculated for gene i in cell type j, by dividing the
average expression of gene i in cell type j (Eij) by the summation of Eij
across all 6 cell types (i.e., Sgij = Eij=ð

P

j
EijÞ). Third, we rank-ordered Sg
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of genes expressed in each cell type and defined genes within the top
decile (n = 1343) as cell-type-specific genes.

(4) PRS calculation in target datasets: We used PLINK 1.9067,74 to
calculate PRS. All PRSs excluded the larger APOE region. Cell-type-
specific ADPRSs were computed using the subset of the variants
located within each cell-type-specific gene set ±30kb (per GRCh38
reference coordinates). We chose a 30kb margin upstream and
downstream to include most cis-regulatory variants of a given gene
and to allow for mapping errors due to the LD structure75,76. Then, to
ensure that our results are robust to the choice of the genomicmargin,
we compared our results with the results derived from PRSs using a
10 kb margin or a 100 kb margin. We also calculated conventional
(“All”) ADPRS for the ROSMAP and A4 participants to compare with
cell-type-specific ADPRSs. We also derived cell-type-specific ADPRS
with PRSet13, a recently published alternative method, for bench-
marking. We used the default setting of PRSet as recommended for
pathway enrichment analyses (e.g., no p-value thresholding)13, and
used the same cell-type-specific gene sets as detailed above in “(3) Cell-
type-specific gene sets.” Each PRS was standardized before further
analyses.

Statistics & reproducibility
We have included all parent study (ROSMAP, A4) participants with
non-missing values tomaximize sample size; no statisticalmethodwas
used to predetermine sample size. Participants with missing values
were excluded from each analysis, and we indicated the number of
participants for each analysis. This study only uses observational data
(ROSMAP and A4 pre-randomization data), and thus randomization
and blinding were not applicable. We have adjusted sex in all our
analyses, and we have also tested sex interaction to examine for sex
differences in the reported effects.

All statistical analyseswere donewith R version 4.2 (https://cran.r-
project.org/). We used the UpSetR package77 to visualize the mem-
bership of cell-type-specific genes. Correlations between cell-type-
specific PRSs were examined with Pearson’s correlation and were
summarized with a heatmap colored by R2.

In ROSMAP, we tested the association of cell-type-specific ADPRS
with seven phenotypes: AD with dementia (AD dementia, binary), Aβ
(continuous), diffuse plaque (DP), neuritic plaque (NP), PHFtau (con-
tinous), NFT (continuous), and cognitive decline (CogDec, con-
tinuous). Models with AD dementia as an outcome used logistic
regression controlling for APOE ε4 dosage (0, 1, or 2), APOE ε2 dosage
(0, 1, or 2), age at death, sex, years of education, genotyping platform,
and the first three genotype principal components (PC1-3). Models
with neuropathology as an outcome used linear regression controlling
for APOE ε4 dosage, APOE ε2 dosage, age at death, sex, genotyping
platform, and PC1-3. Models with CogDec as an outcome used linear
regression controlling for APOE ε4 dosage, APOE ε2 dosage, geno-
typing platform, and PC1-3; Age, sex, and years of education were
already accounted for when deriving the CogDec variable from the
longitudinal cognitive data. We also assess the association of Mic-
ADPRS with PAM, adjusting for APOE ε4 dosage, APOE ε2 dosage, age
at death, sex, genotyping platform, and PC1-3.

In A4, we tested the association of cell-type-specific ADPRS with
four phenotypes: screening neocortical Aβ (continuous), baseline
temporal tau (continuous), baseline HV (continuous), and screening
PACC (continuous). Models with Aβ or tau as an outcome used linear
regression controlling for APOE ε4 dosage, APOE ε2 dosage, age, sex,
and PC1-3. Models with HV as an outcome used linear regression
controlling for APOE ε4 dosage, APOE ε2 dosage, age, sex, intracranial
volume (ICV), and PC1-3. Models with PACC as an outcome used linear
regression controlling for APOE ε4 dosage, APOE ε2 dosage, age, sex,
years of education, and PC1-3.

