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The Imageable Genome

Pablo Jané 1,2,8, Xiaoying Xu 3,8, Vincent Taelman3,8, Eduardo Jané 4,
Karim Gariani5, Rebecca A. Dumont3, Yonathan Garama3, Francisco Kim 3,
María del Val Gomez6 & Martin A. Walter 3,7

Understanding human disease on a molecular level, and translating this
understanding into targeted diagnostics and therapies are central tenets of
molecularmedicine1. Realizing this doctrine requires an efficient adaptation of
molecular discoveries into the clinic. We present an approach to facilitate this
process by describing the Imageable Genome, the part of the human genome
whose expression can be assessed via molecular imaging. Using a deep
learning-based hybrid human-AI pipeline, we bridge individual genes and their
relevance in human diseases with specific molecular imaging methods. Cross-
referencing the Imageable Genome with RNA-seq data from over 60,000
individuals reveals diagnostic, prognostic andpredictive imageable genes for a
wide variety of major human diseases. Having both the critical size and focus
to be altered in its expression during the development and progression of any
human disease, the Imageable Genome will generate new imaging tools that
improve the understanding, diagnosis and management of human diseases.

Molecular imaging has the unique ability to non-invasively, quantita-
tively and reproducibly assess target molecule expression on cellular
and subcellular level2. It is an integral element of molecular medicine
that is designed to deepen the understanding of human health and
disease3. One of themostwidely utilizedmolecular imagingmodalities
in the clinic is positron emission tomography (PET), which shares
molecular targets with other widespread modalities such as magnetic
resonance imaging. PET’s ability to provide a total-body readout in
serial exams without sampling error make it an ideal imaging tool,
particularly for the domains of neurology, cardiology and oncology.

The combination of PETwith computed tomography (CT) and the
radiotracer fluorine-18-fluorodeoxyglucose (FDG) established the role
of PET-CT as a clinical diagnostic workhorse, notably in oncology4. Yet,
the gateway to unlocking the full potential of PET in visualizing spa-
tiotemporal pathobiology, characterizing resistance-generating
genetic transformations and identifying individual disease progres-
sion lies in the accurate targeting ofmolecularmarkers,many of which
can be assessed via the thousands of already existing radiotracers.
These radiotracers, compiled in the NIH Molecular Imaging and Con-
trast Agent Database (MICAD), represent the ultimate key to develop

PET into a clinically relevant diagnostic, predictive and prognostic tool
for all types of human diseases, as well as a driving force behind the
realization of personalized molecular medicine into routine clin-
ical use.

Recently, PET-based molecular imaging has had spectacular suc-
cesseswith the development of several radiotracers that target specific
tumour cells or cells of the tumour environment, such as PSMA or
FAPI5,6. However, despite decades and billions of dollars spent on
research7, still less than 1% of developed radiotracers arrive in the
clinic. One reason for this translational bottleneck is linked to the
fundamental lack of knowledge concerning the entirety of molecules
that can be targetedwith the repertoire of availablemolecular imaging
agents, as well as the relevanceof thesemolecules across the spectrum
of human disease.

Here we attempt to close this gap by providing a global view on
the field of molecular imaging, and by identifying the entirety of gene
products that can be targeted with molecular imaging. In doing so, we
describe the Imageable Genome, the part of the human genomewhose
expression can be assessed via molecular imaging. By correlating the
Imageable Genome with recent genomic datasets, we subsequently
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demonstrate its transformative potential for the fields of neurology,
cardiology and oncology. In developing and employing this novel data
pipeline, we transgress the borders between medical imaging, geno-
mics, systems biology and data science to advance the understanding,
diagnosis and treatment of human diseases.

Results
Data pipeline
Usingmachine learning anddeep learning,we created a hybridhuman-
AI pipeline that connects the combined data in medicine (PubMed),
molecular imaging (NIH MICAD), tissue gene expression (GEO) and
gene–disease association (DisGeNET) with individual clinical data and
gene expression profiles of 16,327 patients and 50,403 healthy con-
trols (Fig. 1). We built a pipeline that is simple, robust, easy to deploy,
and capable of dealing with large data sets, while optimizing its code
readability, logical structure and the use of well-known languages,
including Python and Structured Query Language (SQL).

We first downloaded and parsed the entire baseline MEDLINE/
PubMed dataset consisting of 33.4 million entries and 22.5 million
abstracts, as well as the NIH Molecular Imaging and Contrast Agent

Database (MICAD) comprising 4531 PubMed entries and 5360 mole-
cular imaging agents. We then cross-referenced both datasets, and
implemented and trained a convolutional neural network for natural
languageprocessing, i.e., a text classifier that identifies PubMedentries
on molecular imaging with high accuracy (Fig. 1a). Subsequently, we
implemented and trained a second convolutional neural network for
natural language processing, i.e., a named entity recognizer that
extracts radiotracers and their target protein from the PubMed entries
on molecular imaging with high accuracy (Fig. 1b and Supplementary
Data 1). We then developed filters that identify clinically used radio-
tracers and tracer-to-protein associations, thereby defining the
Imageable Proteome. Finally, we translated the names of proteins to
those of the coding genes, thereby establishing the Imageable Genome.

The Imageable Genome
Our pipeline identified 6387 publications describing 9285 radiotracer-
to-gene associations. These radiotracers target the products of 1173
imageable genes, which constitute the Imageable Genome (Supple-
mentary Data 2). The Imageable Genome is constantly growing, and
currently comprises 1166 genes located on all chromosomes but the Y
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Fig. 1 | Data pipeline. For the Imageable Genome project, we developed a data
pipeline that identifies texts containing radiotracers, recognizes and extracts
names of radiotracers from texts, filters for clinically-relevant radiotracers and their
associated targets, and translates protein names, i.e. of radiotracer targets, to
names of the coding genes. We then downloaded the entire baseline MEDLINE/
PubMed citation record, and used the above-mentioned pipeline to establish the
Imageable Genome, the part of the human genome whose expression can be
assessed bymolecular imaging. Subsequently, we subjected the Imageable Genome

dataset to normal tissues expressions from a massive analysis of GEO studies, and
gene-disease association from a curated DisGeNET database. Then we cross the
Imageable Genomedataset to transcriptomic datasets of humanbrain development
and disorders, heart development and failures, and The Cancer Genome Atlas
(TCGA) of 21 cancer types, to identify imageable genes for monitoring tissue
development, tracking cell types, as well as for diagnostic, prognostic and pre-
dictive imaging. ccRCC clear cell renal cell carcinoma, PRCC papillary renal cell
carcinoma, CRCC chromophobe renal cell carcinoma.
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chromosome (Fig. 2a), and 7 protein-coding genes on human mito-
chondrial DNA. It has a diverse expression pattern across different
healthy organs8–10 (Fig. 2a, track 1, Supplementary Data 3), and high
occupancy in major human diseases11, with most imageable genes
associated with multiple diseases (Fig. 2a, track 2). Certain imageable
genes are more frequently targeted (Fig. 2a, track 3), and show a cor-
relative expression (Fig. 2a, track 4, labels in colour), indicating
synergistic molecular imaging applications. Most imageable gene
products are located on the cellular plasmamembrane and function as
signalling receptors (Fig. 2b). Recruiting the occupancy of each
imageable gene via DisGeNET11, we found that the most frequent dis-
ease domains include neurology, cardiology and oncology (Fig. 2c and
Supplementary Fig. 2a–c).

Thus, by representing a key part of the human genome with both
critical size and relevance, the expression of the ImageableGenomewill
inevitably be altered during the development and progression of any
human disease. Conversely, the onset, progression and treatability of
any human disease can potentially be assessed using the Imageable
Genome. In the following sections, we confirm this hypothesis for a

wide spectrum of major neurologic, cardiologic and oncologic
diseases.

