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Combinatorial quantification of distinct
neural projections from retrograde tracing

Siva Venkadesh 1,2, Anthony Santarelli3, Tyler Boesen3, Hong-Wei Dong 3 &
Giorgio A. Ascoli 1,2

Comprehensive quantification of neuronal architectures underlying anatomi-
cal brain connectivity remains challenging. We introduce amethod to identify
distinct axonal projection patterns from a source to a set of target regions and
the count of neuronswith each pattern. A source region projecting ton targets
could have 2n-1 theoretically possible projection types, although only a subset
of these types typically exists. By injecting uniquely labeled retrograde tracers
in k target regions (k < n), one can experimentally count the cells expressing
different color combinations in the source region. The neuronal counts for
different color combinations from n-choose-k experiments provide con-
straints for a model that is robustly solvable using evolutionary algorithms.
Here, we demonstrate this method’s reliability for 4 targets using simulated
triple injection experiments. Furthermore, we illustrate the experimental
application of this framework by quantifying the projections of male mouse
primarymotor cortex to theprimary and secondary somatosensory andmotor
cortices.

The mouse brain contains over 70 million neurons. To chart how this
overwhelmingly large number of neurons are interconnected is a core
mission of the BRAIN Initiative to advance our understanding of the
structural and functional organizational principles of the mammalian
brain1. Along with rapid developments of genetic and viral sparse
labeling, 3D microscopic imaging, and computational tools for single
neuron reconstructions, tens of thousands of single neurons have
been reconstructed with detailed axonal trajectories2–4. Yet, a com-
prehensive whole brain wiring diagram at single neuron resolution
remains a formidable challenge because of the sheer complexity of the
brain and the laborious work of neuronal reconstruction methods5.
Most anatomical regions in the mammalian brain project to multiple
distinct locations6. A fundamental relation between macroscopic
regional connectivity in thebrainandmicroscopiccellular architecture
is that if a source region projects to a target region, there must be at
least one neuron type with soma located in the source region whose
axonextends to the target region7. Consider a source regionprojecting
to n target regions. Several kinds of axonal architecture can possibly

serve as cellular substrates. For instance, there could be n distinct
groups of neurons, each extending their axons to a single target
region. Alternatively, or in addition, some neurons might sprout their
axonal branches into all n target regions. Many additional groups of
neurons may exist, each reaching a distinct subset of the n target
regions. We maintain that sets of neurons with distinct projection
patterns (e.g., a neuron projects to regions a, b, c, d; another neuron
projects to regions b, c, and e) belong to different classes. Thus,
identifying the projection pattern of each neuron constitutes a formof
neuronal classification.

A source region projecting to n target regions may potentially
contain up to 2n � 1 projections neuron types based on distinct pat-
terns of axonal presence or absence in each target region. If wewish to
find the numbers of neurons in each of the potential types (the pro-
jectomics census), we need 2n � 1 integers. A brute force approach to
this challenge might entail labeling individual neurons to visualize
their axonal projections2–4,8,9. However, this requires a representative
sample for each class, which demands an impractical number of
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reconstructionswhile still missing the rarest classes.Moreover, in such
an approach, each source region requires its ownset of experiments. In
this paper, we introduce a practical and scalable strategy to estimate
the number of neurons with each distinct projection pattern from
multi-label retrograde tract tracing.

Results
The concept behind combinatorial projectomics
Suppose we could inject in each of the n target regions a uniquely
labeled retrograde tracer, corresponding to colors c1, c2, . . . cn. When
analyzing the somata in the source region, those co-labeledwith all the
c1, c2, . . . cn colors would correspond to the class of neurons projecting
to all n regions. Those co-labeled onlywith colors i, j and k, but noneof
the other colors, would correspond to the class projecting to regions
i, j and k and not to the other regions. Counting the cells with each
combination of labels, possibly leveraging recent progress in auto-
mation and computer vision10, would solve the census challenge.
Importantly, this analysis can be carried out in parallel on all source
regions projecting to the n target regions.

The above-described thought experiment has two major limita-
tions. First, the number of regions targeted by a typical source region
in the mammalian brain is larger than the number of distinct retro-
grade tracers that can be practically injected in vivo. For example,
individual source regions in the mouse neocortex project from ~5 to
more than 30 potential brain-wide targets11,12, whereas state of the art
tract tracing is limited to triple or at most quadruple injections13.
Second, retrograde tracer injections must be confined to a portion of
the target region in order to minimize the risk of spilling into adjacent
regions, which would contaminate the results14. Thus, in a subset of
neurons of the source region that doproject to the given target region,
but not to the injected portion, the soma will be unlabeled and thus
missed in the cell counts.

