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The transcriptional legacy of developmental
stochasticity

Sara Ballouz1,5,9, Risa Karakida Kawaguchi 1,6,9, Maria T. Pena2,
Stephan Fischer 1,7, Megan Crow1,8, Leon French 3, Frank M. Knight4,
Linda B. Adams 2 & Jesse Gillis 1,3

Genetic and environmental variation are key contributors during organism
development, but the influence of minor perturbations or noise is difficult to
assess. This study focuses on the stochastic variation in allele-specific
expression that persists through cell divisions in the nine-banded armadillo
(Dasypus novemcinctus). We investigated the blood transcriptome of five wild
monozygotic quadruplets over time to explore the influence of developmental
stochasticity on gene expression. We identify an enduring signal of autosomal
allelic variability that distinguishes individuals within a quadruplet despite
their genetic similarity. This stochastic allelic variation, akin to X-inactivation
but broader, provides insight into non-genetic influences on phenotype. The
presence of stochastically canalized allelic signatures represents a novel axis
for characterizing organismal variability, complementing traditional approa-
ches based on genetic and environmental factors. We also developed a model
to explain the inconsistent penetrance associated with these stochastically
canalized allelic expressions. By elucidating mechanisms underlying the per-
sistence of allele-specific expression, we enhance understanding of develop-
ment’s role in shaping organismal diversity.

Cells in a fully developed organism share life histories traced back
through their divisions, defining lineages. Epigenetic marks left on a
single cell early in development can be inherited down through cell
divisions, leaving shared features across cells, and barcoding their
lineages1,2. The clearest example of this happening in nature is
X-chromosome inactivation which is an epigenetic process that reg-
ulates gene dosage in females3,4. Occurring as a random coin-flip in
each cell early in development, the status of inactivation is then stably
inherited down cell lineages (via, e.g., DNA methylation)5,6. Unusually,
this is an example where the lineage relationship between cells can be
observed by eye, as in the calico cat, where color alleles are X-linked

and create obvious patterning3. But X-inactivation (XCI) is only one
inherited epigenetic mark; cells likely have thousands, progressively
defining cell-type as the cells move down Waddington landscapes in
complex relationships creating stable developmental trajectories7,8.
Further discovery and characterization of the shared marks, mechan-
isms, and impact of cell lineage relationships remain a central goal of
modern biology.

Attempts to ascertain the existence of these permanent shared
markings in previous work have mainly focused on the strongest
events – monoallelism – in the simplest systems – cell lines – with
mixed results9–11. Monoallelism is interesting because it could reflect
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regulatory noise from differentiation that is propagated forward
epigenetically9. While some studies have reported this inherited effect
in cell lines12, more recent work assessing individual cells in tissues has
suggested some effect but the exact degree of impact has been chal-
lenging to ascertain13 with studies variously suggesting abundant
monoallelism without lineage-dependency10 and a major role for cell
intrinsic noise such as bursting14. One possibility is that early lineage
marks are broadly encoded but invisible since, unlike XCI, they are not
aligned across chromosomes in a simple-to-observe way. If so, these
marks will be confounded with the effect of eQTLs in studies of wild
populations, or with genetic background in crosses of inbred strains.

One solution to the challenge of controlling for genetic back-
ground is to exploit identical twinning. Identical twins will frequently

have maternal and paternal alleles that are derived from the same
genetic background while still being distinct enough to permit allelic
analyses. While genetics can be well controlled in identical twin stu-
dies, environment ismore of a challenge. This is particularly critical for
functional genomics studies, which generally measure properties that
are responsive to environmental variation. To ensure both genetics
and environment are shared in an outbred organism, we turned to
Dasypus novemcinctus (the nine-banded armadillo) which has a poly-
embryonic reproductive strategy, producing litters of identical quad-
ruplets (quad) (Fig. 1a–c). The splitting of the blastocyst into 4
embryos is first observed after it implants in the uterinewall and forms
the epiblast cell layer15, but distinct cell lineages may have formed
earlier. As armadillos are identical, any variant that has the same

Fig. 1 | Defining transcriptional identity. a Samples were collected from 5 unre-
lated armadillo quadruplets. b An armadillo quadruplet. c Schematic of the study
design (top): blood sampleswere collected and sequenced at 3 timepoints for each
armadillo quadruplet. Within each quadruplet, we assess sibling identity from
allelic expression (bottom). d Transcriptional similarity is higher between siblings
than across armadillo quadruplets. Heatmap of sample-sample Spearman’s corre-
lations across all genes for the first time point. The leftmost row annotations and
top column annotations indicate quadruplet identity with color, the lower column

annotation marks sex (red = female, blue =male) and sequencing lanes for each
sample are shown in the second-row annotation bar. e Developmental timing of
epigenetic marks can be estimated by calculating the starting number of cells
required to generate the range of allelic imbalances observed. f Densities of allelic
ratios (x-axis) plotted against the number of starting cells (y-axis) illustrate that
high variance in allelic ratios is associated with early inactivation timing (few cells).
Source data are provided as a Source Data file.
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impact on gene expression will not distinguish individuals, allowing us
to systematically assess the organismal impact of autosomal epige-
netic events.While armadillos are not a traditionalmodel in genomics,
they are the model system for the study of Hansen’s disease (Leprosy)
and a small number of colonies existwhere they are reared in captivity.

