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Dynamic construction of refractive
index-dependent vibrations using surface
plasmon-phonon polaritons

Hong Zhou 1,2, Zhihao Ren 1,2, Dongxiao Li1,2, Cheng Xu 1,2,
Xiaojing Mu 3 & Chengkuo Lee 1,2,4,5

One of the fundamental hurdles in infrared spectroscopy is the failure of
molecular identification when their infrared vibrational fingerprints overlap.
Refractive index (RI) is another intrinsic property ofmolecules associated with
electronic polarizability, but with limited contribution to molecular identifi-
cation in mixed environments currently. Here, we investigate the coupling
mode of localized surface plasmon and surface phonon polaritons for vibra-
tional de-overlapping. The coupling mode is sensitive to the molecular
refractive index, attributed to the RI-induced vibrational variations of surface
phonon polaritons (SPhP) within the Reststrahlen band, referred to as RI-
dependent SPhP vibrations. The RI-dependent SPhP vibrations are linked to
molecular RI features. According to the deep-learning-augmented demon-
stration of bond-breaking-bond-making dynamic profiling in biological reac-
tion, we substantiate that the RI-dependent SPhP vibrations effectively
disentangle overlapping vibrational modes, achieving a 92% identification
accuracy even for the strongly overlapping vibrational modes in the reaction.
Our findings offer insights into the realm of light-matter interaction and pro-
vide a valuable toolkit for biomedicine applications.

Nanoantennas are nanoscale optical elements capable of tailoring
light-matter interactions by controlling and manipulating light at
unprecedented levels1,2, allowing for exciting functionalities and
cutting-edge applications across diverse fields such as photothermal
therapy3, optical communications4, imaging5, and sensing6. The light-
matter interaction involving nanoantennas and molecules, specifically
in terms of molecular refractive index and vibrational absorption,
is particularly intriguing in the mid-infrared (IR) region7. This is
because various biomolecular IR vibrational fingerprints can be
observed through absorption spectra, which are associated with
molecular constituents, chemical bonds, and intrinsic configuration8.
The recent remarkable advancements in nanophotonic IR vibrational

spectroscopy show the potential to revolutionize disease diagnosis,
treatment, and prevention9, by enabling high-resolution biomolecular
imaging10, in-vitro molecular diagnosis11, real-time biochemical
monitoring12, and more13. The utilization of artificial intelligence in
sensory nanoantennas also offers valuable perspectives in biomedical
science and measurable advancements in clinical diagnostics14,15.

A major obstacle in infrared spectroscopy is the inability to
identify molecules when infrared vibrational modes are overlapped16.
Nanoantennas exhibit the capability of enhancing molecular vibra-
tional modes through the surface-enhanced infrared absorption
(SEIRA) effect17–20. However, it is challenging for SEIRA to disentangle
overlapping vibrational modes. Great efforts have been dedicated to
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resolving the issue. Firstly, the IR fingerprint of a molecule typically
comprises multiple vibrational modes. If the fingerprints only partially
overlap, molecular identification could still be accomplished by
examining additional features21. Secondly, the issue can be bypassed
through the screening of target molecules from mixtures exhibiting
overlapping vibrations, by employing either physical22 or biochemical
methodologies (e.g., specific binding)23. Furthermore, the utilizationof
sophisticated data processing techniques, such as derivative
spectroscopy24, deconvolution25, or artificial intelligence algorithms14,
can contribute to discerning overlapping vibrational modes. Despite
the practical efficacy of these methods, the conundrum pertaining to
overlapping vibrational modes persists from a physical mechanism
perspective. The molecular refractive index is intricately linked to
electronic polarizability, which incorporates crucial features related to
the composition and structural attributes of a material26,27. Conse-
quently, the refractive index holds the potential to theoretically facil-
itate de-overlappingmolecular fingerprints by offering supplementary
features. Currently, the development of an effective methodology to
achieve this goal is both desirable and challenging.

Surface phonon polaritons (SPhP) are a type of surface wave that
is formed when polar optical phonons interact with long-wavelength
fields28. Previous investigations focusing on SPhP have substantiated
its remarkable optical characteristics, such as strong electromagnetic
field confinement29, slow group velocity30, long lifetime31, hyperbolic
dispersion32, and low loss33. Particularly, the low loss of SPhPs offers
the advantage of high quality factors, surpassing those of their plas-
monic counterparts34. The potential for sensitivemolecular vibrational
spectroscopy has been demonstrated through the use of boron nitride
nanoantennas, achieving femtomolar sensitivity35. When SPhP is inte-
grated with localized surface plasmon polariton (LSPP), the light-
matter coupling strength is ultrastrong, comparable inmagnitudewith
the vibrational frequency, referred to as vibrational strong coupling
(VSC)36. VSC is regarded as a promising approach to address sensitivity
issues in infrared vibrational spectroscopy, enabling progress toward
ultrasensitive sensing applications37. However, to the best of our
knowledge, SPhPs have not been exploited to address the aforemen-
tioned issue of overlapping vibrational modes.

Here, we showhow to address the issue of overlapping vibrational
modes by developing a stacked IR nanoantenna to excite coupling
modes of localized surface plasmon and surface phonon polaritons
(SP-PhP platform). Specifically, we discover that the SPhP vibration
within the Reststrahlen band is sensitive to the molecular refractive
index (RI), termed RI-dependent SPhP vibrations. Then, we experi-
mentally examine the response of RI-dependent SPhP vibrations to the
refractive index. Based on these findings, we showcase how the RI-
dependent SPhP vibration, when combined with deep neural network
algorithms, dynamically disentangles strongly overlapping molecular
vibration in biological reactions, which is challenging for conventional
IR spectroscopy techniques.

