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Robust mapping of spatiotemporal
trajectories and cell–cell interactions in
healthy and diseased tissues

Duy Pham1, Xiao Tan1, Brad Balderson 1,2, Jun Xu 3, Laura F. Grice 1,4,
Sohye Yoon3, Emily F. Willis4, Minh Tran1, Pui Yeng Lam 1, Arti Raghubar1,
Priyakshi Kalita-de Croft 5, Sunil Lakhani 5, Jana Vukovic 4,6,
Marc J. Ruitenberg 4 & Quan H. Nguyen 1,7

Spatial transcriptomics (ST) technologies generate multiple data types from
biological samples, namely gene expression, physical distance between data
points, and/or tissue morphology. Here we developed three computational-
statistical algorithms that integrate all three data types to advance under-
standing of cellular processes. First, we present a spatial graph-basedmethod,
pseudo-time-space (PSTS), to model and uncover relationships between
transcriptional states of cells across tissues undergoing dynamic change (e.g.
neurodevelopment, brain injury and/or microglia activation, and cancer pro-
gression). We further developed a spatially-constrained two-level permutation
(SCTP) test to study cell-cell interaction, finding highly interactive tissue
regions across thousands of ligand-receptor pairs withmarkedly reduced false
discovery rates. Finally, we present a spatial graph-based imputation method
with neural network (stSME), to correct for technical noise/dropout and
increase ST data coverage. Together, the algorithms that we developed,
implemented in the comprehensive and fast stLearn software, allow for robust
interrogation of biological processes within healthy and diseased tissues.

Biological tissues represent enormously complex and dynamic cellular
ecosystems, the functions of which are driven by cell type(s), their
local composition and states, distribution patterns, and cell–cell
interactions1–3. The nature of these features at any given place and time
are critical determinants of tissue development, homeostasis, repair
and responses to environmental signalling1,4. The advent of single-cell
RNA sequencing (scRNA-seq), an ultra-sensitive and high-throughput
technology with individual cell resolution5, has led to the discovery of
new cell types and also expanded our understanding as to how the
transcriptional state(s) of cells can vary in response to experimental
stimuli and/or changes in their environment. However, current

knowledge about cell types and states often still lacks crucial contextual
information, that is, how they coexist, interact and communicate within
their native tissue environments in either healthy or diseased states6–8.

Spatial transcriptomics (ST) can profile transcriptome-wide gene
expression in an unbiased manner without the need for tissue dis-
sociation, thus retaining spatial information. ST data is growing
exponentially9,10, with the technology now becoming more widely
accessible through platforms such as Visium11, NanoString Spatial
Profiling12, seqFISH+13, MERFISH14 and Slide-seq215. However, analytical
methods to analyse such complex datasets have lagged behind
experimental advances and mostly remain in an early development

Received: 16 September 2022

Accepted: 1 November 2023

Check for updates

1Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia. 2School of Chemistry and Molecular Biosciences, The University of
Queensland, Brisbane, Australia. 3Genome Innovation Hub, The University of Queensland, Brisbane, Australia. 4School of Biomedical Sciences, Faculty of
Medicine, TheUniversity ofQueensland, Brisbane, Australia. 5UQCentre forClinical Research, TheUniversity ofQueensland, Brisbane, Australia. 6Queensland
Brain Institute, The University of Queensland, Brisbane, Australia. 7QIMR Berghofer Medical Research Institute, Herston, Australia.

e-mail: m.ruitenberg@uq.edu.au; quan.nguyen@uq.edu.au

Nature Communications |         (2023) 14:7739 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5153-6601
http://orcid.org/0000-0002-5153-6601
http://orcid.org/0000-0002-5153-6601
http://orcid.org/0000-0002-5153-6601
http://orcid.org/0000-0002-5153-6601
http://orcid.org/0000-0002-2262-9999
http://orcid.org/0000-0002-2262-9999
http://orcid.org/0000-0002-2262-9999
http://orcid.org/0000-0002-2262-9999
http://orcid.org/0000-0002-2262-9999
http://orcid.org/0000-0002-9813-4722
http://orcid.org/0000-0002-9813-4722
http://orcid.org/0000-0002-9813-4722
http://orcid.org/0000-0002-9813-4722
http://orcid.org/0000-0002-9813-4722
http://orcid.org/0000-0003-4031-367X
http://orcid.org/0000-0003-4031-367X
http://orcid.org/0000-0003-4031-367X
http://orcid.org/0000-0003-4031-367X
http://orcid.org/0000-0003-4031-367X
http://orcid.org/0000-0001-8877-7655
http://orcid.org/0000-0001-8877-7655
http://orcid.org/0000-0001-8877-7655
http://orcid.org/0000-0001-8877-7655
http://orcid.org/0000-0001-8877-7655
http://orcid.org/0000-0003-1879-2555
http://orcid.org/0000-0003-1879-2555
http://orcid.org/0000-0003-1879-2555
http://orcid.org/0000-0003-1879-2555
http://orcid.org/0000-0003-1879-2555
http://orcid.org/0000-0002-3739-1688
http://orcid.org/0000-0002-3739-1688
http://orcid.org/0000-0002-3739-1688
http://orcid.org/0000-0002-3739-1688
http://orcid.org/0000-0002-3739-1688
http://orcid.org/0000-0002-6917-0708
http://orcid.org/0000-0002-6917-0708
http://orcid.org/0000-0002-6917-0708
http://orcid.org/0000-0002-6917-0708
http://orcid.org/0000-0002-6917-0708
http://orcid.org/0000-0001-7870-5703
http://orcid.org/0000-0001-7870-5703
http://orcid.org/0000-0001-7870-5703
http://orcid.org/0000-0001-7870-5703
http://orcid.org/0000-0001-7870-5703
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43120-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43120-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43120-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-023-43120-6&domain=pdf
mailto:m.ruitenberg@uq.edu.au
mailto:quan.nguyen@uq.edu.au


stage. For example, morphology and gene expression are known to be
strongly linked16, and our own previous work indeed demonstrated
that the useof imagingor gene expressiondata alone is less accurate at
predicting cell types and/or disease stage compared to models that
combine both data types17. Most existing analysismethods for ST data,
however, still do not combine spatial and imaging information with
gene expressiondata to jointly study important processes like cell–cell
communication and/or spatial changes in cell states (trajectories).
Finding patterns in spatial gene expression data thus remains one of
the grand challenges in omics data science today8,18.

In this study, we developed a powerful and flexible approach to
integrate gene expression measurements with the spatial location and/
ormorphological information, to effectivelymake use of all dimensions
in ST data. The analytical toolkit that we describe, hereafter collectively
referred to as stLearn, addresses threemajor researchquestions around
understanding biological processes within tissue sections: (1) the (re)
construction of spatio-temporal trajectories, (2) the study of cell–cell
interactions, and (3) the improvement of spatial data quality by impu-
tation. We show that the inclusion of spatial information and morpho-
logical data can address current challenges in each of these three
research areas with higher accuracy than existing methods and/or add
analysis capabilities that are not yet available (e.g. cancer progression
trajectory analysis). stLearn can be used with most spatial data, even
those that lack tissue image information. stLearn’s assumptions are
based on existing biological knowledge and principles. Specifically, the
interdependence between gene expression andmorphological features
such as cell size, nuclei size, granularity and distribution16,19 is used to
adjust geneexpressionvalues. Physical distance is usedon thebasis that
genes in cells that are nearby within a given tissue display more similar
expressionpatterns thandistant cells20–22. Regions of increased cell type
diversity also correlate with higher cell–cell interaction activities, as
demonstrated for example by the immune social networkmodel, or the
weighted-directed-multi-hyperedge network model23,24. By incorporat-
ing all this information, our approachdelivers significant improvements
over existingmethods inmultiple criteria, for example by providing the
capability tofind spatial trajectorieswithin (and across) tissues, and also
by allowing a critical reduction in thedetection of false positive cell–cell
interactions within ST data.

Results
An interpretable graph-based framework to contextualise gene
expression data with spatial neighbourhood and/or morpholo-
gical information
stLearn implements a graph-based framework to flexibly integrate two
or all types of information available in ST data, that is, gene expression,
tissuemorphology (optional) andphysical distance (Fig. 1a); this graph-
based framework is interpretable as the individual contribution of each
type of information can be quantified. stLearn can analyse awide range
of spatial transcriptomics data types, with or without imaging infor-
mation (Fig. 1b), and its three main algorithms allow users to infer
spatial trajectories that recapitulate changes in biological processes
connecting neighbouring cells across the tissue (Fig. 1c and S1), tomap
significant spatial cell–cell interactions (Fig. 1d), and to impute spatial
gene expression data (Fig. 1e). The biological applications for each of
these three algorithms are demonstrably broad, and we thoroughly
tested and validated ourmethods in a wide range of biological systems
using in-house, public and simulated datasets, as described below.

stLearn reconstructs spatio-temporal cell trajectories in brain
injury, neurodevelopment and cancer
Our spatial trajectory inference algorithm, pseudo-time-space (PSTS),
allows users to deduce changes in cell state across tissue space and
time (Fig. S1 and Supplementary Note 1). One drawback of scRNA-seq
data is that anatomical information about a cell’s location within the
broader tissue is lost, as is context from the local cellular

neighbourhood. Furthermore, trajectory reconstructions in scRNA-seq
data are generated under the assumption that all cells of the same cell
type developed from similar progenitor and/or cell states. However,
this assumption does not hold if one cell type is in fact distributed
across different regions, or where region-specific changes for that cell
type may occur; examples of this would include instances of tissue
injury and inflammation as well as metastatic tumours. This short-
coming can be resolved with ST, if gene expression information is
coupled to cellular distribution data (Fig. S1, and also discussed later in
Figs. 2 and 3, and S10). We therefore created the PSTS algorithm to
reconstruct spatial trajectories that can track pseudo-temporal pat-
terns across a tissue in ST datasets (Supplementary Note 1).

We hypothesised that our PSTS trajectory algorithm would be able
to detect (and predict) spatio-temporal responses to tissue injury, spe-
cifically gradients of microglia activation in a well-characterised mouse
model of traumatic brain injury (TBI)25. Under steady-state conditions,
these resident macrophage-like cells of the brain display little hetero-
geneity between different brain regions and have a mostly ramified
phenotype26,27. They rapidly change their gene expression and mor-
phology, however, in response to insult, becoming visibly more amoe-
boid in appearance (Fig. 2a). We therefore further hypothesised that we
would be able to validate PSTS predictions morphologically, using
microglia density and size as a proxy for their activation.

To test these hypotheses, we first generated Visium ST data
for the injured mouse brain (3 days post-injury, dpi). We then
applied stSME-based clustering (see “Methods”) to segment the
brain (Figs. S2 and 2c), using the Allen Mouse Brain Atlas for the
fine-tuning of clustering parameters28, and subsequently selected
all microglia-containing spots based on the expression of marker
genes Fcrls and Tmem119. When applying PSTS to these spots, the
hypothalamus region was revealed to be the most tran-
scriptionally dissimilar to the injury site, as captured by its dPTS

score (Fig. S3). We then used the PSTS algorithm to predict the
minimum spanning tree connecting the damaged site and the
hypothalamus (refer to Methods and Supplementary Note 1.3).
This yielded a spatial trajectory for microglial activation across
the dorsoventral axis of the injured brain, with the arrows indi-
cating the directionality of transcriptional change in PSTS values
(Fig. 2b). Based on matching clusters with the anatomical identity
of brain regions (Fig. 2c), key nodes within the PSTS trajectory for
microglia activation were the hypothalamus (node 4), thalamus
(node 2), hippocampus (node 3) and two branches to the
penumbra region on either side of the lesion (nodes 1) (Fig. 2b);
path-defining genes are shown in Fig. 2d. Enrichment analysis
revealed the microglia pathogen phagocytosis pathway as the
most significant biological process changing across our spatial
trajectory (Fig. 2e). Other relevant pathways, including those
involved in the TYROBP causal network, oxidative stress and
central nervous system (CNS) injury more broadly, also changed
with microglial activation.

Detailed histological studies of microglia morphology and density
across six different conditions and/or time points (sham control,
6 hours, 1 day, 3 days, 5 days and 12 dpi) independently validated our 3
dpi PSTS trajectory, with changes in microglia number, cell body size
and shape matching the prediction across both space and time (Fig. 2f-
h). We corroborated this further with additional ST data by also map-
ping the expression of gene markers associated with microglia activa-
tion at two time points post-TBI, i.e. 6 hours (Legacy ST, with lower
resolution) and 3 days (Visium and Legacy ST platforms), as well as in a
non-injured ST brain sample (Visium ST) for control purposes (see
Fig. S4 and also Fig. S6c). A clear injury-induced shift in the spatial
expression of microglia markers Fcgr1, C1qa and Cyba could be
observed between the control, 6 hours and 3 days post-TBI samples,
with expression increasing over time closer to the damaged
site (Fig. S4).
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For benchmarking, we next compared PSTS/pseudotime results
between tools, visualising the variation of PSTS/pseudotime values
between spatial spotswithin the tissue based on variogrammetrics see
“Methods” and Supplementary Note 1.2 for details). We find that PSTS
outperformed Slingshot29 and Monocle330, which are non-spatial tra-
jectory inference methods (Fig. 2i). Specifically, PSTS constructed
more meaningful trajectories compared to Slingshot and Monocle3
(the method used by SPATA31) (Fig. 2j); we validated this through cell
type annotation by deconvolution and experimental histological stu-
dies (Fig. S5). To also benchmark against other pseudotime methods
that do use spatial information, we next compared the performance of
PSTS to that of SpaceFlow32 (Figs. 2j and S6). While SpaceFlow’s
pseudo-Spatiotemporal Map (pSM) did provide spatially smooth gra-
dients with less variation between neighbouring spots (indicated by a
low semivariance in the variogram; Fig. S6a), the smoothedpSMscores
across spots did not reveal the gradient ofmicroglia activation relative

to the damage site (Fig. 2j and S4–5). SpaceFlow’s spatial regularisation
and/or a potential loss of information on spot-to-spot variation in the
latent space after dimensionality reduction (which is used by Space-
Flow to calculate pseudotime scores) may have contributed to this
issue. In our analysis, the pseudotime values computed by SpaceFlow
didnot formapattern that enabled the drawingof a tree foroptimising
the trajectory from low to high pseudotime scores, a unique feature of
stLearn. The SpaceFlow result also did not allow us to identify biolo-
gically significant transition genes along the trajectory, and the path-
ways associatedwith these (Fig. S6d).Overall, PSTS thus outperformed
all other trajectory inference methods tested, including the method
that uses spatial information (Fig. 2j).

