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Soliton confinement in a quantum circuit

Ananda Roy 1 & Sergei L. Lukyanov1

Confinement of topological excitations into particle-like states - typically
associated with theories of elementary particles - are known to occur in con-
densed matter systems, arising as domain-wall confinement in quantum spin
chains. However, investigation of confinement in the condensed matter set-
ting has rarely ventured beyond lattice spin systems. Here we analyze the
confinement of sine-Gordon solitons intomesonic bound states in a perturbed
quantum sine-Gordon model. The latter describes the scaling limit of a one-
dimensional, quantum electronic circuit (QEC) array, constructed using
experimentally-demonstrated QEC elements. The scaling limit is reached fas-
ter for the QEC array compared to spin chains, allowing investigation of the
strong-coupling regime of this model. We compute the string tension of
confinement of sine-Gordon solitons and the changes in the low-lying energy
spectrum. These results, obtained using the density matrix renormalization
groupmethod, could be verified in a quench experiment using state-of-the-art
QEC technologies.

Confinement and asymptotic freedom are paradigmatic examples of
non-perturbative effects in strongly interacting quantum field theories
(QFTs)1. While typically associated with theories of elementary
particles2,3, confinement of excitations into particle-like states occurs
in a wide range condensed matter systems. In the latter setting, the
“hadrons” are formed due to confinement of domain walls in quantum
spin chains4. They have been detected using neutron scattering
experiments in a coupled spin-1/2 chains5 and in a one-dimensional
Ising ferromagnet6. Furthermore, signatures of confinement havebeen
observed in numerical investigations of quenches in quantum Ising
spin chains7,8 as well as in noisy quantum simulators9,10.

Despite its ubiquitousness, in the condensed matter setting,
quantitative investigation of confinement has rarely ventured beyond
lattice spin systems. In this work, we show that confinement of topo-
logical excitations can arise in a one-dimensional, superconducting,
quantum electronic circuit (QEC) array. The QEC array is constructed
using experimentally-demonstrated quantum circuit elements:
Josephson junctions, capacitors and 0 −π qubits11–17. The proposed
QEC array departs from the established paradigm of probing con-
finement in condensedmatter systems and starts with lattice quantum
rotors. These lattice regularizations are particularly suitable for simu-
lating a large class of strongly-interacting bosonic QFTs18 due to rapid
convergence to the scaling limit. While this was numerically observed
in the semi-classical regime of the sine-Gordon (sG) model19, here we

show that QECs are suitable for regularizing a strong-interacting, non-
integrable bosonic QFT.

With a specific choice of interactions that arise naturally in QEC
systems due to tunneling ofCooper pairs and pairs of Cooper pairs, we
verify that the long-wavelength properties of the QEC array are
described by a perturbed sG (psG) model, the continuum character-
istics of which have been analyzed using semi-classical and perturba-
tive techniques20–24. The corresponding euclidean action is

ApsG =
Z

d2x
1

16π
ð∂νφÞ2 +V ðφÞ

� �
, ð1Þ

where V ðφÞ= � 2μ cosðβφÞ � 2λ cosðβφ=2Þ and λ, μ, β are parameters
(see Supplementary Note I). Due to the presence of the perturba-
tion∝ λ, the solitons and the antisolitons of the sGmodel experience a
confining potential that grows linearlywith their separation. This leads
to the formationofmesonic excitations, analogous to the confinement
phenomena occurring in the Ising model with a longitudinal field25–30.
In the psG case, the free Ising domain-walls are replaced by interacting
sG solitons. While predicted using semi-classical and perturbative
analysis22–24, quantitative investigations of confinement, direct evi-
dence of the psG mesons and an experimentally-feasible proposal to
realize this model have remained elusive so far. This is performed in
this work.
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Results
Each unit cell of the one-dimensional QEC array [gray rectangle in
Fig. 1] contains: (i) a Josephson junction on the horizontal link with
junction energy (capacitance) EJ(CJ), (ii) a parallel circuit of an ordinary
Josephson junction [junction energy (capacitance) EJ1

