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Data-driven discovery of electrocatalysts for
CO2 reduction using active motifs-based
machine learning

Dong HyeonMok1,3, Hong Li2,3, Guiru Zhang2, Chaehyeon Lee1, Kun Jiang 2 &
Seoin Back 1

The electrochemical carbon dioxide reduction reaction (CO2RR) is an attrac-
tive approach for mitigating CO2 emissions and generating value-added pro-
ducts. Consequently, discovery of promising CO2RR catalysts has become a
crucial task, andmachine learning (ML) has been utilized to accelerate catalyst
discovery. However, current ML approaches are limited to exploring narrow
chemical spaces and provide only fragmentary catalytic activity, even though
CO2RR produces various chemicals. Here, by merging pre-developed ML
model and a CO2RR selectivity map, we establish high-throughput virtual
screening strategy to suggest active and selective catalysts for CO2RR without
being limited to a database. Further, this strategy can provide guidance on
stoichiometry and morphology of the catalyst to researchers. We predict the
activity and selectivity of 465metallic catalysts toward four expected reaction
products. During this process, we discover previously unreported and pro-
mising behavior of Cu-Ga and Cu-Pd alloys. These findings are then validated
through experimental methods.

Global CO2 emissions from fossil fuels combustion and industrial
processes have rapidly increased and reached their highest-ever
annual levels every year. To reduce the atmospheric concentration
of CO2, there has been growing interest in renewable energy-driven
electrochemical CO2 reduction reaction (CO2RR) as a means of
upgrading CO2

1. Recently, several studies have been conducted to
screen active, selective, and cost-efficient CO2RR catalysts2–5.

Introduction of energetic descriptors using scaling relations
between binding energy of reaction intermediates and machine
learning (ML) methods has been especially helpful in exploring large
chemical spaces and greatly accelerating the discovery of high-
performing catalysts. This approach has helped overcome the high
computational costs associatedwith the complex reactionpathways of
CO2 reduction and the time-consuming density functional theory
(DFT) calculations required for evaluating too many candidate
materials6–8. For example, Tran and Ulissi developed an automated

screening method for discovering bimetallic CO2RR catalysts using
regression ML models and CO* binding energy as an activity
descriptor9. Using this approach, Cu-Al catalyst was proposed to be
active for CO2RR, and experimental validations demonstrated a high
faradaic efficiency towardethylene production, confirming the validity
of the catalyst discovery approach using both DFT and ML2. However,
it should be noted that in screening studies, CO* binding energy was
used as the activity descriptor to predict only the catalytic activity of
CO2RR, without considering the selectivity of products. Since a variety
of CO2RR products distribution have been experimentally reported10,
it is also crucial to evaluate the selectivity of products. Further, most
screening research relies on open databases such as the Materials
Project, which limits the chemical space to explore and makes it dif-
ficult to discover entirely new catalysts.

As an alternative approach to property prediction, inverse design
has become a promising method for predicting materials with desired
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target properties11. By using generative models, one can encode high-
dimensional chemical space of materials into the continuous latent
space of low dimensionality, and generate new materials using the
knowledge embedded in the latent space12,13. As a similarmethodology
to the inversedesign, a data-driven andmachine-learning-enabledhigh
throughput virtual screening (HTVS) strategy also has been applied to
explore a vast chemical space. The HTVS strategy involves the initial
creation of materials pool followed by property prediction. Although
technically different from the inverse design, which generates mate-
rials with the specific properties, HTVS can fulfill the same essential
objective of identifying materials with desired properties within an
unknown chemical space without the need for time-consuming steps,
as long as the materials pool is sufficiently extensive14. We previously
developed a DFT and structure-free active motif-based representation
(DSTAR) of catalyst surfaces for binding energy prediction, which can
be used in HTVS7. With this method, one can enumerate all possible
active motifs for any elemental combinations and construct histo-
grams of predicted binding energies.

In this work, we developed a workflow by combining binding
energy prediction ML models based on DSTAR and CO2RR selectivity
map to discover active and selective catalysts (Fig. 1a). Based on the
concept of CO2RR selectivitymap originally developed by Tang et al.15,
we used three binding energies tomore accurately predict the activity
and selectivity. Using this method, we evaluated the potential-
dependent activity and selectivity of CO2RR for 465 binary combina-
tions without performing any DFT calculations and surface structure
modeling. We further demonstrated that our method is capable of
providing more detailed design strategy by analyzing the activity and
selectivity according to composition and coordination number of
active motifs. Finally, we experimentally validated Cu-Pd and Cu-Ga
binary alloys and confirmed their high selectivity for C1+ and formate,
respectively, which agreed with our prediction by HTVS. We expect
that the HTVS strategy developed in this work will accelerate the dis-
covery of active and selective CO2RR catalysts.