The Imageable Genome in neurology
The development of the human brain is a highly complex process that
is controlled by precise spatiotemporal changes in genome
expression12,13, changes that significantly affect the expression of the
Imageable Genome14. Twenty-nine percent of imageable genes are
differentially expressed during brain development over the entire
human life span (344 unique imageable genes, Fig. 3a, Supplementary
Data 4 and Supplementary Fig. 3). 24% and 17% are differentially
expressed in different regions of the prenatal and adult brain,
respectively (286 and 202 imageable genes, Fig. 3b and Supplementary
Data 5 and 6). The elucidation of imageable gene signatures in the
brain over the human life span paves the way for molecular imaging to
be used as a non-invasive monitoring tool for physiologic, and
potentially pathologic, human brain development. To this end, the
identified imageable gene signatures represent essential molecular
benchmarks, synergistic to the recently established magnetic reso-
nance imaging benchmarks for the developing brain15.
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Fig. 2 | The Imageable Genome. a A circos plot depicting 1166 out of 1173 genes of
the Imageable Genome with their chromosome locations (7 mitochondrial genes
not shown): track 1, expression across 24 healthy tissues (red: relatively high gene
expression, green: relatively low gene expression); track 2, gene-disease associa-
tions across 12 major diseases, with colour code corresponding to the disease
classification in (c); track 3, number of radiotracers targeting an imageable gene.
The height of red peak represents the corresponding number; track 4, image-
able genes targeted bymore than 30 radiotracers are labelled, and the links to their
genome-wide co-expressed genes across 24 healthy tissues are highlighted in the
innermost layer (pink, blue, purple and orange lines). CEACAM*: CEACAM3, CEA-
CAM5, CEACAM6.b Scatter plot summarizing a list of enriched gene ontology (GO)

terms from 1165 imageable genes (8 genes are not present in DAVID database). Rich
factor is the ratio of the imageable gene number in a GO term to the total gene
number. One-sided p values are computed using Fisher’s Exact test with a 95%
confidence interval. The False Discovery Rate (FDR) is used to control for multiple
testing. GO terms passing the thresholds −log10(FDR) > 30 andRich factor >15% are
labelled. c Disease classification of 916 imageable genes. Top enriched 12 major
diseases and their subcategorized diseases are shown in a sunburst plot, with the
area corresponding to the ratio of gene number within a major disease to the total
gene number. Centred absolute numbers represent the number of genes within the
disease families cancer, mental disorders and cardiovascular diseases. Source data
are provided as a Source data file.
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Moreover, the elucidation and comprehension of the complex
organization of the developed human brain remains one of the most
challenging endeavours in biomedical sciences. To understand dif-
ferences in the expression of the Imageable Genome among human
brain cells,weanalysed 17,093 single-nucleus transcriptomesof 3 adult

brains12,13 and identified 55 imageable genes with a differential
expressionpattern among the 8most prevalent brain cell types (Fig. 3c
and Supplementary Data 7).

This global view of imageable gene signatures for human brain
cells provides a framework to visualize and quantify the cellular
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Fig. 3 | The Imageable Genome in neurology. a Representative temporally
imageable genes across 9 brain development windows (W1–9). Dots represent the
expression level calculated from all brain regions of a sample within a window.
PCW: postconceptional weeks. PY postnatal years. Grey box: corresponding
developmentwindow. bAdonut chart showing the prenatal (left, yellow) and adult
(right, lake blue) brain regional imageable genes. CBC, cerebellar cortex; V1C, pri-
mary visual (V1) cortex; STR, striatum; AMY, amygdala; HIP, hippocampus; MD,
mediodorsal nucleus of thalamus; MFC, medial prefrontal cortex; A1C, primary
auditory (A1) cortex; ITC, inferior temporal cortex. c Dot plot depicting the
expression of cell type specific imageable genes in eight adult brain cell types, with
colour code corresponding to cell type.dA scatter plot of Early or Late-Alzheimer’s
disease related imageable genes across 6 cell types. The top ranked imageable
genes are highlighted with colour code corresponding to cell type. Ast astrocytes,
Ex excitatory neurons, In inhibitory neurons, Mic microglia, Oli oligodendrocytes,
Opc oligodendrocyte precursor cells. e Top ranked Early-Alzheimer’s disease (AD-
Early) related imageable genes sorted by absolute log2 (mean gene expression in

AD-Early/mean gene expression in Normal) (shown as: log2(fold change)) values
across 6 cell types. Z-score normalized read counts are shown (two sidedWilcoxon-
rank sum test at FDR <0.01, absolute log2(fold change) >0.25, and Poisson mixed
model at FDR <0.05). NADH:ubiquinone oxidoreductase supernumerary subunits
were labelled in lake blue, followed by a chemical structure of Fluorine-18 radio-
isotope labelled PET radiotracer targeting the mitochondrial complex. Cell-type
icons createdwith BioRender.com. fArea under the receiver operating curve (AUC)
values representing the capacity of imageable genes and 3 reference genes in dis-
criminating Early-Alzheimer’s disease and healthy brains. g–i Volcano plots of
genes differentially expressed in g autism (ASD, n = 43), h schizophrenia (SCZ,
n = 558), and i bipolar disorder (BD, n = 216) versus healthy brains (n = 986). Up-
regulated (red) or down-regulated (green) imageable genes are highlighted. Ast
astrocytes, Endo endothelial cells, Ex excitatory neurons, In inhibitory neurons,Mic
microglia, Oli oligodendrocytes Opc oligodendrocyte precursor cells, Vsmc vas-
cular smooth muscle cells. Source data are provided as a Source data file. Cell type
icons are created with BioRender.com.
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composition in different brain regions with molecular imaging, with
the goal of understanding the healthy versus diseased adult brain.
Notably, embryonic brains are composed of different major cell types,
with a different profile of imageable genes (Supplementary Fig. 4).

The onset of neurodegenerative pathologies, such as Alzheimer’s
disease, alter the spatiotemporal expression of the Imageable Genome,
a phenomenon which can be exploited to identify much needed
methods for early disease detection. Analysing 80,660 single-nucleus
transcriptomes from the prefrontal cortex of individuals with varying
degrees of Alzheimer’s disease pathology16, we identified 41 cell-type-
specific imageable genes up- or down-regulated exclusively in AD-early
diseased versus Normal brains (Fig. 3d, Supplementary Fig. 5a and
Supplementary Data 8), and 81 cell-type specific imageable gene up or
down-regulated exclusively in AD-late diseased versus AD-early dis-
eased brains (Supplementary Fig. 5a and Supplementary Data 8).

As a case in point, excitatory neurons and inter-neurons down-
regulate genes encoding subunits of theNADHdehydrogenase early in
the course of Alzheimer’s disease (Fig. 3e), a phenomenon that can be
imaged with [18F]FP1OP, originally developed for cardiac imaging17.
[18F]FP1OP was, to the best of our knowledge, never tested in Alzhei-
mer’s disease; yet, receiver operating characteristic (ROC) analyses
suggest a promising diagnostic accuracy (Fig. 3f).

Similarly, various neuropsychiatric conditions such as autism,
schizophrenia and bipolar disorder are associated with an altered
spatiotemporal expression of the Imageable Genome. Analysing bulk
RNA-seq from 1695 brain samples18, we identified 48, 21, and 5
imageable genes that are specifically expressed in autism (Fig. 3g),
schizophrenia (Fig. 3h) or bipolar disorder respectively (Fig. 3i, Sup-
plementary Fig. 5b and Supplementary Data 9). These results demon-
strate how the Imageable Genome, by suggesting promising imaging
targets, can help overcome the bottleneck of absent radiotracers for
molecular imaging of neuropsychiatric disorders19.

Finally, while the Imageable Genome suggests promising imaging
targets for already existing radiotracers, it also guides target selection
for novel radiotracers. We present 5940 stage-specific, 5897 region-
specific, 535 cell-type-specific, and 1343 disease-specific genes that are
likely more specific than those already present within the Imageable
Genome, to image brain cells, Alzheimer’s disease, autism, schizo-
phrenia and bipolar disorder in Supplementary Data 10–15.

The Imageable Genome in cardiology
The heart is the first organ to develop in the embryo; its development
is orchestrated by specific spatiotemporal changes in genome
expression20,21, which significantly affect the expression of the Image-
able Genome. Three percent of imageable genes are differentially
expressedduring embryonicdevelopment (41 imageablegenes, Fig. 4a
and Supplementary Data 16), whereas 4% and 9% are differentially
expressed in different regions of the embryonic and adult heart,
respectively (51 and 101 imageable genes, Fig. 4b and Supplementary
Data 17 and 18). This comprehensive analysis of developmental gene
signatures reveals a more stable expression of the Imageable Genome
in the human heart than in the human brain, indicating that molecular
imaging results for the human heart are less spatiotemporally sensi-
tive. With the increasing understanding of the molecular mechanisms
of congenital heart disease22, the Imageable Genome envisages the
potential role of molecular imaging as a non-invasive tool to monitor
physiologic and pathologic heart development and provides a frame-
work for its clinical implementation.