Results
Methodology
The concept of our SP-PhP platform for the dynamic identification of
overlappingmolecular vibrations in biological reactions is illustrated in
Fig. 1a. The SP-PhP platform consists of stacked trapezoidal metal (Au)
antennas and phonon (silicon oxide, SiO2) antennas, all stacked on top
of one another and situated on a BaF2 substrate. The rationale behind
the design is that both SPP and SPhPmodes are confined strictly to the
material’s surface36,38, and the stacking design facilitates a more effec-
tive spatial overlap of these two modes, thereby enhancing the mode
coupling efficiency. The two polariton modes (LSPP and SPhP) are
coupled to form polariton hybridization. Additionally, the two metal
antennas of our SP-PhP platform form a parallel plate configuration
separated by a dielectric medium. Upon being stimulated by infrared
radiation, two plasmonic resonant modes become excited: a lower-

frequency bonding mode and a higher-frequency antibonding mode39.
The bonding mode presents a displacement current with identical flow
directions in the two parallel antennas, under the driving of a time-
varying electromagnetic field. Conversely, the antibonding mode dis-
plays opposite current directions between the parallel antennas, form-
ing a virtual current loop due to the unequal current intensities
(Supplementary Fig. 1). We demonstrate that when the resonant wave-
length of the two resonant modes are in proximity to each other,
broadband resonance is obtained (1.5 times wider than nanorod, Sup-
plementary Fig. 1b). Broadband resonances are desirable for infrared
vibrational spectroscopy as they allow a broader range of molecular
vibrations to be covered and enhanced through polaron-molecule
coupling40. Additionally, akin to conventional antennas41, the stacked
antennas retain geometry-dependent characteristics (Supplementary
Fig. 2). The splitting of the twomodes can be controlled by engineering
the thickness of metal antennas. When the thicknesses of mental
antennas are equal (Supplementary Fig. 3b), an increase in the thickness
of the spacer enlarges the splitting between the twomodes. Conversely,
when the thicknesses ofmental antennas are not equal (Supplementary
Fig. 3c), the light incident from the thicker antenna to the thinner
antenna is easy to excite the mode splitting. Additionally, there is no
significant difference observed in the polarization response and the
angle of incidence range between the stacked antennas and conven-
tional nanorods (Supplementary Figs. 4, 5).

The glucose enzymatic reaction (GER), is chosen as a proof-of-
concept for investigating the dynamic identification of overlapping
molecular vibrations. The GER is a process in which the glucose oxidase
(GOD) catalyzes the conversion of glucose (1) into gluconic acid (2) and
hydrogen peroxide (H2O2, 3) (upper panel of Fig. 1b)42. In the field of
biomedicine, all reactants involved in GER have demonstrated utility in
cancer therapeutic strategies (see Methods for details)43. Given that
molecular vibrations can furnish crucial conformational information
aboutmolecules44, thedynamic analysis of thesevibration-relatedbond-
breaking-bond-making events along the reaction path is intriguing and
meaningful for investigating such strategies. Moreover, there are over-
lappingmodes between the O-H vibration (corresponding to H2O2) and
the stretchingvibrationof amidegroups (corresponding toGOD) (lower
panel of Fig. 1b). Therefore, GER is the ideal candidate for our demon-
stration. Deep learning algorithms also serve as a powerful tool to aid in
the demonstration. The GOD is immobilized on the surface of the SP-
PhP platform through the chemical crosslinking of graphene oxide
(GO), confining GERwithin the near-field region of the SP-PhP platform.

Next, we theoretically investigate the response of our SP-PhP
platform to molecules. As mentioned earlier, our stacked SP-PhP
platformpossesses twopolaritonmodes: LSPP andSPhP. The response
of LSPP and SPhP to molecules varies significantly. The LSPP can
enhance the vibrational IR absorption of molecules through the well-
known SEIRA effect, which is related to the imaginary part of the
complex refractive index45. Regarding SPhP, we discover that the SPhP
in the polariton hybridization of our platform is sensitive to the real
part of the complex refractive index (referred to as refractive index (n)
hereafter). Notably, sensitivity to refractive index does not imply the
simultaneous measurement of the real and imaginary parts of the
composite refractive index in the same wavelength range. To validate
our predictions, it is essential to establish the relationship between
SPhP and n. The SPhP is excited in the “Reststrahlen” band, situated
between the longitudinal (LO) and transverse optic (TO) phonon fre-
quencies of polar dielectric crystals (SiO2 in thiswork)

28.Wedenote the
vibrational variations of SPhP within the Reststrahlen band as ΔI.
Therefore, the objective becomes to establish the relationship
between ΔI and Δn. To examine the ΔI-Δn relationship, we solve the
wave equation assuming a simple harmonic solution for the wave
quantity, and compute the dispersion curve for the polariton hybri-
dization of our SP-PhP platform. The dispersion relation of surface
plasmon polariton can be obtained by solving the Maxwell equations