Here we introduce an experimental and analytic design that
overcomes both of the above limitations. The basic idea is to perform
multiple retrograde tracing experiments each covering a subset of the
target regions. This is conceptually analogous to the shotgun
sequencing strategy in genomics15. Every experiment allows the
determination of the number of somata in the source region that are
co-labeled by any combination of retrograde tracers. It is worth men-
tioning here that the ordering of the subset of target regions (per-
mutations) selected in an experiment is not considered, and the
proposed methodology only considers their distinct combinations.
The target regions not covered by a given experiment will contribute
certain free variables to the count of neurons with each projection
pattern, corresponding to the first limitation. Moreover, the exact
proportion of neurons that project to the target regions covered by a
given experiment, but not labeled due to the second limitation, will
contribute additional free variables. Different experiments cover every
target region several times in different combinations, creating amany-
to-many relation between the counts of co-labeled somata and the free
variables across sets of multiple retrograde tracings. The key to the
solution is to obtain several numerical constraints sufficient to esti-
mate all free variables. In other words, enough experiments must be
carried out so that the number of co-labeled somatic counts is suffi-
ciently greater than the number of free variables that need to be found.

To explain this approach with an example, consider a source
region projecting to four target regions. This scenario yields 15 (24 � 1)
possible projection patterns and corresponding potential neuron
types: 4 types projecting to just one of the targets, 6 types projecting
to two targets, 4 types projecting to 3 targets, and 1 projecting to all 4
targets (Fig. 1). Nowsupposewe canonly inject three retrograde labels,
conveniently referred to as green, red, and blue.We then perform four
experiments, each leaving out one of the four target regions. The first
experiment injects the green retrograde label in the first target region,
the red one in the second, and the blue in the third, leaving out the

fourth target region. From this experiment we can count the number
of cells in the source region that are only labeled green, only red, or
only blue; those that are co-labeled with each of the three two-color
combinations, and those that co-labeled by all three colors, for a total
of seven distinct numerical values. Which of the 15 neuron types con-
tribute to the count of the somata that are only labeled green? All of
those cells must project to the first target, but not all cells that project
to that target will be colored green due to the second limitation.
Moreover, the green-only cells also include the neurons projecting to
both the first and the fourth target, since the latter was not injected.
Lastly, we need to account for the cells projecting to both the first and
second target which were not labeled red and similarly for all other
neuron types that project to multiple targets as long as they include
the first one.

To quantify these contributions, we adopt the following notation:
let G be the count of somata exclusively labeled green, T 1 the number
of neurons that project only to the first target, and k1 the proportion of
neurons projecting to the first target that are labeled green (where
k1 < 1 due to the second limitation). Similarly,T2 and k2 are the number
of neurons thatproject only to the second target and the proportion of
those neurons that are labeled red, respectively (and same for T3, k3

etc.). Furthermore, T 12 represents the number of neurons that project
just to the first and second target and, by extension, T 1234 is the
number of neurons that project to all four targets. We can then for-
mulate the following equation:

G= k1 T 1 +T 14

� �
+

k1 1� k2

� �
T 12 +T 124

� �
+

k1 1� k3

� �
T 13 +T 134

� �
+

k1 1� k2

� �
1� k3

� �
T 123 +T 1234

� �
ð1Þ

For each of the four experiments, we can similarly write seven
such equations (see Supplementary Equations 1), corresponding to
counts for every color combination (G, R, B, GR, GB, RB, GRB). In this
simple scenarioof four targets and three retrograde injections, we thus
have 28 equations (constraints) from four experiments and 27
unknowns: 15 numbers of neuron types and 12 retrograde yields (three
for each experiment).

It is important to note that the scope of this approach excludes
non-projecting types. In other words, this approach aims to quantify
the distinct types of projections that actually exist between a source
region and a given set of target regions that were included in retro-
grade injection experiments. However, this approach does not aim to
quantify all neuron types of the source region, many of which may
project to different regions not included in the injection experiments.

In addition, we wish to note that with quadruple retrograde tra-
cingwe can in principle run

� n
4

�
distinct experiments. Each experiment

will give us the observed number of cells that project to at least 1 of
four classes, 2 of four, 3 of four, or 4 of four (total 15 observations).
Every retrograde injection also contributes an additional real value
variable, namely the fraction of cells projecting to that region that are
in fact labeled. For example, ifn= 7,wehave 127potential neuron types
(27-1) and thus need to estimate 127 counts. There are 35 distinct
experiments

� 7
4

�
and each will provide 15 observations and require

estimation of 4 additional variables. The total number of equations is
thus 35 × 15 = 525 and the number of unknowns is 127 + 35×4 = 267.
Note that a

� 7
4

�
model presents a higher constraints-to-unknowns ratio

(525:267) than the simpler
� 4
3

�
model described earlier (28:27).