Moreover, elucidation of differences between the healthy and
diseased human heart on a cellular level will to lead to more efficient
ways of screening for, preventing, diagnosing and treating cardiac
diseases. Such studies can be largely built on differences in the
expression of the Imageable Genome among human cardiac cells.
Analysing a comprehensive sc/snRNA-seq dataset from 6 different
regions of 14 adult hearts, we identified 40 imageable genes

specifically expressed in each of the 11 cardiac cell types (Fig. 4c and
Supplementary Data 19). Recent cardiac cell maps provided essential
tools to deepen the understanding of the healthy23 and the diseased
heart24. The imageable gene signatures for human heart cells provide a
tool to translate this understanding into clinically applied non-invasive
mapping tools for cardiac cells.

Atrial fibrillation, coronary artery disease, and dilated cardio-
myopathy each alter the expression of the Imageable Genome in
cardiac cells, a phenomenon that can be exploited to identify much-
needed methods for early disease detection25. By analysing bulk
transcriptomes from cardiac tissue specimens of 7 individuals26, we
identified 6 imageable genes that are predictive for the onset of atrial
fibrillation (Fig. 4d). Similarly, we identified 7 imageable genes
characteristic for coronary artery disease by analysing single-nucleus
transcriptomes from left ventricular tissue specimens of 2 patients
and 14 healthy donors. The analysis of single-nucleus transcriptomes
from left ventricular tissue specimens of 21 patients with dilated
cardiomyopathy and 14 healthy donors27,28 identified 278 imageable
genes characteristic for dilated cardiomyopathy including the tet-
rameric protein haptoglobin, which is up-regulated by cardiac mac-
rophages, endothelial cells, fibroblasts and smooth muscle cells
(Fig. 4e–g, Supplementary Fig. 5c and Supplementary Data 20).
Haptoglobin can be imaged with iodinated RM2-mab, originally
developed for prostate cancer imaging29. RM2-mab was, to the best
of our knowledge, never tested in dilated cardiomyopathy; yet, ROC
analyses suggest a promising accuracy (Fig. 4h). These results
demonstrate how specific disease-induced alterations in the
expression of the Imageable Genome can be used to develop mole-
cular imaging into a non-invasive tool for prediction and early
detection of pertinent heart diseases.

To guide target selection for new and improved radiotracers for
cardiac molecular imaging, we list 269 stage-specific, 1685 region-
specific, 1356 disease-specific, and 752 cell-type-specific genes that are
likely more specific than those already present within the Imageable
Genome, to image heart development, heart cell organization, atrial
fibrillation, dilated cardiomyopathy and coronary artery disease in
Supplementary Data 21–25.

The Imageable Genome in oncology
Genomic instability remains a major cause of resistance to cancer
therapies30; it also induces spatiotemporal changes to the expression
of the Imageable Genome. For instance, 5% of imageable genes in
ovarian cancer are differently expressed at initial diagnosis, during
therapy and in cases of relapse31 (64 imageable genes, Fig. 5a, Sup-
plementary Fig. 6a and Supplementary Data 26), whereas 10% of
imageable genes are differently expressed in lung adenocarcinoma,
compared to its advanced-stage primary tumour, pleural, bone and
brain metastases32 (117 imageable genes, Fig. 5b, Supplementary
Fig. 6b and Supplementary Data 27). These spatiotemporal changes of
Imageable Genome expression indicate that molecular imaging can
become a tool to track shifts in genome expression during tumour
progression.

Moreover, the expression of the Imageable Genome typically dif-
fers between human cancers and their tissue of origin. Overall, 3795
non-unique imageable genes (Supplementary Data 28) are up-
regulated among 20 cancers of The Cancer Genome Atlas, including
the glutamate metabotropic receptor GRM4 in breast cancer, the
dopamine transporter SLC6A3 in renal clear cell cancer, the ionotropic
glutamate receptor GRIN2D in colon cancer, the gamma-aminobutyric
acid receptor GABRD in hepatocellular cancer and and the Epithelial
Cell Adhesion Molecule EPCAM in cholangiocarcinoma (Fig. 5c(i)
and Supplementary Fig. 7). The expression of these imageable genes is
high in tumours, and low in tissues of origin and potential
metastatic sites such as bone and liver (Fig. 5c(iii)). The respective
radiotracers [18F]fluoromethyl-MK-80133, [18F]FE-PE2I34, [18F]fluoroethyl-
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normemantine35, [18F]flumazenil36, 64Cu-DOTA-PEG-AntiEPCAM-
Aptamer37 and (Fig. 5c(ii)) were developed for neuroimaging and have
never to the best of our knowledge been tested for tumour imaging;
yet, ROC analyses suggest promising diagnostic accuracies (Fig. 5c(iv)
and Supplementary Fig. 8a–j). These results indicate how cancer-
specific expression profiles of the Imageable Genome can delineate
new diagnostic tools for any cancer type.

The expression of the Imageable Genome also differs between
cancers sensitive or resistant to specific therapies. For example, 47
imageable genes are differently expressed in melanomas sensitive or
resistant to PD1-blockade38 (in 34 cases with a p <0.05, Fig. 5d and
Supplementary Data 29), including the matrix metalloproteinase
MMP9, the adenosine receptor ADORA1, the glycogen synthase kinase
GSK3A, the folate receptor FOLR2 and the transforming growth factor
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Fig. 4 | The Imageable Genome in cardiology. a Temporally imageable genes
during human embryonic heart development within each region. A scheme
showing the structure of the human embryonic heart at 5–9post-conceptionweeks
(Created with BioRender.com). Genes coding for mitochondria complex I-IV sub-
units are grouped and named into MT-complex. b Regional imageable genes for
human embryonic heart (left, blue) and adult heart of each cell type (right, grey).
CM cardiomyocyte, LV left ventricular, LA left atrial, RA right atrial, OT outflow
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depicting the expression of cell-type-specific imageable genes in eleven adult heart
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to cell type. f Heatmap of top ranked DCM related imageable genes in 6 cell types.
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cells). p value with 95% CI calculated from two-sided DeLong’s test for two ROC
curves. Source data are provided as a Source data file. Cell-type icons are created
with BioRender.com.
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TGFB2 (Fig. 5d). The respective radiotracers [68Ga]Ga-DOTA-TCTP-139,
[18F]CPFPX40, [11C]AR-A01441841, [18F]AzaFol42 and [89Zr]Zr-
fresolimumab43 were developed for diagnostic purposes. These results
demonstrate how response-associated expression profiles of the
Imageable Genome can delineate new predictive tools for cancer
therapies.

The expression of the Imageable Genome also correlates with
cancer survival. The expression of 6831 imageable genes differs in
various cancer types and their tissue of origin, and correlates with
overall survival in univariate andmultivariate analyses (Supplementary
Data 30), including theCholinergicReceptor CHRNA7 in cervix cancer,
the Nitric Oxide Synthase NOS2 in colon cancer, and the Epoxide
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Fig. 5 | The Imageable Genome in Oncology. a Expression of top ranked disease
status related imageable genes in malignant ovarian epithelial cells over time: at
diagnosis (pre-treatment), under therapy (treatment), and in relapse as indicated
by an augmented serum CA-125 level (two-sided Wilcox test). b Tissue origins
during lung cancer metastasis and top ranked imageable genes differentially
expressed at advanced ormetastatic sites versus primary site, two-sided Student’s t
test p <0.01 with Bonferroni correction<0.01, |log2(fold change)|>0.585. c Top
diagnostic imageable genes across 5 cancer types. log2(fold change)>0.5 and
Limma moderated t-statistic with Bonferroni correction<0.01. (i) heatmap illus-
trating the gene expressions (columns) in normal or cancer tissue (rows); (ii) an
gene of interest (GOI) in mauve with a chemical structure of PET radiotracer tar-
geting the GOI; (iii) violin plot of GOI expression in bone (n = 284), liver (n = 1759)
and mammary cancer (n = 5541), kidney cancer (n = 349) or intestines cancer
(n = 2227), two-sidedWilcoxon test p values are shown. (iv) ROC curves of GOI and
SLC2A1 with 95% confidence interval (CI) and two-sided DeLong’s test p value for