We next assessed PSTS’ ability to also reveal spatio-temporal
trajectories under normal (non-injury) conditions using mouse
embryonic brain development as the model. For this, we applied PSTS
to an existing mouse embryonic day 14 sci-Space dataset33 (Figs. 3a, b
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Fig. 1 | Spatial analysis algorithms implemented in stLearn. a Schematic diagram
showing the three spatial data types that can be integrated by stLearn: gene
expression (G), imaging (I) and spatial distance (D). b stLearn can be applied to a
range of spatial technologies, with or without tissue imaging information (using
f(G, I,D) or f(G,D) functions). c Spatial trajectory analysis to infer biological pro-
cesses within an undissociated tissue. Pseudo-space-time distance (PSTD) values
are calculated based on gene expression and physical distance. Spatial distance is
calculated between the centroid coordinates of clusters U and V with sub-clusters
(u1, u2) and (v1, v2, v3). PSTD values are used to construct a rooted, directed graph
(arborescence), the topology of which can be optimised by a minimum spanning
tree to infer the trajectory. This approach to trajectory analysis was validated in a
mouse model of traumatic brain injury. d Spatially-constrained two-level permu-
tation (SCTP) analysis for cell–cell interaction (CCI) between (straight arrows) and
within (looped arrows) spatial spots. SCTP uses ligand and receptor co-expression

information among neighbouring spots, and cell type diversity (gradient blue
spots; darker colour indicatesmore cell types per spot) to compute ligand-receptor
(LR) scores. SCTP finds hotspots (purple) within a given tissue, where LR interac-
tions between cell types are more likely to occur compared to a null distribution of
randomnon-interacting gene-gene pairs. Predicted interactions were confirmed by
RNA single molecule imaging. e Overview of within-tissue imputation and cluster-
ing by stSME, which corrects for technical noise (dropouts) in gene expression
values by using imaging data (via a neural networkmodel - matrix I), and spots that
are both physically near and have similar gene expression profiles (distance
matrices D and G, respectively). stSME can also predict gene expression in tissue
regions for which there is no experimental data (pseudo-spots). stSME clustering
performance was validated against an established anatomical reference mouse
brain (spatial brain data, top far right), or expert pathologist annotation (breast
cancer data, bottom far right).
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and S7 and Supplementary Note 1.6). Previous analysis of brain
development in this dataset identified trajectories (without spatial
information), running from radial glia to neurons33. Our newly calcu-
lated PSTS values and trajectories were consistent with these pre-
viously reported results, with the spatio-temporal gradients reflecting
the well-documented pattern of cellular differentiation, neuronal
migration and maturity. Importantly, PSTS found one additional
branching pattern, which precisely illustrated immature neurons

migrating and differentiating radially outward as part of the inside-out
development of the cortical layers (Figs. 3b and S7).

We lastly assessed PSTS’ utility in a more applied, diagnostic con-
text, namely its ability to model the metastasis potential of ductal car-
cinoma in situ (DCIS) cells in breast cancer (detailed in Supplementary
Note 1.5). Here, PSTS revealed the relationship between ductal and
invasive states in breast cancer. DCIS are abnormal cells in the breast
duct that have the potential to metastasise beyond the duct, becoming
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invasive ductal carcinomas (IDCs). Being able to visualise and/or predict
DCIS-to-IDC progression in space and time has the potential to discover
druggable biological pathways and/or biomarkers of disease, and with
that, improvements in clinical care. We find that PSTS was able to find
different states of cancer cells presentwithin a givenbreast cancer tissue
section (Figs. S8 and S9), and that it couldmodel the potential transition
between these states (Figs. 3c–f and S10–S11). By inferring branches of
spatial trajectories, PSTS suggested the most likely progressions of
ductal states (clusters) to spatially corresponding invasive states, as well
as the distinct pathways and genes associated with these branches
(Figs. 3c–e, S11, S12). To also examine here if spatial trajectories translate
and/or can be inferred across different tissues, we devised a broadly
applicable integration strategy. This integration strategy harnesses the
power of multiple spatial datasets for identifying trajectories that have
consistent patterns and are thus stable. Users can either register two (or
more) tissues into a common coordinate framework and then run PSTS
on the merged dataset (Fig. S13a–c). Where registration is not possible,
users can run PSTS independently and identify shared driver genes that
are consistently associated with common trajectories between the tis-
sues (Fig. S13d–h); as the latter approach does not require sections to be
registered, it can bebroadly applied. Todemonstrate the applicability of
both approaches, we took advantage here of available ST data from an
adjacent tissue section of the same breast cancer sample. We demon-
strate that registering sections to a common coordinate framework
identifies and/or confirms the common trajectories between sections
(Fig. S13a–c).We further show that, evenwithout image registration, the
identification of shared driver genes and subsequent enrichment path-
way analysis can support and annotate the common trajectory between
sections (Fig. S13f–h). Thus, PSTS can effectively infer spatial trajectories
across different sections through visualisation patternmatching, and by
making use of shared transition markers. Overall, the analysis approach
applied here provides the capability for predicting cancer progression,
or drivers thereof, using a biopsy collected at time of diagnosis (often
the only time that samples are collected). Based on the spatial changes
between different cell stateswithin a cancerous tissue, PSTS can suggest
the possibility of invasion or metastasis, implying a huge translational
potential that warrants further development.

Collectively, the above data validate the PSTS concept and con-
firm that the various constructed spatial trajectories can accurately
model and/or predict biologically significant spatio-temporal changes
in cell states in health and disease.

stLearn cell–cell interaction analysis uses Spatially-Constrained
and Two-level Permutation of genes and cells
Cell–cell interactions (CCI) are important in all multi-cellular pro-
cesses, both for normal tissue growth or maintenance, and in disease-
driven change. Current methods to find biologically significant ligand-
receptor (LR) interactions in any of these contexts often suffer from a

common limitation, that is, high false discovery rates. For instance,
scRNA-seq data lacks spatial context, meaning that interactions could
be predictedbetween cell types that are spatially very distant fromone
another, and are thus unlikely to directly interact. stLearn’s Spatially-
Constrained and Two-level Permutation (SCTP) analysis solves this
issue by first identifying spatial neighbourhoods of ligand-receptor co-
expression, computing so-called LR scores (see “Methods” section).
This is then followed by a unique constrained, two-level permutation
test of both genes and spots/cells to robustly identify spatial locations
where a given LRpair has significantly higher scores than random. This
removes potential bias towards highly expressed genes and spatial
location, thus reducing false discovery. Optionally, among the sig-
nificant LRs and spatial locations, we continue to permute cell types by
randomly shuffling cells/spots to different spatial locations to also test
for cell type pairs that are significantly over-represented in those
regions (Fig. 4a). In doing so, stLearn can make specific inferences
about three important processes: cell type interactions (at the level of
individual cells or spots), the LR pairs that are used for these interac-
tions, and the spatial locations with the most active interactions in the
tissue, as presented below.

To assess spatial CCI applications, we interrogated two biological
systems (mouse and human), measured by three different technolo-
gies: a mouse cortex SeqFISH+ dataset (1000 genes, single-cell reso-
lution; 4b–d), Fig. S14a–g), a mouse hippocampus dataset (Slide-seq,
subcellular resolution; 4e–g), Fig. S14h–k), and a human breast cancer
dataset (Visium, measuring all genes, at a resolution of 1–9 cells/spot;
Figs. 4h–j andS15). stLearn SCTP identified spatially significant LRpairs
in each context.

From stLearn SCTP’s unsupervised analysis of spatial SeqFISH+
data of the mouse brain, we found the highest interacting significant
LR pair to be Gas6-Axl in the subventricular zone (Fig. 4b–d), where it
likely plays a role in regulating neurogenesis34. As stLearn SCTP is
broadly applicable at different resolutions, it can be scaled to millions
of cells using a binning strategy. The advantage of this becomes
quickly apparent when stLearn SCTP was applied to a spatial Slide-seq
dataset for the mouse hippocampus containing tens of thousands
(47,573) of cells. Here we could reduce the run time markedly by bin-
ning cells based on their spatial location (Fig. 4e–g). The binning
produced very similar results compared to stLearn SCTP analysis
performed on the original single-cell resolution data (Fig. S14h–k). A
similarly positive outcome was also observed when applying the same
approach to the SeqFISH+ data (Fig. S14a–g).

For the Visium breast cancer dataset, stLearn identified GPC3-
IGF1R as the most significant actively interacting LR pair amongst the
total pool of 750 non-zero LR pairs detected within DCIS regions
(Figs. 4h–j and S15). The binding of GPC3 to IGF-1R leads to down-
stream activation of extracellular signal-regulated kinase (ERK), which
in turn induces/enhances oncogenicity35,36. Indeed, our enrichment

Fig. 2 | Pseudo-time-space (PSTS) trajectory analysis and validation in amouse
model of traumatic brain injury (TBI). a Schematic showing the cortical impact
site and microglia activation. b Spatio-temporal trajectory of microglial activation
at 3 days post-TBI, as predicted by our PSTS algorithm, running from the hypo-
thalamus (node 4), through the thalamus (node 2) and hippocampus (node 3) and
then the cortical penumbra regions adjacent to the lesion core (nodes 1). Colour-
coded pseudo-time-space values (ranging from 0 to 1) reflect microglia-related
gene expression changes through the tissue space. c Clustering results for TBI
Visium ST data (n = 2442 spots). d Transition genes positively (blue) or negatively
(red) correlatedwith the predicted trajectory formicroglia activation (extracted by
Spearman correlation test of pseudo-time-space values; adjusted p-value < 0.05
and correlation coefficient >0.3 or <−0.3). e Enrichment analysis of upregulated
transition genes revealing significant pathways related to microglia activation,
inflammation and neural injury. f Experimental validation of the spatio-temporal
trajectory for microglia (green) activation following TBI; cell nuclei are shown in
blue. Imaging was performed across five different brain regions of interest (ROIs;

from one brain per time point), equivalent to the trajectory nodes, from sham
(uninjured) controls and five different time points post-TBI. Note the changes in
microglia abundance and morphology across cluster nodes and time. g Density
plots illustrating changes inmicroglia cell body size (proxy for activation) over time
(top) and space (bottom; 3 days post-TBI only).hChanges inmicroglia density over
time and space for all ROIs (n = 4 biological replicates per time point; error bars
show SEM. i Variograms depicting the autocorrelation of PSTS/pseudotime values
for each spot. Plots show the spatial variance in PSTS/pseudotime values produced
by Slingshot, Monocle 3 and PSTS. Lower values of the semi-variance Matheron
estimator indicate higher PSTS/pseudotime continuity in the spatial context, and
thus a more likely trajectory (see “Methods”); PSTS semi-variance is indicated by
the red dashed line. j Spatial branching patterns for microglia activation using
different trajectory analysis methods. Only PSTS predicted a trajectory leading to
the penumbra regions rather than the core (wheremicroglia aremostly absent; see
inset and also Figs. S5 and S6).
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analysis of the top LR pairs (with the highest ranks in the number of
significant spots) showed a strong association with known biological
processes mediated by cell–cell signalling, including a significant
enrichment for the ERK1/2 cascade (Fig. S15g). When considering cell
type information, we found that GPC3-IGF1R interactions were most
significant between cells expressing luminal androgen receptor
(Luminal-AR) within DCIS and mesenchymal breast cancer cells sur-
rounding the DCIS regions (Fig. 4i, j). This finding hints at a potential
role for this interaction in IGF1R-driven epithelial-to-mesenchymal

transition, and in itself is also in general agreement with the PSTS
trajectory predictions for DCIS transitioning into IDC (Fig. 3e).

Overall, stLearn SCTP thus robustly works at different resolutions,
across different scales, technologies andbiological systems, to identify
and rank significant LR pairs in healthy and diseased states.

Comprehensive benchmarking further showed that stLearn SCTP
markedly reduces false positive predictions. Compared to existing
methods, stLearn is the onlymethod tomake explicit use of the spatial
location of gene expression, and also the cell types present, to predict
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individual CCI events (Fig. 5a). Our working hypothesis was therefore
that the addition of spatial information would greatly reduce the
number of false positives in predicted LR interactions between cell
types compared to existing methods that either do not incorporate
this information, or do so less optimally, including Squidpy37,
CellPhoneDB38, NATMI24, SingleCellSignalR39, CellChat40, NCEM41,
SpaTalk42 and spaOTsc.

To test and/or validate this premise, we first compared stLearn
SCTP’s performance against these eight other CCI methods using a
simulated dataset; the simulation established realistic gene expression
values based on either scRNA-seq or spatial data, also hypothetically
arranging cellular neighbourhoods in different scenarios where indi-
vidual spots represent multiple cell types (see “Methods” section and
Fig. 5b). Compared with the ground-truth for cell–cell interactions in
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the simulated dataset (Fig. 5c), stLearn was the only method able to
reconstruct these interactions without any additional false positive
interactions (Fig. 5d). This example highlights that for ST data not at
single-cell resolution (e.g. Visium), methods that do not take into
consideration that each spotmaybe amixtureof cell types cannotably
misrepresent the association of gene expression with the cell type
information, consequently predicting many false positive interactions
between cells and/or cell types.

Methods that do not consider spatial information are otherwise
also likely to predict interactions between distal cell types. Any such
predictions are unlikely to represent true interactions, as these gen-
erally occur within a range of 200μm43,44. We therefore benchmarked
stLearn’s performance against other CCI methods using the experi-
mentally generated Visium breast cancer dataset (Fig. 5e). When using
cluster information as the input into either stLearn or the other CCI
methods, only stLearn correctly predicted no interactions between
distal clusters (Fig. 5e-f). When using cell type information for each
breast cancer spot, stLearn SCTP again performed significantly better
than existingmethods (Fig. 5g–l). The stLearn SCTP pipeline otherwise
also provides a means to extract significantly interacting spots/cells,
which allows for downstream analysis of LR pathways to further vali-
date the predicted interaction (Supplementary Note 2 and Fig. S16).
Overall, we find that stLearn’s SCTP algorithms significantly outper-
form all existing CCI methods in terms of resolution and biological
plausibility.