Article https://doi.org/10.1038/s41467-023-43127-z

Nature Communications |         (2023) 14:7316 2



with appropriate boundary conditions and is expressed as ref. 46:

kspp =
ω
c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ε1ε2
ε1 + ε2

r
ð1Þ

where ε1 (ε1 = ε1’ + iε1”) and ε2 (ε2 = ε2’ + iε2”) are metal and surrounding
media’s frequency-dependent permittivity, respectively, and c is
the speed of light. When the plasmon is coupled with molecules
(εm= εm’ + iεm”), the effect permittivity of surrounding media is
substituted by the molecule εm. For the case of εm’ > ε2’ (Δn >0), a

frequency shift (redshift, ωA→ωB) is observed in the dispersion curve
(upper panel of Fig. 1c). Then, the dispersion relation for LSPP-SPhP
hybridization can be derived via a coupled-harmonic-oscillator model,
assuming a simple harmonic solution for the wave quantity (Supple-
mentary Note 2):

ω± =
ωLSPP +ωSPhP

2
� i

γLSPP + γSPhP
4

±
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 + ½ðωLSPP � ωSPhPÞ � i

γLSPP � γSPhP
2

�
2

r ð2Þ

LSPP

SPhP
GO

+

GOD

GER

Zoom-in view

Polariton 
hybridization

SP-PhP platform

LSPP
Spacer

c d

1100 1200 1300

0.3

0.6

R

Δn-ΔI transition curve(III)

Refractive index change, Δn

In
te

ns
ity

 c
ha

ng
e,

 Δ
I 

(O
D

•c
m

-1
)

A

B

Wavenumber (cm-1)

A

B

0.0 0.1 0.2 0.3 0.4
0

15

30

45

60

B

A
SPP

SPhPΔI

Δn>0

ω+

ω-

ωLO

ωTO

Wavevector, k

Fr
eq

ue
nc

y,
 ω

B+
A+

B-
A-

Upper branch

0

Lower branch

LSPP

1 2

1 2

k
c

� ��
� �

�
�

ωA

ωB

Light-line

Reststrahlen band

W
av

en
um

be
r (

cm
-1

)

1600

800

1000

1200

1400

Permittivity,ε
-4 0 124 8

ωLO

Re(ε)Im
(ε

)

ωTO

Reflection 0 1

Rupper

Rlower

RI-determined SPhP vibrations

(III)

(II)

(I)

SPhP
Reststrahlen band

a GER

+ O2 +  H2O2

GOD
Delta_n +

Amide 

+
SPhP C-O O-H

IR
 re

fle
ct

io
n

C-C & C-O

C-O

Amide 

O-H

Overlapping

Deep Learning

Wavenumber (cm-1)
900 1200 1500 1800

C-C&C-O

Δn

Polariton
hybridization

ΔI

G
O

D

Reststrahlen band

1 2 3

b

Fig. 1 | Concept of RI-determined SPhP vibration for the identification of
overlapping molecular vibrations. a Schematic view of stacked IR nanoantennas
(SP-PhP platform) for the identification of overlapping molecular vibrations in
glucose enzymatic reaction (GER). RI-determined SPhP vibrations are excited.
Glucose oxidase (GOD) is immobilized on the device surface through the chemical
crosslinking of graphene oxide (GO). SPhP surface phonon polaritons, LSPP loca-
lized surface plasmon polariton. b Vibrational assignments of the GER reaction
path. The O-H vibration and the amide vibration are overlapped. RI-determined
SPhP vibrations, combined with deep learning algorithms, are used to identify the
overlapping O-H vibrations and the amide vibrations. c Dispersion curves of SPPs
(upper panel) and an LSPP-SPhP coupling system (lower panel). It describes how a

refractive index change (Δn) causes a change in SPhP vibrational intensity (ΔI). The
light-line represents the light that propagates along the surface. d Simulation
results of the SP-PhP platform for molecules with varying Δn, investigating the
relationship betweenΔn and ΔI. (I) The simulated reflectionmapping. Rupper, Rlower:
upper/lower polaritonic resonance. (II) The permittivity of SiO2. (III) The Δn-ΔI
transition curve obtained by calculating the intensity integral of the SPhP vibration
within longitudinal (ωLO) and transverse optic (ωTO) phonon frequencies. The 3D
model of GODwas imported fromRSCB Protein Data Bank, DOI: 10.2210/pdb1CF3/
pdb. The data was deposited by Hecht, H.J. and Kalisz, H. in 1999, under the title
“GLUCOSE OXIDASE FROM APERGILLUS NIGER”. All rights reserved.
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where the variables include dressed frequencies (ω±), bare frequencies
(ωLSPP and ωSPhP), damping coefficients (γLSPP and γSPhP), and coupling
frequency splitting (g). For the molecular coupling (Δn > 0), its fre-
quency response (ωA→ωB) is analogous to that of surface plasmonic
polariton in Eq. (1), because surface plasmonic polariton also exists in
LSPP-SPhP hybridization. The distinction lies in the clear splitting
observed in the dispersion curve of the LSPP-SPhP hybrid, situated in
the Reststrahlen band of SPhP, as shown in the dispersion curve (lower
panel of Fig. 1c, see Supplementary Fig. 6 for detailed derivation).
Different positions on the split imply varying plasmonic resonance
frequencies. As the SPhP Reststrahlen band remains fixed, altering the
plasmonic resonance frequency Δω yields distinct coupling strengths,
consequently influencing the SPhP vibration intensity ΔI. For instance,
when the plasmonic resonance frequency changes from ωA to ωB, the
split moves from A+A- to B + B-. The change in the SPhP vibration
intensity can be calculated by ΔIA,B =