We calculated the false discovery rate (FDR) for each dataset
(separately for ROSMAP [49 analyses] and A4 [28 analyses]) and used

FDR <0.025 (=0.05/2) as the statistical significance threshold for the
main discovery analyses (Figs. 2 and4) given two independent datasets
being used for testing. Variance explained by each cell-type-specific
ADPRS was quantified by comparing adjusted R2 of the linear models
with and without the PRS term (ΔR2). For logistic regression models
(ROSMAP, models with AD dementia outcome), we compared
Nagelkerke’s R2 (R package “fmsb”) in models with and without a PRS
term. Empiric confidence intervals of ΔR2 were calculated with boot-
strapping (1000 repeats, R package “boot”). Empiric one-sided p-
values to test the hypothesis that the PRS-CS scores (used in this study)
explain greater ΔR2 than the PRSet scores (previously published
method13) were derived by calculating the proportion of bootstrapped
PRSet ΔR2 greater than the actual PRS-CS ΔR2. Reported effect sizes of
APOE ε4 and ε2 were assessed in models including All-ADPRS. Mic-
independent cell-type-specific associations using the following two
approaches: (1) adjusting for Mic-ADPRS, and (2) deriving cell-type-
specific ADPRS excluding genes overlapping with Mic-ADPRS. To
ensure that the significant results were not driven by our choice of the
genomic margin (genes ±30 kb) or the number of genotype PCs we
covaried (three), we also performed sensitivity analyses (1) using dif-
ferent genomic margins for PRS derivation (genes ±10 kb or ±100 kb)
or (2) adjusting for 10 genotype PCs. For the association of Mic-ADPRS
with PAM, we used a nominal p-value threshold of p <0.05, and this
was a targeted, post hoc analysis. We examined the moderating effect
(statistical interaction) of age, sex, and APOE ε4 by examining the
association between the interaction terms ([age, sex, or APOE ε4] ×
[cell-type-specific ADPRS]) with AD endophenotypes and used
p <0.017 (=0.05/3potentiallymoderating variables) asour significance
threshold.

For causal mediation analysis, we used the widely accepted
sequence of AD pathophysiology progression4,44 as our prior:
DP→NP→NFT→CogDec. We used R package “mediation78” for causal
mediation analysis using a non-parametric bootstrap option with
10,000 simulations. Then, we used R package “lavaan” for structural
equation modeling (SEM). The model was fitted for individuals with
non-missing data (n = 1392) using default lavaan settings except that
we used bootstrapping (10,000 iterations), using residualized vari-
ables (i.e., the residual after regressing out APOE ε4 and ε2, age at
death, sex, genotyping platform, and PC1-3 from a linear model).
Modelfitwas assessedwithmultiple indices, includingComparative Fit
Index (CFI), Tucker Lewis Index (TLI), root mean square error of
approximation (RMSEA), and standardized root mean square resi-
dual (SRMR).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
ROSMAP phenotype data (demographic, neuropathology, diagnoses,
and cognitive testing data) can be requested at the RADC Resource
Sharing Hub at https://www.radc.rush.edu. ROSMAP genotype data
can be requested at the AD Knowledge Portal under accession code
syn23446022 (https://www.synapse.org/#!Synapse:syn23446022; see
https://adknowledgeportal.synapse.org/Data%20Access for data
access instructions). The A4/LEARN screening (pre-randomization)
data (demographic, neuroimaging, cognitive testing, and genetic data)
can be requested at https://ida.loni.usc.edu/. All of the primary data
used in this study are individual-level human data that require the
investigators to sign a data use agreement (ROSMAPphenotype and all
A4 data) or a data use certificate (ROSMAP genotype data) to ensure
human subject protection; data access instructions can be found in the
above URLs. We are not allowed to directly share the polygenic risk
scores of each individual as they are derivatives of individual-level
human subject genetic data under controlled access. We have made
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the PRS-CS posterior effect sizes of AD GWAS summary statistics, cell-
type-specific gene tracks (genomic ranges; each track defines the list of
SNPs used for each PRS), and the list of SNPs used for each PRSet score
available at the AD knowledge portal under accession code
syn52750861 as open data (https://doi.org/10.7303/
syn52750861). Source data are provided with this paper.

Code availability
R codes used in this study are available at: https://github.com/
YangLabADRD/CellADPRS (Yang HS, GitHub, https://doi.org/10.5281/
zenodo.8475, 2023).
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