RNAscope imaging produced evidence supporting the predicted
CCI events. Specifically, to assess stLearn’s ability to detect individual
CCI events, we first tested an interacting LRpair, IL34 andCSF1R, which
is known to be active in multiple cancer types45 and was previously
shownbyus to have potential immunoregulatory roles in skin cancer46.
Here, we therefore generated ST data (using the 10x Visium protocol)
for human basal cell carcinoma (BCC) skin cancer samples and then
applied stLearn SCTP to detect IL34-CSF1R interaction events across
the tissue (Figs. S17 and S18). For experimental validation, we then
used an adjacent tissue section from the same BCC tissue block for
RNAscope analysis47. We selected RNAscope for independent valida-
tion because it is a single-cell resolution imaging technology, capable
of detecting messenger RNA molecules at single-molecule sensitivity
(Fig. S18). We performed image registration here to align RNAscope
and Visium data, allowing us to compare the results between the two
orthogonal technologies. If interactions predicted by stLearn’s SCTP
analysis of Visium data were correct, then we would expect to see co-
localisation of these LR genes with RNAscope in the same regions of
the adjacent tissue section. Image registration matching between
RNAscope spots and stLearn’s predicted CCI events (IL34 and CSF1R)
indeed showed consistent correspondencebetween the predicted and
observed interaction events, mostly at the border between cancer
nests and normal tissue areas (Fig. S18c).

stLearn imputes missing data and corrects for technical varia-
tion across the tissue
In general, single-cell and spatial PCR-based sequencing technologies
suffer fromdropouts, that is, themisdetection of lowly expressedgenes
due to suboptimal capturing efficiency (or lack thereof) with a small
amount of starting material. Further, spatial sequencing has tissue
regions that are not measured. For example, Visium sequencing data
has a space between two spots, and most other spatial technologies
measure only selected regions of interest, leaving others uncaptured.
stLearn introduces an imputation method that can address both of
these limitations. The assumption for this imputation method is that
missing information in one spot can be rescued and/or corrected based
on reference spots that are highly similar based on tissue imaging data
(i.e., tissue morphology; matrix I), are spatially close (similar X, Y
coordinates in spatial data; matrix D), and/or have similar expression
profiles across all genes (e.g. Pearson correlation; matrix G) (Fig. 6a).
Indeed, imaging data alone carries information of functional sig-
nificance across the tissue, as exemplified for both the breast cancer
(Figs. S19 and S20e) and mouse brain (Fig. S20a–d) ST datasets. We
provide evidence here that there is a clear added benefit for stratifying
tissue regions when morphological image features are included and
integrated with both gene expression and spatial distance information
(Fig. S19). In addition, we also demonstrate the ’value add’ of the
ResNet50 neural networkmodel over simpler forms ofmatrix I that use
handcraft rather than ResNet50 image features as the morphological
data input (Fig. S20a, b). Here, handcraft image features were not able
to define specific regions as specific and/or accurate as the ResNet50
model (Fig. S20c–e). Guided by these findings, we applied a “pooled
spot reference" approach to develop an imputation method (hereafter
referred to as stSME, seebelow),whereResNet50 features for cell/tissue
morphology, spatial distance and transcriptional data are all taken
advantage of to correct for possible ’dropout’ (0 values), and to predict
gene expression in intermediate tissue regions (pseudo-spots) not
covered by a spatial spot and that are thus not measured (Fig. 6a).

We validated this method by simulation, with a ‘leave-out’ vali-
dation strategy where gene expression from the original data was
randomly set to zero and then corrected by Spatial Morphological
gene Expression (stSME) adjustment. We show that the stSME
approach was able to correctly recover the ’leave-out’ (and ’dropout’)
data, and also that the imputed data significantly improved overall
clustering accuracy compared to the dataset without imputation
(Fig. 6b, d), or when handcraft image features were used instead of
those extracted by ResNet50 (Fig. S21a, c). Our imputation approach
allowed for specific sub-regions of the hippocampus to be resolved
and separated here, that is, the Cornu Ammonis 1 (CA1) region (cluster
6, Fig. 6d) from the CA3 region (cluster 17); non-imputed data failed to
detect this region (Fig. 6d), as did handcraft image features (Fig. S21a)
and many of the other methods that we benchmarked against using

Fig. 4 | A Spatially-Constrained Two-level Permutation (SCTP) test for cell–cell
interaction (CCI) analysis. a Overview of the stLearn SCTP algorithm, which uses
spatial location and ligand-receptor (LR) co-expression to predict interactions in
multiple spatial technologies: (1) spatial neighbourhoods are scored for LR co-
expression, (2) background spatial co-expression is determined by randomly
pairing genes (default 1000 pairs) with equivalent expression levels to LR pair, (3)
significant spots of spatial LR co-expression are determined by comparison to the
randombackground, (4) counting of cell type co-occurrence in neighbourhoods of
significant LR co-expression, with and without permutation of cell type informa-
tion, and (5) cell typeswith significant co-localisation in regions of LRco-expression
are predicted as interacting.b stLearnSCTP results for the top-ranked LR pairGas6-
Axl in seqFISH+ data from mouse cortex. c Enlarged panel of the boxed area in
b, showing the subventricular zone; black arrows connect interacting cells, and
chord plot summarises predicted CCIs facilitated by Gas6-Axl. d Scatter plot
highlighting the top predicted LRpair by stLearn SCTP (Gas6-Axl), with the number

of significant cells on the y-axis and LR pairs on the x-axis. e Mouse hippocampus
Slide-seq data annotated by cluster. f Cells binned by spatial location, with bins
representing mixtures of cells similar to Visium data. Bins are represented as pie
charts showing the breakdown of cell types. g Significant co-expressing spots for
the top-ranked ligand-receptor pair Apoe-Lrp1, illustrating that SCTP can scale to a
large number of cells by binning. h Visium ST data from human breast cancer, with
each spot coloured by the dominant cell type, as predicted by deconvolution. Red
boxes correspond to Ductal Carcinoma In Situ (DCIS), and yellow boxes show
regions highlighted in i and j. i, DCIS regions showing significant SCTP predictions
for a highly-ranked LR pair (GPC3-IGF1R), overlayed as arrows, where the receiving
spot expresses the receptor and the output spot expresses the ligand. j Network
diagram of SCTP-predicted CCI results for GPC3-IGF1R. Zoomed-in images of
interacting spots (from yellow boxes 1 and 2 in h and i) are shown on the edges,
connecting relevant cell types in the graph.

Article https://doi.org/10.1038/s41467-023-43120-6

Nature Communications |         (2023) 14:7739 8



the same cluster resolution (Fig. S22a–d). We further show that, when
applied to Visiumdata, stSMEdid not skew the distribution of the total
counts per spot but benefited analysis outcomes by increasing the
number of non-zero values (Fig. 6c). The increased performance after
stSME imputation was directly evident from higher adjusted Rand
index values (Fig. 6e; 10 bootstrap analyses on simulation data in d),
and it was also shown to be robust across biological replicates (Fig. 6f).
Because stLearn’s stSME strategy is based on carefully (but

automatically) selected reference spots, it additionally circumvents
the over-smoothing and/or over-correction issues that are often seen
in spatial smoothing methods. This is exemplified by the enhanced
detection of marker genes that are specific for the CA3 (Lhfpl1 gene)
and dentate gyrus regions (Pla2g2f gene), respectively (Fig. 6b); this
feat was made possible by ResNet50 but not handcraft image features
(Fig. S21b). We corroborated this by examining a ST dataset from
human cortex, where stSME once again showed a high overall level of
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performance (Fig. S22e), with stSME-based clusters also not showing
the over-smoothing artefacts commonly seen with other methods at
the same clustering resolution (Figs. S22f and S23). Importantly, as
alluded to earlier, stLearn’s stSME algorithm can also be successfully
applied to predict gene expression for tissue regions with no experi-
mental information (such as gaps between Visium capture spots) using
bothmorphological similarity andphysical distance (Fig. 6g). Thisway,
stSME computationally increases tissue coverage of ST data, which
otherwise leaves unmeasured gaps between spatial spots and/or
regions of interest (Fig. 6g). Taking all this together, we posit that our
stSME approach will remain important, even as spatial transcriptomics
technology continues to advance towards higher-resolution mea-
surements, as technical dropout issues are likely to be more proble-
matic here (i.e., increased resolution at the expense of reduced
sensitivity).

Overall, stLearn’s integrative stSME analysis approach results in
enhanced data quality and significant improvements in clustering, as
indicated by the accurate segregation of anatomical sub-structures
and/or cell types in the tested brain and breast cancer datasets
(Figs. 6d, g; S22; and S24). As shown, the stSME method corrects for
dropouts and technical variation in spatial sequencing data, using both
imaging and spatial information to predict gene expression. Notably,
even for marker genes that are known to be highly expressed in spe-
cific regions (e.g. Pla2g2f and Lhfpl1 for the dentate gyrus and CA3
regions of the hippocampus, respectively), there were spots with a ‘0’
expression value (dropout - Fig. 6b, left), and these values could be
rescued by stSME imputation (Fig. 6b, right). This proves imputation
useful, not just for low- but highly expressed genes also.

Discussion
We have developed and validated three spatially-guided algorithms
and analysis tools to address unmet needs around the processing of ST
data, namely finding dynamic trajectories of biological processes
within a tissue section, a means to robustly detect cell–cell commu-
nication in situ and, lastly, for dealing with dropout issues and/or data
sparsity. stLearn’s comprehensive analysis toolkit was purposefully
developed in such a way that it can be applied to a wide range of
biological settings, and also for applications where only spatial loca-
tion and gene expression information is available. Optimal stLearn
performance is achieved, however, when tissue morphology informa-
tion from an H&E image (or other stain) is also included. That said,
even without such imaging data, e.g. as with Slide-seq15, MERFISH14,
seqFISH13 and sci-Space data33, stLearn is still able to accurately infer
spatial trajectories and cell–cell interactions based on spatial data and
gene expression information alone.

Our PSTS algorithm for inferring trajectories in ST datasets
advances from existing methods (which were mostly developed for
scRNA-seq)29,48,49 by adding the spatial dimensionality that accounts
for the similarity of neighbouring cells. PSTS also uniquely adds the

ability to trace spatial branching processes50 via trajectory inference. In
doing so, PSTS outperforms other pseudotime methods29,51 that were
not designed for spatio-temporal modelling tasks. Overall, PSTS pro-
vides users with an overview of dynamic processes occurring across
two or more anatomically and/or morphologically defined regions,
andwe showed its broad applicability in various biological ormedically
relevant processes and conditions that are known to evolve across
both time and space. We also tested that our PSTS analysis works for
technologies at both single-cell (sci-Space dataset) and multi-cell (e.g.
Visium) resolution. By balancing spatial with gene expression infor-
mation, our PSTS method can also help solve trajectories when one of
the intermediate states may be missing. Specifically, where an inter-
mediate node or state ismissing from the section (i.e., when there is no
direct and/or obvious spatial connection), the relatedness of other
spots / nodes in the trajectory can still be inferred from the global
transitional pattern within the gene expression information (as
observed in PCA/UMAP/Speudotime latent space). Lastly, for instances
where integration of data from multiple sections and/or conditions is
required (a major bottleneck in the field that is beginning to be
addressed52), we offer the following recommendations and/or work-
arounds for spatial trajectory analysis. For adjacent sections (replicates
from the same tissue block), these can be transformed into a common
coordinate framework to form either a large 2D spatial array by
expanding the original matrix, or a 3D spatial matrix by adding layers
into the original data. This merged dataset can then be used directly
for stLearn’s PSTS trajectory analysis (Fig. S13c). For sections that
cannot be transformed into a common coordinate framework, such as
those representing samples fromdifferent biological and/or treatment
conditions, we suggest applying the spatial trajectory method to each
section first and then finding the shared transition markers between
trajectories (Fig. S13f). By calculating the intersection proportion
between two (or more) sections based on these markers, it is then
possible again to identify and/or annotate the common trajectories as
well as to independently confirm their existence.