Results
Enumeration of active motifs
The advantage of DSTARworkflow is that one canexpand the chemical
space to explore by numerically substituting elements of fingerprints.
The DSTAR method includes the positional information of active
motifs by dividing them into three sites: the first nearest neighbor
(FNN) atoms of the adsorbates, the second nearest neighbor atoms in
the same layer (SNNsame), and the sublayer of the binding site (SNNsub)
(Fig. S1). The active motif representation in DSTAR does not require
time-consuming steps such as slab structure generations, binding site
identifications and iterative optimizations, allowing for the exploration
of a wide chemical space, thus facilitating a discovery of novel
catalysts9,11. Themore detailed explanation about DSTAR can be found
in Supplementary Note 1. Based on this workflow, we collected 5634
(408) unique activemotifs of bimetallic (monometallic) surfaces based
on CO* data in GASpy dataset, which contains 89 types of crystal
structures9. The active motifs were substituted by 30 monometallic
and 435 bimetallic combinations consisting of 30 elements (Fig. S2).
This resulted in an increase in the number of bulk structures from
1,089 in GASpy to 279,690. All surface structures in dataset and cor-
responding information can be found in https://github.com/
SeoinBack/DSTAR-CO2RR. Note that DSTAR is not limited to binary
compositions but can be expanded to more diverse compositions.
However,weonly focusedonpuremetals andbinary alloys in thiswork
for simplicity and abundance of training data. As a result, wegenerated
a total of 2,463,030 active motifs and predicted their ΔECO*, ΔEOH* and
ΔEH* using the trainedMLmodels. Figure 1b demonstrates parity plots
of DFT calculated and ML predicted binding energies with their test
MAEs of 0.118, 0.227 and 0.107 eV for ΔECO*, ΔEOH* and ΔEH*, respec-
tively, based on fivefold cross validation (Table S1). The achieved

accuracies, although slightly lower compared to those of state-of-the-
art MLmodels based on crystal graphs such as LS-CGCNN8, can still be
considered reasonable, as the decrease in accuracy is not substantial.
Moreover, it is important to note that our goal is to explore a large
chemical space without performing time-consuming steps. Therefore,
we opted for a simpler ML model, DSTAR, that employs elemental
descriptors of the nearest neighbors. Even at the cost of reduced
accuracy, this model enables HTVS through the expansion of the
chemical space, an aspect that is limited for complex neural networks
that require precise geometric information as input and extensive
modeling of surface structures. Additionally, we note that certain
elements caused significantly higherMAEs in predictions compared to
the overall MAEs (Fig. S3). We confirmed that those elements were not
included in screening dataset.

Potential-dependent 3D selectivity map for CO2RR
It has been reported that binding energies of various intermediates of
CO2RR (Fig. S4) can be estimated by scaling relations using ΔECO* and
ΔEOH*

16–18. It allows to establish thermodynamic boundary conditions,
constructing a selectivitymap that predicts CO2RRproducts. Although
there are multiple reaction pathways possible for C1 products and
beyond10, we focused on 7 reactions and 6 thermodynamic boundary
conditions to predict the selectivity of 4 main products of CO2RR, i.e.,
formate, CO, C1+ (>2e

−) and H2, as previously reported by Tang et al.15,
where C1+ (>2e−) corresponds to further reduced products than CO*/
CO (g) (Table 1). In summary for each boundary conditions, boundary
condition (1) (BC1) compares reaction energy between two initial
protonation steps, reaction (i) and reaction (ii), to determine whether
the reaction pathway leads to formate or CO / C1+ pathway. BC2 eval-
uates the favorability of the Volmer step, while BC3 considers the
possibility of surface poisoning by OH*. The BC4 ensures the binding
strength of CO* for further CO* reduction and determines whether the
product will be CO (g) or C1+. The BC5 considers competition between
HER andCO2RR, and theBC6 assesses the favorability of theHeyrovsky
reaction. The detailed descriptions, assumptions and derivations of
reaction mechanisms and boundary conditions can be found in Sup-
plementary Note 2. The scaling relation to derive the boundary con-
ditions canbe found in Fig. S5. Note thatweused thedirectly predicted
ΔEH* in the analysis to avoidmultiple uncertainties originated fromML
and scaling relations as shown in Fig. S6 (0.218 eV and 0.107 eV ofMAE
for using scaling relation and direct prediction, respectively), while the
original study by Tang et al.15 estimated ΔEH* using the scaling relation
between ΔEH* and ΔECO*. Thus, we presented the selectivity map in
three dimensions using three binding energy descriptors (ΔECO*, ΔEH*
and ΔEOH* as x, y and z-axis, respectively) (Fig. 2).

We validated the constructed selectivity map by comparing the
predicted results with experimental observations. Three binding
energies on face-centered cubic (FCC) (111) and (211) facets of pure
metals were calculated and plotted on the selectivity map (Fig. 2). In
the following, we discuss four typical classes of catalysts, confirming
that 3D selectivity map well captures characteristics of catalysts19.

(i) The late transition metals, such as Rh, Ir and Pt, were reported
to be selective for a competitive H2 evolution reaction (HER). This is
due to strong binding strengths of both CO* and H*, locating them on
H2 selective region (purple)20–22. Note that Pd is the exception of this
group producing CO mainly, because Pd easily transforms into
hydrides (PdHx) making CO* binding energy considerably weaker23–25.
Weakened CO* binding then shifts PdHx to CO selective region (red).