ðC1Þ] and a 0 −π
qubit11–14 on the vertical link. The 0 −π qubit is realized using two
Josephson junctions [junctionenergies (capacitances) E 0

JðC0
JÞ], together

with two inductors with inductances L [Fig. 1b]. In the limit
ðL=C0

JÞ1=2≫_=ð2eÞ2, this circuit configuration realizes a cosð2ϕÞ Joseph-
son junction14. In the limitCJ≫Ceff, whereCeff =C1 +C2, the QEC array is
described by the Hamiltonian:

H = Ec

XL
k = 1

n2
k + ϵEc

XL
k = 1

nknk + 1 � EJ

XL
k = 1

cosðϕk � ϕk + 1Þ

� Eg

XL
k = 1

nk �
X
a = 1,2

EJa

XL
k = 1

cosðaϕkÞ,
ð2Þ

where Ec = (2e)2/2Ceff and we have chosen periodic boundary con-
ditions. Here, nk is the excess number of Cooper pairs on each
superconducting island andϕk is the superconducting phase at each
node, satisfying ½nj,e

± iϕk �= ± _δjke
± iϕk , with ℏ set to 1 in the com-

putations. Note that the eigenvalues of nk-s can be both positive and
negative integers, the latter corresponding to creation of holes in
the superconducting condensate on the kth island. We approximate
the exponentially-decaying, long-range interaction due to the
capacitance CJ

31 with a nearest-neighbor interaction32 of the form
ϵnknk+1, where the constant ϵ is < 1. Note that the confinement
phenomena investigated here would continue to exist in the case
ϵ = 0. The third and fourth terms in Eq. (2) arise due to the coherent
tunneling of Cooper-pairs between nearest-neighboring islands and
due to a gate-voltage at each node. The last two cosine potentials of
Eq. (2) respectively arise from tunneling of Cooper-pairs and pairs of

Cooper-pairs through the Josephson junction and the 0 − π qubit on
the vertical link.

For EJ2
= EJ1

= 0,H corresponds to a variation of theHamiltonianof
the Bose–Hubbard model33,34 and conserves the total number of
Cooper-pairs. As EJ/Ec is increased from 0, the QEC array transitions
from an insulating to superconducting phase. We focus on the
superconducting phase obtained by increasing EJ/Ec at constant
density35,36. In the latter phase, the long-wavelength properties of the
array are described by the free, compactified boson QFT31,32, char-
acterized by the algebraic decay of the correlation function of the
lattice vertex operator: heiϕje�iϕk i / jj � kj�K=2, where K is the Luttin-
ger parameter. This algebraic dependence is verified in Fig. 2a by
computing the corresponding correlation function using the density
matrix renormalization group (DMRG) technique (The DMRG com-
putations of thisworkwere performedusing theTeNPypackage37). For
the parameters in this work, the Luttinger parameter varies between
0 ≤K ≤ 232,38. We further compute the dimensionless “Fermi/plasmon
velocity”, u, in the QEC array by analyzing the ground-state energy of
the array with system-size (see Supplementary Note III) [Fig. 2c].

For EJ2
≠0,EJ1

= 0, keeping EJ > Ec, the QEC array realizes the sG
model19. Now, the lattice model has a conserved Z2 symmetry, asso-
ciated with the parity operator for the number of Cooper-pairs:
P =

QL
k = 1 e

iπnk . This symmetry leads to a two-fold degenerate ground
state for this realization of the sGmodel. This is in contrast to the usual
continuum formulation of the latter, where the ground state is one of
the infinitely many vacua. The two degenerate states correspond to
ϕk =0 and ϕk =π, k = 1,…, L, with the sG solitons and antisolitons
interpolating between them. The sG coupling, β, is given by:
β=

ffiffiffiffiffiffiffiffiffi
K=2

p
2 ð0,1Þ (see Supplementary Note I).