two correlated ROC curves. d A schematic showing the predictive capacity (ROC
curves, sensitive: PD1-blockage treatment responder, resistant: non-responders) of
5 representative imageable genes, and their clinical radiotracers. e Prognostic
imageable genes in, left to right, Cervix cancer, Colon cancer and Hepatocellular
cancer. For each cancer, (i) top ranked imageable genes sorted by p values from
Wald test byfittingCoxproportional hazards (CPH)models to evaluate the effect of
covariates on overall survival, with the best cutoff determined (see “Methods”). A
square represents the Hazard Ratio (HR) with a horizontal line extending on either
side representing the 95% CI. GOI is labelled in mauve. *p <0.05; **p <0.01;
***p <0.001; (ii) Kaplan–Meier overall survival with Log-Rank test p value; (iii) cox
regression overall survival curves distinguishing GOI high/low expression groups
(multivariable survival analyses with Wald test p values by fitting CPH model); (iv)
chemical structure of PET radiotracer targeting the GOI. Cancer-type icons are
created with BioRender.com. Source data are provided as a Source data file.
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Hydrolase EPHX3 inHepatocellular cancer (Fig. 5e(i, ii)). The respective
radiotracers [18F]FPH44, [18F]iNOS-945 and [18F]-Fndp46 were developed
for brain and heart imaging (Fig. 5e(iv)). They were, to the best of our
knowledge, never used for cancer imaging; yet, survival analyses sug-
gest promising prognostic potential (Fig. 5e(iii) and Supplementary
Fig. 9). These results demonstrate how survival-associated expression
profiles of the Imageable Genome can delineate new prognostic tools
for any cancer type.

Finally, we list 4127, 924 and 5583 genes that are likely more
specific than those already present within the Imageable Genome for
diagnostic, predictive and prognostic cancer imaging, as well as
prognostic applications for the most frequently used tracers in the
clinic today in Supplementary Data 31–37.

The Imageable Genome in COVID-19
Diagnosing COVID-19, identifying affected tissues, and understanding
its impact on human health remain a global health care challenge.
Analysing 106,792 and 40,880, single-nucleus transcriptomes of SARS-
CoV-2 infected lung and heart47, we identified 36 cell-type specific
imageable genes up or down-regulated exclusively in COVID-19 versus
healthy tissues48 (Supplementary Fig. 10a–c). These results demon-
strate how the Imageable Genome might allow expanding molecular
imaging beyond neurology, cardiology, and oncology into new fields.

Discussion
The Imageable Genome represents a novel and timely means of
approaching, summarizing and understanding the field of PET-based
molecular imaging. In bridging medical imaging, genomics, systems
biology and data science on a broad scale to yield easily accessible
results that are of high interdisciplinary interest and relevance, the
approach underpinning the Imageable Genome is truly unique.

The Imageable Genome amounts to 1.8% of the human genome
and 6% of the human protein coding genome49. It represents a part of
the human genome that has the critical size and focus to be altered
during development and progression of any human disease. So far,
about 1–30% of human protein coding genes have been identified as
disease relatedmarkers in neurology, cardiology andoncology, among
which 21% are imageable genes (Supplementary Fig. 11). This implies
that the transformation of healthy tissues into diseased tissues, the
development of treatment-resistance and the development of traits
worsening the overall prognosis most likely affect the expression of
the Imageable Genome. Thus, the Imageable Genome will likely facil-
itate the development of diagnostic, predictive and prognostic ima-
ging tool for any human disease.

The Imageable Genome is constantly growing, and its relevance is
likely to grow correspondingly. The availability of more single cell
sequencing data in the future might allow to identify even more
imageable genes with relevance in human diseases. This dynamic
growth combined with the ability to image targets of high pertinence
among a wide range of human diseases represent major strengths of
the field ofmolecular imaging.While the low clinical translation rate of
the thousands of radiotracers targeting the Imageable Genome repre-
sents an important weakness50, the ability of the Imageable Genome to
bridge genomics with molecular imaging represents a major opportu-
nity for PET-basedmolecular imaging to become an establishedmeans
of studying systems biology as well as a clinical gateway for molecular
medicine.

Since its introduction over 70 years ago with Linus Pauling’s
seminal paper on sickle cell anaemia51, thefieldmolecularmedicine has
elucidated the origins of many human diseases on a molecular level
and translated this understanding into tools for disease prevention,
diagnosis, prognosis and treatment. Nearly 20 years ago, the Human
Genome Project significantly empowered research into the genetic
basis of human disease, and amplified the potential for molecular
discoveries that could be translated into clinical tests52,53. However,

during the last 10 years, the translation rate of genomic discoveries
into FDA-regulated tests dropped from approximately 0.01%54–56 to
0.001%55–57. A fundamental challenge in operationalizing genomic
discoveries remains the need to decipher the code of complex
research-driven multi-omics discoveries into the simple decision-
oriented language of the clinic. The Imageable Genome can serve as a
“Rosetta stone” that systematically translates these complex genomic
discoveries into easily applicable clinical imaging tests.

Translating genomic discoveries into molecular imaging tests will
open new avenues for molecular medicine. Sample collection in cer-
tain organs, such as the brain or heart, represents a well-known barrier
to genomic analysis. Non-invasive PET-based molecular imaging as a
surrogate for genomic analyses could overcome this barrier, permit-
ting “sample-free genomics”. Moreover, the necessity for repeated
sampling of diseased tissue remains a relative barrier to recurring
genomic analysis. PET-based molecular imaging could similarly over-
come this with non-invasive “serial genomic testing”. Finally, sub-
optimal or non-representative sampling remains a key limitation in
genomic analyses of heterogeneous diseases such as systemic
inflammatory diseases or advanced cancers. The use of PET-based
molecular imaging could potentially overcome this barrier with
“whole-body genomics” by providing information not only on the
primary lesion, but all lesions in a patient with widespread disease.

Molecular imaging, and especially PET, was originally envisioned
as a clinical tool to assess, visualize and quantify systems biology
in vivo2. However, during the last decade PET, in the form of FDG PET-
CT, becamemainly an increasingly sensitive diagnostic tool used in the
setting of cancer diagnosis, staging and restaging. The combination of
the genomic and AI revolutions now paves the way for the initial vision
of PET imaging tobe fully realized. First, the rise of systemsbiology has
provided an consolidative understanding of complex biological sys-
tems,many of which can be imaged by PET58. Second, the introduction
of high-throughput techniques, particularly transcriptomics, has gen-
erated the necessary data to model these biological systems59. Third,
the widespread availability of low-cost, high-throughput tran-
scriptomics has created a wealth of transcriptomic data60, which will
fuel the research necessary to establish PET as a systems biology tool.
Finally, the riseof AI nowprovides themeans toobtain a global viewon
the entire field of molecular imaging in the example of the Imageable
Genome, which finally allows bridging the field with transcriptomic
data on a major scale.

By bridging genomicswith the entire field of PET-basedmolecular
imaging, completely new avenues for molecular imaging will be
opened. With the examples of cerebral and cardiac development and
tissue composition, we demonstrate how the use of genomics can
establish PET-based molecular imaging as a tracking tool for organo-
genesis and distinct cell populations. For example, with availability of
the necessary genomics data, one could envision detailed, serial in-
vivo imaging studies of developmental pathologies such as Tetralogy
of Fallot or cerebral neuronal migration disorders performed in
embryonic animalmodels with PET tracers identified by the Imageable
Genome. Such studies could potentially elucidate the spatiotemporal
mechanisms underlying these diseases on a molecular and cellular
level, as well as possibly identify a means of treatment. With the
examples of atrial fibrillation and PD1-blockade in oncology, we
demonstrate how PET can be tailored to detect patients that are prone
to develop a specific disease, or identify diseases that will respond to a
specific therapy. Such applications of molecular imaging can be
directed by genomic discoveries, and the use of modern automated
radiopharmacy systems61 will make the necessary variety of radio-
tracers available to create “genomic imaging centres”.