(ii) The coinage metals, such as Au and Ag, favor CO
production26–28 since their ΔEOH* and ΔECO* are weak, preventing the
formation of HCOO* (BC. 1) and further protonation of CO* to form
COH* (BC. 4), respectively.

(iii) The p-block elements are reported to be selective for formate
production29. For example, Pb is located in formate selective region
(green), whose ΔECO* is weaker thanΔEOH*making it more selective for
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HCOO* formation than COOH*, leading to the sole production of for-
mate (BC. 1).

(iv) Cu is an unique catalyst producing various products due to
moderate ΔECO*, ΔEOH* and ΔEH*

30,31. Both Cu (111) and Cu (211) are
located in C1+ selective region (blue).

Activity and selectivity prediction of binary alloys
Since the 3D selectivity map in Fig. 2 successfully explained the
selectivity towardCO2RRproducts, we thenuse thismap topredict the
selectivity and activity of binary alloy catalysts using their ML-
predicted ΔECO*, ΔEOH* and ΔEH*, as shown in Fig. 3a. From the

plotted points of the activemotifs on the selectivitymap, we identified
the expected product using boundary conditions, and calculated the
activity towards the expected products using the Gibbs free energy
diagram derived from the binding energy scaling relations. Given that
each elemental combination consists of 5643 unique active motifs,
encompassing various geometries of bulk crystal structures and their
corresponding surfaces obtained from the GASpy database, the com-
prehensive evaluation of overall selectivity and activity trends requires
the consideration of the contributions of each active motif and the
predictionerrorsof theMLmodel. To address this,wehave introduced
a new metric referred to as “productivity” in this work. This metric

Fig. 1 | High-throughput virtual screening schematics and performance of
ML model. a Schematics of the high-throughput virtual screening strategy to dis-
cover selective CO2RR catalysts. b Parity plots of ML-predicted (ΔEML) and DFT-

calculated (ΔEDFT) binding energy of CO* (red), H* (green) and OH* (blue). The
predictionmean absolute error (MAE) valueswere calculated by averagingMAEs of
fivefold splits (Table S1).
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serves as an indicator of both activity and selectivity at the applied
potential. We emphasize that productivity provides a quantitative
representation of both activity and selectivity within a single value.
This differs from most previous HTVS studies for CO2RR, which pri-
marily focused on predicting activity alone by solely calculating ΔECO*.
Moreover, productivity considered the ML prediction error by incor-
porating a termof probability that the activemotif is positionedwithin
the range of errors, covering the uncertainty of predicted binding
energy. Additionally, since the productivity value comprehensively
characterizes the catalyst by incorporating thousands of data points, it
helps mitigate the uncertainty arising from the discontinuity of
boundary conditions. Thedetails about calculating productivity canbe
found inmethod section and Fig. S7. The top 20 candidates promising
for each product and their corresponding productivity are enumer-
ated in Table S2.

Figure 3b illustrates the productivity of four CO2RR products for
30 puremetals and 435 binary alloys at U = −1.4 VRHE. The productivity
heatmap is dependent on the applied potential and can demonstrate
potential dependency of activity and selectivity, because each pro-
ductivity is also dependent on the applied potential. For example,
Fig. S8, productivity heatmap at U = −1.0 VRHE, shows that selectivity of
Cu is shifted from formate to C1+ asmore negative potential is applied

in agreement with literature32. Notably, CO2RR electrocatalytic beha-
viors of most of the alloy systems in Fig. 3b have not been reported in
literature yet (Fig. S9), even though the experimentally well-developed
systems generally agreewith our productivity prediction results, e.g., a
classification ofmetal electrodes into four groups suggestedbyHori et
al.19; formate (Pb, Hg, Tl, In, Sn, Cd, and Bi), CO (Au, Ag, Zn, Pd andGa),
H2 (Ni, Fe, Pt and Ti) and further reduced products such as CH4 and
CH3OH (Cu). We note, however, that a few discrepancies were
observed. Ag is expected to be selective towards formate at the
applied potentials more positive than −1.3 VRHE (Fig. S10), while it is
reported to primarily produce CO and H2. This disagreement, also
raised by Tang et al.15, can be attributed to extrinsic factors such as
kinetics33,34 and local field effects35, which are not included in the
selectivity map constructed based on the thermodynamic boundary
conditions.Moreadvanceddescriptors that employ constant potential
DFT method and proton transfer barrier calculations should be
developed to tackle this problem,whichwill be discussed in the follow-
up study. Further, the selectivity map predicts Ga and Zn to be for-
mate-selective, while there is no consensus in the experiments. Hori
et al. suggested Ga and Zn to be CO-selective19, while more recent
studies found that they are formate-selective36,37. More thorough
experiments would be of help for clarity.