Although only positive values are acceptable for the model solu-
tion, the high degrees of non-linearity in the system of equations
present multiple positive solutions, when the system is not sufficiently
constrained. In the next section, we show that the solutions could
become more reliable and robust to experimental error even in the
simpler

� 4
3

�
model by repeating an experiment which increases the
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number of constraints by 7 while only adding 3 unknown variables.
This is practically significant, since this allowed us to reliably apply the� 4
3

�
model to the triple-injection retrograde labeling data acquired

from the motor and sensory cortices of the mouse brain, which we
present in Section “A proof-of-concept experimental application.”

Reliable estimation of the counts of projection patterns
In this section,we computationally validate the solvability of themodel
presented in the previous section by simulating retrograde labeling
using surrogate counts for the population sizes of different projection
patterns (Fig. 2).We also evaluate the extent towhich repeated trials of
combinatorial labeling increase the reliability in estimating the surro-
gate counts in a simulated 4-target and 3-injection configuration.

A “triple-injection” refers to parallel injections in 3 of the 4 targets
selected. One repeated trial of an injection inji refers to a triple injec-
tion repeated for the same three targets in inji with an assumed
variability for the fractions of axons being labeled. Note that each
triple-injection or its repeated trial introduces 3 unknown real values,
which correspond to the fractions of axons being labeled, but adds 7
constraints. More generally, each of the

� n
k

�
distinct combinations of

injections introduce k unknown real values and 2k � 1 constraints.
Therefore, N repetitions of all

� n
k

�
combinations result in a total of

ðN + 1Þ � � n
k

�
injections, ðN + 1Þ � � n

k

� � k unknown real values, and
ðN + 1Þ � � n

k

�
constraints. Also note that the number of unknown inte-

gers that need to be estimated remains at 2n � 1 for anyN ≥0. Thus, as
N increases, the ratio of the number of constraints to the number of
unknown variables also increases (Fig. 3a).

Surrogate counts for each of the 15 projection patterns and the
simulations of triple injection experiments are displayed in Fig. 2.
Combinatorial models were described for 4-, 8- and 12- triple injec-
tions, and each of the models was solved using an evolutionary algo-
rithm (EA)16. We ran multiple trials of the EA with different initial
conditions to explore the parameter space and identify all possible
solutions to the model (see Section “Methods”). Results from this
computational analysis are given in Fig. 3. Convergence patterns of the
EA populations showed that the 12-triple injection model created an
optimization landscape that is more convex than that of the 4-triple
injection model (Fig. 3c), although the 12-triple injection model
requiredmore EA generations for the population to converge (Fig. 3b)
due to higher number of unknown variables that needed to be esti-
mated. In other words, the 12-triple injection model resulted in a nar-
rower range of solutions, which were also more accurate than the
4-triple injection model (Fig. 3c, d). Furthermore, a systematic reduc-
tion of the error in the estimated counts (Fig. 3d) from 4- to 8- and 12-
triple injections shows that enhancing the combinatorial model
description to include repeated trials of experiments can make our
approach extremely reliable. Similar systematic reduction in the error
was also observed when these analyses were performed for larger
counts of projection patterns (see Supplementary Fig. 1), although 20-
triple injections were required to reliably estimate the counts totaling
~100,000. This suggests that the accuracy of estimations depends on
the total count of all projection patterns, in addition to the number of
injection experiments. It should be noted that the repeated injections
must be non-unique in the sense that theymust introduce variability in

Source

Target 1

Target 4
Target 3

Target 2

Type 1 only projects to target 1

Type 4 only projects to target 4

TyTT pe 5 only projects to targets 1 & 2

Type 15 projects to all 4 targets

...

...

...

Source

Target 1

Target 2

Target 3

Target 4

Fig. 1 | A schema representing potential cellular architectures in the con-
nectivity between a source region and four target regions. Types of source
neurons (S1-4) projecting (>) to one target (T): S1 > T1, S2 > T2, S3 > T3, S4> T4.
Types of source neurons (S5-S10) projecting (>) to two targets (T): S5 > T1,T2;

S6> T1,T3; S7 > T1,T4; S8 > T2,T3; S9 > T2,T4; S10 > T3,T4. Types of source neurons
(S11-S13) projecting (>) to three targets (T): S11 > T1,T2,T3; S12 > T1,T3,T4;
S13 > T2,T3,T4. Types of source neurons (S14) projecting (>) to four targets (T):
S14 > T1,T2,T3,T4.
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the real values (i.e., fractions of axons labeled), so that they produce
distinct constraints.However, such a variability is naturally expected in
experimental settings. It is also interesting to observe that the second
limitation described in Section “The concept behind combinatorial
projectomics” becomes a crucial advantage here.