The ability to study cell–cell interactions is key to understanding
complex tissue ecosystem dynamics. stLearn’s spatial statistical test
was specifically designed to reduce the problem of high false-positive
detection rates that CCI analysis typically suffers from. We achieved
this by using spatial constraints, and also by removing potential bias
towards abundant LR pairs and/or spots/cells with overall high
expression of most genes (Fig. 4a and S15). Existing CCI methods such
as CellPhoneDB38, CellChat40, NATMI24 and SingleCellSignalR39 were all
originally developed for scRNA-seq data and do not use spatial
information44,53). More recent spatial-based methods like NCEM41,
SpaTalk42 and spaOTsc also appear to not fully exploit and/or use the
spatial factor in CCI analysis, as they all still produced false positive
interactions between distal cell types that are unlikely to occur in both
simulated and experimental datasets (Fig. 5). stLearn’s SCTP analysis
stands out in that it simultaneously uses the spatial distribution of

Fig. 5 | stLearn’s Spatially-Constrained Two-level Permutation (SCTP) analysis
reduces false positive predictions andenriches for co-localised cells expressing
LR pairs. a Summary of information utilised by stLearn SCTP and eight other
methods (used forbenchmarking) to predict cell–cell interaction (CCI) events.b ST
data simulation with multiple cell types per spot. Five cell types, named A to E, are
shown with pair-wise co-localisation of A and B, C and D, contrasted by the
exclusion of E. c Ground truth of CCIs for simulation shown in b. d Chord plots
representing predicted CCIs by stLearn, Squidpy, CellPhoneDB, CellChat, NATMI,
SingleCellSignalR, NCEM, SpaTalk and spaOTsc. Only stLearn predicts the ground-
truth without false positive interactions. e Visium ST data for human breast cancer
with spots coloured by cluster IDs. Spatially distant clusters 1, 4 and 5 are high-
lighted. f Chord plots showing predicted CCIs by stLearn SCTP and benchmarking
methods. g Scatter plot showing the number of significant LRs for each cell type
combination (81 from 9 cell types) on the y-axis and all pairwise cell–cell combi-
nations on the x-axis, ranked by the number of CCI interactions per pair. The

’macrophage to endothelial cell’ interaction is highlighted as an example where
stLearn correctly ranked it low.h Scatter plot showing the statistic for ’macrophage
to endothelial cell’ interactions (scaled between 0 and 1 for comparison) on the y-
axis, and the ranking of LR pairs on the x-axis. Ccl2-Ackr1 is highlighted as an
example where only stLearn correctly predicted no interactions. i Same as h, but
highlighting a different LR pair (Cxcl21-Cxcr3), predicted by stLearn SCTP (but not
other methods) to be involved in macrophage and endothelial cell interactions.
j Co-localisation results (spatial distance) for Ccl2-expressing macrophages and
Ackr1-expressing endothelial cells (refer to h). Co-localisation scores are on the y-
axis and neighbourhood distance from the Ccl2-expressing macrophage on the x-
axis. k Equivalent to j, except that the LR pair Cxcl21-Cxcr3 from i is shown.
l Histogram of maximum co-localisation scores across all cell types and the top-50
LR pairs facilitating interactions between these cell types; stLearn exhibits an
overall increase in spatial enrichment for predicted CCIs.
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neighbour cells, gene expression, and prior knowledge of LR interac-
tions. It assumes significant interactions to be dependent on the cell
type13,23 and non-random co-expression of the LR pair among neigh-
bouring cells within a range of 200μm43,44. stLearn also differs from
other methods (e.g. DIALOGUE54) that focus on identifying coordi-
nated gene expression programs in different cells based on regulated
genes, but that do not directly test for significant interacting LR pairs;

themulticellular programs used by DIALOGUE only include genes that
are up- or downregulated in different cell types, and thesemay ormay
not be LR pairs. Overall, comprehensive benchmarking and indepen-
dent validations demonstrated the ability of stLearn to (1) detect
individual CCI events inSTdata, (2) reduce false positives for predicted
CCI events, and (3) identify spatial regions with biologically important
interactions, e.g., cancer-immune cell crosstalk (Fig. 5).

With stSMEWithout stSME

Lh
fp

l1
P

la
2g

2f

ed

W
ith

 s
tS

M
E 

W
ith

ou
t s

tS
M

E 

a

without stSME
with stSME

c

HighLow

MGPSFRP2Clustering SFRP2 MGPClustering Clustering SFRP2 MGP

Original Clustering Pseudo Spots Enhanced Clustering

+ =

HighLow HighLow

without stSME
with stSME

Total Counts

Number of Missing Values

g

b

f

Moran’s I for Block 1

M
or

an
’s

 I 
fo

r 
B

lo
ck

 1

A
R

I 0.70

0.65

0.60

0.75

with stSMEWithout stSME

Article https://doi.org/10.1038/s41467-023-43120-6

Nature Communications |         (2023) 14:7739 11



stLearn also implements an imputation method (stSME) to
improve the quality of noisy and/or incomplete spatial sequencing data
(Fig. S21). Specifically, stLearn uses an interpretable model to integrate
morphological similarities with physical distance and gene expression
similarities (Figs. 1e, S19 and S20). This integration effectively deals with
the issue that lowly expressed genes are often either not detected or
have high technical variation (Fig. S21). Our stSME method is based on
the quantitative link between cellular morphology (e.g. cell size, nuclei
size, granularity, density, or distribution) and molecular gene expres-
sion profiles16,19,55,55–57, with the innovative aspect being that imaging
data is used to correct and/or impute the sequencing data. Models like
SpaCell17 have already shown that combining imaging pixel information
and gene expression more accurately classifies cell types than other
models using either gene expression or tissue image data alone. stSME
advances by also utilising spatial distance, based on the known positive
correlation between gene expression and proximal physical
distance21,22,58. By selecting reference spots based on imaging, gene
expression and spatial locations, we showed stSME to be capable of
reducing missing values and technical variation, but without undesir-
able ’smoothing’ effects. Indeed, after stSME imputation, the number of
non-zero spots is higher but not all spots become non-zero, indicating
that the approach is not over-correcting. Overall, our stSME procedure
leads to highly desirable outcomes and/or effects, including: (1) the
recovery of 0 values, where the distribution of total read counts per
spot is preserved but in which the number of spots with 0 values for
each gene is reduced (Fig. 6c); (2) increased sensitivity for differences
between spots that belong to different cell types and/or regions
(Figs. 6d and S22); (3) improved downstream clustering performance
after stSME imputation (Figs. 6g and S21); and (4) no over-smoothing or
global effects due to local outlier spots (Figs. S22d, f and S23). The
integrated stSME approach also enables the inference of gene expres-
sion where there are no spatial spots and/or cells being measured, a
beneficial application when tissue regions need to be considered more
comprehensively (Fig. 6g); as shown, these predictions are based on
and/or derived from theH&E image and neighbouring spot(s) with high
morphological similarity to the unmeasured region of interest.

Lastly, while our advancements cater to various aspects of ST data
analysis, we acknowledge that some (inherent) limitations remain.
Specifically, the stLearn toolkit offers substantial utility for detecting
dynamic trajectories of biological processeswithin tissue sections, and
for identifying cell–cell communication. However, it presently remains
constrained by the fact that ST data stems from thin tissue sections of
5-10 micrometre thickness (2D space). The absence of a true third
dimension currently restricts the ability to capture the full complexity
of cellular arrangements within tissues, particularly in cases where
interactions may occur across multiple tissue planes. In addition,
longitudinal datasets with a temporal dimension are limited. Our
computational modelling utilises the spatial variation in transcription
and tissue morphology across the tissue section, which partially

represents the trends in gene expression in both spatial and temporal
axes. Going forward, however, new experimental methods that better
address these limitations will be imperative to harness the complete
potential of spatial transcriptomics, and to advanceour understanding
of the intricate dynamics of cells within their native tissue contexts.

Taken together, the three methods presented here have all been
tested across a wide range of biological systems and applications, were
validated both computationally and experimentally, and also bench-
marked against existingmethods.We built stLearn as one of the very few
Python-based platforms for spatial and imaging data analysis, imple-
menting algorithms like PSTS, SCTP and stSME, and offering fast com-
putation. Detailed tutorials and documentations are available to ensure
reproducibility and ease of use. Importantly, we also produced an inter-
active version of stLearn (i-stLearn; see Software Implementation sec-
tion), allowing experimentalists to make use of this powerful analysis
platformwithout the need for coding. Because of this, we expect stLearn
tobecomeavaluableanalysis suite forutilising theexponentially growing
amount of ST datasets, and we will be actively maintaining and devel-
oping the software, including the interactive web-based application, to
ensure its currency and continued usage by the broader community.

Methods
All animal experiments were conducted in accordance with the Aus-
tralian Code for the Care and Use of Animals for Scientific Purposes,
and with approval from The University of Queensland Animal Ethics
Committee. The work that involved the patient sample reported here
(i.e., skin biopsies from the patient with basal cell carcinoma) was
reviewed and approved by Metro South Human Research Ethics
Committee and by The University of Queensland Human Research
Ethics Committee (HREC-11-QPAH-477, The University of Queensland,
Clearance No. 2012000052). Informed consent was obtained from the
patient participant.

Mouse TBI datasets
Experimental model details. Three-month-old female C57BL/6J (Ani-
mal Resources Centre, Canning Vale, WA, Australia) and CX3CR1

creERT2 x
iDTR x tdTomato mice (bred and maintained in a University of
Queensland Biological Resources specific pathogen-free ’behind bar-
rier’ facility) were used in this study. Experimental mice were housed
socially (3–5 mice per cage) on a 12-h light-dark cycle in individually
ventilated cages, with adlibitum access to food and water.

Visium ST library preparation. Mice were subjected to controlled
cortical impact injury or sham surgery (i.e. craniotomy only) as descri-
bed previously25. Injury parameters were: impact speed, 3.5 m/s; defor-
mationdepth, 1.0mm;duration, 400ms.Micewere sacrificed threedays
after TBI or sham surgery, their brains dissected in an RNase-free
environment and immediately transferred into refrigerated O.C.T.
compound (Sakura Tissue-Tek O.C.T. compound, Nagano, Japan) for

Fig. 6 | Application of stLearn stSME imputation to spatial datasets with
morphological information. a Schematic showing stSME integration of three data
types (imaging morphology (I), gene expression (G) and spatial location/distance
(D). stSME finds biologically relevant reference spots, to then adjust existing spots,
or predict gene expression for new spots (pseudo-spots) by imputation. b Rescue
of dropout (zero values; blue arrows) by stSME for gene markers of the Cornu
Ammonis (CA) 3 (Lhfpl1) and dentate gyrus (DG; Pla2g2f) regions of the mouse
hippocampus. Note that the imputation is specific to biologically relevant spots.
c Effects of imputation on library size (total gene counts per spot; top), and the
number of spots with missing values (bottom). d Simulation approach assessing
stSME imputation performance using mouse brain Visium ST data. Louvain clus-
tering was performed with imputed values after randomly removing 20% of values
from the original (log transformed UMI counts) data as a ’leave-out’ validation
strategy. Note that clusters without stSME imputation are much noisier, and also
that the hippocampal CA1 (cluster 6) and CA3 (cluster 17) sub-regions could not be

separated (white arrows). e Box plot showing poorer clustering results when stSME
is not used, as assessed by adjusted Rand index (ARI; data was randomly sub-
sampled 80% from 2702 spots of a brain section, with a total of n = 10 simulations).
ARI was calculated using the full data clustering results as the reference.
f Robustness and performance of stSME imputation method for the top-2000
highly variable genes (HVGs) across two replicate sections of the Visium human
breast cancer ST dataset (10x Genomics; Block A, sections 1 and 2; see “Methods”
section for details). Data points are the spatial autocorrelation (Moran’s I index) for
the same set of imputed HVGs in section 1 (x-axis) and section 2 (y-axis); colour
coding reflects sparsity of the gene in the original UMI count matrix. g Imputation
of gene expression in regions without data (i.e. array gaps) improves tissue cov-
erage and clustering in human breast cancer samples. Bottom images show
zoomed-in displays of boxed DCIS boundary region, showing cluster location and
expression of breast cancer markers SFRP2 and MGP (abundant in DCIS).
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flash-freezing in chilled isopentane. Samples were stored at−80 °C until
further processing. Library preparation of mouse brain samples was
performedaccording to theVisiumSpatialGeneExpressionReagentKits
User Guide (CG000239 Rev C, 10x Genomics, USA). Briefly, brain sam-
pleswerecryosectioneduntil thedorsalhippocampusanddentategyrus
region were visible. Next, 10μm sections were collected onto a pre-
chilled Visium slide. All sections were dried onto the slides at 37 °C for
1 min, fixed in pre-chilled 100% methanol at −20 °C for 30min, and
stained in Mayer’s Haematoxylin for 5 minutes and Eosin for 2 minutes.
Slides were then mounted in 85% glycerol for coverslipping and
brightfield imaging (Axio Z1 slide scanner, Zeiss). Permeabilisation of
mouse brain samples was carried out for 18minutes, resulting in a cDNA
library size of 470bp post-fragmentation. Library quantification was
carried out using the KAPA Library Quantification kit (Roche), followed
by in-house sequencing using a high output reagent kit andNextSeq500
instrument (Illumina) at the Institute for Molecular Bioscience Sequen-
cing Facility. Sequencing was performed using the following protocol:
Read1 - 28bp, Index1 - 10bp, Index2 - 10bp, Read2 - 120bp. Raw BCL files
were processed by bcl2fastq V2.7.0, and the fastq reads mapped to the
mouse reference genome GRCm38 by SpaceRanger V1.0.0.

Legacy ST library preparation. Additional TBI samples (6 h and 3 days
post-injury) were independently prepared with the Legacy ST kit, an
earlier version of 10x Genomics’ ST platform. Mouse TBI samples were
obtained as described above and prepared for ST analysis following the
LibraryPreparationManualVersion 190219 (10xGenomics,USA). Briefly,
ipsilateral brain hemisphere samples were collected at 6 hours and
3 days post-TBI and embedded in O.C.T. Next, 10μm cryosections were
collected onto the Legacy ST library preparation slide, fixed with 4%
paraformaldehyde at room temperature and then stained with haema-
toxylin for 10min, blueingbuffer for 1minute, and eosinY for 3min in an
RNase-Free environment. High-resolution H&E images were again cap-
turedusing theZeissAxio Imager. ST sequencing librarieswereprepared
as per the manufacturer’s instructions, with pre-permeabilisation and
permeabilisation performed at 20 minutes and 7 minutes, respectively.
On-slide cDNA synthesis, tissue removal, probe cleavage and final library
preparation were all performed as per the manual. High-quality cDNA
libraries with sizes ranging between 660-780bp were obtained and
sequenced on the Illumina Nextseq500, using a 150 cycles kit with read
configuration as read 1 (26 bp) and read 2 (124 bp).

Sequencing data pre-processing. The 3 days post-TBI Visium sample
was used for spatial trajectory inference, while the three other mouse
brain ST samples (i.e. Visiumshamcontrol, Legacy6hourspost-TBI, and
Legacy 3 days post-TBI) were used to validate PSTS results at different
time points, conditions and/or technological characteristics. All sub-
sequent references to theTBI sample refer to the 3days post-TBI Visium
sample used for PSTS analysis unless otherwise specified. The raw data
consisted of 2442 spots within the tissue area and 20,787 genes with a
median of 4264 genes per spot. We filtered low-quality data by
removing spots expressing fewer than 200 genes (i.e. spots with low
transcriptome diversity) and genes expressed in fewer than three spots
(i.e. genes that were too lowly expressed to reliably detected with suf-
ficient statistical power). We then followed the standard stLearn pre-
processing workflow to detect 3884 highly variable genes, normalise
the counts per spot, perform log count transformation and scale gene
counts to unit variance. Across all mice used, we obtained a total of
6337 spots (5410 spots from Visium and 927 spots from Legacy
protocols).