RωLO
ωTO

DA,BðωÞdω, where the
variables ωLO and ωTO denote the TO and LO phonon frequencies of
the SiO2, respectively, and DA,B(ω) are the corresponding differential
spectrum of SPhP. Therefore, the relationship between ΔD and Δn is
the key to establishing the relationship between ΔI and Δn. Based on
the understanding of the physical mechanism, Δn leads to the redshift
of the plasmonic resonance frequency, while the SPhP vibration
remains fixed. Consequently, this redshift causes the detuning
between the SPhP vibration and plasmonic resonance, resulting in a
change in the SPhP spectral signal ΔD (Supplementary Note 3). Similar
conclusions about the detuning ofmolecular vibrations and plasmonic
resonances by frequency shifts can be found in the literature17,47. The
relationship between ΔD and Δn can be calculated and visualized by a
finite-difference time-domain (FDTD) simulation. As observed in the
simulated reflection mapping of refractive index versus wavenumber
(Fig. 1d(I)), the reflection in the SPhP Reststrahlen band (correspond-
ing to ΔD) varies with Δn. By integrating ΔD, we obtain the relationship
betweenΔI andΔn asΔI = 210.3–210.6∙exp(-Δn/1.22) with fitting degree
R2 = 0.999 (Fig. 1d(III)). The established ΔI-Δn relationship indicates
that our SP-PhP platform can leverage the vibrational variations ΔI of
SPhP within the Reststrahlen band (RI-dependent SPhP vibrations) to
provide the molecular refractive index feature Δn. Therefore, the RI-
dependent SPhP vibration is promising to address the issue of
overlapping vibrational modes, as we demonstrated in the subsequent
section.

Experimental characterization of RI-dependent SPhP vibrations
Following the theoretical prediction of the RI-dependent SPhP vibra-
tions, we proceeded with a two-part experimental characterization.
The first part is experimental observations of the RI-dependent SPhP
vibrations to verify our prediction. The secondpart aims to explore the
sensing performance of the RI-dependent SPhP vibrations. Regarding
the experimental observations (Δn→ΔI), we realize them through two
steps. The first step is to confirm that the SPhP vibration variation ΔI is
caused by detuning δ of plasmonic resonance and SPhP vibration
(δ→ΔI), that is, the underlying physical mechanism of the RI-
dependent SPhP vibrations is δ. The second step involves confirming
that the δ is determined by the refractive index change Δn (Δn→ δ). As
shown in Fig. 2a, LSPP is coupled to SPhP through the medium of the
near field. The vibration frequency of SPhP is fixed48, while the reso-
nance frequency of LSPP can be tuned by engineering the dimensions
of metal antennas49,50. Therefore, by engineering the dimensions to
control the resonance frequency of LSPP, various δ can be achieved as
required. According to this consideration, in thefirst step, wedesigned
antennas with resonances ranging from 900 to 1700 cm−1 (orange
dotted line in Fig. 2b), covering the reststrahlen band of the SPhP
vibration fromωTO toωLO (black dotted lines in Fig. 2b). In the crossing
region, we observed an avoided crossing phenomenon resulting in
resonance splitting into two branches, known as mode splitting (blue
and brown dots in Fig. 2b)46,51. The splitting degree reflects the

coupling strength of LSPP-SPhP hybridization46,52, and it shows a
thickness-dependent transition (Supplementary Fig. 13). Our calcula-
tions (Supplementary Table 2) indicate that in the 100nm thick SPhP
antenna, the normalized coupling strengthηof polaritonhybridization
exceeds 0.1, reaching 0.138, which demonstrates that the system
operates within the ultrastrong coupling regime51. This is appealing for
sensing as it represents ultrastrong light-matter interactions that can
withstand the high absorption loss of the biological environment,
enabling robustmolecule detection. Furthermore, each set of splitting
frequencies (ω+, ω−) is distinct, implying that each split possesses a
different detuning. Taking three splits (labeled A, B, C) as an example,
the corresponding measured spectra are shown in Fig. 2c. Evidently, a
variation ΔIBC in the RI-dependent SPhP vibrations is observed when
the detuning is changed from δB to δC. Therefore, we conclude that ΔI
is caused by Δδ.

In the second step, we eliminate geometry-induced δ by fixing the
antenna dimension and generateΔn by varying the thickness of bovine
serum albumin (BSA), to investigate its contribution to δ (Δn→ δ).
Figure 2d, e shows the SEMandAFM imageof the SP-PhPplatformwith
fixed average antenna length l = 3 μm. The outline of the pattern was
well-defined, demonstrating the effectiveness of the fabrication pro-
cess. Figure 2f shows the cross-sectional SEM view and EDX mappings
of three key elements. Each layer was tightly bonded and quite distinct
from each other. Then, the SP-PhP platform was spin-coated with dif-
ferent thicknesses of BSA molecules (Supplementary Fig. 14). The Δn-
induced mode splitting was observed in the measured spectra
(Fig. 2g), where splitting frequencies (ω+, ω−, dotted line) is distinct,
implyingdifferentδ. After baseline calibration, theRI-determinedSPhP
vibrations were experimentally observed (Fig. 2h(I)), while the
stretching vibrations of amide I and II of BSAwere also detected due to
the SEIRA effect. By integrating the RI-determined SPhP vibrations
(Fig. 2h(II)), we obtain the relationship as
ΔI = expð2:77 + 3:72 � tBSA � 2:1 � t2BSAÞ, wherein we use thickness tBSA
instead of the Δn, as Δn is a complex frequency-dependent function,
and the thickness is easy to control and also related to the effective
refractive index53. Next, we analyze the sensitivity optimization of the
system using the radiating oscillator model (Supplementary Note 2).
The 2D sensitivity mapping calculation demonstrates that the max-
imum sensitivity value is in the weak coupling regime (Fig. 2i). The
robustness of strong coupling systems and their reduced sensitivity to
Δn could be the reason behind this phenomenon.