We verify the sG limit of the QEC array as follows. First, we com-
pute the scaling of the lattice operator eiϕk , which, in the continuum
limit, correspond to the vertex operator eiβφ/2. The scaling with the
coupling EJ2

=Ec [Fig. 2b] yields the value of the sG coupling β2 [Fig. 2c].

Fig. 1 | Schematic of theQEC array. Each unit cell (gray rectangle) of the QEC array
(a) contains a Josephson junction (green cross) on the horizontal link. The vertical
link (c) of the same contains a parallel circuit of an ordinary Josephson junction
(blue cross) and a cosð2ϕÞ Josephson junction (purple crosses). The latter is formed
by two Josephson junctions, two capacitors and two inductors (d)14. The variationof

the classical potential, Vcl, [Eq. (1)] as EJ1
=EJ2

increases from 0 in steps of 1/4 is
shown in (b). For nonzero EJ1

=EJ2
, the solitons (green wavepacket) and antisolitons

(maroon wavepacket), interpolating between the potential minima at ϕ =0 and
ϕ =π, experience a confining potential (yellow string in a), leading to the formation
of mesonic bound states.
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These values are compared with those expected from the free-boson
computations. The discrepancy between the obtained values of β2 for
the sG and the free boson computations as β2→ 1 arises due to the
Kosterlitz–Thoulessphase-transition.We also compute the connected,
two-point correlation function: heiϕje�iϕk i � heiϕj i2. When normalized
by heiϕj i2, the latter is given by a universal function, computable using
analytical techniques. We compare the DMRG results with analytical
predictions. We chose two representative values of β2 to demonstrate
the robustness of our results in both the attractive and repulsive
regimes. The quantity, Mu, where M is the soliton mass, is obtained
numerically by computing the correlation length of the lattice model
using the infinite DMRG technique. The short (long) distance behavior
of the normalized, connected correlation function was computed
using conformal perturbation theory (form-factors39,40 computed by
including up to two-particle contributions) (see Supplementary
Note I). The results are shown as pink (lime) solid curves labeled CPT
(FF2p) in Fig. 2d.

The soliton-creating operators for the sGmodel41,42 are defined on
the lattice as: Oq

s ðkÞ= e2isϕk
Q

j<ke
�iqπnj , where q and s are the topolo-

gical charge and the Lorentz spin of the excitations. The current QEC
incarnation of the sG model gives access to solitons with s∈ {0, 1/2, 1}

and q = ± 1. For definiteness, we consider s =0. Figure 3a (empty mar-
kers) shows the energy cost, T, of separating a soliton-antisoliton pair,
after they are createdby application ofOq

s at twodifferent locations for
different values of β2. For the sGmodel, as expected, T =0 for all values
of the separation d. The corresponding phase-profile can be inferred
by computing heiϕk i for different lattice sites, after normalizing with
respect to the ground-state results [Fig. 3b].

The situation changes dramatically for the psGmodel, realized by
making EJ1

≠0 in Eq. (2), while choosing the rest of the parameters as
for the sG model. Due to the perturbing potential ∼ cosðϕkÞ, the sG
solitons and the antisolitons experience a strong-confining potential
energy, qualitatively similar to that experienced by the free, Ising
domain walls under a longitudinal field25–28. We compute the energy-
cost of separation T for the psG model as in the sG case [Fig. 3a, filled
markers]. The energy-cost grows proportional to the distance of
separation: T = σd, where σ is the string-tension. The latter is numeri-
cally obtained by fitting to this linear dependence and shown as a
function of β in Fig. 3c. To leading order, σ =2heiϕk iEJ1

=Ec, where the
expectation value heiϕk i is computed for the ground state of H with
EJ1

= 0. The discrepancy between the leading-order prediction and the
numerical results for β2 ≈0.736 is due to the proximity to the