A proof-of-concept experimental application
To test our analysis design experimentally, we selected the upper limb
area of the primary motor cortex (MOp-ul) of the mouse brain as one
source region to quantify its target-specific cortico-cortical projection
neurons. Previous work3,12,17 showed that the MOp contains different
subtypes of neurons innervating their targets with a rich variety of
collateral projection trajectories. To maximize the eventual yield of
successful triple-injections, four retrograde tracers (CTb conjugated
with 488, 555, or 647, FG or AAV-retro) were injected in each animal,
respectively aiming at four major MOp-ul cortical targets, namely the
secondary motor cortex (MOs), the barrel field of the primary soma-
tosensory cortex (SSp-bfd), the secondary somatosensory cortex
(SSs), and the rostral MOp (Fig. 4 and Supplementary Fig. 2). Fourteen
quadruple injection experiments were completed, with a total of 56
injections. Anatomical locations and sizes of tracer injections were
maintained as similar as possible across all experimental cases to
maximize the consistency of tracer labeling (for details see Section
“Methods”). Post-mortem mapping to the Allen Reference Atlas18,19

determined the actual locations of the injection sites. This analysis

identified a total of seven sets of triple injections thatmatched suitable
subsets of the four target regions without spillovers. Constraints from
these seven successful injection experiments were selected for quan-
tification (see example in Supplementary Fig. 2) in the

� 4
3

�
model. This

included 4 distinct triple injections, one repeated trial of one experi-
ment and two repeated trials of another experiment. In addition, three
models were described using the segregated counts from MOp-ul
layers 2/3, 5, and 6 to delineate layer-specific projection patterns from
the source region. Combined and segregated constraints obtained
from seven injection experiments are provided in Supplementary
Table 1.

The unknown variables of the four models were independently
estimated by the solver (see the “Methods” section for computational
details). Table 1 provides the estimated counts for each of the 15 pro-
jection patterns from the MOp-ul for the combined and the layer-
specificmodels basedon the experimental data.Among the four target
regions selected, the single projection pattern to SSp was estimated to
have the highest population size (n = 10,759± 318) with the highest
contribution from layer 5. The population sizes of neurons projecting
to double targets also showed layer-specific differences. For instance,
the contribution to the population size of neurons projecting to both
MOs and rostral MOp (n = 623 ± 310) was notably less from layer 2/3
compared to layers 5 and 6. Similarly, layer 6 neurons accounted for
most of the double-projections to targets SSp and SSs (n = 1576± 148),
and our method did not find strong evidence of such double-
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projections from layers 2/3 and 5. Finally, only negligible counts were
estimated for the triple and quadruple projection patterns. It is worth
mentioning that these results exclude neuron types of theMOp-ul that
do not project to any of the regions MOp, MOs, SSp, and SSs.

A post hoc computational analysis was performed using an addi-
tional set of surrogate counts that were generated to roughly reflect
the distribution of counts estimated (Table 1) from the experimental
constraints. The goal was to evaluate the robustness of solution con-
vergence in the region of the search space for seven injection experi-
ments that represented the estimated counts from experimental
constraints. Finally, the solver was also run for a null model where the
constraints represented random noise, which provided a baseline for
comparing the convergence against that of the actual experimental
constraints. The solver convergence patterns, and their robustness are
given in Fig. 5. While the solutions to the model describing the

surrogate counts converged to lower root-mean square deviation
(RMSE) than themodel that described actual experimental constraints
for seven triple-injections, they both outperformed the nullmodel by a
much more substantial margin (Fig. 5).