Clustering of TBI dataset. PCA and standard Louvain clustering using
the top 50 PCs were used to detect 15 broad clusters across the TBI
sample (Figs. S2 and 2c). Clusters were split further if they were spa-
tially separated within the tissue using the stLearn sub-clustering
option. Each cluster was annotated using the well-defined anatomical

regions given by the Allen Mouse Brain Atlas28. Data were visualised in
both UMAP and ForceAtlas2 space59 (Fig. S2).

Pre-processing: filtering of microglia-related spots and genes for
PSTSanalysis. Prior to PSTS analysis (describedbelow), weperformed
two data filtering steps in order to focus our analysis on microglia-
specific changes. First, we filtered the dataset to include only those
spots that contained microglia, using the key markers Fcrls and
Tmem119. Although it is possible that the selected spots also covered
additional non-microglial cells, this filtering step removed spots
without anymicroglial gene signature. Importantly, we also limited the
genes used for PSTS analysis to 1998 microglia-specific genes that we
previously identified in a publicly available RNA-seq dataset25, thus
minimising and/or removing any potential confounding contributions
of non-microglial cells to the transcriptional signature of
selected spots.

Human skin cancer dataset
Collection and preparation of tissue sample. Skin biopsy samples
from patients diagnosed with basal cell carcinoma (BCC) were col-
lected at the Dermatology Department of the Princess Alexandra
Hospital in 2019. Samples smaller than 1 cm x 1 cm in size were snap-
frozen prior to embedding in Optimal Cutting Temperature (O.C.T.)
compound for solidification. The embedded tissues were cryosec-
tioned at 10μmthickness, processed for ST-seq as per the TBI datasets
described above, and/or transferred to a −80 °C freezer for future
RNAscope Hiplex assay analysis.

ST sequencing and data pre-processing. These steps were per-
formed as per the TBI datasets described above.We obtained a total of
1179 spots with a median of 1205 genes per spot.

sci-Space mouse embryonic brain dataset
Wedownloaded the countmatrix, spatial data andmetadata of the sci-
Space mouse embryo brain dataset33 from the National Center for
Biotechnology Information (NCBI) under the accession number
GSE166692. From the raw data of 121,365 cells (average of 2514 UMIs
and 1231 genes per cell), we subsetted to 15,466 cells in the categories
“Neuron", “Glial Cells" and “Radial glia" (keeping cells with at least 200
genes but fewer than 7000 genes).

Visium human breast cancer dataset
We obtained the Human Breast Cancer Visium dataset from the 10X
Genomics website (https://support.10xgenomics.com/spatial-gene-
expression/datasets/1.0.0/V1_Breast_Cancer_Block_A_Section_1. It con-
tains 3813 spots under tissue with a median count of 17,531 UMI per
spot, which equated to a median gene count of 5394 per spot.

seqFISH+ mouse brain sub-ventricular zone dataset
seqFISH+data13 of themousebrain (2963 cells)with an average of 3338
genes per cell were downloaded (https://github.com/CaiGroup/
seqFISH-PLUS/blob/master/sourcedata.zip) (accessed February 2022).

Slide-seq mouse hippocampus
Slide-seq data15 for the mouse hippocampus containing 47,573 cells
and 20,572 genes were downloaded from website (https://www.
dropbox.com/s/cs6pii5my4p3ke3/mouse_hippocampus_reference.
rds?dl=0), (accessed February 2022).

Visium coronal mouse brain dataset
We downloaded the count matrix, annotation and spatial data from
10x Genomics’ public Mouse Brain Visium dataset [https://support.
10xgenomics.com/spatial-gene-expression/datasets/1.1.0/]. In total,
there are 2702 spots, with a median of 28,944 UMIs and 6018 genes
detected per spot.
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Visium human brain dataset
We downloaded the count matrix, annotation and spatial data from
Maynard et al.11 [https://github.com/LieberInstitute/HumanPilot].
There were 47,681 spots (12 samples), with an average of 3462 UMIs
detected per spot, and an equivalent of 1734 genes per spot.

Simulated datasets
In addition to the various in-house andpublic datasets described above,
we also developed a generative approach to simulate ST data in an in
silico tissue to assess cell–cell interaction methods. The simulation
takes into account cell type-specific gene expression distribution, zero
proportions, cell type proportions and spatial cell communities with
differential co-localisation, orwith specific exclusion of cell types across
the tissue. This generative in silico tissue allowed us to test assumptions
about contributions of spatial distance, cell type heterogeneity and
false discovery in cell–cell interaction analysis results. Briefly, we initi-
ated the simulation process by estimating the gene expression dis-
tribution for each gene in each of 11 cell types in a reference scRNA-seq
dataset by fitting a negative binomial distribution60. Using scRNA-seq
rather than spot-level data (as in Visium ST) allowed us to simulate gene
expression at single-cell resolution, which can then be grouped into
spot level at different mixing proportions. For each cell type, we esti-
mated gene expression for 10,000 cells, with 10,335 genes for each cell,
including top variable genes in scRNA-seq data and all known ligand/
receptor genes. For each gene, a proportion of zero counts was calcu-
lated using scRNA-seq data and this was used for sampling zero values
in the simulated cells to maintain sparsity. We then initialised an empty
tissue with (x, y) coordinates of n spots evenly placed on the in silico
tissue. Based on the coordinates, the spots were clustered into

ffiffiffi
n

p

pools. Pools that are within a distance were grouped into neighbour-
hoods (communities). Allocations of communities with differential
combinations of cell types per pool were arranged either randomly (for
null distribution), or with co-localisation and exclusion priors, such that
dominant cell types for each neighbourhood were either adjacent (co-
localised) or distant (exclusion) fromeachothers. The cells simulated as
above were then randomly assigned into spatial spots in each neigh-
bourhood by sampling from a Gaussian distribution, with the mean as
the proportion of that cell type in scRNA-seq data and with a user-
selected variance that reflects cell type variation across spots. These
generative tissues were then used to evaluate cell–cell interaction
results as described below (see “stLearn cell–cell interaction analysis”).

Pseudo-time-space algorithm - spatial trajectory inference
Spatial trajectory concept. Spatial trajectory inference incorporates
both gene expression and spatial information to infer the order of
transcriptomes (i.e. spots or cells) along a trajectory, thereby allowing
the spatio-temporal pattern of a given dynamic process to be revealed.
The addition of spatial dimensionality information distinguishes this
method from traditional pseudotime approaches usedwith scRNA-seq
data analysis29,51. Specifically, spatial trajectory inference allows for
detailed mapping of branching phenomena representing spatial
motions within a tissue across time, such as cell activation, differ-
entiation or cancer evolution (see Supplementary Note 1). In this
concept, we used the node to represent the cluster/sub-cluster of cell
types, with the branch not only giving the spatial direction but also a
summary of the change of gene expression along it.

Selection of the root. Unlike trajectory analysis in scRNA-seq data, the
selection of the root spot in a spatial trajectory for ST-seq data is more
dependent on its physical location. We provide an option to semi-
automatically select the root spot. First, users need to define the
cluster that could be the root cluster (initial state). Next, the
CytoTRACE61 scoring system is applied to calculate the number of
genes expressed per spot (num_exp_genes). After that, we rank genes
based on the correlation between their gene expression and the

num_exp_genes. Then, top-correlating genes are used to aggregate
their expression and obtain the CytoTRACE score. The spot that has
the lowest score will be the root.

Pseudo-time-space algorithm. The algorithm to model spatial tra-
jectories based on gradient changes in transcriptional states for ST
data has two main components: spot/cell location data (spatial) and
gene expression data (which contains the pseudo-temporal changes).
The PSTS algorithm does not require imaging information, but ima-
ging features can be used optionally in the stSME pre-processing step.
PSTS can otherwise also be applied to multiple types of data that are
either with or without single-cell resolution, like sci-Space single-cell
data (Figs. 3a, b and S7) or Visium spot-level data, respectively. PSTS is
described in pseudo-code in Algorithm 1.

Algorithm 1. Pseudo-time-space for two clusters

Pseudo-time-space values calculation. PSTS starts with calculating
pseudo-temporal values for each spatial spot. We added a spatial
computational layer on top of the Diffusion Pseudotime (DPT)
algorithm48, taking into account spatial proximity to compute PSTS
distances as described below. We ran a modified DPT for all spots of
the tissue and, as part of the DPT algorithm, then applied a semi-
automated approach to determine a root as described above for the
targeted biological process (e.g. a non-invasive sub-cluster as the root
of a cancer progression process). Changes in the DPT values reflect
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pseudo-temporal changes in gene expression here across clusters.
Thus, when analysing a spatially captured array, these modified DPT
pseudo-temporal values that now take into account the spatial infor-
mation can be defined as PSTS values, and we hence refer to them as
such in our algorithm.

Calculating pseudo-time-space distance (dPTS). Given two sub-
clusters u and v, to calculate the distance between gene expression
profiles, we set PCA components as the feature vector pui or pvi,
respectively, which represent the gene expression state of a spot/cell.
Next, we calculate the cosine distance between all pairs of the feature
vectors pui and pvi to observe the gene expression distance between
each pair of spots of u and v. We then take themean of those distances
to get the gene expression distance of the two sub-clusters u and v. As
the gene expression change can represent the temporal information,
we treat the gene expression distance here as the pseudo-temporal
distance dPT.

dPTðu,vÞ =
Xn

i= 1, j = 1

1� pui �pvj
puik k2 pvj

�� ��
2

n
ð1Þ

The spatial distance dS(u, v) between the two sub-clusters is cal-
culated as:

dSðu,vÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

ðcui � cviÞ2
vuut ð2Þ

where cui and cvi are the coordinates of the centroids of sub-clusters u
and v. By combining the pseudotimedistancewith the spatial distance,
we can now compute the pseudo-time-space distance dPTS(u, v) as
follows:

dPTSðu,vÞ =dPTðu,vÞ ×ω+dSðu,vÞ × ð1� ωÞ,withω 2 ½0,1� ð3Þ

where ω is a weighting factor reflecting the balance between gene
expression and physical distance (discussed below).

The maximum PT score across all spots in each cluster/sub-cluster
is used as a representative value for the given location because it reflects
the difference in gene expression between this (sub-)cluster and that of
others. We found that, even at the sub-cluster level, where spots are
most similar, there is still a high variation of gene expression among all
spots. For example, thedistributionofPT values in different sub-clusters
is stochastic (Fig. S11d). Therefore, the single mean value or the sum-
mation of all individual spots is not sufficient to represent the tran-
scriptional state(s) of sub-clusters, and themaximumvalue thus appears
to be a better metric. A reasonable assumption for the transcriptional
states of individual spots within a sub-cluster is that two spots that have
a greater physical distance within a sub-cluster are more tran-
scriptionally different than two more proximal spots20–22. Overall, ds
reflects the relationship between two sub-clusters by calculating the
physical distance (2), and dPT reflects the relationship between tran-
scriptional profiles (1). An important parameter here is ω which, as
mentionedearlier, represents theweights bywhichgeneexpression and
spatial distanceeffects contribute tocalculating thedPTS (3). Ifω = 1, then
only gene expression is considered. Conversely, for ω=0 only physical
distance is considered. Intermediate values of ω incorporate both gene
expression and physical distance to different degrees, allowing the user
to assess the relative contributions of these two measures in the graph
optimisation step (Fig. S10). We developed a quantitative stLearn func-
tion to assess the effect of ω on the model result using the graph
Laplacian distance as described later.

Applying the formulae above, we build an adjacency matrix from
dPTS for input into the PSTS analysis method at both the local and
global clustering levels.

Spatial topology-preserving map construction. Spatial-PAGA is the
type of graph that we developed to reconstruct the spatial trajectory/
trajectories. It is based upon PAGA49, but can generate a topology-
preservingmap of spots with gene expression and spatial information.
It also provides a preliminary general structure of the relationships in
gene expression across clusters. With the clusters as nodes of the
graph, only nodes with connected edges can reconstruct the spatial
trajectories. Nodes are split into multiple nodes if they represent
clusters with multiple sub-clusters. With the edges of the graph, we
computed distance (between nodes) as dPTS.

Spatial trajectory reconstruction. The main part of the PSTS algo-
rithm aims to find how multiple clusters and/or spots are connected
within a tissue (Figs. 1c, S1, and S8).

Given two sets of sub-clusters: U = {u1, u2, u3,…, un} and
V = {v1, v2, v3,…, vn} in two separate clusters U and V, we can first order
sub-clusters for each of the two clusters U and V by ranking the sub-
clusters’minimum spot pt values (e.g. a spot with the lowest PT among
all spots in the sub-cluster v1). Note that U and V can be found as the
clusters with the minimum and maximum of PT values. On the
assumption that the overall PT order is fromU to V, we denote that the
dynamic process shifts from U to V.

We then build an adjacency matrix using dPTS where the dimen-
sions of the matrix are the number of ui nodes in U and vj nodes in V
from two sets of sub-clusters U = {u1, u2, u3,…un} and V = {v1, v2, v3,…
vn}. This means that the values of the distance matrix are sets of dPTS
between every two sub-clusters ui and vj. We compressed each sub-
cluster to become a node in the graph, and the distance between two
nodes (un − > vn) is dPTS (3).