Fig. 2 | DMRG results and comparisonwith analytical predictions. a Verification
of the power-law decay of the correlation functions of the lattice vertex operators
for the free bosonmodel obtained for EJ1

= EJ2
= 0 keeping EJ/Ec finite. The obtained

Luttinger parameter (K = 2β2) from the slopes are plotted as pluses in c.b Scaling of
the vertex operator expectation value with EJ2

=Ec for the sG model. The values of
the sG coupling obtained from this scaling are plotted as diamonds in c. The dis-
crepancy between the sG result and the free-bosonprediction as β2→ 1 occur due to
corrections to scaling arising from the Kosterlitz–Thouless phase-transition

occurring at β2 = 1. The (dimensionless) Fermi/plasmon velocity, u, was obtained
from the Casimir energy computation of the free theory (see Supplementary
Note III). The free-fermionpoint of the sGmodel is indicated by the dottedmagenta
line. dComparison of the normalized, connected two-point correlation function of
the vertex operator eiϕj ∼ eiβφ=2 computed using DMRG and analytical computa-
tions in the repulsive (β2 ≈0.63) and the attractive (β2 ≈0.4, inset) regimes of the sG
model. The ratio 1/Mu,M being the soliton-mass, was obtained by computing the
correlation length from the infinite DMRG computation.
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Kosterlitz-Thouless point. The decrease of the string-tension with
increasing β2 can be viewed as a consequence of the increasing
repulsion between the sG solitons and antisolitons with increasing β2.

The spectrum of the psG model contains the newly-formed
mesons and the charge-neutral sG breathers. The latter occur only
for β2 < 1/2 with their masses acquiring corrections due to the per-
turbing potential. Figure 4 shows DMRG results for mass of the

lightest particle as a function of the dimensionless parameter
η= ½EJ1

=Ec�=½EJ2
=Ec�ν ,ν = ð1� β2

=4Þ=ð1� β2Þ, for different choices of
EJ2

=Ec. For small η, the psG mesons are heavier (with masses > 2M)
than the breathers (with masses < 2M). We compute the mass of the
lightest sG breather (psGmeson) for β2 < (>)1/2 from computation of
the correlation lengths using infinite DMRG technique. For η≪ 1, the
correction to the lightest breather mass can be expanded in powers

Fig. 3 |DMRGresults for the string tension for different choices ofβ2, chosenby
fixing EJ/Ec [Fig. 2c], for L = 64. a The results are shown for EJ2

=Ec =0:1 for both the
sG and psG models, while for the latter, EJ1

=Ec =0:1. Similar results were obtained
for other choices. For the sG model (empty markers), after creating the soliton-
antisoliton pair, there is no associated energy cost of separation. However, for the
psGmodel (filled markers), due to the existence of the perturbing cosine potential
/ EJ1

[Eq. (2)], the soliton and the antisoliton experience a confining force. This

leads to an energy cost (T/Ec) growing linearly with separation d. b The corre-
sponding phase-profile computed by creating a soliton-antisoliton pair and
separating them by 12 lattice sites. c The corresponding string tension, σ = T/d
(empty circles) obtained from a linear fit of the data in a. The corresponding
leading-order analytical predictions for σ are denoted by crosses. The discrepancy
between the predicted and obtained string-tension for β2 ≈0.736 occurs due to the
proximity to the Kosterlitz–Thouless point (β2 = 1).