Discussion
Connectomics has risen to high prominence in neuroscience in the 18
years since the term was coined20. It is now broadly recognized that
regional connectivity underlies distributed brain function and single
neuron axonal projections underlie regional connectivity21. Online 3D
atlases of regional connectivity for the mouse brain11,22 provide an
instrumental high-level blueprint of the main communication path-
ways in mammalian central nervous systems. However, they lack the
resolution to identify individual neurons, arguably the key elements
for computational function. At the opposite extreme, electron
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microscopy offers the ultimate opportunity to densely reconstruct
every single synapse, but only for local networks of mammalian
brains in the foreseeable future23,24. Long-range axons constitute the
conceptual and physical nexus between brain-wide circuits and
synaptic communication. Although single-neuron projection axons
can be reliably reconstructed throughout the mouse brain from light
microscopy imaging2,4,8,9, scaling up the digital tracing process
remains a formidable open problem25. At the same time, the typical
divergence of regional connectivity in the mammalian brain poses a
combinatorial challenge to the systematic characterization of the
neuronal substrates. In this report, we introduced a possible solution
based on quantitative analysis of multi-color retrograde injections.
Our numerical computations based on realistic surrogate data
demonstrated the feasibility, scalability, precision, and robustness of
this approach. Moreover, we offered initial empirical evidence of the
applicability of the proposed methodology in the case of the mouse
primary motor cortex efferent.

The experimental validation of this study is limited by the fact that
it included data from only seven injection experiments. Our analysis
from Section “Reliable estimation of the counts of projection patterns”
(see also Fig. 3) suggested at least 8 triple injection experiments to
achieve an average error of roughly 0.1 relative to the true counts.
Thus, the high IQRs observed for someof the projectionpatterns given
in Table 1 could be attributed to the sparseness of experimental data
included in this study. Furthermore, while it is expected that the esti-
mated total counts for each projection pattern in Table 1 would reflect
the sum of their respective layer-specific counts estimated indepen-
dently, there were differences between the combined and the sum of
layer-segregated estimations. In addition to the sparsity of the
experimental data, the noise introduced in segregating the layer-
specific counts (see Supplementary Table 1) likely enhanced such dif-
ferences. Therefore, the counts for projection patterns with high IQRs
should be interpreted cautiously, and future studies with more injec-
tion experiments are required to fully validate the results presented in

Table 1. However, our analyses of surrogate and real data collectively
show that the population sizes of various projection patterns between
a source and four target regions can be reliably estimated given suf-
ficient experimental constraints using the model presented in
this study.

Our results are in fact consistent with those reported in the
literature. Neuronal connectivity of the MOp has been
studied extensively at macro- (regional specific)3,12,26–28, meso- (cell
type-specific)3,22,29 and micro-scales (single neuron)2–4. At macroscale
(regional specific), the MOp-ul shares extensive reciprocal connec-
tions with multiple domains of the MOs, SSp and SSs12. At the meso-
scale (cell type specific), cortico-cortical connections arise mostly
from the intratelencephalic (IT) neurons across layer 2–6; while other
two major classes of neuron types, pyramidal (PT) and cortico-
thalamic (CT), generate much less collateral projections
to other cortical areas3,17,26–29. In a recent study combining viral sparse
labeling, 3D microscopic imaging, and computational algorithms,
detailed axonal projection trajectories of ~300 individual neurons in
the MOp were reconstructed2–4, in principle providing the initial core
of a ground truth dataset for validating all possible axonal patterns
shown in the current study (Table 1). However, that cell type-specific
single neuron reconstruction strategy relied on available Cre-driver
mouse lines, as well as labor intensive and time-consuming 3D ima-
ging and computational reconstruction procedures. Consequently,
only a small fraction of MOp neurons was reconstructed, providing
insufficient information to generate a comprehensive landscape
of individual neuronal projection motifs. This inadequacy highlights
the difficulty of obtaining sufficiently large sample sizes
even with big data consortium efforts, underscoring the need for
practical and scalable alternatives. In this perspective, our current
combinatorial approach provides an important complementary
approach for cataloging connectivity-based neuronal types in
the mammalian brain—one major goal of contemporary neu-
roscience research.

Fig. 4 | Experimental data obtained from the male mouse primary (p) and
secondary (s) somatosensory (SS) and motor (MO) cortices. a Targets for
the retrograde injections described using the Allen Reference Atlas (ARA) areas.

b The infusion centers from one representative experiment in layers (L) 5 and 6. All
scale bars denote 1mm.
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Another recent development with great potential for compre-
hensive high-throughput mapping of cell type-specific axonal projec-
tions is MAPseq30. This technique, based on anterograde bar-coding,
was successfully applied to the mouse primary motor cortex in a
recent consortium investigation involving over a dozen independent
laboratories3. However, the specific MOp area injected in that study
cannotbe reliably deemed to significantly overlapwith the locations of
the multi-labeled cell bodies obtained in the experiments described in
the present report. Furthermore, MAPseq data collection relies on
previous knowledgeor anterograde tracing data as guidance to dissect
the targeted brain regions for acquiring transported barcoding mole-
cules. Thus, the granularity and accuracy of MAPseq-based axonal

projection information heavily depends on laser-capture tissue
microdissection sampling densities and anatomical accuracy of each
targeted area. Because those operations are conducted in fresh frozen,
thick sections without histological staining (e.g., Nissl), it remains very
challenging to dissect tissues accurately following their anatomical
borders, especially for smaller brain structures as in the present study.
The above limitations prevent a direct comparison of our current
experimental findings with previous MAPseq data.