From the adjacency matrix of dPTS, we build the spatial-PAGA
graph, which is a directed and bipartite graph comprising the initial
trajectories (5) that capture the directions, based on the selected root,
from sub-clusters of U to sub-clusters of V. For example, a bipartite
graph is constructed with D(U, V, E), E = {(u1, v1), (u1, v2), (u1, v3),… and
(u2, v1), (u2, v2), (u2, v3),…, and so on until (un, vn)}. From the fully
connected directed spatial-PAGA graph, a pseudo-root is added to the
graph to form an arborescence (a rooted, directed tree), which can be
optimised by using a minimum directed spanning tree approach with
Chu-Liu/Edmonds’ algorithm62.This yields a weighted, directed graph
D(N, E) whereN is the set of nodes (sub-clusters), E is the set of directed
edges (D(N, E) contain ‘raw’ trajectories), a node r called root (assigned
pseudo-root) in V, and ω is the weight of each edge in E (calculated as
dPTS). From the ‘raw’ fully connected tree, we identified a directed
spanning tree or spanning arborescence A with a root at r such that
every node in A has two edges (in and out, except for the tip of the
branch, which has one edge). The optimisation process (to find opti-
mum branching) is performed such that A has a minimum weight,
defined as the sum of all edge weights in A as the cost function:

wðAÞ=
X
e2A

wðeÞ ð4Þ

where e is the edge weight.
After finding the minimum directed spanning tree, we obtain the

optimal graph, for example, D(U, V, E), E = {(u1, v1), (u2, v2), (u2, v3)},
(Fig. 1c) which represents the trajectory of each sub-cluster from the
lower layer (i.e. lower PSTS values) to the higher layer. With this
approach, one node can be the start node ofmultiple branches but the
end node belongs to one branch only. Finally, we overlay the branches
on the tissue image to allow for the visualisation of the spatial trajec-
tories.

DglobalðU,V ,EÞ,E = fdPTSuv1,dPTSuv2, . . .dPTSuvng ð5Þ
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By letting F be a set of n − 1 edges extracted from D, we can
determine the cheapest edge (anedgewith the lowestweight) entering
each node v ≠ r that always forms a path v0← v1←…← vn, where each vi
is anoriginal node. Because of the set-up of the graph,weobtained F as
a directed acyclic graph for the simplest scenario (without any cycle in
the graph) of this algorithm. In detail, for the initialisation step, F is
empty. At each step, the algorithm selects an arbitrary node v ≠ r,
which does not yet have an incoming edge in F, it then finds the
cheapest edge (u, v)∈ E entering v, and adds (u, v) to F. To find the
cheapest edge entering a given node, the algorithm repeatedly exe-
cutes minimum weighted edge extraction operations until the
returned edge is not a self-loop in the current graph.

If there are clusters between U and V, we offer an option to
determine the optimal route connecting U and V in the spatial-PAGA
graph. First, we generate all conceivable paths from U to V within the
graph. Subsequently, we employ the minimum spanning tree (MST)
algorithm (6) to identify the shortestpath among the availableoptions.
Specifically, this algorithm computes the total weight of all edges,
treating them as distances along each potential path (multiple source
and target pairs are permitted ifU andVpossessmultiple sub-clusters):

MSTðU,V Þ= min
X

U!V2S
dðU ! V Þ ð6Þ

where S represents the set of edges of all possible paths, d(U→V)
denotes the total weight of all edges connecting nodes U and V, and
min indicates the minimum value over all possible edges in the graph.
From this, the path with the lowest edge weight value can then be
selected.

Optimisation of weighting parameter ω in dPTS calculations. The
weighting value ω is used to balance the spatial information and
gene expression contribution to the dPTS for different biological
samples and/or questions. We can quantitatively disentangle the
contribution of spatial versus gene expression data here by com-
paring graphs where ω changes from 0 to 1, with two references
graphs constructed that either do, or do not, use spatial informa-
tion. Put differently, one can visualise how the graph changes and/
or differs from the two reference graphs that use either just gene
expression (ω = 1) or spatial distance (ω = 0) alone. This compar-
ison is made possible by using graph adjacency matrices. In short,
for each ω value, we compare the dissimilarity between the
resulting graph (Gω) with its two references (ω = 1,G1 andω = 0,G0).
Laplacian distances are used for graph comparisons63,64. For
example, if A is an adjacency matrix of a graph G, to compute the
distance between two graphs, we need to calculate the spectrum of
each graph (an ordered set of eigenvalues of the graph’s adjacency
matrix). We defined matrices A (adjacency), H (diagonal) and L
(Laplacian) as:

Ai,j =
def wi,j if i∼ j ð if i and j are adjacent Þ

0 otherwise:

�
ð7Þ

A node in graph G will have the degree di =
def f P

j∼ iwi,j . The
diagonalmatrixof degrees is thedegreematrixH, soHi,i = di andHi,j = 0
for i ≠ j. The combinatorial Laplacian matrix of G is given by
L =

def f
H � A. To represent G, we therefore used two matrices A, L. The

sorted sequence of eigenvalues means the spectrum of each matrix,
represented as below, where the kth eigenvalue in descending order of
the adjacency matrix is denoted as λAk :

λA1 ≥ λ
A
2 ≥ . . . ≥ λAn ð8Þ

For the Laplacian (L) matrix, we have λLk and the kth eigenvalue, in
ascending order

0= λL1 ≤ λ
L
2 ≤ . . . ≤ λLn ð9Þ

The L matrix has at least one 0 eigenvalue, and the number of 0
eigenvalues is equal to the number of disjoint parts in the graph63.

Letting G and G0 be graphs that we want to measure, as in, the
distance between them, we can compute Laplacian spectra λL and λL0

forG andG0, respectively. The Laplacian spectral distance between the
two graphs is defined as:

dLðG,G0Þ =
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i = 1
ðλLi � λL

0

i Þ
2

r
ð10Þ

We measure the graph dissimilarity between G and G0 by calcu-
lating the absolute of value of the balance score between both the
physical distance and gene expression-based graph (11).

min
1

ω=0
j1� ðdLðGω,G0Þ=dLðGω,G1ÞÞj ð11Þ

The optimalω is the one that balances the divergence from the two
references, and its weighting value can be quantitatively determined
through an ω sensitivity analysis where, as alluded to earlier, the con-
tributions of spatial andgene expression components to corresponding
PSTS trajectory graphs are assessedwhenω changes from0 to 1 (in 0.01
increments); this quantitative approach uses two reference graphs that
use either only spatial information (ω =0), or gene expression data
(ω = 1; Fig. S10a). The point where the dissimilarity score is lowest
optimally balances the individual contribution(s) of both the spatial and
gene expression component towards the spatial trajectory being
reconstructed. To also assess variation in the optimal ω parameter
across different biological systems, we compared the determined
optimal value for three independent ST-seq datasets (mouse TBI,
mouse neurodevelopment and human breast cancer progression),
finding that the optimal ω was relatively similar (0.46–0.51; Fig. S10a).
To also illustrate how the optimal ω outperforms other choices, we
show that gene expression bias (ω >0.46) can lead to non-specific tra-
jectories, as exemplified in the DCIS-IDC case study (Fig. S10b) where a
single DCIS (sub-cluster 6) now connects to either multiple or all IDC
sub-clusters (Fig. S10b, right lower panels). This outcome goes against
the findings of de Bruin et al.65 who reported evidence for spatially-
branched evolution of cancer clones, with the multiple branches being
derived from different clones (supported in our dataset by the tran-
scriptional relationships/diversity within and between DCIS-IDC pairs).
With spatial bias, on the other hand (e.g., when using spatial distance
alone (ω=0); Fig. S10b, left lower panel), we found a PSTS graph that
appeared to accurately reflect the relationship(s) betweenDCIS and IDC
clones (sub-clusters 6, 13, 16); this could be due to the edges from sub-
clusters 6 and 16 in the initial graphs before optimisation (i.e., PSTS
distance) already being stable, but the actual edge weights increased
whenω changed from0 to 0.46 (optimum). It is important to recognise
here that spatial bias assumes nearby cells are more likely connected in
the spatial progression process, whichmay lead to “over-fitting", that is,
predicted branches wrongly connecting to the nearest cells; “gaps" or
“missing nodes" within the spatial data of a thin 2D tissue section may
pose an additional issue for inferring continuous trajectories. Indeed, as
exemplified in Fig. S10c, a tissue section may contain a gap between
connected clusters involved in cell movement/translocation in instan-
ces where the intermediate node is not within the same section but
rather the third dimension (depth) of the tissue block, causing per-
spective bias. In stLearn’s PSTS, we utilise the gene expression infor-
mation to capture this missing structure of the graph because the gene
expression data still contains the global transitional pattern and/or
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relatedness of cells, evenwithout the spatial connection (as observed in
PCA/UMAP/Pseudotime latent space). Our optimisation step for ω
therefore overcomes issues associated with both sources of bias, with
the identified optimal value of ω (0.46 in this example; Fig. S10b) pro-
viding the right balance between the contribution of spatial and gene
expression data, and a good fit to the actual spatial relationships that
prevent trajectories from being misaligned with the biological process.

Parameters setting. Lastly, to run the PSTS analysis, there are two
settings that need to be specified. The first are the tissue regions of
interest within which to map the spatio-temporal processes. In our TBI
case study, we chose four main anatomical regions (i.e. hypothalamus
[node 4], thalamus [node 2], hippocampus [node 3] and penumbra
regions of thedamaged site [node 1]), the reasonbeing that route 4-2-3-
1 was identified through anunsupervised process asoneof the shortest
path from the terminal state (cluster) 4 to the initial state (node 1)
(based on PSTS values) in the spatial-PAGA graph (see Fig. S6b and
Supplementary Note 1.3). The second setting that needs to be specified
is the predicted root cluster for a given biologicallymeaningful process
that is expected to occur in and/or across the tissue of interest. As
alluded to earlier, we adopt the CytoTRACE algorithm to automatically
find the root cell/spot that has the lowest differentiation status for the
chosen cluster. It should be noted that, depending on the biological
question, the chosen root cluster could represent either the beginning
or endpoint of any such process. stLearn therefore includes a reverse
function that allows the root to be converted to the tail. Since our
interest for the TBI case study was to map and visualise microglial
activation states, we treated the damaged site as an endpoint or, put
differently, as the site at which activation is most advanced while
regions in the trajectory that are more distant from the damaged site
would represent noor earlier stages of activation. Lastly, to account for
the fact that a given ST technologymay not necessarily be at single-cell
resolution, we have included an optional third parameter where the
user can specify a gene set for a given cell type (e.g. from RNA-seq
studies) to better target the analysis to relevant cell types only.

Detection of trajectory-based transition markers. As a part of the
PSTS analysis, stLearn allows users to find genes that likely drive the
spatial trajectory. For a chosen clade Bi (i.e. a branching trajectory
path) and for a set of genes E with gene expression values e1, e2,…en,
genes that are differentially expressed between the start and end
nodes in a trajectory pathway are further tested for significant corre-
lation using Spearman’s rank order test between the gene expression
value and pseudotime (adjusted P-value < 0.05). Spearman’s rank
correlation coefficients for rj will be high if the gene expression ej is
linearly correlated with PTj in clade Bi. After multiple testing correc-
tion, significant genes are predicted to represent trajectory-driving
genes. Transition genes with absolute Spearman’s rank correlation
coefficients that are higher than a specified threshold (0.3 by default)
are classified as upregulated (if > 0.3), or downregulated (if < −0.3).

Gene set enrichment analyses. Functional enrichment analyses were
performed for the top 100 up- and downregulated transition genes
identified from the trajectory-based differential expression analysis
describedabove; theWiki PathwayMouse2019databasewasusedas the
reference, and implemented using gseapy66 and Enrichr67; an adjusted P-
value <0.05 was set as the threshold to filter significant pathways.

Experimental validation of PSTS
Establishing an experimental model to visualise microglia activa-
tion in TBI mice. Three- to four-week-old CX3CR1

creERT2 x tdTomatoflox/flox

mice were orally gavaged with tamoxifen (12.5mg/g body weight) once
daily forfivedays.Micewere then left to rest for a six-weekperiod,which
allows for the peripheral turnover of shorter-lived CX3CR1-expressing
leucocytes in the circulation and thus only leaves self-renewing CNS-

resident tdTomatoposmicroglia. Thesemicewere subjected to controlled
cortical impact or sham surgery (craniotomy only), as described earlier,
and then sacrificed at the specified time points.

Tissue processing, staining and imaging. Mice were euthanised
using sodium pentobarbitone (1.6 mg/g body weight; i.p. injection),
followed by transcardial perfusion with phosphate-buffered saline
(PBS) and 4% formalin. Brains were dissected, post-fixed for 24 h at
4 °C, and then stored in PBS with 0.01% sodium azide until further
processing. For sectioning, tissues were cryoprotected in 30%
sucrose with 0.05% sodium azide for 2 days at 4 °C, after which
serial brain sections (40 μm; 1 in 6 series) were cut using a sliding
microtome (Leica).

Free-floating sections were washed in PBS, stained with DAPI
(1: 1000; Sigma-Aldrich), and then mounted and coverslipped using
Vectashield H-100 medium (Vector Labs). Nucleated tdTomatopos

microglia were counted in four anatomically defined brain regions
(i.e., nodes 1–4 of the spatial trajectory) for eachmouse. Cell counts
were performed live at ×400magnification using StereoInvestigator
software (MicroBrightfield Bioscience) on an inverted AxioImager
Z2 microscope (Zeiss) with an ORCA-R2 digital charge-coupled
device camera (Hamamatsu) and 40× 0.75 NA/0.71mm WD objec-
tive. For each condition and time point, cells were counted within a
field of view and then normalised to the area of the field of view
(0.0755mm2). Representative confocal images of the analysed brain
regions were also acquired using an inverted Diskovery spinning
disk confocal microscope (Spectral Applied Research) with 0.3μm
Z-stacks using a CFI Apo Lamda 60x Oil / N.A. 1.4 / W.D. 0.13mm
objective and Zyla sCMOS camera. After pre-processing the images
in Fiji, we manually segmented all microglia in these images and
then measured their cell body size in pixel × pixel units. Cell counts
and cell body sizes were compared both over time and across tissue
regions. The Kolmogorov-Smirnov (KS) test was used to test for
distribution differences in cell body size and density through time
and/or space.