Composition and coordination number-dependent productivity
analysis
Since the ML models used in this work are based on DSTAR repre-
sentation, one can extract composition and coordination number (CN)
information of the active motifs to investigate their effects on the
productivity (Fig. S12). Particularly, the ratio of facet sites with high CN
to edge/corner sites with low CN in nanoparticle catalysts is deter-
mined by the size and shape of catalysts, thus selectively masking
composition or CN of the active motifs could help to understand the
productivity trends28,38. We selected Cu-Al alloys to discuss CN and
composition-dependent productivity in the following.

Figure 4a, b demonstrated C1+ productivity of Cu-Al catalysts with
respect to Al contents and CN, respectively, at −1.4 VRHE. Figure 4c
illustrated potential-dependent changes in C1+ productivity when
various conditions of active motifs are applied. We found increasing
C1+ productivity with decreasing Al contents and CN. This suggests

Table 1 | Reaction steps and boundary conditions

Reactions Boundary Conditions (BC)

CO2(g) + H+ + e−+ *→COOH* (i) ΔGðiÞ
rxn =ΔG

ðiiÞ
rxn (1)

CO2(g) + H* → HCOO* (ii) ΔGðiiiÞ
rxn = 0 (2)

H+ + e−+ *→H* (iii) ΔGðivÞ
rxn = 0 (3)

OH* + H+ + e−+ *→H2O + * (iv) ΔGðvÞ
rxn = 0.75 (4)

CO* + H+ + e−
→COH* (GCO* < 0)

CO(g) +H+ + e−+ *→COH* (GCO* > 0)
(v) ΔGðviÞ

rxn = 0 (5)

CH* + H* → CH2* + * (vi) ΔGðviiÞ
rxn = 0 (6)

H* + H+ + e−
→H2 + * (vii)

The reaction steps in CO2RR and thermodynamic boundary conditions to construct 3D selec-
tivity map. ΔGrxn is the reaction Gibbs free energy. More details can be found in Supplemen-
tary Note 2.

Fig. 2 | 3D selectivitymap.Twoperspectives of potential-dependent 3D selectivity
map for CO2RR using three binding energy descriptors (ΔECO*,ΔEOH* andΔEH*) at U
= −1.0 VRHE. Green, red, blue and purple correspond to formate, CO, C1+ and H2

selective regions, respectively. No products are expected beyond outskirts of the
map, since neither CO2RR nor HER is energetically favorable at the applied
potential.
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that the productivity can be tuned by controlling the compositions
and/or the morphologies of catalysts. For example, if C1+ is the target
product, low Al content and high portion of edge/corner sites with low
CN would be a suitable catalyst design principle. Although Cu-Al is
selective for C1+ products, its C1+ productivity is lower than thatof pure
Cu when no conditions are applied (Fig. 4c, d). However, when the
condition of low Al content and low CN is applied, its productivity
significantly improves over pure Cu (Fig. 4d). This illustrates that,
despite the improvement in C1+ productivity with decreasing Al con-
tent in theCu-Al alloy (Fig. 4a), the addition of Al to Cu is still predicted
tobemore beneficial forC1+ production than not adding any at all. This
behavior is in agreement with previous reports, which demonstrated
the AlCu3 (211) exhibited the highest CO2RR activity and selectivity
compared to pure Cu, Al2Cu and AlCu3 (111) surfaces2. In short, ML-
assisted HTVS strategy provides important guidelines to optimize
catalysts for the maximized target productivity by fine-tuning com-
positions, sizes and shapes of catalysts.

Catalysts discovery
To evaluate the reliability and discoverability of the HTVS method, we
focused on two aspects of catalyst discovery: promise and novelty. (1)
A promising catalyst is predicted to have extraordinary activity, and (2)
a novel catalyst is predicted to demonstrate rarely reported or entirely
new catalytic behavior. As an example of a promising catalyst, we
found that the Cu-Pd alloy is predicted to be the most active and
selective towardsC1+ production, boasting the highest C1+ productivity
among 465 candidates. Additionally, we discovered that the Cu-Ga
alloy ranks in the top 10 % for formate productivity at −1.4 VRHE, a
notable result since previous reports about the Cu-Ga catalyst focused
on selectivity towards C1+ and C2+ products

3. In the following sections,
we will discuss the ML-predicted results and provide experimental
validations of our ML-assisted HTVS strategy.

As shown in Fig. 5a, ML-predicted productivities of Cu-Pd and
Cu-Ga demonstrate that C1+ and formate production are dominant at
negative potential, respectively. However, while C1+ productivity of

Cu-Pd steadily increases as the potential increases in the negative
direction, reaching a maximum value, the formate productivity of
Cu-Ga monotonically decreases after −1.4 VRHE. Methodologically,
this trend for Cu-Ga is caused by the expansion of the C1+ selective
area. This is because the potential term of boundary condition 1 (BC
1), which determines the selectivity between C1+ and formate
(Table S3), is linearly proportional to ΔEOH* (0.601 ΔECO* −0.740
ΔEOH* +ΔEH* + 1.343 + eU = 0). As the applied potential decreases, the
C1+ selective area above the plane of the boundary condition
increasingly takes up the area of formate (Fig. S13). Consequently,
formate productivity decreases while C1+ productivity increases. In
aspect of electrochemistry, we compared the CO2RR performance on
electro-plated Cu-Ga versus that on polished Cu in 0.1M CO2-satu-
rated CsHCO3 electrolyte (Supplementary Note 3, Figs. S14–S20).
Similar steady-state current densities were noted on these two
electrodes throughout the potential window of interest; however,
the selectivity of products is quite different (Fig. S21–S23). Cu-Ga
catalyst favors the formate generation, delivering a maximum for-
mate FE of ~38.4% at -1.05 VRHE, which is 4 times as high as that on
bare Cu. Atmore negative potential regime, this formate selectivity is
gradually taken over by C1+ hydrocarbons and oxygenates. This trend
of increasing C1+ productivity as potential decreases was also
observed in most of Cu-based alloys and pure Cu39.