Notably, the technique described in this report can be applied to
increasingly large amounts of retrograde tract tracing data that are
being systematically collected and deposited in the BICCN data portal
andother open resources1,7,21. Simulations from the current study show
that the model becomes highly reliable for the

� 4
3

�
configuration

(Fig. 2c, d) even with 12 triple injections. Alternatively, a
� 7
4

�
model,

which has a high constraints-to-unknowns ratio, could potentially
quantify projection patterns for 7 regions (127 types)without repeated
injection experiments. However, a comprehensive application of a

� 7
4

�
model requires 35 distinct quadruple injections and a solver capable of
estimating 267 unknown variables in a system where 140 (35 × 4) real
variables interact in a non-linear manner. While it is beyond the scope
of this study to evaluate the solvability of such a

� 7
4

�
model, our ana-

lysis with the simpler
� 4
3

�
model suggests that repeating the injection

experiments can in principle increase the reliability of a
�M

4

�
model for

anyM >4. The only challenges to this scalability are the cost associated
with quadruple injection experiments and the computational cost of
solving the (non-linear) models with many unknown parameters.
Nevertheless, we have shown in this paper that our approach can, in
principle, reliably and robustly quantify the cellular architectures of
mammalian brain connectivity in a comprehensive manner.

Indeed, retrograde tract tracing methods have been broadly used
in the neuroscience field for more nearly 4 decades31, and one of our
labs is one of the pioneer groups to systematically apply multiple
fluorescent retrograde tracers in constructing the mouse
connectome3,12,32. Those previous publications demonstrated the fea-
sibility, robustness, accuracy, precision, and scalability of this tech-
nology. Specifically, over the course of multiple studies, we have
conducted triple and quadruple fluorescent retrograde tract tracing
experiments in over ~600 mice over many brain structures. A large

EA generation
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Fig. 5 | EA convergence patterns for experimental, surrogate, and random
constraints. Evolution of the lowest RMSE for the counts obtained from the
injection experiments performed in MOs, MOp, SSp, and SSs (black), surrogate
counts generated to reflect the distribution of estimations given in Table 1 (blue),
and randomly generated counts for various color combinations in a simulated
source (gray). Solid lines and shaded areas denote means and standard deviation,
respectively.

Table 1 | Estimated population sizes of projection patterns between MOp-ul and the target regions based on the experi-
mental data

Projection Pattern MO_p (combined) Layer 2/3 Layer 5 Layer 6

Median IQRc Median IQR Median IQR Median IQR

T1
a 1531 425 405 78 623 1119 725 139

T2 3291 218 2333 1658 92 584 840 152

T12 623 310 40 8 549 352 156 26

T3 10,759 318 4558 2057 6997 904 1649 607

T13 683 170 65 23 449 583 628 569

T23 1267 117 383 211 700 213 561 56

T123 7 4 47 39 169 153 4 2

T4 0 1 27 32 40 76 1 1

T14 0 1 10 11 2 2 1 1

T24 70 116 8 7 112 60 9 12

T124 84 134 0 4 2 38 3 3

T34 1576 148 0 2 2 13 1047 631

T134 1 120 0 0 0 1 141 638

T234 1 4 0 0 0 2 122 53

T1234 2 3 0 0 0 0 4 5

SUM 20,099b 405 9047 2372 10827 2182 6168 177
aSubscripts of projection patterns denote the target (T) areas MOp (1), MOs (2), SSp (3), and SSs (4).
bMedian of the sum.
cInterquartile range.
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collection of these data is already publicly available33. Based on our
own past and ongoing experimental work, the approach described in
the present paper can be scaled up to reliably perform 500 quadruple
injection experiments, assuming the resources of a large effort such as
those presently pursued by the Allen Institute for Brain Science,
Howard Hughes Medical Institute Janelia Research Campus, and the
National Institutes of Health’s BRAIN Initiative Cell Atlas Network
(BICAN). Such a dataset could be analyzed with our combinatorial
projectomics framework to resolve up to 12distinct targets, potentially
quantifying up to >4000 (212) different projection types at once in each
of every source region projecting to those targets.