In this work, we study allelic imbalances from blood samples
collected at 3 time points over the course of 18 months from 5 wild-
caught armadillo quadruplets (Supplementary Table 1, 20 armadillos
in total, ages 1–6, 3 female quadruplets). Because each litter of arma-
dillos shares a genotype and environment, they are not drivers of gene
expression differences between individuals. While individuals within
litters share an environment at any given time, it is not afixed one, with
one major source of variability being the infection of the armadillos
with the leprosy bacterium toward the end of our study (as a primary
purpose of the colony). While this would be a striking experimental
design decision from first principles, we think it does little to diminish
our environmental control (since all comparisons are internal) and, in
fact, is likelier to ensure results are robust across typical large scale
changes in environment rather than overfitting to a single
environment.

In typical model systems, differences in gene expression are likely
to arise from transient noise, environmental perturbation or distinct
genetics. Absent these effects, and particularly in the case of allelic
differences, epigenetic regulation, set independently of genotype, will
appear as random allelic imbalances, showing a preference for one
allele over the other on average. If this epigenetic decision is faithfully
preserved down the lineage, the allelic imbalance may be copied even
as the cell population rises, yielding a preference for one allele over the
other on average, distinct across individuals. In essence, we exploit the
fact that there will be some noise in the exact balance between two
alleles at the moment the expression level is set within a lineage. If, as
in XCI, this balance is inherited down the lineage it will be possible to
observe permanent imbalances in the adult organism. In combination,
these allelic imbalances progressively barcode trajectories across cell
lineages as they move forward during development.

We first focus on the X-chromosome, determining the timing of
XCI from the distribution of allelic ratios alone. Further, we show that
variation in ratios across individuals within a quad predicts its stability
over time. Building on this, we model the predictability of allele-
specific expression (ASE) imbalances to estimate our power to resolve
cell lineages barcoded on the autosomes. We find that for our read
coverage and number of armadillos, we are powered to detect events
arising as late as the 10,000 cell stage. We show that autosomal allelic
ratios varying between individuals are also enriched for stability over
time, consistent with an early developmental origin. We test the ability
of these autosomal ratios to barcode individuals and find that, in
combination, they define approximately a half X-chromosome worth
of additional epigenetic signal in terms of their contribution to orga-
nismal transcriptional variability. We close by suggesting this is likely
to have an important impact on disease variability by rendering
otherwise haplosufficient genetic variation penetrant.

Results
In order to better understand the range of expression variability within
and across the quadruplets, we first assessed the similarity of the
expression profiles. Similarity of the overall gene expression within
and across quadruplets at a given time point is extremely strong
(Fig. 1d, Supplementary Fig. 1). The minimum correlation obtained
between gene expression profiles of any two armadillos is >0.95, high
bymost standards.However, the rangewithin quadruplet sets is higher
still, averaging approximately 0.99, leaving quadruplet sets easily seen
on the heatmap of correlations. Our target, signatures of individuality
or stochasticity within quadruplet sets, are consequently quite subtle,
given this overall strong similarity between individual armadillos in
overall profile. To establish features associatedwith their presence and

validate our general approach, we first turn to allelic ratios of the
X-chromosome in the female quads, where epigenetic variability is
clearest, as a biological ground-truth.

Allelic distributions are barcoded by X-inactivation
Within mammals, one of the most prominent transcriptional features
of epigenetic individuality is XCI in females4. During development,
epigenetic marks (e.g., DNA methylation and histone modifications)
are deposited, and then maintained along a cell’s lineage (Fig. 1e)6.
Allele specific expression, i.e., the expression of genes at the level of
their variants, and allelic ratios – the fraction of expression attributed
to each allele – allows us to assay the aggregate output of these epi-
genetic marks. As XCI is stochastic when it first occurs and then is
maintained in cell lineages, it creates permanent variability between
individuals. And because XCI ratios differ only by virtue of random
sampling fromwithin the original cell population, that population size
directly defines the degree of variance observed (Fig. 1f)16.