Next, we experimentally examine the sensing performance of the
RI-dependent SPhP vibrations. The chip (the SP-PhP platform or
nanorods) was integrated with the microfluidic system in an internal
reflection manner (Fig. 3a(I, II))14,15, enabling molecular detection in
aqueous environments. Upon injecting 300mM glucose solutions
(Fig. 3a(III)), the nanorod responds according to the refractive index-
induced frequency shift mechanism. We designed and fabricated two
antennas with different bandwidths. A 5.2 cm−1 shift was observed for
the narrowband nanorod (Nanorod 2 in Fig. 3b(I)), while no shift for
the broadband nanorod (Nanorod 1 in Fig. 3b(I)) due to its lowfigure of
merit (FOM). With the FTIR spectrometer’s resolution of 4 cm−1, the
limit of detection (LoD) of nanorods is 300mM. For the same con-
centration of analyte (Fig. 3b(II)), our SP-PhP platform exhibited a
considerable intensity change (ΔI = 4802 mOD·cm−1), which is above
our platform’s detection limit. To investigate the detection limit, we
performed a series of experiments with glucose concentrations vary-
ing from 0mM to 80mM. The extracted differential reflection spectra
are shown in Fig. 3c(I). Apparently, the intensity of differential reflec-
tion riseswith the increase in glucose concentration. By integrating the
differential reflection, we obtain the sensing curve of total molecular
signal versus concentration (Fig. 3c(II)). Taking the total noise into
account (Supplementary Fig. 15), LoD for glucose sensing on the SP-
PhP platform is 5mM, surpassing that of the nanorod by 60 times. In
addition to sensitive sensing, another discovery in the RI-dependent
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SPhP vibrations is joint baseline fitting. Baseline correction is crucial in
spectral data analysis to ensure the accurate extraction of spectral
signals54. Different baseline fittings can distort signals, leading to (1)
inaccurate refractive index measurements due to frequency drift dis-
crepancy (Fig. 3d-I), and (2) failure of fingerprint extraction because of
molecular vibration intensity discrepancy (Fig. 3d-II). These dis-
crepancies arise because only the signal’s shape and physical char-
acteristics are available for baseline fitting. Interestingly, the RI-
dependent SPhP vibrations can provide information on molecular
refractive index. As depicted in Fig. 3d-III, when the isopropyl alcohol
(IPA) molecules are introduced to our SP-PhP platform, two responses

are observed: a frequency shift Δf and a corresponding ΔI. The ΔI can
be utilized to accurately correct Δf for a precise fitting curve, which is
challenging in conventional plasmonic devices.

DL-assisted vibrational de-overlapping in bioreaction profiling
Next, we demonstrate how these unique properties of RI-dependent
SPhP vibrations can be utilized to address technical challenges of
overlapping vibrational identification in infrared biospectroscopy. The
glucose enzymatic reaction (GER) is chosen as the target. Initially, we
functionalized the SP-PhP platform by immobilizing GOD on the
device surface through a chemical cross-linking method (Fig. 4a).
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Successful immobilization is confirmed by the observation of amide
vibrations of GOD in the measured spectra (Fig. 4b). It is then inte-
grated with a microfluidic system (Fig. 4c), and 110mM glucose solu-
tions were injected to initiate the GER experiment. Subsequently, a
series of time-varying reflectance spectra at 1-min intervals were col-
lected by our SP-PhP platform (Fig. 4d). Notably, the environmental
disturbances can be eliminated by measuring the background spec-
trum before each spectrum collection (Supplementary Fig. 16). Utiliz-
ing joint baseline correction in conjunction with an asymmetric least
squares (ALS) algorithm (Supplementary Note 4), we extracted the
molecular vibration signals and RI-dependent SPhP vibration signals
(Fig. 4e). As observed, the O-H vibration (corresponding to H2O2) and
the stretching vibration of amide groups (corresponding to GOD)
strongly overlap,making it challenging to identify thembased on their
individual features. To achieve higher resolution monitoring, we set
the time interval for collecting spectra to 20 s. Figure 4f shows the

obtained differential spectral signal. However, it is apparent that the
issue of overlapping vibrations has not been improved.

To address the issue of overlapping vibrations, we develop a
neural network (DNN) model55 to process the molecular vibration
signals and RI-dependent SPhP vibration signals. The DNN model
consists of input, hidden, and output layers (Methods). To train the
DNNmodel, we performed single-analyte experimentsmeasuring only
one analyte at a time. The obtained spectra build a signature library of
RI-determined SPhP vibrations for the GER reactants (Fig. 5a). As
observed, the molecular vibration signals and RI-dependent SPhP
vibration signals corresponding to each analyte exhibit distinct fea-
tures. Then, the data obtained from single-analyte experiments and
multiple-analyte experiments (Supplementary Note 5) were utilized to
train the DNN models. The training and validation dataset comprises
20,156,640 spectrotemporal data points. The accuracy of the trained
DNN model reaches 92% (Supplementary Fig. 9). Subsequently, the
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measured real-time spectral data obtained during the GER experiment
(Fig. 4f) were fed into the trained DNN model (Fig. 5b) to output pre-
diction (weights) for all reactants in the reaction. In the predicted
result (Fig. 5c(II)), we can observe that all bond-breaking-bond-making
events in the GER experiment (Fig. 5c(I)) were fully identified. Parti-
cularly, we successfully disentangled the strongly overlapping vibra-
tion modes between the O-H vibration and the stretching vibration of
amide groups (Line ii and Line iv in Fig. 5c(II)). As the reaction pro-
gresses, glucose (1) is consumed and gluconolactone (2) and H2O2 (3)
are continuously accumulated. Consequently, the vibration signals of
C-O and C-C bonds (glucose, Line i in Fig. 5c(II)) decrease, while the
vibration signals of C-O bonds (gluconolactone, Line iii in Fig. 5c(II))
and O-H bonds (H2O2, Line iv in Fig. 5c(II)) climbed. As GOD acts as a
catalyst in this context, the vibration signal of its amide bond remains
essentially unchanged (Line ii in Fig. 5c(II)). The predicted results align
with the enzyme kinetics findings reported in the previous literature56.