Differences in intrinsic electrophysiology and input-output
features34, as well as in single cell transcriptomics35 add to the com-
plexity of neuronal classifications andespecially deserve scrutinywhen
attempting to identify conserved patterns across cortical areas and
species. How to effectively combine these distinct dimensions toge-
ther with the axonal projection patterns of long-range neurons
remains an open challenge.

Methods
Solving the systems of equations
The systems of equations were solved using evolutionary algorithms
(EA). We employed μ+ λð Þ evolution strategies16 without adaptive
mutation to estimate the integer and the real-valued unknown vari-
ables in the combinatorial models. Briefly, λ offspring solutions are
created from μ parents, and selection pressure is applied to both
parents and offspring solutions for survival into the next generation. A
total of 50 trials of EAs were run, each with different initial conditions.
The population sizes were set to μ= 50,000 and λ=250,000 for all EA
runs. An integer random-walk and a gaussian step mutations with
mutation rates of 0.1 were applied for the integer and real-valued
variables respectively. The total number of EA generations were set to
2500 for all analyses except for the model describing a total surrogate
count of ~100,000 (see Supplementary Fig. 1), which used 10,000 EA
generations. A Java-based evolutionary computing library (ECJ)36 was
utilized in this study. The ECJ configuration and the full set of EA
parameters are described in the shared software37 under EqnSolver/
input/.params.

For the simulated experiments, surrogate counts for projection
patterns were generated by first setting the counts of seven randomly
selected types to zero (since not all possible projection patterns are
expected to be present between a source and a set of target regions)
and then randomly generating counts for the remaining types. Note
that these surrogate counts represented the true counts of projection
patterns in the source region that needed to be estimated by the EA.
The values corresponding to the fractions of neurons being labeled in
each simulated injection experiment were also randomly generated.
The counts of neurons in the sourcewith different color combinations
following the injection experiments provided constraints for the
model. Then, the EAs were run to estimate the counts of all projection
types and the fractions of labeled neurons in each experiment by
minimizing The Root Mean Square Error (RMSE) on the constraints.

The Medians from the top 10 EA runs with the lowest RMSE
represented the adopted solution, and the error in the estimated
counts ðEÞ in simulated experiments was defined as follows:

E =

PI
i = 1 1 +

M
I �mt

ið Þ
M

� �
× mt

i �me
i

�� ��
M

ð2Þ

M and I are the true sumandnumber of types respectively, andmt
i

and me
i are the true (surrogate) and estimated counts respectively of

type i. In addition to the medians, interquartile ranges (IQR) were
calculated from the top 10 EA solutions for the analysis involving
experimental data. The IQR characterized the spread of estimated
solutions in the parameter space for each projection pattern.

Mouse Connectome Project methodology: multiple fluorescent
retrograde tracing strategy
Anatomical tract tracing data was generated as part of the Mouse
Connectome Project (MCP) following experimental methods and
online publication procedures as described previously12,38–40.To retro-
gradely label projection neurons in the upper limb of the mouse pri-
mary motor cortex (MOp-ul), we used a multiple tracing method to
simultaneously inject different fluorophore-conjugated retrograde
tracers into different neocortical projection targets (up to 4) of the
MOp. These injection sites were pre-selected based on anterograde
tracing results with injections into the MOp-ul as shown in previous
publications3,12.

Animal subjects. All MCP tract-tracing experiments were performed
using 8-week-oldmaleC57BL/6Jmice (Jackson Laboratories). Mice had
ad libitum access to food and water and were group-housed within a
temperature- (21–22 °C), humidity- (51%), and light- (12 h light/dark
cycle) controlled room within the Zilkha Neurogenetic Institute
vivarium. All experiments were performed according to the regulatory
standards set by the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and by the institutional guidelines
described by the University of Southern California Institutional Animal
Care and Use Committee.

Tracer injection experiments. The MCP uses a variety of combina-
tions of anterograde and retrograde tracers to simultaneously visua-
lizemultiple anatomical pathwayswithin the sameNissl-stainedmouse
brain. Retrograde tracers included cholera toxin subunit B conjugates
647, 555 and 488 (CTb; AlexaFluor conjugates, 0.25%; Invitrogen),
Fluorogold (FG; 1%; Fluorochrome, LLC), as well as AAVretro-cre.
Quadruple retrograde tracer experiments involved four different
injections sites receiving a unique injection of either 0.25% CTb-647,
CTb-555, CTb-488, and 1% FG. Because each retrograde tracer has its
own specific properties, including but not limited to speed of migra-
tion, uptake into fibers of passage, extent of diffusion, we randomized
the assignment of each tracer to a distinct target region. Thus, the
axonal projections to each target region are captured through diverse
tracers across multiple experiments and, conversely, each tracer is
used in all target regions over the course of the whole study. This
approach minimizes tracer-specific experimental bias.