In our female samples, we can readily see variability in which
X-chromosome is expressed (Fig. 2a). To obtain allelic ratios, we
alignedRNA sequencing reads to quad-specific personalized genomes,
identifying a total of 26,325 heterozygous SNPs across the 5 quads. On
highly powered heterozygous SNPs from the X chromosome (>5 reads
on each allele), the average folded allelic ratios ranged from 0.52 to
0.63. By plotting the distribution of these ratios across the 3 female
quads (12 individuals), we can estimate XCI from an initial cell
population of approximately 25 cells (Fig. 2b), plus or minus
approximately 1 cell division. After adjusting for reference bias, our
estimate remains in a range of 10–100 cells (Supplementary Fig. 2).
This timing suggests that stochastic canalized variation between
siblings is set in distinct cell lineages before separate armadillo
embryos are observed (Fig. 2c). The X-chromosome offers a parti-
cularly strong opportunity to test whether factors other than lineage
create extreme allelic distributions (across individuals sharing
genetics). To test this, we calculate the significance of the variability
in allelic ratios for each SNP on the X chromosome (departure from a
binomial model with a shared allelic ratio, see Methods). Where
allelic distributions are significantly variable, it is evidence that which
allele is expressed is not independently chosen – even after con-
trolling for genetics – across the sample of cells contributing to the
aggregate expression. As we become more confident that an allelic
signature arose early in development, we are able to observe that it is
also likelier to be stable into the future (Fig. 2d).

Having validated that the timing and inheritance of XCI leaves a
well-defined permanent impact in allelic signatures across individual
SNPs or at the chromosomal level, we looked for a more general
measure that allows SNPs to be combined, as on the X, but might
generalize to autosomal signatures not necessarily shared on a whole-
chromosome basis. This measure of individuality can be quantified by
the degree to which knowing it permanently defines the individual
relative to siblings. Our basic strategy is to compute confusion matri-
ces for each SNP’s allelic ratio across individuals within quads between
time points (Supplementary Fig. 3, Methods). For canalized SNPs, the
ordering of individuals is expected to be conserved across time points
(diagonal confusion matrix). We then aggregate the confusion matri-
ces across SNPs to predict identity (cross-validation across the 3 time
points), reporting a score between 0 and 4, indicating how many
individuals were correctly identified within the quadruplet sibling set.
We then average prediction scores across all prediction sets (3 time
point combinations, up to 5 quadruplets). Not surprisingly, the allelic
imbalance ratios of the X genes are highly predictive of an individual
within a quadruplet (Fig. 2e, average score = 2.56, 3 time points, 3
female quadruplets, p = 5.9e-5, Fig. 2f, p =0.001). The high predictive
scores of XCI indicates that individuals within a quadruplet set have
distinct XCIs, at least with respect to the cell populations sampled in
this study.
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Individual SNPs exhibit canalized variability across individuals
While the cell-lineage allelic signature we see on the X chromosome in
females is expected, extending it to autosomal genes has historically
been a major challenge. The most common form of epigenetic reg-
ulation is imprinting, but as it is dependent on the parental genome, it
is a poor marker of individuality. Instead, more subtle marks that
control gene expression which are cell specific may be present, typi-
cally averaged away or only apparent under particular environmental
stresses. In this scenario, alleles are imbalanced due to variation in the
epigenetic regulation of these alleles,measured as consistent variation
in allelic balance. Typically, allelic imbalance is attributed to the impact
of a variant: either the variant within the gene has an effect on the
stability of the mRNA, or an upstream SNV has cis-regulatory effects17.
As armadillos are identical, any variant that has the same impact on
gene expression will not distinguish individuals. Instead, epigenetic

regulation will appear as random allelic imbalance reflecting noise in
the original assignment in an individual cell. At the organismal level,
allelic imbalances reflect the compositional distribution of cell-
lineages within an individual, where groups of cells are skewed in
one direction for a set of genes.

To extend our analyses to SNPs on the autosomes, we used the
same rationale as for allelic signatures left by X inactivation: if ASE is
determined early and canalized down lineages, we expect the variance
of allelic ratios to be high across individuals within a quad and to be
conserved over time. Unlike XCI, autosomal SNPs affected by ASE are
not known a priori. We therefore performed a power analysis to deter-
mine the minimum read coverage needed to identify individual SNPs
withASE fromallelic imbalance alone. In order to capturepotentially low
coverage signal, we randomly sampled 1% of SNPs detected in our data
and simulated ASE for these SNPs (individual-specific allelic ratios

Fig. 2 | X chromosome inactivation as a mark of individuality. a Histograms of
allelic ratios estimated across high-coverage SNPs on the X chromosome and
maximum likelihood estimation of X-inactivation skews (red line = unfolded esti-
mate, dotted line = folded estimate). X-inactivation estimates from RNA-seq data in
quadruplet 12–10 showsvariation in.bHistogramofX-inactivation skews estimated
from high-coverage SNPs of the 12 female individuals and theoretical distributions
from a binomial model (left). Expected skew variance depending on the number of
cells at X-inactivation timing (right). The orange area indicates the range of cell
numbers that are compatible with the observed skew variance. We estimate the
number of cells where inactivation occurred to be around 25. c Gene expression is
canalized, generating variable allelic imbalances inherited from early development.
d Boxplots of allelic imbalance correlations across time points for X chromosome
SNPs passing 3 FDR thresholds demonstrate that significant allelic imbalance