By conducting a CN (Fig. 5b) and composition-dependent (Fig. 5c)
analysis at −1.4 VRHE, we confirmed that C1+ productivity of Cu-Pd
increases at low CN and moderate Cu content, and formate pro-
ductivity increases at high CN and low Cu content. It is important to
note that the compositions of the alloys depicted in Fig. 5c were cal-
culated by considering only the atoms present in active motifs. To
validate whether the compositions of these activemotifs represent the
compositions of the bulk structures, we created a parity plot com-
paring the two, which revealed a correlation between them (Fig. S24).
We also calculated the productivity dependent on bulk composition
and compared these values with those dependent on active motif
composition (Fig. S25). The overall trends were in agreement,

Fig. 3 | Visualization of prediction method and results. a Visualization of the 3D
selectivity map with plotted points representing unique active motifs, and the
process of identifying the expected product using the boundary conditions.

b Productivity heatmap visualizing the normalized productivity; Formate (green,
top), CO (red, right), C1+ (blue, bottom), H2 (purple, left) at U = −1.4 VRHE. Themetal
elements in y-axis are active metal sites on which adsorbates bind.

Article https://doi.org/10.1038/s41467-023-43118-0

Nature Communications |         (2023) 14:7303 5



suggesting that the composition of active motifs can indeed serve as a
representative approximation of bulk compositions.

Experimental validations of Cu-Pd catalysts
Based on the prediction byML, we experimentally validate the CO2-to-
C1+ performance of Cu-Pd catalyst. We note in passing that, given that
several factors influence amaterial’s synthesizability, it is possible that
the proposed crystal structures may not be realized in practice. While
our method can suggest more reliable elemental combinations to
achieve the desired catalytic activity and selectivity, it does not guar-
antee the formation of stable alloys. Thus, our method should be used
as a tool for prioritizing candidate combinations. The binary electrode
was prepared by a galvanic displacement reaction between Cu and
Pd(II) species (“Methods”). Typical SEM images in Fig. S26 depict the
morphology of Cu-Pd prior to and post CO2RR electrolysis. In contrast
to the relatively flat surface of polished Cu (Fig. S15), the Cu-Pd elec-
trode consists of densely packed nanoparticles, which contributes to
the ~ 12-times higher surface roughness compared to bare Cu
(Fig. S27). Figure S28 plots the depth profile of Cu-Pd electrode as
extracted from ex situ time of flight secondary-ionmass spectrometry
(TOF-SIMS), in which a surface enrichment of Pd is clearly observed in

the re-constructured 3D plots shown in Fig. 6a, and in good agreement
with the determined near-surface composition, i.e., an atomic ratio of
4:1 for Cu: Pd, from XPS results (Fig. S29 and Table S4). Grazing-
incidence X-ray diffraction with Rietveld refinement has been carried
out to further probe the crystalline structure of Cu-Pd electrode at an
incidence angle of 0.5o. As shown in Fig. S30, the near-surface layer
consists mainly of the metallic Cu component with ~1.3% Cu2O phase.
No Cu-Pd alloy was detected, likely due to the highly dispersed feature
of Pddecoration and its overall lowdoping content of 1.0–1.2 at.% from
the bulky EDS analysis (Fig. S31).

The electrochemical CO2RR performance of Cu-Pd electrode with
reference to polished Cu was then evaluated by chronoamperometric
electrolysis from -0.75 to -1.15 VRHE. In the potential range studied, a
muchhigher overall current density was observed on Cu-Pd compared
to Cu (Fig. 6b), which is associated with the increased surface rough-
ness. Moreover, as shown in Fig. 6c, a suppressed H2 FE was found on
Cu-Pd throughout the potential window studied, suggesting the main
contribution from CO2RR rather than HER to the current density
enhancement. As shown in Figs. S32, S33, the major C1 products on
polished Cu includes CO (max. FE of 12.8% at –0.85 V), formate (max.
FE of 23.7% at -0.95 V), and CH4 (max. FE of 33.5% at –1.15 V), where a

Fig. 4 | Coordination and composition-based analysis. C1+ productivity of Cu-Al
binary alloys with respect to (a) Al contents in active motifs and (b) coordination
numbers (CN) at −1.4 VRHE. CN is calculated by averaging the number of the first
nearest neighbors of each active site atom. The first nearest neighbors were iden-
tifiedusing Voronoi algorithms implemented inPymatgen60. c Productivity of Cu-Al

without any appliedconstraints.dC1+productivityofCu-Al catalystswhendifferent
conditions of active motifs are applied; (i-ii) active site elements, (iii) CN and (iv)
composition. Cu (turquoise dashed line) is also plotted for comparison. All pro-
ductivities of pure Cu and masked Cu-Al can be found in Fig. S11.