Stereotaxic surgeries and histology and immunohistochemical
processing. On the day of the experiment, mice were deeply anes-
thetized and mounted into a Kopf stereotaxic apparatus where they
were maintained under isofluorane gas anesthesia (Datex-Ohmeda
vaporizer). For quadruple retrograde tracing experiments, 50 nl of
retrograde tracers were individually pressure-injected via glass
micropipettes at a rate of 10 nl/min (Drummond Nanoject III). All
injections were placed in the right hemisphere.

After 4–6 days post-surgery, eachmousewas deeply anesthetized
with an overdose of Euthasol (pentobarbital) and trans-cardially per-
fused with 50ml of 0.9% saline solution followed by 50ml of 4% par-
aformaldehyde (PFA, pH 9.5). Following extraction, brain tissue was
post-fixed in 4% PFA for 24–48 h at 4 °C. Fixed brains were embedded
in 3% Type I-B agarose (Sigma-Aldrich) and sliced into four series of
50μm thick coronal sections using a Compresstome (VF-700, Preci-
sionary Instruments, Greenville, NC) and stored in cryopreservant at
−20 °C. All sections were stained with Neurotrace 435/455 (Thermo
Fisher Cat# N21479) for 2–3 h to visualize cytoarchitecture. After that,
sections were mounted onto glass slides and cover slipped using 65%
glycerol.

Imaging and post-acquisition processing. The tissue sections were
scanned on an Olympus VS120 slide scanning microscope with 10×
objective. Each tracer was visualized using appropriate fluorescent
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filters and whole tissue section images were stitched from tiled scan-
ning into VSI image files. Raw images were corrected for left-right
orientation and matched to the nearest Allen Reference Atlas18,19 cor-
onal levels. An informatics workflow was specifically designed to reli-
ablywarp, reconstruct, annotate, and analyze the labeledpathways in a
high-throughput fashion through our in-house image processing
software Connection Lens38,39. Threshold parameters were individually
adjusted for each case and tracer, resulting in binary image output files
suitable for quantitative analysis. Adobe Photoshop was used to cor-
rect conspicuous artifacts in the threshold output files that would have
spuriously affected the analysis. A separate copy of the atlas-registered
TIFF image file was brightness/contrast adjusted to maximize labeling
visibility and images were then converted to JPEG file format for online
publication in theMCP iConnectomeviewer (MouseConnectome.org).

Assessment of injection sites. All injection cases included in this work
are, in our judgment, prototypical representatives of each brain area.
We have previously demonstrated our targeting accuracy with respect
to injection placement, our attention to injection location, and the
fidelity of labeling patterns derived from injections to the same loca-
tion (see Supplementary Methods in our previous reports12,39 for
details).

Data analysis. For eachbrain, eight serial sections covering ARA45–59
of the MOp were used for quantification. Sections were cut at 50μm;
200μm were present between each serial section. Retrogradely
labeled neurons were revealed respectively by fluorescence of CTB
conjugated with Alexa Fluor 488, 555, 647, and FG (in some cases,
AAVretro-Cre also was used). NeuroTrace 435/455 (Blue fluorescent
Nissl stain; Invitrogen) revealed cytoarchitectonic background of each
section to ensure accuracy of anatomical identification of those ret-
rogradely labeled neurons. Sections were scanned on the Olympus VS
−120 virtual slide microscope. Individual channels were exported to
Photoshop and overlaid for manual annotation. Cells containing
positive signal in each channel were annotated with a 10-pixel point.
Distinct annotations with overlap > 80% were noted to be positive for
each annotated tracer, and a combination point was made. Annota-
tions were quantified using ImageJ. To avoid over-counting, each
annotated cell was recorded only once in the datasheet, with a 3x
tracer positive cell being absent from the six contributing 2x combi-
nations and three contributing single tracer positives.MOp layerswere
then parcellated into layers 1, 2/3, 5, and 6 based on their cytoarchi-
tectural properties. Quantification of the annotated cells were then
ascribed to each layer.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the imaging data underlying the results described in this work are
publicly accessible without restrictions or credentials at https://doi.
org/10.5281/zenodo.10048805.

Code availability
The software to reproduce the results included in this paper is avail-
able at https://doi.org/10.5281/zenodo.841675537.
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