(excess variability across siblings in a quad) is associated with consistent allelic
ratios over time (variability across 2387 X-SNPs from the 3 female quadruplets at 3
time points). The lower and upper hinges represent the first and third quartiles,
respectively. The center bar indicates the median, while the whiskers extend 1.5
times the interquartile range above and below the boxes. e XCI strongly predicts
identity within a quadruplet (one-sided empirical p value = 5.9e-5). Observed pre-
dictability score for sibling identity using X chromosome genes (purple vertical
line, average across the 3 female quads and the 3 time points) against the theore-
tical distribution for random predictions (median score = 1, dashed line). f Plot of
mean predictability scores (y-axis) versus gene set size (x-axis) for random gene
sets and the X chromosome genes (highlighted with purple lines, one-sided
empirical p value < 0.001). Source data are provided as a Source Data file.
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following a binomial model, see Methods), which we refer to as ASE-
SNPs. To measure our capacity to recover ASE-SNPs, we ordered SNPs
by deviation from the null expectation that allelic ratios are identical
across individuals within a quad (statistical significance from Chi-
Squared test, see Methods), then measured the predictive power using
the area under theReceiver-Operator Characteristic curve (AUROC). The
AUROC measures the probability of ranking an ASE-SNP in front of a
non-ASE-SNP, with an AUROC of 0.5 indicating random predictions, and
1 indicating perfect recovery of all ASE-SNPs.

The results suggest that ASE-SNPs can be readily identified at the
read coverage observed in our data. ASE induced by early lineage
events (≤64 cells) created high-variance allelic imbalance distributions
that could be detected with read coverage as low as 12 reads
(AUROC>0.75, Fig. 3a, b). The predictive power remained remarkably
high even for late lineage events (AUROC ~ 0.7, 64–10k cells, Fig. 3b), in
particular for SNPs with high read counts (AUROC>0.75 for SNPs with
>95 reads), indicating that ASE-SNP predictions have the potential to
barcode a wide range of developmental states. As genes affected by
ASE-SNPs are expected to be similar over quads, power can be further
increased by aggregating predictions over multiple quads. Indeed, the
more quads are sampled, the higher the chance to observe a quadwith
extreme distributions of allelic imbalance. Accordingly, for ASE events
induced at the 64-cell stage, the performance increase was particularly
high when aggregating 5 quads instead of relying on a single quad
(ΔAUROC ~0.1, Fig. 3c, d). Performance continued to increasewith the
number of quads, plateauing around 50 independent quads.

With these model results in hand, we next turned to the real ASE-
SNPs in our data. As in XCI, our first evaluation of the SNPs showing
excess allelism is to see if ratios are fixed over time. Canalized ASE
events from early development are expected to have highly variable
allelic ratios across individuals as they are propagated down the line-
age, but also to be conserved over time within individuals. To test the
overlap between these two properties, we predicted ASE-SNPs from
the observed allelic ratios at time point 1 and askedwhether they show
evidence of being canalized at later time points. Concretely, we eval-
uate whether the ordering of ratios is preserved; e.g., whether the
individual with the highest allelic ratio at time point 1 will still have the
highest ratio at time points 2 and 3 (Methods, Fig. 3f). SNPs that show
no significant allelic bias exhibit almost identically 0 mean correlation
over time, highlighting the natural near-perfect control of allelic
variability across fixed genotypes (Fig. 3e). In contrast, significant ASE-
SNPs also showed significant excess correlation over time yielding a
30% enrichment over non-significant ASE-SNPs at high correlations
(Fig. 3e). In essence, temporal consistency for a given individual is
predicted by excess variability between individuals, i.e., when the
observed variability is consistent with having arisen within an initially
small population. That non-significant autosomal SNPs also show a
distribution almost identically centered at a correlation of 0 over time
is valuable in suggesting that the aggregation of signal across SNPs
may be surprisingly straightforward.

Combining canalized allelism yields strong signals of identity
In order to measure the aggregate impact of the observed stochastic
variation in early cell lineage decisions, we combine allelic signatures
across all SNPs. We use the same aggregation strategy as for the X
chromosome, predicting identity from confusion matrices for each
SNP’s allelic ratio across individuals within quads between time points.
As before, a SNP which shows significant and consistent allelic varia-
bility between individuals will predict those individuals at later time
points (Fig. 3f). We then aggregate the confusionmatrices to generate
a barcoding of allelic ratios that characterizes individuals in aggregate
and validate by the degree to which this is preserved over time.