Comparing spatial trajectory reconstruction with non-spatial
scRNA-seq equivalent methods. As there are no spatial trajectory
methods available to suitably reconstruct branching processes within
the tissue context, we could only assess the performance of our PSTS
algorithmagainst trajectory inferencemethodsoriginally developed for
scRNA-seq33, comparing the variation (deterministic nature) of the
pseudotime values between spatial spots within a tissue. Higher spatial
variation suggests a noisier spatio-temporal pattern of the trajectory
here. We used the variogram model as a quality metric to assess the
performance of PSTS, Slingshot29 and Monocle330 (Fig. 2i, j and Sup-
plementary Note 1.2). In spatial statistics, a variogram describes the
spatial continuity of the data68,69, which are pseudotime values in our
case and where Variogram eigenvalues reflect the spatial variation of
PSTS/pseudotime values in the dataset. To calculate the variogram plot
as in Fig. 2i, we used a semi-variance estimator, also called theMatheron
estimator (γ(h)), and defined as:

γðhÞ= 1
2NðhÞ *

XNðhÞ
i= 1

ðxÞ2 ð12Þ

with:

x =Z ðxiÞ � Z ðxi+hÞ ð13Þ

where Z(xi) is the PSTS/pseudotime value at i-th location xi, h is the
distance lag (Euclidean distance between two data points, based on
spatial coordinates), andN(h) is the number of point pairs at that lag.
In this case, the distance between lags is 167 pixels. A lower semi-
variance value, as computed by the Matheron estimator, reflects the
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higher PSTS/pseudotime continuity, that is, a better spatial
trajectory.

Spatial trajectory inference by PSTS from multiple datasets
We developed a workflow for integrating data from different tissue
samples (Fig. S13a). In brief, and using the Visium human breast cancer
dataset (Block A, sections 1 and 2) as an example, we designated sec-
tion 1 as the reference and section 2 as the moving sample (Fig. S13b).
We then utilised a geometric transformation method to register the
spatial coordinates of the moving sample to match those of the
reference sample. Specifically, to address the shifting issue between
the two samples, we performed a linear transformation using a matrix
of [[1 0 0], [0 1 1000], [0 0 1]]. By applying this transformation to each
point in themoving sample, we translated its coordinates to align with
those of the reference sample. As a result, the DCIS and IDC clusters
were well-matched at the (sub-)cluster level between the two sections
(Fig. S13b). Users have the option to implement other image registra-
tion methods as preferred (e.g., PASTE70); for batch correction of gene
expression information, we recommend using popular methods such
as Harmony71. Once the registration and batch correction steps have
been completed, PSTS can nowapplied as shown in Fig. S13c, wherewe
inferred results in the same way as with single-sample PSTS analysis
(Fig. S13c). If a z-dimension is present, users need to set the radius
parameter to cover the 3D distance to define neighbouring spots/cells
in order to calculate PSTS values. For instances where image registra-
tion is not possible, each sample canbe subjected to independent PSTS
analysis, following which shared driver genes can be identified to
annotate the common trajectory between sections in an unbiased
manner (see “Results” and Fig. S13d–h).

stLearn cell–cell interaction analysis
Most of the current cell–cell interaction (CCI) inferencemethods do
not take into account the fact that cellular interactions operate the
strongest within 0 to 200 μm distance43,44. Consequently, these
methods face an inherent issue of detecting false positive interac-
tions between cells that are located outside this biological distance
limit72. We indeed observed this common phenomenon when
applying existing CCI methods to spatial data (Fig. 5e, f). In this
work, we developed stLearn SCTP to improve prediction accuracy
by utilising the spatial context of cells and their entire ligand-
receptor (LR) expression repertoire. We developed two test cate-
gories, one for testing neighbourhoods with significant enrichment
of LR co-expression (neighbourhood LR analysis - to find spatial
locations and significant LR pairs used for interactions), and a sec-
ond for finding cell type combinations with significantly greater
interactions than other cell types across the tissue (cell type-specific
CCI analysis).

First, we define a neighbourhood for a given spot as the set of
spots within a defined spatial distance of that spot. A distance of 0
indicates ‘within-spot’ mode, whereby the neighbourhood of a given
spot only includes itself. This mode is useful in ST-seq data such as
Visium, or in binned data of high-resolution technology like Slide-seq15,
where each spatial spot/bin may contain multiple cells operating
within less than 200μm. The ’within-spot’ mode is thus suitable for
studying juxtacrine, autocrine and paracrine interactions. ’Between-
spot’ mode considers adjacent neighbours of a spot within a given
distance as the neighbourhood. For ‘between-spot’mode (default), the
distance is automatically calculated as twice the spot diameter in Vis-
iumdata, or a bin in other types of data. stLearn’s SCTPmodule for CCI
analysis isflexible, however, in that the distance can be specifiedby the
user, following which spot/bin/cell neighbourhoods are determined
using both the spatial coordinates and distance parameter as the input
into the cKDTree in SciPy73.

Location-specific LR calculation: once neighbourhood spots/bins/
cells are defined, LR co-expression (LRscore) for each spot is calculated

as per Eq. (14):

LRscore =
1
2

mean
�
ExprL,SjN × ExprR,S >0

� ���
+mean

�
ExprR,SjN × ExprL,S >0

� �� ð14Þ

where ExprL,S∣N is the expression of the ligand in either the spot or the
neighbourhood spots of the spot S (denoted as S∣N), and ExprR,S >0 is a
conditional value of either 0 (if receptor R not expressed) or 1 (if
receptor R expressed) in spot S. The terms ExprR,S∣N and ExprL,S > 0 are
equivalent to the aforementioned but in reference to the receptor (R)
and the ligand (L), respectively. In the case of within-spot mode, the
LRscore reduces to Eq. (15):

LRscore =
ExprL,S × ExprR,S>0

� �
+ ExprR,SjN × ExprL,S>0

� �
2

ð15Þ

The LRscore can be further adjusted to include cell type diver-
sity, which is often positively correlated with increased likelihood
of cell–cell interactions13,23,74. The positive correlation between cell
type diversity and cell–cell interaction activities is indeed well
supported. An immune social network model demonstrated that
context-dependent paracrine responses, which were quantified as
cell–cell interaction connections, were correlated with the number
of sender and receiver cell types23. A weighted-directed-multi-
hyperedge network model found that the underlying structure of a
real cell-to-cell communication network was made up of hyper-
edges where ligand-receptor pairs connect multiple cell types24.
However, as the relationship between cell type diversity and
cell–cell interaction may be dependent on biological contexts,
stLearn SCTP implements cell type diversity as an optional para-
meter. To acquire cell type information, spot cell type scores
between 0 and 1 can be derived from reference scRNA-seq datasets
using provided python wrapper functions for tools such as RCTD75

or Seurat v3 label transfer76. Different cell types are then counted
per-spot when the cell score is greater than a given threshold (C;
default 0.2) in either its neighbours (between-spotmode), or within
itself (within-spot mode) as in Eq. (16):

HETspot =
X

unique celltypes

PcelltypesjS >C ð16Þ

The LRscore can then be adjusted to LR0
score to allow for prior-

itisation of interactions in the areas of high cellular heterogeneity as in
Eq. (17):

LR0
score = LRscore ×HETspot ð17Þ

Of note, stLearn SCTP implements the Numba framework and
parallel processing to improve the computation speed, enabling the
fast calculation of LRscore,HETspot, and LR0

score for all spots, LR pairs and
random gene-gene pairs.

LR significance testing: we introduced a robust statistical
method to test LR interactions, avoiding biases towards abundant
LR pairs and random co-expression of non-interacting pairs of
genes across neighbour spots/cells. To do so, we established a
random background of LR scores for 2 ×

ffiffiffi
k

p
non-interacting genes,

these being genes that are not in the LR database (NATMI24 by
default) but within the same expression ranges compared to each
of the ligand and receptor genes that constitutes the LR pair for
testing. To select random candidate genes in the same expression
range of a given query gene (query gene as either the ligand or
receptor in the LR pair), we find genes that minimise the Canberra
distance between n quantiles of gene expression across all spots/
cells, i.e. to select 2 ×

ffiffiffi
k

p
genes with the lowest (gdist) as in Eq. (18)
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(illustrated in Fig. 4a):

gdist =
Xn
i= 1

qi � gi

		 		
qi

		 		+ gi

		 		 ð18Þ

where n is the total number of quantiles (default 10), qi is the value of
quantile i for the query gene receptor or ligand, and gi is the value of
quantile i for a candidate random gene. A quantile i for a gene is
defined by the expression values of that gene across all spatial
measurements of a dataset (e.g. all spots in a Visium dataset). Due to
the high proportion of zeros commonly observed in ST-seq data, the
quantiles used to select candidate random genes are oversampled
toward the higher end of the gene expression distribution to ensure
quantiles do not have all 0 values for sparsely expressed genes; by
default quantiles 50, 75, 85, 90, 97, 99, 99.5, 99.75, 99.99 and 100th
are selected. These random genes, selected to represent the ligand
expression and the receptor expression, are then randomly paired to
generate non-interacting gene-gene pair with equivalent expression
levels to the LR pair (Fig. 4a). We then calculate the LRscore (or
optional LR0

score) for each random pair to create the background
distribution per spot and LR pair (Figs. 4a and S17). As a result, for
each LRpair, we sampledn × kLRscore values (n is the number of spots/
bins/cells in the dataset, by default k = 1000).

With the background signal established, we calculate P-values for
each spot and LR pair (ps,LR) as the proportion of the background
scores (bi) across k random pairs that had a score greater than the
LRscore (Benjamini/Hochberg correction formultiple testing). To assess
whether a robust number of random pairs has been obtained in a
dataset-specific manner, stLearn SCTP implements diagnostic plots
that automatically examine the relationship between the LR expres-
sion level and abundance with the LR rank based on the number of
significant spots (Figs. S14i and S15d–f). These diagnostic plots show
no correlation between LR rank and LR expression if an adequate
background has been generated.

Cell type-specific interaction analysis: in addition to testing for
significant interactions by LR pairs at specific spatial locations, as
described above, we also introduced significance testing for cell type-
specific interactions, where we can test if a pair of cell types interact
using a given pair of LR. This test accounts for the fact that more than
one cell type may be present at a given spot, but that not all of these
cell types are involved in the interactions within one spot or between
two neighbouring spots.

The cell type interaction analysis uses the significant spot/bin/
cell outputs from the spot LR analysis above (Fig. 4a). For each LR
pair and spot, we then calculate the count matrix CCILR of shape
nc × nc, where nc is the number of all predicted cell types. Each row
in CCILR corresponds to the signal emitting cell types (ligand
expressing; sender), and each column to the signal detecting cell
types (receptor expressing; receiver). For a given cell type x and
cell type y, the row of x and column of y in CCILR is the count of the
receptor-expressing neighbour spots that contain cell type x for
significant spots that contain cell type y and express the ligand.
This also includes counts for the reverse situation, where the sig-
nificant spot expresses the receptor and contains cell type y while
the neighbour expresses the ligand and contains cell type x. This
counting is detailed mathematically in Eq. (19):

CCIx!yjLR =
XS
s

XN
n

½ExprR,n >0 ^ celltypen = = y�^

ExprL,s >0 ^ celltypes = = x
� �

+

XS
s

XN
n

ExprL,n >0 ^ celltypen = = x
� �^

ExprR,s >0 ^ celltypes = = y
� �

ð19Þ

Here,CCIx→y∣LR is the count of cell type x signalling to cell type y via
a given LRpair; S is the total number of significant spots for the LRpair;
N is the total number of neighbours for spot s; ExprR,n > 0 is 1 if the
receptor is expressed in the neighbouring spot n and 0 otherwise;
while celltypen = = y is 1 if spot n contains cell type y and 0 otherwise.
ExprL,s and celltypes = = x are equivalent terms that refer to ligand
expression L in the significant spot s that contain cell type x. In ‘dis-
crete’mode, spots will have a discrete cell type label; while in ‘mixture’
mode a spot is considered to have a given cell type if the cell type score
in the spot exceeds a given threshold (C; default 0.2). In practice,
mixture mode results in a greater number of possible interaction
counts since a single spot/bin is considered to represent multiple cell
types simultaneously (as in Visium data). For example, a neighbouring
spot containing 3 cell types would be counted a total of 3 times if the
neighbour spot meets the interaction criteria explained above.

We found that the cell information permutation process detailed
below takes into account cell type background frequency to effectively
call significant interactions, as there was no observable correlation
between the number of significant interactions for a cell type and cell
type background frequency (Fig. S15c).

After calculating the CCILR count matrix for each LR pair, we then
permute the cell type information associated with each spot V times
and re-calculate CCILR with the permuted cell type information. In
‘mixture mode’, the scores of each cell type across spots are rando-
mised independently of one another, effectively permuting cell type
colocalisation combinations while maintaining the frequency of each
cell type in the sample. In ‘discrete’ mode, the cell type labels of each
spot are simply randomised. This randomisation process effectively
counts the colocalisation of cell types with significant LR neighbour-
hoods while taking into account the background frequency of those
cell types in the sample. P-values are then calculated as in Eq. (20):

px!yjLR =

PV
v= 1ðbv>CCIx!yjLRÞ

V
ð20Þ

where bv is the count of interactions between cell type x and y via the
LR pair for permutation v; bv >CCIx→y∣LR is 1 if the background inter-
action count for permutation v is higher than the observed interaction
count CCIx→y∣LR, and 0 otherwise. This test is directional between cell
type x and cell type y.

As with the LR analysis, the number of permutations chosen can
affect the results. To indicate whether a robust number of permuta-
tions has been obtained in a dataset specific manner, we provide a
diagnostic plot that examines the relationship between cell type
background frequency and number of significant interactions. This
diagnostic plot shows no correlation between the cell type frequency
and number of significant interactions if an adequate background has
been generated, as exemplified from our analysis of the Visium breast
cancer data (Fig. S15).

Optionally, instead of empirical p-values, a negative binomial test
based on the null distribution of LRscore can be used to find predicted
interactions. As described above, LRscore is calculated based on the
linear combination of LR gene pair expression in neighbour spots (also
the case when cell type heterogeneity is multiplied with the LRscore to
give LR0). For each LR, we fit a negative binomial distribution to the
whole set of LRscore values from all spots and all k random gene pairs,
using the maximum likelihood estimation procedure to estimate
parameters meanmu, and heterogeneity alpha (modelling variance as
mu + alpha ×mu2). The cumulative distribution function of the nega-
tive binomial distribution (NBcdf) was used to check whether the
observed LRscore is just by chance or not. The probabilities are then
adjusted by multiplying with the number of tests (i.e. Bonferroni
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correction for the tests across the total number of spots in the tissue):

CCI � NBspot = � Log10 1� NB cdf CCI �mergedLR,spot ,NB f it
hh

½CCI �mergedLRi ,spot
�
i
*Nspot

i
, ði= 1, :: ,n pairsÞ

whereNB_cdf is the cumulative distribution function of null distribution
based on CCI scores of 1000 (default) random protein-protein pairs.