Article https://doi.org/10.1038/s41467-023-43118-0

Nature Communications |         (2023) 14:7303 6



peak C2+ products selectivity of 38.2% locates at –1.05 V. As to Cu-Pd,
the C-C coupling selectivity was dramatically improved, i.e., C2H4 as
representative hydrocarbon product and ethanol as representative
oxygenate emerged at an onset potential of –0.75 V and continued to
increase with negative-going potential (Fig. S33). C2H4 showed the

highest selectivity of 32.3% FE at –1.15 V (Fig. 6d), which is ca. 3.6 times
as high as that on bare Cu. Moreover, Fig. 6e shows the fraction
of CO produced by the CO2RR converted to C1+ products (including
CH4 and C2+) rapidly increases on Cu-Pd from0.29 at -0.75 V to 0.84 at
–0.85 V, and finally reaches 0.99 at –1.15 V. Noteworthy, in the COg

Fig. 5 | Prediction results of Cu-Pd and Cu-Ga. a Productivities of Cu-Pd (left) and
Cu-Ga (right) binary alloys as a function of the applied potentials, where ML-
predicted binding energies were used. b Coordination number and (c)

composition-dependent C1+ and formate productivity of Cu-Pd and Cu-Ga at −1.4
VRHE, respectively.
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accumulation regime around –0.85 V (marked in orange shadow), a 2.3
times enhancement on the C1+ selectivity is observed on Cu-Pd com-
pared to bare Cu electrode, successfully validating the above theore-
tical predictions of predominant C1+ productivity.

Discussion
In this work, we combined active motif-based binding energy predic-
tion model, DSTAR, with the advanced 3D CO2RR selectivity map to
perform HTVS. Although our strategy has proved its validity and
potential, there is room for improvement in addition to improving
prediction accuracy of ML models.

Since DSTAR pipeline generates active motifs by simply sub-
stituting elements, it is necessary to evaluate thermodynamic stability
and synthesizability of corresponding bulk structures to accurately
simulate experimental conditions. However, DFT calculations to vali-
date stability of all candidate bulk structures can be computationally
intensive,whichmayoffset thebenefits ofML-assistedHTVS, e.g., cost-
effective exploration of large chemical space. To address this issue,
integrating models predicting stability of unrelaxed crystal structures
with high accuracy could be a solution40–42.

Additionally, the selectivity map used in our workflow was con-
structed based only on thermodynamic conditions, not considering
additional factors such as kinetics, phase transitions and local field
effects. Thismight result in the discrepancy observed in Ag, Pd and Zn
cases as discussed above. We expect that it could be addressed by
introducing more advanced methods, such as constant-potential cal-
culations of electrochemical reactions43,44, or more advanced
descriptor. For example, Ringe recently reported that potential of zero
charge can be used as the second descriptor in addition to binding
energy, which can more accurately predict the experimental results45.
Moreover, recent theoretical studies, utilizing constant-potential cal-
culations, have suggested that the CO selectivity of certain catalysts is

related to the kinetics of OCO* binding and its subsequent
protonation33,46. The development of new descriptors that encompass
various aspects of electrocatalysis is crucial for enhancing the validity
of HTVS, and will be a focus of future research.

In summary, we developed ML-assisted HTVS strategy, which
predicts catalytic activity and selectivity of CO2RR for the expanded
materials chemical space. Because the ML inputs include information
on composition and coordination number, this approach not only
identifies promising elemental combinations but also provides a more
detailed catalyst design strategy, which is one step forward to the
current HTVS approach. Using this strategy, we predicted the domi-
nant product, and both its activity and selectivity for 465 elemental
combinations. Among them, we selected Cu-Pd which has the highest
productivity for C1+, and Cu-Ga binary alloys which has barely been
reported in literature. Further experimental validations indeed con-
firmed its high intrinsic selectivity toward C1+ and formate, respec-
tively. We expect our strategy developed in this work to accelerate the
discovery of active and selective CO2RR catalysts.

Methods
Calculation details
We performed spin-polarized density functional theory (DFT) calcu-
lations using Vienna Ab initio Simulation Package (VASP, version 5.4.4)
code47,48 with the projector augmented wave (PAW) pseudopotential
method49 and the generalized gradient approximation- revised
Perdew-Burke-Ernzerhof (GGA-RPBE) exchange-correlation
functional50. For geometry optimizations, energy and force criteria
for the convergencewere set to 10-5eV and0.03 eV/Å, respectively, and
the kinetic energy cutoff was set to 500 eV. Monkhorst-Pack k-point
mesh was set to (k1 × k2 × 1) to satisfy 25 Å <an × kn (n = 1, 2) < 30Å,
where a1 and a2 are the sizes of unit vectors in x and y directions,
respectively51. As reference data of puremetals, (111) and (211) facets of

Fig. 6 | Experimental results of Cu-Pd. a Reconstructed 3D plots for Cu-Pd elec-
trode based on the depth profile of TOF-SIMS spectra. b Steady-state current
densities, (c) the Faradaic efficiencies of H2, (d) C2H4 and (e) the calculated ratio of

C1+ products to the sum of COg +C1+ products on polished Cu versus plated Cu-Pd
electrodes under different applied potentials.
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face-centered cubic (FCC)metals (Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh)were
modeled using three-layered (3 × 3) cell.