For comparison, we employed a conventional nanorod-based
platform to monitor the GER reactants. The nanorod-based platform
lacks the capability to acquire the RI-dependent SPhP vibration signals.
Subsequently, the nanorod-based platform is employed for single-
analyte experiments (Supplementary Fig. 10), enabling the acquisition
of IR vibrational features of the analytes. The configuration of the DNN
model for thenanorod-basedplatform is identical to that of our SP-PhP
platform. Then, the acquired data were employed to train the DNN
model. Upon training and validation, the real-time spectral data newly
obtained by the nanorod-based platform (Fig. 5d) were used to predict
the output weights. In the predicted result (Fig. 5e), as the reaction
progresses, the vibration signals of C-O and C-C bonds (glucose, Line i
in Fig. 5e) decrease, while the vibration signals of C-O bonds (gluco-
nolactone, Line iii in Fig. 5e), O-H bonds (H2O2, Line iv in Fig. 5e), and
the amide bonds (Line ii in Fig. 5e) climbed. Compared to the results of
our SP-PhP platform in Fig. 5c, there was an abnormal increase in the

amide vibration intensity and only a slight climb in the H-O vibration
intensity. The increase in the amide vibration intensity means that the
amount of GOD has increased. Indeed, it is incorrect because GOD,
being an enzyme, functions as a catalyst in the reaction. Therefore, the
reason could be attributed to the DNN model’s inability to entirely
distinguish overlapping vibrations, leading to an erroneous assign-
ment of theH-O vibrationalmode to the amide vibrational signal. It can
also account for the slight climb of the H-O vibration, which should
ideally exhibit a rapid rise. In our SP-PhP platform, the predicted dif-
ference between the overlappingO-H bond and amide bond is 0.5 (the
difference between Line ii and Line iv at time 12min in Fig. 5c(II)),
whereas in the nanorod platform, it is merely 0.1 (Fig. 5e). This indi-
cates that the DNN model trained by the data of our SP-PhP platform
possesses the capability to identify the overlapping vibrations, while
that trained by the data of the common nanorod platform fails in such
identification and erroneously assigns H-O vibration modes to amide
vibration signals. The feature of the SP-PhP platform compared to the
common nanorod platform is the presence of RI-dependent SPhP
vibrations. Therefore, we conclude that RI-determined SPhP vibrations
can decouple overlapping vibrational modes. In contrast to previously
reported infrared antenna techniques for biospectroscopic applica-
tions, our platform represents an advancement in accurately resolving
overlapping vibrational modes (Supplementary Table 3).

Discussion
We have demonstrated the dynamic construction of RI-dependent
vibrations using surface plasmon-phonon polaritons in the SP-PhP
platform, enabling precise accurate identification of the strongly
overlapping vibrationalmodes.Our contribution is twofold. The first is
the construction and experimental observation of RI-dependent
vibrations. This vibration is a type of SPhP oscillation occurring
within the reststrahlen band of polar dielectric crystals, exhibiting a
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notable sensitivity to themolecular refractive index. Our experimental
demonstration elucidates the fundamental sensitivity mechanism of
these vibrations to refractive index changes, which is governed by the
refractive index-induced detuning between the SPhP vibration and
plasmonic resonance. Besides, comparedwith conventional plasmonic
antennas (nanorods), the RI-dependent vibrations show 1) potential in
resolvingmolecular refractive index feature (Fig. 2h), 2) high-precision
joint baseline correction (Fig. 3d), and 3) a 60-fold improvement in
LoD, reaching physiological levels of 5mM in the glucose detection
(Fig. 3b, c). Notably, the real part and imaginary part of the complex

refractive index are linked by Kramers-Kronig relations. However,
accurately converting the imaginary part into the real part using SEIRA
signals is challenging in practice (Supplementary Note 6). Further-
more, the coupling between LSPP and SPhP has no special restrictions,
its response to the refractive index is also general.

The second is the technological advancement of de-
overlapping vibrational modes. We experimentally reveal that the
RI-determined SPhP vibrations, combinedwith DNN algorithms, can
decouple overlapping IR vibrationalmodes. In the demonstration of
dynamic profiling glucose enzymatic reaction, we observe all bond-
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breaking-bond-making events with a 92% identification accuracy,
even for strongly overlapping vibration modes. This level of accu-
racy surpasses what can be achieved with common plasmonic
platforms. Specifically, in our SP-PhP platform, the predicted dif-
ference between the overlapping vibrations - a metric reflecting its
identification capability for overlapping modes—reaches 0.5,
whereas for the common plasmonic platforms, it is only 0.1 (Fig. 5c,
e). Our decoupling technique holds promise for biomedical appli-
cations such as molecular screening, protein conformation and
dynamics resolving, and pharmaceutical analysis, owing to the
presence of molecular massive overlapping vibrational modes in
these applications.