Simply combining all genes (excluding those on the X chromo-
some) into a single confusion matrix yields highly significant predict-
ability scores (Fig. 3g, average score = 2.2, p ~ 3.74e-5, 3 time points, 5

quads). In magnitude of impact, this is approximately equivalent to an
additional half an X-chromosome worth of imbalance distributed
across the genome of both females and males. Looking across all
quadruplets, we can find an average of 700 genes exhibiting strong
imbalances. This is much larger than an estimated germline de novo
mutation rate of 19 to 21 per generation based on data from 36
mammals18, consistent with our model that these allelic imbalances
arise epigenetically, like XCI. Using these imbalanced genes as the
feature set was predictive of individuality and gives approximately the
same score as the genome inaggregate (Fig. 3h,p ~ 0.002 for a gene set
of that size, permutation test), implying a significant fraction of these
genes are epigenetically differentially canalized. Because of the rela-
tionship between cell population and variance, greater imbalance
implies a smaller number of cells present when our signal originated,
which can be explicitly evaluated as in our earlier model.

Assumingour signal is explainedby 700genes and that epigenetic
marks are set at approximately the same time,we estimate thatmostof
the observable variance is due to non-genetic marks set early in the
development of the blood lineage, at around a few hundred cells
(Fig. 3i). Given the nature of epigenetic regulation, this is plausible, as
the reprogrammingof the embryo and setting ofmarks occurs at these
stages19. However, there are other population bottlenecks (e.g., pro-
genitor pools) within specific cell lineages, so even an exact number of
cells does not define an exact developmental stage without broader
assessment across tissues to observe shared and distinct relationships.
Functionally, the signature of the allelic imbalanced genes was unique
to each sibling cohort of quadruplets, but did include enrichment for a
common immune component (Fig. 3j), as expected by the cell lineages
sampled within our experiment. However, themore prominent signals
are related to signaling and enzymatic activities. Functionally, these
are of interest in development as they ensure the switching on and off
of programs that may result in phenotypic abnormalities if not
controlled.

Modeling haplosufficiency suggests canalized alleles may con-
tribute substantially to disease
Having found major variability in the transcriptional endophenotype
of our quadruplet sets, we next considered how this could directly
affect the phenotype. Again, taking XCI as a conceptual model for the
individual alleles on the autosome, one possibility is that skewing
could contribute to the penetranceof otherwise haplosufficient genes.
In essence, a gene whose transcriptional state is set early in develop-
ment will exhibit highly variable allelic ratios, yielding a disease phe-
notype if the disease-associated allele dominates the lineage. Is this a
plausible source of disease incidence within natural populations?

In order to model this effect, we consider a disease allele present
in a population that becomes pathogenetic in an individual if it
represents a certain fraction of the total gene expression (Fig. 4a). If
the individual inherits two disease alleles, this triviallymeans they have
insufficient levels of a functional copy of the gene and will exhibit the
disease (but it will be more severe). Alternatively, a gene whose
expression is set early indevelopmentwill exhibit increasedvariance in
the adult cell population that may yield haploinsufficiency.

Under this model, we calculated the probability that an observed
diseasephenotype arosevia inheriting twodisease variants asopposed
to developmental stochasticity. As the disease variants become rare,
the probability of inheriting two disease alleles becomes small much
faster than the probability of inheriting only one and noise pushing it
to be a high enough fraction of total expression to yield a disease
phenotype. For example, at disease allele frequency 0.001, the disease
is more likely to be caused by haploinsufficiency (probability > 0.5,
Fig. 4b). For disease due to combinations of common variants, this
model has essentially no explanatory power; i.e., such diseases will
essentially never arise due to independent unlucky expression of
deleterious variants (probability <0.5 at frequency 0.01 for allelic
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Fig. 3 | Persistent allelic imbalance asamarkof individuality. a–d Power analysis
measuring ability to recover imbalanced SNPs from allelic imbalance based on SNP
coverage, number of quads in which the SNP ismeasured, fraction of SNPs affected
by true allelic imbalance (Ratio). Performance is measured across N = 100 inde-
pendent simulations. a Ability to recover imbalanced SNPs depending on SNP
coverage (read counts, y-axis) and timing of inactivation (in number of cells, y-axis).
b Samedata asA, focusing on 5 levels of coverage (markedwith dashedgray lines in
A and C). cAbility to recover imbalanced SNPs depending on SNP coverage and the
number of quadruplets. d Same data as (c), focusing on 6 levels of quadruplet
number. e Boxplots of allelic imbalance correlations across time points for X and
autosomal SNPs passing 3 FDR thresholds show that SNPs with significant allelic
imbalance have consistent allelic ratios over time (variability across 703,870
autosomal SNPs from 5 armadillo quadruplets at 3 time points, 2387 X-SNPs from 3
female armadillo quadruplets at 3 time points, one-sided Mann–Whitney test,
p <0.001). The lower and upper hinges represent the first and third quartiles,
respectively. The center bar indicates the median, while the whiskers extend 1.5
times the interquartile range above and below the boxes. f Predicting identity from
allelic imbalance. We select SNPs with perfectly correlated allelic ratios across two