The Gibbs free energies of reactions were calculated using com-
putational hydrogen electrode (CHE) method. This method assumes
the equivalent chemical potential of 0.5 H2 and a pair of proton and
electron (H+ + e−) at 0 VRHE (Reversible Hydrogen Electrode) and the
standard conditions52. The effect of the applied potential (U) was
included as G(H+ + e-) = 0.5G(H2) – eU. The Gibbs free energy correc-
tion (Gcorr)wasused to convertDFTenergies into theGibbs free energy
following Gcorr = Ezpe + ∫Cp dT – TS + Esolv + Egas, where Ezpe, ∫Cp dT, and
–TS are zero-point energies, enthalpic and entropic contributions,
respectively. Esolv is a solvation correction for adsorbates39 and Egas is a
gas-phase correction of GGA-RPBE functional53. The correction values
were calculated using the ideal gas and the harmonic oscillator
approximation for gaseous molecules and adsorbates, respectively, as
implemented in Atomic Simulation Environment (ASE)54. The correc-
tion values for gaseous molecules and adsorbates are summarized in
Table S5 and S6, respectively.

Machine learning details
To predict binding energies of adsorbates (CO*, H*, OH*) on a wide
variety of active motifs, we used DSTAR (DFT & Structure-free Active
motif based Representation)methodwhich converts activemotifs into
machine learning inputs7. The inputs consist of 36 components, where
weighted average values of various elemental properties in three
categorized sites (FNN, SNNsame, SNNsub) and the number of atoms in
each site are concatenated. Note FNN, SNNsame and SNNsub correspond
to the first nearest neighboring atoms of the binding site, the second
nearest neighboring atoms of the binding site in the same layer, and
the sublayer, respectively. The concatenated inputs are standardized
by applying StandardScaler method as implemented in scikit learn55.
An example of fingerprint generation is illustrated in Fig. S1.

Gradient boosting regressor56 and XGBoost regressors57 were
chosen for CO*/H* and OH* binding energy predictions, respectively, as
they achieved the best prediction accuracy. The hyperparameters of
each model were determined by Bayesian optimization (Table S7).
16,097, 6512 and 18,362 data of CO*, OH* andH* adsorptions taken from
GASpy dataset9 were used to train/test MLmodels, respectively. ForML
model training, we performed fivefold cross validations with 80% train
and 20% test sets. To predict binding energies of newly generated active
motifs, we used ML models trained with the whole data.

Productivity calculation
For the given data point on the 3D selectivity map, we convert the
predicted point into a cuboid volume, where the twice prediction
errors of ΔEH*, ΔEOH* and ΔECO* correspond to the length, width and
height of the cuboid, respectively. These cuboid volumes, which par-
tially occupy the product region, are utilized to calculate the pro-
ductivity, where the contribution of each volume to each product is
calculated considering its energetics. From the Gibbs free energy
diagram toward certain products, we calculated the maximum reac-
tion barrier (ΔGMAX) at the applied potential as

ΔGmax = max
i

ðΔGi
rxnÞ ð1Þ

where ΔGi
rxn is a reaction Gibbs energy of an elementary step i in the

reaction pathway (Fig. S34). Only ΔGMAX <0 eV is further considered,
which corresponds to the spontaneous thermodynamics. To ensure
that points with lower ΔGMAX have a higher contribution to the overall
activity, a weighted ΔGMAX value was obtained as follows:

ΔwGmax = e
�ΔGmax ð2Þ

Eventually, the productivity (pk) of a specific elemental combi-
nation for a given product k (formate, CO, C1+ andH2) is determined by

summing over ΔwGmax ,i,k multiplied by vi,k.

pk =

PN

i
ΔwGmax ,i,k*vi,k

N
f orΔwGmax ,i,k>1

ð3Þ

Here, vi,k represents the partial volume of the cuboid for the i th active
motif toward product k. This accounts for potential issues stemming
from the uncertainty in ML predictions and the discontinuity of the
boundary conditions, which could result in incorrect predictions
(Fig. S35).N represents the total number of unique activemotifs,which
remains identical within the monometallic system and the bimetallic
system. After calculating the productivities, they were normalized
using the MinMaxScaler across all elemental combinations..

Electrode preparation
The Cu foil (0.1mm thick, 99.9999%, Alfa Aesar) working electrodes
were first cleaned by sonication in acetone, ethanol and deionized
water for 2min, respectively. Then the Cu foil was electrochemically
polished in 85% H3PO4 by applying a voltage of +3 V versus carbon
paper for 180 s. The Cu-Ga electrode preparation and relevant char-
acterizations can be found in Supplementary Note 3.