Looking forward, our current on-computer data processing and
decision-making can be developed for near-sensor or in-sensor com-
puting to improve the accuracy and speed of detection57. Additionally,
the implementation of miniaturized spectrometers to empower our
technique towards point-of-care testing (POCT) would also be
impactful7,9,11. Besides, the concept of surface plasmon-phonon polar-
iton coupling is universal and could be implemented in other material
systems, such as two-dimensional van der Waal’s crystals (e.g., hex-
agonal boron nitride48) and polar semiconductors (e.g., gallium
nitride)28. Finally, our de-overlapping concept could be extended to
other reactions involving overlapping vibrations, like protein con-
densation reactions58.

Methods
Numerical simulations
A commercial software package (FDTD Solutions, Lumerical Inc)
based on the FDTD method was utilized for both spectral and near-
field simulations. The incident radiation source was a plane wave
light source with polarization oriented along the arm direction of
the nanoantennas. The periodic boundary condition was employed
to represent the periodicity of the nanoantennas in the x- and y-
directions, while a perfectly matched layer was applied in the
z-direction. We omitted the thin titanium (Ti) adhesion layer from
the simulation and computed the spatial profile of the E-field
intensity using a 3D frequency-domain power monitor. The
refractive index of BaF2 was set to 1.4, and the refractive index of Au
was obtained from Palik et al. SiO2 permittivity in Fig. 1 and the
complex refractive index of glucose in Fig. 3 were calculated based
on its measured IR absorption spectrum using the Drude model

εðωÞ= ε1 +
Pn

i
Si

ω2
0i�ω2�jωγi

, where γi refers to the damping frequency,

Si represents the oscillator strength, ω0i denotes the oscillator
resonance frequency, and ε∞ is the high-frequency constant term
(See Supplementary Note 7 for details). In the simulation of cal-
culating the Δn-ΔI converting curve, the thickness of analytes is set
to 200 nm, and the Δn changes from 0 to 0.4. The average length of
the platform is defined as the length at half of the maximum height.

Theory modeling
The dispersion curve in Fig. 1c and the 2D mapping of sensitivity as a
function of coupling strength and normalized frequency shift in Fig. 2i
are calculated using the radiating oscillator model. The equations of
motion describing the coupled system are determined by the follow-
ing relationship:

ωLSPP � ω� iγLSPPω
ωLSPP +ω

κLSPP
ωLSPP +ω

κLSPP
ωLSPP +ω
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=
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where γLSPP,SPhP, and ωLSPP,SPhP are the damping factor and resonance
frequency, respectively. The two resonators (p(t) and q(t)) are coupled
linearly via coupling strength κLSPP. To obtain the solution, we can
solve the characteristic equation ǀH-ωIǀ =0, where I is the identity

matrix. The dressed frequencies of the system can be expressed as

ω± =
ωLSPP +ωSPhP

2
� i

γLSPP + γSPhP
4

±
1
2
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h i2r

where g =ω+ - ω- is the frequency splitting. More derivation details are
provided in Supplementary Note 2.

Device nanofabrication
The fabrication process is shown in Supplementary Fig. 17. For the
nanofabrication of the SP-PhP platform, the process commenced by
cleaning the BaF2 wafer in acetone through ultrasonic treatment for
10min. After rinsing in isopropanol anddryingwith nitrogen, thewafer
underwent oxygen plasma treatment for 5min. Then, we spin-coated a
400nm thick layer of PMMAe-beam lithography resist (950PMMAA5)
at 3000 rpm. After thermal bakes, a commercial electron-conducting
polymer (Espacer 300Z from Showa Denko Singapore) was spin-
coated at a speed of 2000 rpm to eliminate charge accumulation
during e-beam exposure. The nanoantenna pattern was then exposed
using e-beam lithography. After exposure, the sample was developed
with deionized water, MIBK/IPA (1:3) mixture, and isopropanol. Then,
SiO2/Ti/Au/Ti/SiO2/ Ti/Au films with desired thicknesses were
sequentially deposited using e-beam evaporation, followed by
immersion in acetone for 24 h to remove the unexposed resist and
obtain the final nanoantenna pattern. The nanorod fabrication process
is similar to that of the SP-PhP platform, with the exception that after
exposure, only Ti and Au need to be deposited using e-beam
evaporation.

Optical measurement
The IR spectrum of our platform was measured using a Fourier
transform infrared spectrometer coupled with an infraredmicroscope
equipped with a liquid-nitrogen-cooled mercury cadmium telluride
detector. The measurement area of the antenna array was controlled
by knife-edge apertures and set to 100 × 100μm2. A resolution of
4 cm−1 and 20 scans per measurement was used. In the real-time
experiment, 5 scans per measurement were used. The gold mirror was
used to collect background data in reflection mode. To protect the
optical path, nitrogen gas was continuously introduced into the
microscope using designed accessories. The microfluidic channel uti-
lized in the sensing experiment is fabricated using a 3D-printed mold
and is affixed to a microscope slide. The chip is then integrated with
the microfluidic system by flipping it over and aligning the nanoan-
tenna with the channel. The infrared light passes through the BaF2
substrate, interacts with the nanoantenna, and subsequently reflects
back to the photodetector.