time points (feature set, likely to be canalized), then make identity predictions on
the remaining time point. g On aggregate, genes with allelic imbalances map to
identity. The predictability score (x-axis) for sibling identity using all genes (solid
vertical line, average across the 5 armadillo quads and the 3 time points) is sig-
nificantly higher than for random predictions (dashed line, median score = 1, one-
sided empirical p value ~ 3.74e-5). h Predictability scores (y-axis) and gene set sizes
(x-axis, log scale) for the feature set (solid purple lines) and all genes (dotted blue
lines) shown relative to predictability scores obtained using random gene sets
(black line and gray band). The score for the feature set was significantly higher
than random sets (one-sided empirical p value ~ 0.002). i Expected predictability
score depending on the number of cells (x-axis, log scale) at which genes are
canalized and the number of canalized genes (y-axis). We find that our signal is
explained by 500–700 genes and time events to a few hundred cells present when
epigenetic marks were set. j Predictability score for functional gene sets across the
5 armadillo quads. High predictability scores are explained by signaling and
molecular functions unique to each quad. Source data are provided as a Source
Data file.
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imbalance determined after the 16 cell stage, Fig. 4b). In contrast, this
model suggests a very large role for stochasticity in the impact of rare
variants, particularly in disorders that are known to arise during
development. Such studies have observed a sharp enrichment for loss
of function variants combined with haploinsufficiency, but the degree
of phenotypic heterogeneity for a given genotype is very high, with
significance for variants largely arising across genes rather than for
individual ones20. This is consistent with a model in which the early
developmental stochasticity for allele choice is amajor determinant of
final phenotypic penetrance of a heterozygous individual.

Discussion
In human studies, expression variability is most simply thought of as
being due to some combination of environmental and genetic factors,
leaving “noise” purely as a nuisance term. More complex models may
include epigenetic associations of phenotypic and behavioral
interactions21, but canalized noise is still rarely considered (although
see, for example:22,23). However, random effects provide an extremely
useful record of shared history, a fact exploited in lineage analyses of
all types24–27. To discover the permanent imprint of noise on cells in the
organism, our study design exploited the shared environment of
alleles within cells. In armadillos, this cellular control is particularly
strong since the genetic background is perfectly shared. Thus,
extrinsic noise (i.e., from outside the cell) is shared by the two alleles,
leaving variability in expression of alleles potentially driven by intrinsic
noise28,29. Because this intrinsic noise is inherited down cell lineages, it
leaves a permanent mark shared across many cells. While other study
designs have, for the same reason, also focused on engineering or
exploiting cases where allelic output can be carefully measured10,30,31,
armadillos offer unusual robustness and replicability by sampling
across identical sets of independent outbred genetic backgrounds.
That they are mammals also provides a useful reference for the epi-
genetic signals we uncovered in the form of XCI, where the results of
intrinsic variability are clear. Our key finding in armadillos is that
similar allelic imbalances exist on the autosomes and are stably pre-
served and substantial in aggregate effect, totaling approximately half
an X-chromosome worth of signal in both males and females in this
species.

Our study has a number of limitations due to our use of a non-
model organism and our interest in subtle inter-individual effects. Key
limitations include our use of peripheral blood mononuclear cells
(PBMC) as our sample source, reference genome quality in the

armadillo, the number quadruplet sets and variability between quad-
ruplet sets. PBMCs offered the advantage of sampling over time
without sacrificing the animals. This is key in studying natural het-
erogeneity over developmental time in contrast to pseudo-
development in a functionally clonal group (e.g., isogenic mice sacri-
ficed at different stages).Of course, the useof PBMCspotentially limits
the generality of the results. However, in humans, we have shown that
XCI ratios are shared across tissues32. Although the number of quad-
ruplets used in our studywas relatively small, our experimental design,
which involved sampling atdifferent timepointswithin each individual
of a quad, provided an unusually well-structured framework in which
many genetic and environmental effects are controlled. Our experi-
mental designwas enabledbyouruseof armadillos, but leveraging this
non-model organism does create challenges with respect to genome
annotation. We resolved this by sequencing the individual genomes
and assembling the X-chromosome; this yields much higher quality
data but at a much higher expense. In contrast to the environmental
control within quadruplet sets, we did have variability between quads
due to the alternate use of the armadillo colony to study Hansen’s
disease (at later ages). Since virtually all our analyses were within
quads, this has little impact on our results, other than showing they are
robust to shared environmental changes which would normally occur.
However, this may explain one of our key findings, which was limited
functional overlap in the ASE signatures across quads.