Fig. 4 | DMRG results for the mass of the lightest particle of the psGmodel for
β2 < 1/2 (left) and β2 > 1/2 (right), as a function of the dimensionless quantity η.
Here, M(mb) is the mass of the soliton (lightest breather) of the unperturbed sG
model. The diamonds and triangles correspond to different choices of EJ2

=EC . For
small η, the lightest particle is the lightest sG breather (psG meson) for β2 < (>)1/2.
Using linear fit (see Supplementary Note II) of the numerical data for η≪ 1, we

obtain the ratiomb/M (comparison with the analytical prediction in the left inset).
The scaling of the psG meson mass is given by: (mmes − 2M)/M ~ ηα for η≪ 1. The
inset in the right panel shows the comparison of the α obtained using DMRG
(circles) and those using non-interacting two-particle (NI-2p) approximation (dot-
ted line).
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of η. We show a comparison of the obtained ratiomb/M,mb being the
lightest sG breather mass for η = 0, with the analytical predictions in
the left inset. For a comparison of our numerical data with pertur-
bative computation23, see Supplementary Note IIB. For β2 > 1/2, the
spectrum contains only the psG mesons. The dependence of lowest
psGmesonmass is shown in Fig. 4 (right). For η≪ 1, a non-interacting
two-particle (NI-2p) computation (see Supplementary Note IIC)
predicts (mmes − 2M)/M ~ ηα, where α = 2

3. Comparison of the numer-
ical results with the NI-2p computation is shown in the right inset. A
more complete computation using the Bethe-Salpeter equation for
the psG model is beyond the scope of this work.

Discussion
To summarize, we have numerically demonstrated the confinement of
sG solitons into mesonic bound states in a QEC array. We computed
the associated string tension and computed the scaling properties of
the mass of the lightest particle. In contrast to quantum spin-chains,
which have been the defacto standard for lattice simulation of
strongly-interacting QFTs, this work demonstrates the robustness and
versatility of QEC to achieve this goal. Given that the primitive circuit
elements of the proposed scheme have already been demonstrated, it
is conceivable thatpredictions for additional physical properties of the
psGmodel could be obtained using analog quantum simulation43 in an
experimental realization. For instance, a quench experiment would be
able to capture signatures of the excitations with energy higher than
what could reliably probed using DMRG. Consider the case when the
junction energies of the blue Josephson junctions, EJ1

, in Fig. 1 are
tunable. This can be accomplished by replacing the corresponding
junctions by a SQUID loop with a magnetic flux threading the latter44.
After preparing the system in the ground state of H with EJ1

= 0, the
coupling EJ1

is turned on by tuning magnetic flux. Signatures of the
confinement of the sG solitons can be obtained by probing the spec-
trum and the current-current correlation functions. Note that imper-
fections in an experimental realizationof the 0 −π qubit that lead to an
additional cosϕ potential would renormalize the coupling EJ1

of Eq. (2)
and does not pose an impediment towards investigation of the con-
finement phenomena analyzed in this work. Given the progress in the
fabrication and investigation of large QEC arrays45–47, we are optimistic
of experimental vindication of our work.

The proposed QEC provides a starting point for the realization of
a large number of one-dimensional QFTs. First, replacing the blue
Josephson junction on the vertical link in Fig. 1 by a linear inductor
gives rise to the renownedmassive Schwingermodel. Second, tuning a
magnetic flux between the Josephson junction and the 0 −π qubit in
each cell changes the perturbing potential in Eq. (2) from cosðϕkÞ to
sinðϕkÞ. For certain values of EJ1

=EJ2
, this induces a renormalization

group flow from the gapped perturbed sine-Gordon model to a
quantum critical point of Ising universality class23,24,48. Third, QECs
provide a robust avenue to realize sG models with a-fold degenerate
minima,wherea 2 Z (see SupplementaryNote IV). The corresponding
cosðaϕÞ circuit element can be constructed by recursively using the
cosϕ and cos 2ϕ circuit elements. Perturbations of these sG models
lead to not only soliton confinement and false-vacuum decays49,50

present in the a = 2 case, but also all unitary minimal conformal field
theorymodels48,51. Controlled realizationof the lattermulticritical Ising
models opens the door to numerical and experimental investigation of
a wide range of impurity problems that have so far been elusive.

Data availability
The data used in the manuscript is available from the authors upon
request.
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