A widely available Imageable Genome will likely have a high
interdisciplinary impact onmultiple branches of the life sciences. First,
our approach of combining traditional systematic review techniques
with machine learning and deep learning algorithms to meta-analyse
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entire clinical fields has unlimited potential. For example, if repeated
to compile and meta-analyse the entire field of immunohistochem-
istry, the entire randomized evidence in oncology or the entirety of
toxicities reported for specific drugs, medicine would enter a new era
of truly evidence-based, informed clinical decision-making. Yet, such
meta-analyses will increasingly rely on the validity of claims within the
compiled literature and on the subsequent validation analyses of the
outcome of these human-AI pipelines. New challenges such as replic-
ability issues will raise as a consequence of the magnitude of these
results and the lack of external validation datasets, and they will
require the collaborative efforts of the scientific community and novel
external proofing techniques.

Second, our approach highlights a very timely core value: sus-
tainability. Reducing the costs and the carbon fingerprint associated
with scientific research is crucial62, and we see the Imageable Genome
as a prime example of “sustainable science” that facilitates the re-
cycling and re-purposing of previously developed radiotracers on a
large scale, andmoreover, reviving the initial vision for PET,molecular
imaging and molecular medicine.

Third, several manually compiled databases might benefit from
the Imageable Genome, which was generated using an AI-based
approach. One example is the NIH MICAD, which can now be upda-
ted and significantly expanded through the Imageable Genome.
Another example is the Druggable Genome, which currently includes
667 genes whose products can be targeted by drugs for treatment of
human disease63. As PET-based molecular imaging has an established
role in identifying, screening and validating new drug targets64, we
expect a high translation of imageable genes into druggable genes,
hence a growth of the Druggable Genome catalysed by the Imageable
Genome.

Fourth, we hope that the results from our approach of cross-
referencing the Imageable Genome with key datasets from neurology,
cardiology and oncology will spark interest from clinicians and
researchers in these fields. Interestingly, we found a high cross-
usability of radiotracers among the three clinical fields, which is in line
with the growing evidence of impressive overlap among genes
responsible for wide-ranging pathologies, such as those driving cancer
as well as underlying certain development disorders65,66. A “big sci-
ence” approach with an interdisciplinary collaboration among
researchers, clinicians, geneticists and medical imagers will be essen-
tial to translate the findings from the Imageable Genome into
clinical use.

Finally, academic and commercial radio-pharmacological devel-
opments are likely to be vastly impactedby advances in knowledgeput
forth by the Imageable Genome. By identifying genes of high clinical
pertinence that are not yet imageable, the Imageable Genome will be a
key resource to guide the development of a new generation of
improved radiopharmaceuticals, which will in turn further expand the
Imageable Genome.

In describing the Imageable Genome, we provide a global view of
molecular imaging and demonstrate how this field is only at the
beginning of realizing its potential to bring molecular medicine fully
into the clinical realm. We hope that the Imageable Genome will serve
as a key resource to catalyse further high-yield research, and to
advance the impact of molecular medicine on human health.

Methods
For the Imageable Genome project, we developed a data pipeline that
identifies texts containing radiotracers, recognizes and extracts names
of radiotracers from texts,filters for clinically relevant radiotracers and
their associated targets, and translates protein names, i.e. of radio-
tracer targets, to names of the coding genes.We then downloaded the
entire baseline MEDLINE/PubMed citation record, and used the data
pipeline to establish the part of the human genome whose expression
canbe assessed bymolecular imaging. Subsequently, we subjected the

dataset to normal tissues expressions from a massive analysis of GEO
studies, gene ontology, and gene-disease association from a curated
DisGeNET database. Then we crossed the dataset to transcriptomic
datasets of human brain development and disorders, heart develop-
ment and disorders, and The Cancer Genome Atlas (TCGA) of 20
cancer types, to identify novel development-tracking, cell type spe-
cific, diagnostic, prognostic and predictive imageable genes.

Text classifier
Wedeveloped a text classifier to identify texts containing a radiotracer
for molecular imaging. In brief, on February 26, 2022 we downloaded
the entire baseline MEDLINE/PubMed citation record, and created a
dataset of 33,405,863 PubMed ID (PMID) citations and 22,542,347
abstracts within 1114 xml files67,68. Using PubMed_Parser69, we parsed
these xmlfiles into a series of Pandas.DataFrames70 thatwe saved to 90
parquet files. To establish a ground truth of texts containing a radio-
tracer for molecular imaging, we downloaded the entire Molecular
Imaging and Contrast Agent Database (MICAD)71,72, containing 5360
molecular imaging agents, their imaging modality, PMID, abbreviated
name, chemical name, application, andmolecular target, as an xlsx file.
From this file, we extracted all radiotracers for single photon emission
computed tomography (SPECT) and positron emission tomography
(PET), and saved them into a python dictionary with their respective
PMIDs, resulting in 3550 entries. From these entries,weproduced a list
of PMIDs and filtered out the duplicates obtaining 2997 unique PMIDs.

We used these 2997 PMIDs to search for the corresponding
PubMed citations in the parquet files, and obtained a list of 2060
abstracts containing a radiotracer for molecular imaging. To these, we
added 2308 random abstracts from PubMed not containing radio-
tracers. We verified the correct labelling of all abstracts by a team of
experts in the field using the collaborative annotation platform
Doccano73, andgenerated a training corpusof 4368 annotated abstract
texts. Prior to the model training, we performed pre-processing by
removing any leading and trailing spaces, making all the characters
lowercase and eliminating all punctuation signs excepting brackets,
dashes and percentage symbols.

We then performed a 75/25% train/test split of this training corpus
and trained a text categorizer model consisting of a convolutional
neural network using python’s natural language processing tool
spaCy74, and the pre-trained model “en_core_sci_md” from ScispaCy75,
chosen for its efficiency, its state-of-the-art performance, and its
compatibility with spaCy. We trained the model 10 times over 10
iterations to classify abstract texts describing a radiotracer with an
average precision of 97.8%, an average recall of 98.8%, and an average
F1 score of 98.3% (with a set prediction score threshold of 0.5, being
the numerical value given by the softmax function in the output layer
of the model to the “positive” category).

Named entity recognition
We developed an algorithm to recognize and extract names of radio-
tracers within texts. We used the 2060 abstract texts describing
radiotracers to produce a training corpus for a named entity recog-
nitionmodel. We used the python tool FuzzyMatcher from Spaczz76 to
search for matches of a list of the abbreviated names of radiotracers
from MICAD within the 2060 abstract texts. We then turned these
matches into entity labels (“RADIOTRACER”) that were verified by a
teamof experts in the field usingDoccano73.We trained a named entity
recognition model consisting of a convolutional neural network using
python’s natural language processing tool spaCy74, and the pre-trained
model “en_ner_jnlpba_md” from ScispaCy75. This pre-trained model
detects DNA, CELL_TYPE, CELL_LINE, RNA and PROTEIN with an F1
Score of 70.9%. To avoid a “catastrophic forgetting” event77, we used
this model on each sentence of each abstract, turned the matches of
themodel known entities into entity labels for a new training step, and
added the previously annotated “RADIOTRACER” labels.
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We then divided the “RADIOTRACER” label into two new labels
according to the token length of the entities: RADIOTRACER-L for
entities with more than 1 token length, and RADIOTRACER-S for enti-
ties of exactly one token length in order to improve performance of
the model by creating two more homogeneous entities. The training
dataset consisted of 13,863 sentences with a total of 38,194 annotated
entities (RADIOTRACER 15,324, PROTEIN: 7003, DNA: 1104, CELL_-
TYPE: 840). We re-updated the model with these new entities over 20
iterations obtaining a precision of 76.7%, a recall of 75.0% and an
F1 score of 75.9% for RADIOTRACER-L, as well as a precision of 90.1%, a
recall of 90.7%, and an F1 score of 90.4% for RADIOTRACER-S.

Rule-based filtering
We developed an SQL search algorithm that allows filtering for clini-
cally used radiotracers and radiotracer-to-target associations. Specifi-
cally, we generated a set of numeric sequences corresponding to the
mass number of radioisotopes used for molecular imaging78, and an
algorithm to retain only those texts in which the radiotracers con-
tained one of these numeric sequences. Furthermore, we developed a
filtering algorithm to retain texts that contain both, a radiotracer
(RADIOTRACER-L and/or RADIOTRACER-S) and a protein or gene
name in the title and/or the abstract.