Lack of overlap could reflect fundamental biological differences
between the quadruplet litters, or it could reflect our ability to detect
distinct ASE. We think of this as being a question of whether the Wad-
dington landscape is somewhat distinct between litters. If each litter has
a subtly distinct landscape (partly due to their genome and partly due to
their environment including, e.g., pathogen exposure), it is very easy to
imagine minor perturbations creating unique signals in each litter. On
the other hand, if all armadillos share a landscape (for the purpose of
our analysis), lack of overlap is more surprising. However, it could be
explained by a broad signature such as our data otherwise supports, and
technical limitations being the key driver of which subset of that broad
signature we detect. Technical limitations in this context could include
anything affecting our power to detect canalized allelic signatures such
as quite plausibly different factors such as read depth, gene expression
level, the allelic ratio itself, or even reference bias. We suspect that our
results reflect a combination of both models.

Considering the implications of ourworkmorebroadly, variability
in human phenotype is the product of genetic and environmental

Fig. 4 | Canalized genes may contribute to disease. a Model where hap-
loinsufficiency arises from the canalization of extreme allelic ratios, leading to
disease penetrance. The allelic ratio of the disease-causing allele is given by a
binomial model parameterized by the number of cells at which expression is
canalized. Heterozygous individuals with extreme allelic ratios of the disease allele

have an increasingly higher probability of developing the disease (beta distribu-
tion). b Probability that a disease is caused by extreme allelic ratios rather than
homozygosity for the disease allele, depending on the disease allele frequency (y-
axis, log scale) and the timing of canalization (in log-scaled number of cells, x-axis).
Source data are provided as a Source Data file.
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contributions, alongwith a complex interplaybetween the two31.While
genomicdata has permitted valuable progress in our understanding of
both heritable and non-heritable phenotypic variation, this progress
has been more piecemeal in sources of non-heritable variation. All
studies of genetic or environmental influences on phenotype are
affected by this unexplained, non-heritable variability or ‘noise’33. One
possibility is that ‘noise’ canbepartitioned intowell-defined categories
of its own, based on underlying mechanisms. Development has long
been thought to be a potential driver of unexplained phenotypic
variability34 it is a time when small initial changes can permanently
propagate forward to large later effect (Fig. 2c). While programmatic
variability in development has received particular attention35,36, our
works shows that early random effects could be a major source of
phenotypic variance, particularly in the context of disease. In order to
measure this developmental stochasticity, tight environmental and
genetic control are necessary to minimize external drivers of varia-
bility, while outbred genetics are necessary to maximize the likely
functional implications of observed variability. Although precise
developmental timings may vary between mammals, the armadillo
provides a valuable model system, with the closest parallel being
outbred diversity crosses in mice.

The degree of skewing toward one chromosome over the other
has been researched intensively37–40, and importantly it hasbeen linked
to disease, where female carriers of X-linked disorders can have dif-
ferential disease penetrance as a function of skewing41–43. Historically,
researchers have looked to causal mechanisms for this effect41,44,45,
although our recent work suggests that the observed distributions are
perfectly consistent with the expected number of cells in humans32.
Cell selection is less of a concern in the case of the armadillo data since,
if driven by either genes or environment, it is controlled within the
experimental design. We suggest our approach is potentially powerful
as a lineage tracing technique32, even though it relies on statistical
barcoding across populations of cells, rather than barcoding of indi-
vidual cells (which is inherently noisy). This diminishes the impact of,
e.g., transcriptional bursting, which has led to substantial controversy
about the presence ofmonoallelism10,46. Our results reconcile previous
observations by showing that while such permanent allelic effects
exist, they are far weaker and more graded than individual cellular
measures would easily reveal. However, they represent an important
marker of lineage decisions within the organism since they appear to
mark early events in development that are permanently inherited,
marking classical epigenetic events.

Methods
Armadillo collection and samples
This study complied with the NHDP Institutional Animal Care and Use
Committee (IACUC) guidelines under the approved protocol “Leprosy
research support and maintenance of an armadillo colony” (A-102).
Five sets of armadillo quadruplets (20 armadillos in total) were used in
this study(Supplementary Fig. 4, Supplementary Table 1). Sex was
considered in the study design. Pregnant females were captured using
long-handled nets at night from the wild in 2012, 2015 and 2016.
Capture of the pregnant females was done during the spring to avoid
collecting females who were nursing young, but were potentially
pregnant. The animals were retrieved from the nets and placed in
kennels for immediate transport to the holding facility at the Uni-
versity of the Ozarks, Clarksville, AR. The pregnant females were kept
in outdoor pens that had burrows where they gave birth to the quad-
ruplets. The babies were kept with the mothers until they were
observed foraging at about 6–10weeks postnatal age. After separation
from themothers, the animals were housed together in semi-outdoors
pens (rubber covered concrete floor under a roof). Most litters in the
semi-outdoor pens shared the pen with another litter, either from this
study or a separate one (2 litters per pen). All adults and young over
49 days postnatal age (pna) were fed amix of dry dog and cat chicken-