Data processing and deep learning
The differential absorbance spectra were calculated by subtracting the
measured reflectance spectra from the baseline fitted by our joint
baseline fittingmethod. ALS algorithmswere also used. The integrated
absorbance signal was calculated by integrating the extracted vibra-
tional bands. The intensity change of RI-determined SPhP vibration
was calculated by integrating the spectral intensity change over the
SPhP reststrahlen band. The figure of merit (FOM) is defined as Sen-
sitivity/FWHM, where FWHM is full-width at half maximum. For the
GER experiment, the reflectance spectrum at the beginning of the
reaction was set as the background spectrum to calculate differential
absorbance spectra. Vibrational signals of biomolecules were extrac-
ted by normalizing the reflectance spectrum of the chip to that before
the reaction started using -log10(R/R0). The normalized frequency shift
Δϖwas calculated as (ϖ-ϖ0)/ω0, whereϖ andϖ0 are shifted and initial
frequencies, respectively. The DNN model consists of input, hidden,
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and output layers. The input and output layers comprise 1714 and 5
nodes, respectively, matching the spectral wavenumber points and
reactants’ vibrational numbers. The model comprises two hidden lay-
ers, each consisting of 20 nodes, dedicated to extracting high-level
features from the input data. This design facilitates the learning of
intricate relationships, leading to accurate predictions. The steps for
using a DNN model to solve a regression problem involved preparing
the data, designing the model architecture, training the model, vali-
dating its performance, and using it for prediction. In this work, the
DNN model was developed using Keras, a Python framework, and
consists of fully connected layers with ReLu as the activation function.
The mean square error was used as the loss function and Adam is
employed as the optimizer in the final model. The detailed processes
are provided in Supplementary Note 5.

Glucose enzymatic reaction experiment
All reactants inGERhave potential applications in cancer diagnosis and
treatment. Glucose consumption canbe used as an alternative strategy
for cancer starvation therapy. Oxygen depletion can increase tumor
hypoxia and activate hypoxia-activated therapy. Gluconic acid gen-
eration can enhance the acidity of the tumor microenvironment and
trigger pH-responsive drug release. H2O2 can be converted into toxic
hydroxyl radicals through the Fenton reaction and kill cancer cells. To
enable GER to occur in the antenna’s near-field, GOD was immobilized
on the antenna, and glucose was passed through the microfluidic
channel to react with GOD.

Initially, the chips were subjected to immersion in an acetone
solution for 30min at room temperature to eliminate impurities, fol-
lowedbywashing three timeswith deionizedwater and IPA, anddrying
with nitrogen. Subsequently, the surface of the clear chip was treated
with oxygen plasma to generate hydroxyl groups. Following the
hydroxylation process, the chips were immersed in a GO dispersion
(1mg/mL, 50 °C) to immobilize GO on the chip surface via covalent
bonding, where the GOdispersionwas ultrasonically pretreated. Then,
the chemical linking of GO and GOD was achieved by incubating the
chip in a cross-linker solution of 20mM 1-ethyl-3-(3-dimethylamino-
propyl) carbodiimide (EDC) and 40 mM N-hydroxysuccinimide (NHS)
for 60min. EDC is a zero-length crosslinker that activates the carboxyl
groups on the surface of GO, while NHS reacts with the EDC-activated
carboxyl groups to form stable amide bondswith the amino groups on
the enzyme surface. By mixing EDC and NHS with GO and GOD,
respectively, a chemical bond can be formed between the two mate-
rials, thereby immobilizing GOD on the surface of GO. Notably, the pH
of the reactionmixture plays a critical role in the cross-linking process,
affecting the activation degree of carboxyl groups on the graphene
oxide surface and the reactivity of NHS molecules towards activated
carboxyl groups. The pH was adjusted to 6.1 using MES buffer (2-(N-
Morpholino) ethanesulfonic acid, pH 5.5). Subsequently, the treated
chips were immersed in coupling buffer (1mg/mL GOD in PBS buffer)
for 90min to immobilize GOD on GO, with the pH set to 7.2 using PBS
buffer (phosphate-buffered saline, pH 7.4). Finally, the functionalized
chip was thoroughly washed with PBS buffer solution and deionized
water and dried at 4 °C.

Materials and apparatus
Glucose oxidase from Aspergillus niger, graphene oxide, 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide, N-hydroxysuccinimide, 2-(N-
Morpholino) ethanesulfonic acid, phosphate-buffered saline, and glu-
cose were purchased from Sigma-Aldrich (Singapore). The field emis-
sion scanning electron microscope (Hitachi Regulus 8230) was
employed for conducting SEM and EDX analysis. For thickness analy-
sis, a commercial atomic force microscopy (Dimension Icon, Bruker
Inc) was used. Infrared spectral measurements were taken using an
FTIR spectrometer (Cary 660, Agilent Technologies) with an infrared

microscope (Cary 610, Agilent Technologies). Electron beam litho-
graphy (Raith GmbH) was utilized for fabricating the pattern of
nanoantennas. The metal deposition process was carried out with a
UHV electron-beam evaporation (ATC-T Series, AJA Int.).

Data availability
All data generated in this study are provided in the Supplementary
Information and SourceData file. Previously published structures from
the Protein Data Bank (PDB) can be found under accession code 1CF3
[https://doi.org/10.2210/pdb1CF3/pdb] (glucose oxidase). Additional
data related to this paper may also be requested from the corre-
sponding author X.M. or C.L. upon request. Source data are provided
with this paper.

Code availability
Codes for simulation and theoretical calculation in this study are
available from https://doi.org/10.5281/zenodo.10030866. Additional
codes that support thefindings of this study are also available from the
corresponding author X.M. or C.L. upon request.
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