Protein-to-gene translation
Wedeveloped a tool that can translate protein names in our final excel
file exported from the SQL database after the rule-based filtering step,
i.e. those of radiotracer targets, to the names of the respective coding
genes. Thereby, we used mygene, the python wrapper for the
mygene.info REST API79, a database which contains large lists of pro-
tein aliases and their coding genes. We wrote an automatic querying
algorithm that iteratedover all target proteins, wrote thebestmatch to
the table provided by mygene.info (matched protein, associated gene
symbol and associatedgene ensembl ID) and exported it to a newexcel
file for manual verification.

The Imageable Genome
We downloaded and parsed the entire baseline MEDLINE/PubMed
citation record, and created a dataset of 33,405,863 PubMed ID (PMID)
citations and 22,542,347 abstracts. Using the text classifier, we identi-
fiedwithin this dataset 649,995 abstractswith aprediction score above
0.5 for containing a radiotracer.We stored these to an SQL partitioned
database hosted on a MYSQL server80 containing all original columns
of the baseline dataset plus a column with the prediction score. We
then used the named entity recognition model to extract radiotracers
from all title and abstract texts in the dataset, and added that infor-
mation to the SQL partitioned database. We then used our filter
algorithms, and retained all entries that contained both, a radiotracer
and a protein or gene name in the title and/or the abstract, and
retained all entries in which the radiotracers contained a numeric
sequence of a clinically relevant radiotracer. Using the rule-based fil-
tering, we obtained a dataset of 44,811 entries that we stored to an SQL
partitioned table.

Finally, a team of experts in the field verified the correct identifi-
cation of the radiotracer, the correct identification of the gene entity,
the correct identification of the protein entity, the correct association
between the radiotracer and the gene entity, the correct identification
of the protein entity, the correct association between the radiotracer
and the protein entity. Unclear cases were solved by a second or third
reviewer.

The Imageable Genome in Gene Expression Omnibus (GEO)
human normal tissue RNA-seq datasets9,10

We used a recently published re-processed RNA-seq data source
comprising Variance Stabilizing Transformation normalized counts
across 238,522 humansamples generated from Illuminaplatformswith

corresponding entries in the GEO database (ARCHS4 v8, February
2020). We used “correlationAnalyzeR” (R package, Version 1.0.0) to
retrieve normalized and transformed RNA-seq Variance Stabilizing
Transformation data (function “getTissueVST”) and correlationmatrix
(Function “analyzeSingleGenes”) from Azure MySQL server as descri-
bed in the paper.We included a total of 48,619 samples from24human
normal tissues and 1161 Imageable Genome genes (HSP90AA3P,
MMP26, MUC19, KRT33A, KRT28, MC3R, MIR155, GSTA5, HLA-DRB9,
GSTA6P, OR12D1, CYP11B2, and their alias are not present in MySQL
dataset) in this section.

Gene ontology (GO) of the Imageable Genome
We used DAVID Bioinformatics Resources (2021 Update)81,82 to per-
form gene ontology functional enrichment analysis for all 1173
Imageable Genome genes.

Disease enrichment analysis for the Imageable Genome
We downloaded from DisGeNET CURATED database (V7.0) the cura-
ted gene-disease association information which contains gene-disease
associations from UNIPROT, CGI, ClinGen, Genomics England, CTD
(human subset), PsyGeNET, and Orphanet. We used “disgenet2r” (R
package, version 0.99.2) with function “disease_enrichment” to
retrieve disease enrichment information over 24 human diseases and
916 imageable genes11, focusedongeneswith theDisGeNET score≥0.3.
As described by the DisGeNET, the DisGeNET score was determined by
the Gene-Disease Association (GDA) scores, which takes into account
the number and type of sources (level of curation, organisms), and the
number of publications supporting the association. Disease Specificity
Index (DSI) and Disease Pleiotropy Index (DPI) for each gene was also
retrieved and used for the implementation of disease associations.

The Imageable Genome in brain development14

We downloaded bulk RNA-seq count matrix from the National Insti-
tutes of Health–funded PsychENCODE (http://psychencode.org). The
dataset included 607 samples, 16 anatomical brain regions from 41
post-mortem individuals, with ages ranged from 8 post-conception
weeks (PCW) to 40 postnatal years (PY) (Window 1–9). Regions and
sequencing data collection were as described in this article12. In brief,

• Neocortex (NCX), including Frontal cortex: orbital (OFC), dor-
solateral (DFC, aka DLPFC), ventrolateral (VFC), and medial
(MFC), prospective motor and parietal somatosensory (MSC)
cerebral wall, Orbital prefrontal cortex (OFC), Dorsolateral pre-
frontal cortex (DFC), Ventrolateral prefrontal cortex (VFC),
Medial prefrontal cortex (MFC); Parietal cortex: prospective
inferior parietal cortex (IPC), Primary somatosensory cortex
(S1C); temporal cortex: auditory and superior temporal cortex
(A1C/STC) cerebral wall, Posterior superior temporal cortex
(STC), Inferior temporal cortex (ITC) and Occipital cortex: pri-
mary visual cortex (V1C).

• Hippocampus (HIP)
• Amygdala (AMY)
• Striatum (STR)
• Mediodorsal nucleus of thalamus (MD)
• Cerebellar cortex (CBC).

We performed differential gene expression analysis as described
in this article12. In brief, we computed temporal differentially expressed
genes for each pair of in-window and out-window samples (pairwise
windows comparison) across all regions. We also computed regional
differentially expressed genes for eachpair of in-region and out-region
samples (pairwise regions comparison) across all windows.

We used DESeq2 (R package, version 1.32.0) to perform differ-
ential gene expression analysis, using bulk RNA-seq count matrix as
input and the two sequencing sites (Yale and USC) as covariates to
reduce batch effect. Genes from chrMT were excluded from the ana-
lysis. We defined the differentially expressed genes by passing the
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filtering criteria: count >10 in at least one condition, log2(fold change)
>1, mean RPKM> 1 for the case condition and false discovery rate
<0.01. We then crossed the lists of temporal or regional differentially
expressed genes to the Imageable Genome to identify imageable
markers for brain development. From Charles’s study (Cell, 2022), we
analysed snRNA-seq data of 26 post-mortem prefrontal cortex (PFC)
samples from individuals spanning foetal, neonatal, infancy, child-
hood, adolescence, and adult stages of development and retrieved
14,984 unique development-associated differentially expressed genes
(devDEGs, false discovery rate [FDR] <0.05) within at least one major
trajectory (cell type). We used the list of devDEGs as a validation
dataset crossing to the imageable brain development markers
obtained from Li’s study.

The Imageable Genome in human brain cells12

We downloaded single cell RNA-Seq (scRNA-seq) count matrix and
single nucleus RNA-seq (snRNA-seq) count matrix from the National
Institutes of Health–funded PsychENCODE (http://psychencode.org).
The scRNA-Seqdataset included60,155 genes and 762 single cells from
8 prenatal donors. Cells were classified into 6 major cell types: ExN:
excitatory neurons, InN: interneurons, IPC: intermediate progenitor
cells, NasN: nascent neurons, OPC: oligodendrocyte. The snRNA-Seq
dataset included 23,476 genes and 17,093 single nuclei from 3 adult
donors. Cells were classified into 8 major cell types: Astro: cells in the
astroglial lineage, Endo: endothelial cells, ExN: excitatoryneurons, InN:
interneurons, Microglia, Oligo: oligodendrocytes, OPC: oligoden-
drocyte progenitor cell, VSMC: vascular smooth muscle cells.

Genes from chrMT were excluded from the analysis. From
“Seurat” (R package, version 4.0.5), we used a global-scaling normal-
ization function “NormalizeData” (normalization.method = “Log-
Normalize”, scale factor = 10,000) to normalized the raw counts, and
function “FindAllMarkers” to identify marker genes for each major
cell type.

To identifymarker genes with a specificity for a given cell type, we
compared each group of cells to the rest of the cells and defined cell
type specific markers by passing the filtering criteria: for each com-
parison, the percentage of cells where the gene is detected in the
group>30%, thepercentageof cellswhere the gene is detectedoutside
the group <30%, a difference between percent of cells expressing gene
within and outside group >30%, a false discovery rate <0.00001, and a
log2(fold change) >1. We then crossed the list of markers to the
Imageable Genome to identify brain cell type specific imageable mar-
kers during brain development.