The SCTP algorithm is summarised in pseudo-code in
Algorithm 2.

Algorithm 2. Cell–cell interaction

Lastly, we also provide an optional cell binning step, which can be
applied to very large spatial single-cell datasets (Figs. 4e–g and S14).
Here, the tissue space is segmented into grids according to a user-
defined grid size prior to analysis with the stLearn SCTP pipeline
described above (Fig. S14c). This allows for stLearn’s CCI analysis to be
scaled to datasets with potentiallymillions of cells (as the computation
limit is only dependent on the number of bins).

Functional enrichment analysis for significant CCI hotspots. We
used the Wilcoxon rank sum test to detect differentially expressed
genes using Seurat76, comparing the CCI hotspots with all the
remaining spots. The top 100most significant differentially expressed
genes of CCI hotspots were used as input for Gene Ontology (GO)
analysis by g:Profiler77 to test for GO enrichment in the Biological
Process category. We then plotted the term size, overlap of genes and
adjusted P-values for the top 15 most significant gene ontology terms
(Fig. S15g).

Validation of cell–cell interaction
mRNA in situ hybridisation of cancer tissue sections. RNAscope
HiPlex (ACD Cat. No. 324110) was performed on fresh-frozen BCC tis-
sue sections to detect ligand-receptor interactions for IL34 and CSF1R.
The target probes were designed by the ACDRNAscope Team, and the
assay itself was performed as per the manufacturer’s instructions.
Briefly, the section was fixed with freshly made 4% PFA for an hour,
followed by dehydration and digestion processes. The slide was then
hybridised with probes against IL34 and CSF1R mRNA. The negative
control slide was stained with RNAscope HiPlex 12 Negative Control
Probe, which targets bacterial housekeeping genes. RNAscope Hiplex
Amp 1, 2 and 3 reagents were subsequently added to amplify the signal
from hybridised probes, with washing steps performed between
incubation steps with each Amp reagent. Sections were then stained
with RNAscope HiPlex Fluor T1-T4 reagent, followed by nuclear
counterstain using DAPI. Finally, the slides were coverslipped using
ProLong Gold Antifade Mountant (Fisher Scientific) for imaging. Sec-
tions were scanned using an Axio Z1 slide scanner (Zeiss) at 40x
magnification with a 1.5μm Z-stack interval. Imaging was performed
using differentfilters includingDAPI fornuclei,Cy5 for IL34 andCy7 for
CSF1R; TIFF images were generated using ZEN software (version 3.2)
for further analysis of ligand - receptor interaction using customised
scripts78.

stSME spatial imputation
ST provides transcriptome-wide gene expression profiles with addi-
tional spatial location. For many technologies, tissue morphology
information fromH&E tissue images can also be obtained for either the
same or an adjacent tissue section. We developed the stSME imputa-
tion method to incorporate these two additional data types (that is,
spatial location and tissue morphology) to adjust gene expression
values between spots. Optionally, we provide stLearn’s image proces-
sing functionalities and a neural network model to utilise the H&E
image spot data.

Matrix D - spatial location. First, we calculate a spatial distancematrix
D to utilise spatial location information. Different to spatial smoothing
approaches, which use D to select neighbouring spot pairs for gene
expression adjustment, here we integrate D with additional measures
to select reference spots, as described later. The role of D is based on
the assumption that spots which are close in physical distance are also
likely to have similar gene expression profiles and cell types20–22. Phy-
sical distance PDij is defined as the centre-to-centre Euclidean distance
of any two spots Si and Sj (21). The pairwise physical distance matrix D
is calculated for all pairwise spot combinations, including for near and
distant spots in one tissue slide. For each spot Si, the closest three
layers of spots (i.e. spots that are within a radius of 3x PDðSi ,Si adjacent Þ
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from the spot Si, calculated as below) are selected:

PDi,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 + ðyi � yjÞ2

q
ð21Þ

where x and y denote the pixel coordinates of the centre of each spot/
cell/grid. Matrix D is a symmetric square matrix with element Di,j

between each pair of n spots/cells/grids across the entire dataset.

Matrix G - gene expression correlation. Additional gene expression
profile checks are implemented to avoid selecting neighbouring spots
that are not of the same cell type. We first apply log transformation of
raw gene expression UMI count data and then embed it into a PCA
space. Gene expression correlation GDij is calculated by Pearson cor-
relation of spot Si and spot Sj in low dimensional space (top 50
PCs) (22).

After initial spot selection by matrix D, only the three spots with
highest correlations with spot Si are selected based on Matrix G for
downstream imputation (22):

GDi,j = rðGi,GjÞ ð22Þ

where Gi and Gj are low dimensional PCA embedding of gene expres-
sion for spots Si and Sj (10 PCs by default). Similarly to thematrixD, the
symmetric square matrix G was calculated for every pair of n spots.

Matrix I - morphological similarity. We measured the morphological
similarity between paired spots Si and Sj by the distance calculated
based on two numeric vectors extracted from their corresponding
spot images, i.e. the twoH&E tiles that cover these two spots/cells/grid
(tissue regions of interest). The high-level features of these spot ima-
ges are extracted by ResNet5079, which is a well-established convolu-
tionalneural network (CNN)modelwidelyused for image classification
in computer vision. We used a transfer learning strategy, where the
weights in ResNet50 were pre-trained using the ImageNet80 dataset
(millions of images) and the final classification layer extracted. This
method leverages the generalised ability of the pre-trained model in a
large imaging dataset to extract numeric features from a new image81.
As a result, the model can convert an image into a 2048-dimensional
latent vector, and combining the latent vectors from all spots thus
forms a latent space with 2048 dimensions. We further applied PCA to
extract the first 50 PCs as the latent features to represent the spot
morphology. Themorphological distanceMDof a centre spot Si and its
neighbour Sj can be calculated by cosine distance (other options such
as Euclidean or Pearson distances are also available in stLearn), com-
puted as in Eq. (23):

1�MDi,j = 1�
Mi �Mj

k Mi kk Mj k
, ð23Þ

whereMi andMj represent themorphological latent feature vectors for
spots Si and Sj. MD(Si, Sj) is then scaled from the range [−1,1] to [0,1],
where0means themost different and 1means identical,with regard to
morphological similarity.

stSME weighting matrix. The stSME matrix integrates information
from physical distance (matrix D), gene expression correlation (matrix
G) and morphological similarity (matrix I) to enable accurate imputa-
tion of ST data without losing spatial resolution. The units of mea-
surements are cancelled out in the morphological similarity and gene
correlation matrices. The physical distance is measured in pixel units,
and can also be converted to micrometre unit, but in either case, the
unit choice does not affect the result because the matrix is used for
determining local spots. Common smoothingmethods non-selectively
use neighbour spots for imputation, thereby loosing localised varia-
tion. stLearn does not suffer from this limitation as the stSME matrix

allows users to simultaneously select spots with the nearest D, highest
G and highest I as the reference spots for imputation. With these
selection criteria combined, there can be a very high level of con-
fidence that reference spots likely comprise the same cell types and
cell states. Each element Wi,j in stSME weighting matrix is the multi-
plication product of GDi,j and MDi,j from matrix G and I, respectively,
where spots Si and Sj selected from matrix D (24). Three spots with
highestweights are then identified and their stSMEweights normalised
by total weights as the final weighting parameter for stSME imputation
(25):

stSME = ½Wi,j�= ½GDi,j �MDi,j� ð24Þ

W 0
i,j =

Wi,jPn
j = 1 Wi,j

ð25Þ

where n is the number of reference spots selected.W 0
i,j are the weights

used for adjusting the expression value of spot Si, which add up to 1
(Fig. S19c).

Incorporating spatial location, gene expression and morphologi-
cal similarity, stSME normalises the gene expression of each spot Si by:

GE 0
i =

1
2GEi

+ 1
2

Pn
j = 1

ðW 0
i,j � GEjÞjSj selected by matrix D

( )
ð26Þ

where GE 0
i represents stSME-normalised gene expression for a centre

spot Si. GEi and GEj represent raw gene expression for spot Si and its n
selected neighbour spots Sj, respectively.

Algorithm 3. stSME imputation

Leave-out simulation for evaluating stSME imputation
Two simulation approaches were developed to evaluate the perfor-
mance of the stSME imputation method; both used the raw gene
expression matrix as the ground truth.

In the first approach, 20% of all data points were randomly
selected and replaced with a “0" to simulate missing values. stSME
imputation was then applied to recover thesemissing values, followed
by Louvain clustering. Performanceof the stSME imputation algorithm
was evaluated by using the adjusted Rand index (ARI), assessing clus-
tering results against the ground truth (i.e. original clustering obtained
from the full data; Fig. 6d, e).

In the second approach we iterated through every spot on the
tissue slide, treating each as being without gene expression values to
simulate missing spot scenarios and then using the original gene
expression of the nearby spots as a reference. The stSMEmethod was
then applied again to independently impute the top 2000 highly
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variable genes (HVGs) across two replicate sections of the Visium
humanbreast cancer dataset (10xGenomics; BlockA, sections 1 and 2).
After all spots were imputed, the spatial autocorrelation of the impu-
ted gene expression matrix was calculated against the original gene
expression matrix for each HVG to evaluate the performance of the
stSME imputation, both within and across sections (Fig. 6f).

Global and local spatial clustering - SMEclust
scRNA-seq data has led to the development of numerous cell type
identification methods using data-driven clustering82. These clustering
methods, such as those in the popular Scanpy83 and Seurat84 pipelines,
only use gene expression information and it often remains challenging
to decide on the resolution and number of clusters8. stLearn’s spatial
clustering (SMEclust) uses stSME-normalised data and Louvain clus-
tering tofirstfindclusters at theglobal level.Wealso introduce a feature
in SMEclust to help decide the clustering resolution by using spatial
information. Sub-clustering or local clustering is performed when one
cluster consists of spots located inmultiple different parts of the tissue,
for example DCIS sub-clusters in breast cancer tissue (Fig. S8c–d). A
usage example of broad/global clusters U and V and specific/local sub-
clusters: {u1, u2}∈U and {v1, v2, v3}∈V is shown in Fig. 1c.

Implementation of software
Here we briefly describe the technical details for stLearn software
implementation, which comprehensively incorporates three key analy-
sis algorithms. Detailed tutorials and documentation are available on
the stLearn website and the GitHub page (DOI:10.5281/
zenodo.8251742). stLearn’s core is constructed based on TensorFlow85

and Pillow by Alex Clark for deep learning and image processing
modules; SciPy73 for the spatial analysis module; Scanpy83 for the gene
expression analyses modules; NetworkX86 and Matplotlib87 for network
analysis and visualisation; and AnnData83 for the main object to store
andprocess data. As stLearn is a Python-based software, it is compatible
with machine learning or deep learning packages like scikit-learn88 or
TensorFlow85. Users can also utilise functions from popular image
processing packages, such as OpenCV89 or Pillow for further analysis of
tissue images, for example to extract a wide range of image features;
these include stLearn’s functions for segmentation of cell nuclei and
other handcraft features, as shown in Fig. S20a). stLearn uses annData
object and is compatible to a large range of other R/Python software
that use the common SingleCellExperiment object, thus allowing con-
venient integration of analysis pipelines.

Interactive stLearn web application
To extend usability to the broader scientific community, we have
created a publicly available interactive version of stLearn called i-
stLearn, based on Bokeh, an Interactive Data Visualisation framework
(Fig. S25)90. Currently, the web application supports pre-processing of
data, gene plots (including for LR pairs), clustering plots, the pseudo-
time-space method and its visualisation, and cell–cell interaction
analysis. Users can run the above analyseswithout the need for coding.
The interactive functions can also run in the Jupyter Notebook or
Jupyter Lab environment. Users can directly use and visualise the
interactive plots of several ST platforms in the notebook.

Lastly, we provide the Code Ocean compute capsule to allow for
reproductionof the results reported in this paper aswell as for running
the step by step analysis presented in the stLearn documentation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data, both raw and processed, for experimental datasets
generated as part of this study, have been deposited to the NCBI’s

Gene Expression Omnibus (GEO) database under the accession code
GSE236171 and made publicly available. All imaging data (e.g. imaging
data from RNAscope and immunofluorescence-based histological
studies) can be made available upon request. Sources and links to
publicly availabledatasets, asdescribed in thedata section above, have
also been provided. Briefly, deidentified patient gene expression data
only, not the sequences, were downloaded from publicly available
datasets (accessed February 2022). These include The Human Breast
Cancer Visium dataset from the 10X Genomics website (https://
support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_
Breast_Cancer_Block_A_Section_1; seqFISH+data13 from (https://github.
com/CaiGroup/seqFISH-PLUS/blob/master/sourcedata.zip); Slide-seq
data15 for the mouse hippocampus from (https://www.dropbox.com/
s/cs6pii5my4p3ke3/mouse_hippocampus_reference.rds?dl=0); 10x
Genomics’ public Mouse Brain Visium dataset from [https://support.
10xgenomics.com/spatial-gene-expression/datasets/1.1.0/]; and Vis-
ium human brain dataset from Maynard et al.11 [https://github.com/
LieberInstitute/HumanPilot]. The data analysis complied with the
terms and conditions of the data sources mentioned above. Our
simulated dataset can be reproducibly generated using code available
on the stLearn manuscript GitHub page (https://github.com/
BiomedicalMachineLearning/stlearn_manuscript/tree/main/Main_
figure_4_5_CCI_with_Sup/scripts/X6_breast_cancer_simulation). Source
data are provided with this paper.

Code availability
stLearn software is implemented using Python and the source code is
available at https://github.com/BiomedicalMachineLearning/stLearn;
detailed tutorials can be found at https://stlearn.readthedocs.io/. The
publicGithub repositoryof the interactive versionof stLearn, i-stLearn,
can be accessed at https://github.com/BiomedicalMachineLearning/
stlearn_interactive. Code to reproduce figures presented in this paper
is available at https://github.com/BiomedicalMachineLearning/
stlearn_manuscript.
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