To prepare the Cu-Pd electrode, the electropolished Cu foil was
soaked in the solution containing 0.5mM palladium sodium chloride
for 30min, where the galvanic displacement reaction between Cu and
Pd(II) species may occur. Then the as-prepared Cu-Pd electrode was
rinsed with deionized water and dried by nitrogen flow.

Electrode characterizations
The surface morphologies of the Cu-Pd films before and after elec-
trolysis were characterized by a scanning electronic microscopy (SEM,
Sigma 300)with equipped energy-dispersiveX-ray spectroscopy (EDS)
detector. The surface electronic structures of the plated Cu-Pd films
were analyzed by using ESCALAB 250 XI X-ray photoelectron spec-
trometer (Thermo Scientific) with the monochromatic Al Kα radiation
(1486.6 eV), and the binding energies were calibratedwith reference to
C1s peak at 284.8 eV. Contact angle measurements were performed
with a JY-82B Kruss DSA instrument. To identify the crystalline phases
of surface films, grazing-incidence X-ray diffraction (GIXRD) patterns
of CuPd electrodes from 30 to 65° were recorded at a grazing angle of
0.5° on Bruker D8 Discover spectrometer. Time-of-flight secondary-
ion mass spectrometric measurements were run on ION-TOF TOF-
SIMS 5,with the pressureof analysis chamber below 1.1 × 10–9mbar and
the pulsed Bi3+ ion beam of 30 keV for high mass resolution analysis.
30 keV GCIB+ ion beam sputtering and a 300 × 300 μm2 sputter raster
were deployed for depth profile study.

Electrochemical measurements
All electrochemical measurements were run at 25 °C in a customized
gastight H-type glass cell separated by Nafion 117 membrane58,59. The
plated Cu-Pd, Cu-Ga film electrode or electrochemically polished Cu
foil was deployed as the working electrode, a graphite rod (99.995%,
Aldrich) and an Ag/AgCl electrode were used as the counter electrode
and the reference electrode, respectively. 0.05M Cs2CO3 (99.99%,
Adamas-Beta) dissolved in Milli-Q water was used as the electrolyte,
whichwas further purifiedby electrolysis between twographite rods at
0.1mA for 24 h to remove trace amount of metal ion impurities. Prior
to CO2RR electrolysis, 50 sccmCO2 (Air Liquid, 99.999%) was bubbled
for at least 30min to get the 0.1M CO2-saturated CsHCO3 electrolyte,
and a constant CO2 gas flow (30 sscm, monitored by Alicat mass flow
controller)was continuously delivered into the cathodic compartment
to keep CO2-saturation during electrolysis.

Electrochemical responses were recorded on a Biologic VSP-
300 potentiostat. The solution resistance (Ru) was determined by
potentiostatic electrochemical impedance spectroscopy (PEIS) at
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frequencies ranging from 0.1 Hz to 200 kHz, and manually com-
pensated as E (iR-corrected vs. RHE) = E (vs. RHE) - Ru×i (amps
of averaged current), with a manual iR drop compensation at
80% level. All potentials (if not specifically mentioned) in this
work were converted to the RHE scale as E (vs. RHE) = E (vs.
Ag/AgCl) + 0.197 V + 0.0591×pHbulk. The electrochemical active sur-
face area (ECSA) of Cu-based electrodes was estimated via its double
layer capacitance by measuring and plotting the double layer char-
ging current as a function of scan rate.

Quantification of CO2RR products
The gas products from the electrochemical cell was analyzed by a
Shimadzu 2014 gas chromatography (GC) equipped with a thermal
conductivity detector (TCD) for H2 concentration quantification and a
flame ionization detector (FID) coupled with a methanizer for quanti-
fying hydrocarbons concentration. UHP Ar was used as the carrier gas
and constituents of the gaseous sample were separated using two
Porapak N80/100 columns packed with Molecular Sieve-13X. Faradaic
efficiency (FE) of certain reduction product was calculated as:

FEi =
xivnF
V × j

× 100%

where xi is the volume fraction of specie i as determined by on-line
GC,v is the flow rate, generally set at 30 sccm being monitored by an
Alicat mass flow controller, n is the electron transfer number, F is the
Faradaic constant, V is the molar volume of ideal gas under CO2RR
operation condition, j is the total current density.

The aqueous products were analyzed by a 500MHz nuclear
magnetic resonance (NMR) spectrometer fromBrukerCompanywith a
water suppression technique. Typically, 450μL of the electrolyte after
5400-s electrolysis was mixed with 50μL of D2O solution containing
DMSO as the internal standard.

Data availability
The binding energy of CO*, OH*, H* and corresponding surface
structure can be found in https://github.com/ulissigroup/GASpy or
https://github.com/SeoinBack/DSTAR-CO2RR.

Code availability
The Python code of DSTAR used in this study can be found in https://
github.com/SeoinBack/DSTAR-CO2RR.
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