The Imageable Genome in Alzheimer’s disease16

We retrieved cell type markers for either early Alzheimer’s disease
versus control, or late Alzheimer’s disease versus early Alzheimer’s
disease from the study’s Supplementary Tables 1–3. We down-
loaded snRNA-seq count matrix from AD Knowledge Portal (Synapse
ID: syn18485175). This dataset included 17,926 genes and 70,634
nuclei from the prefrontal cortex of 48 individuals (15 individuals
classified into “early-pathology”, 9 individuals classified into “late-
pathology”, and 24 individuals classified into “no-pathology”). Cells
were classified into 8 major cell types: Ast: astrocytes, End: endo-
thelial cell, Ex: Excitatory neurons, In: Inhibitory neurons, Mic:
microglia, Oli: Oligodendrocytes, Opc: Oligodendrocyte precursor
cells, Per: pericytes. From “Seurat” (R package, version 4.0.5), we
employed a global-scaling function “NormalizeData” (normal-
ization.method = “LogNormalize”, scale factor = 10,000) to normal-
ized the raw counts. We define cell type markers by passing the
filtering criteria: TRUE in both modules and mean log transformed
count within case >0.3. We then crossed the list of early Alzheimer’s
disease and late Alzheimer’s disease cell type markers to the Image-
able Genome to identify cell type specific imageable markers for
Alzheimer’s disease.

The Imageable Genome in autism spectrum disorder, schizo-
phrenia, and bipolar disorder18

We retrieved differentially expressed genes for autism spectrum dis-
order, schizophrenia, and bipolar disorder from the study’s Supple-
mentary Table S1. We downloaded bulk RNA-seq TPM matrix and
clinical metadata from PsychENCODE Consortium (http://resource.
psychencode.org/). This dataset included 57,820 genes and 1867 sub-
jects with their clinical status. We included a total of 1803 subjects
diagnosed with autism spectrum disorder (n = 43), schizophrenia
(n = 558), or bipolar disorder (n = 216), and controls (n = 986) for the
downstream analysis. We define differentially expressed genes by
passing the filtering criteria: false discovery rate <0.05, |log2(fold
change)| > 0.25, mean TPM in the case group >0.3 for up-regulated
genes and mean TPM in the control group >0.3 for down-regulated
genes.We then crossed the lists ofdifferentially expressedgenes to the
Imageable Genome to identify imageable markers for autism spectrum
disorder, schizophrenia, and bipolar disorder.

The Imageable Genome in heart development20

We downloaded filtered Spatiotemporal count matrix and the meta
table from https://www.spatialresearch.org/resources-published-
datasets/doi-10-1016-j-cell-2019-11-025/. This dataset included 39,739
genes and 3111 spot samples fromheart specimens at 5-, 6- and 9-week
development. Following the article’s methods, we annotated the gene
symbols using ENSEMBL genome assembly GRCh38, release 86 (gen-
code.v25.basic.annotation.gff3), kept only protein coding and lincR-
NAs, removed MALAT1 and MTRNR genes as well as highly expressed
genes related to haemoglobin and linked to the Y-chromosome,
excluded spots with fewer than 500 genes, and excluded genes
expressed in fewer than 15 spots. We finally obtained 14,002 genes for
downstream analysis.

From “Seurat” (R package, version 4.0.5), we used the function
“NormalizeData” (normalization.method = “LogNormalize”) to nor-
malize the filtered raw counts, by setting the scale factor with the
average of column sums across the expression matrix.

To compute the regionalmarkers,wefirstly redefined the regions.
There were 10 clusters annotated in the article’s original meta file:
compact ventricular myocardium (cluster0), trabecular ventricular
myocardium (cluster1), trabecular ventricular myocardium (cluster2),
trabecular ventricular myocardium (cluster3), atrial ventricular myo-
cardium (cluster4), outflow tract/larger vessels (cluster 5), atrioven-
tricular mesenchyme and valves (cluster 6), mediastinal mesenchyme
andvessels (cluster 7), cavitieswith bloodand immune cells (cluster 8),
and epicardium (cluster 9). We combined the samples in clusters 0–4
to obtain a global region group renamed into “myocardium”, and kept
the clusters 5–9.

We then computed regionalmarkers for eachpair of in-region and
out-region samples (pairwise regions comparison) across all time-
points. We also computed temporal-regional markers for each pair of
in-timepoint and out-timepoint samples (pairwise temporal compar-
ison) for each region.

From “Seurat” (R package, version 4.0.5), we performed differ-
ential gene expression analysis using function “FindAllMarkers” and
defined differentially expressed genes by passing the filtering criteria:
discovery rate <0.01, log2(fold change)>0.5, mean log-transformed
count in region >0.3. We then crossed the lists of temporal or regional
differentially expressed genes to the Imageable Genome to identify
imageable markers during early heart development.

The Imageable Genome in human heart cells21

We downloaded single AnnData file containing the global raw counts
from all source scRNA-seq via www.heartcellatlas.org. After removing
cells annotated as “doublets” or “NotAssigned”, we obtained 451,513
cells and 33,538 genes for downstream analysis. We used Scanpy
toolkit 1.8.2 (Python v.3.8.2) to perform normalization
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(normalize_per_cell: counts_per_cell_after: 10,000), log transformation
(log1p) and differential gene expression analysis (rank_genes_groups:
method = “wilcoxon”).

We computed global cell type markers by pair each cell type
versus the rest.We also computed regional cell typemarkers bypair in-
region and out-region samples for each cell type. We kept the regions
withmore than 100 cells detected.We defined differentially expressed
genes by passing the filtering criteria: adjusted p value < 0.00001,
log2(fold change) >5, andmeanof log transformedcount in group>0.5
for global cell type markers; adjusted p value < 0.00001, a log2(fold
change) >1, and a mean of log transformed count in group >0.3 for
regional cell type markers. We then crossed the differentially expres-
sed genes to the Imageable Genome to obtain either global cell type
imageable markers or regional cell type imageable markers.

The Imageable Genome in heart failure27,28

For the study by Koenig et al., we downloaded the complete differ-
entially expressed gene lists analysed from 17 individuals with dilated
(non-ischaemic) cardiomyopathy versus 28 control donors, and
directly crossed to the Imageable Genome.

For the study by Wang et al., we downloaded scRNA-seq count
matrix from the GEO database (accession codes: GSE109816 and
GSE121893). After merging the data from the two repositories and
removing cells annotated as “AV”, we obtained a total of 11,056 cells
and 25,742 genes derived from 4 hearts of patients with dilated car-
diomyopathy (dHF), 2 hearts of patients with coronary heart disease
(cHF) and 14 hearts of healthy donors. From “Seurat” (R package,
version 4.0.5), we used function “NormalizeData” (normal-
ization.method = “LogNormalize”, scale.factor = 10,000) to normal-
ized the raw counts, and function “FindMarkers” (test.use = “wilcox”)
to perform differential gene expression analysis. We computed the
disease-cell type specific differentially expressed genes bypairing each
heart failure group versus healthy group, or by paring healthy group
versus merged two heart failure groups. We defined differentially
expressed genes by passing the filtering criteria: an adjusted p
value < 0.01, |log2(fold change)| >0.25, and a mean of log transformed
count in group >0.3. We then crossed the list of differentially expres-
sed genes to the Imageable Genome to identify the imageable heart
disease markers.

The Imageable Genome in tumour development31

We downloaded RNA-seq count matrix of ovarian cancer patient no. 5
from the ovarian cancer study (10× platform, GEO Accession number:
GSE158722). For downstream analysis, we used a total of 8037 epi-
thelial cells from 3 collecting time points: Pre, sample collected before
treatment; Start, sample collected right after treatment initiation;
Relapse, sample collected at the first appearance of tumours bio-
marker MUC16 (CA-125) peak. From “Seurat” (R package, version
4.0.5), we computed gene expression changes in epithelial cells over
time by using the function “FindMarkers” (test.use = “wilcox”). We
defined differentially expressed genes by passing the filtering criteria:
adjusted p value < 0.01, |log2(fold change)| > 0.25, and the percentage
of cells where the gene is detected in the case group >30%. We finally
crossed the list of differentially expressed genes to Imageable Genome
to identify imageable markers during ovarian cancer development.

The Imageable Genome in metastasized tumours32

From the article’s supplementary data, we downloaded differentially
expressed gene list from pairwise comparisons between early-primary
(tLung) versus advanced-stage primary (tL/B), or early-primary (tLung)
versus metastatic (mLN, and mBrain) cancer cells. We performed
additional differential gene expression analysis by comparing early-
primary (tLung) to pleural effusion (PE) metastasis following the same
methods and criteria described in this article. In brief, among the 396
malignant cells, we kept genes which expressed in >25% of cells within

either of the two compared groups. From “Seurat” (R package, version
4.0.5), we used function “FindMarkers” to pool out the differentially
expressed genes. We determined the significance of the difference by
two-sided Student’s t test with a Bonferroni correction. We defined
differentially expressed genes by passing the filtering criteria: |log2(-
fold change)| > 0.585, two-sided Student’s t test p value < 0.01, and
adjusted p value (Bonferroni) < 0.01. We then cross the list of genes to
the Imageable Genome to obtain the imageable markers for lung can-
cer metastasis.

The diagnostic Imageable Genome in human cancers
From the TCGA database, we downloaded clinical data and RNA-seq
data (HTSeq—Counts andHTSeq—FPKM)of tumour or normal samples
from TCGA database. We initially performed data cleaning by remov-
ing samples with duplicated aliquots, missing clinical information and
removing cancer types with less than three normal solid tissue sam-
ples. After cleaning, 8620 samples from 21 cancer types were used for
downstream analysis.

For each cancer type, we performed differential gene expression
analysis between the normal tissues and tumour samples, by following
the standard workflow as described in “edgeR” (R package, version
3.34.1) and “limma” (R package, version 3.48.3). In brief, we filtered out
downregulated genes using the function “filterByExpr”, calculated the
between-sample (TMM) normalization factors by function “calc-
NormFactors” and “voom”, we extracted the lists of differentially
expressed genes by function “topTable”, and cross them to the
Imageable Genome to identify imageable markers for tumour
detection.

For a given cancer type, we performed receiver operating char-
acteristic analysis to determine the diagnostic value of a given
imageable gene or reference gene. We computed the area under the
curve (AUC) from the receiver operating characteristic curves by
“pROC (R package, version 1.18.0) with function “roc”.

The prognostic Imageable Genome in human cancers
For a given cancer type, we used gene expression value to divide the
patients into two subgroups. From “survminer” (R package, version
0.4.9), we determined the optimal cut-off for each gene expression by
function “surv_cutpoint”. To estimate the prognostic significance of
each imageable gene, we initially computed univariable hazard ratios
with 95% confidence intervals and corresponding p values. We then
performed multivariable survival analyses by fitting Cox proportional
hazardsmodels (CPH) that included patient age, tumour stage, gender
and the expression of each imageable gene pooled from the univari-
able analyses at p value < 0.05 (method section 18). For a given
imageable gene, adjusted survival curves for CPH Models were gen-
erated and visualized using function “ggadjustedcurves” from R
package “survminer”, version 0.4.9. Then we performed log-rank tests
to check the statistical significance of the survival difference between
groups with high and low gene expression. We collected overall sur-
vival information from TCGA clinical data: “days_to_last_follow-up” if
censored, or “days_to_death” if dead. We removed from the analysis
any sample with vital_status = “alive” & overall_survival = 0. We did not
consider “Stage” factor for Glioblastomamultiforme (TCGA-GBM) and
Pheochromocytoma and Paraganglioma (TCGA-PCPG). We did not
consider “Gender” for cervical squamous cell carcinoma and endo-
cervical adenocarcinoma (TCGA-CESC), uterine corpus endometrial
carcinoma (TCGA-UCEC) and prostate adenocarcinoma (TCGA-PRAD).

The predictive Imageable Genome in human cancers38

WedownloadedRNA-seqTPMmatrix from the article’s supplementary
data. From ipilimumab-naive subset (n = 84), we made comparisons
between responders (defined as having stable disease (SD), mixed
response (MR), partial response (PR) or complete response (CR),
n = 47) versus non-responders (defined as having progressive disease
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(PD), n = 37), and evaluated the predictive value of each imageable
gene by their area under the curve values derived from receiver
operating characteristic analysis.

The Imageable Genome in COVID-1947,48

For the study of Toni et al. (NATURE 2021), from their Supplementary
Tables we extracted list of genes differentially expressed between 16
COVID-infected lungs versus 11 healthy lung and 18 COVID-infected
hearts versus 21 healthy hearts across five major lung or heart cell
types. For the study of Johannes et al. (Nature 2021), from their Sup-
plementary Tables, we extracted the list of genes differentially
expressed in 19 COVID-infected lungs versus 7 healthy lungs across
four major lung cell types (AT1, AT2, monocyte and alveolar macro-
phage). Then we cross the two lists of differently expressed genes to
the Imageable Genome to obtain the list of imageable COVID-19 lung/
heart cell type related differently expressed genes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Supplementary
Information and Source data file. All raw data used in this study are
publicly available and can be found as follows: Sc/snRNA-seq data from
the human brain development study (Li, Science 2018) are available at
PsychENCODEKnowledgePortalwith Project SynID: syn4921369, under
https://doi.org/10.7303/syn4921369. (SynapseID: syn17092080 and
syn17092080). Count matrix and annotations have been deposited at
http://psychencode.org. SnRNA-seq for Human brain development
(Charles, Cell 2022) is available in the Gene Expression Omnibus (GEO)
database under accession code: GSE168408. Bulk RNA-seq data from
the ASD, SCZ and BP brain disease study (Gandal, Science 2018) are
available at PsychENCODE Knowledge Portal with SynapseID:
syn12080241 under https://doi.org/10.7303/syn12080241. SnRNA-seq
data from the Alzheimer’s disease study (Mathys, Nature 2019) are
available at AD Knowledge Portal with SynapseID: syn18485175 under
https://doi.org/10.7303/syn18485175. The respective contact for
Synapse repositories is: Mette Peters, Director, Systems Biology Data
Coordination Center, Mette@synapse.org. The raw sequencing data
from human embryonic heart development study (Asp, Cell 2019) is
under European Genome-phenome Archive (EGA) accession number:
EGAS00001003996. The raw sequencing data from adult human heart
cell atlas (Litviňuková, Nature 2020) are available at the European
Nucleotide Archive (ENA) with accession number: ERP123138 (https://
www.ebi.ac.uk/ena/browser/view/PRJEB39602). Count matrices and
annotation are available for download from theHeart Cell Atlas (https://
www.heartcellatlas.org). The respective contacts are the corresponding
authors: J. G. Seidman (seidman@genetics.med.harvard.edu), Christine
E. Seidman (cseidman@genetics.med.harvard.edu), Michela Noseda
(m.noseda@imperial.ac.uk), Norbert Hubner (nhuebner@mdc-ber-
lin.de), and Sarah A. Teichmann (st9@sanger.ac.uk). ScRNA-seq data
from dilated cardiomyopathy (dHF) or coronary heart disease study
(Wang, Nature Cell Biology 2020) are available in the GEO database
under accession codes: GSE109816 and GSE121893. Sc/snRNA-seq from
dilated cardiomyopathy (dHF) study (Koenig, Nature Cardiovascular
Research, 2022) are available in the GEO database under accession
code:GSE183852. BulkRNA-seqdata fromhumanatrialfibrillation study
(van Ouwerkerk, Nat Commun, 2019) are available in the GEO database
under accession code: GSE127856. ScRNA-seq data fromOvarian cancer
study (Nath, Nat Commun 2021) are available in the GEO database
under the accession code: GSE158722. ScRNA-seq data from Lung can-
cermetastasis study (Kim, Nat Commun 2020) are available under GEO
accession code: GSE131907. Sc/snRNA-Seq and bulk RNA-seq data from
COVID-19 study (Toni, Nature 2021) are available in the GEO database

under GEO accession code: GSE171668. ScRNA-seq data from COVID-19
study (Johannes, Nature 2021) are available in the GEO database under
accession code: GSE171524, and in the single-cell portal: https://
singlecell.broadinstitute.org/single_cell/study/SCP1219. Source data
are provided with this paper.

Code availability
The software code associated with the Imageable Genome is available
on https://github.com/pablojane/ImageableGenome.
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