and-rice chow moistened with water—in an approximate ratio by
volume of 1:1:2. Adults were provided 0.75–1.5 cups (indoor-outdoor)
of moistened chow once a day during the gestation and 1.25–1.75 cups
per day during known or suspected lactation. Animals housed in out-
door enclosures were able to forage as well. Occasionally, a raw egg
and earthworms were provided in addition to the chow. Litters were
fed replacement formula of reconstituted Esbilac puppy replacement
formula until old enough47. After 35 days pna, the diet was gradually
transitioned to that of adult by 49–56 days pna. The wild-caught
females were administered 0.15ml Ivermectin SC, and Exceed anti-
biotic if they showed anywounds or abscesses. Adults were dewormed
every 6–8weeks with Panacure on chow for three consecutive days, or
with 0.2ml Ivermectin on food. The babies were treated once with
Panacure on chow for three consecutive days.

At four to five months of age, the animals were delivered to the
National Hansen’s Disease Program (NHDP) facility in Baton Rouge, LA
where siblings were placed in pairs in modified rabbit cages48. They
were fed the samedry food as that given at theArkansas facility. After a
period of adaption of approximately one year, the animals were trea-
ted with Penicillin (1.0mL) and dewormed with Ivermectin (0.1mL)
and Praziquantel (0.4mL). Prednisone (10mg/mL) was also given at
this time.

Armadillo time course analysis and Hansen’s disease
Blood samples were collected at three time points per quadruplet
staggered over the course of a year, starting from March 2017 until
August 2018 (Supplementary Table 1). The pilot study consisted of two
sets of quadruplets (12–10 and 15–50), and then later blood was
obtained from quadruplets 16–20, 16–30 and 16–90. The names of the
armadillo quadruplets were chosen according to the year of capture of
the pregnant mother (e.g., 16–XX for 2016). The analysis of the overall
transcriptome and the top 1000 highly variable genes (Fig. 1d, Sup-
plementary Fig. 1) suggests that all quads are roughly equally distant
from each other (no evidence for any clear grouping or driver of
variability such as age or SNP overlap shown in Supplementary Fig. 6).
During the course of the year, the original two of the five sets of
armadillo quadruplets were infected intravenously in the saphenous
vein with 1 × 109 Mycobacterium leprae derived from athymic nude
mice49 – both after the first time point was collected. Blood was col-
lected at different time points throughout the course of disease and at
18–24 months post-infection, the animals were humanely sacrificed
when they developed heavy M. leprae dissemination with severe
hypochromic microcytic anemia. The bacteria will locate in the bone
marrow and the animals will eventually succumb to secondary com-
plications of persistent bacteremia if not sacrificed50.

Armadillo RNA-sequencing
Blood was collected from the subclavian vein in BD Vacutainer Glass
Mononuclear Cell Preparation (CPT) tubes (Fisher, USA), and PBMC
were isolated following standard protocols51. Blood collection was
performed under general anesthesia using Ketamine HCL (10mg/kg)
andDexdomitor (0.1mg/kg). All animalswere screened for leprosy and
their health (CBC and blood chemistry) evaluated at tri-monthly blood
screenings. RNA was extracted from the PBMC using an automated
Maxwell 16 Instrument (Promega) and a Total RNA purification kit
(Promega). Library preparation was done with a poly(A) selection kit
(KAPAmRNAHyperPrep) to enrich formRNAs.Multiplexed paired end
sequencing (PE76)wasdoneusing an IlluminaNextSeq500onmultiple
flowcells.We blocked for lane batch effects by splitting the quadruplet
samples into pairs and ran two pairs of each set per flow cell (Sup-
plementary Table 2). We downloaded the armadillo genome (Das-
Nov3) from Ensembl (v95)52, and generated an index file for use within
STAR53. We mapped reads with STAR and standardized counts to
counts per million (CPM) by summing the counts and dividing by 1e6
(Supplementary Fig. 5 and Supplementary Table 3).
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Armadillo DNA-sequencing
DNA was extracted from blood collected according to standard pro-
tocols. We sequenced each quadruplet together to obtain their iden-
tical genome sequence. We pooled DNA from all four individuals of a
quadruplet, except in the caseof quadruplet 16–30wherewe couldnot
get enough DNA from individual 16–301 (Supplementary Table 4). An
average of 2.3 µg of DNA per quadruplet were sent for whole genome
sequencing at the New York Genome Centre (NYGC). Library pre-
parationwas IlluminaTruSeqNanoDNA, 450 bp. Sequencingwasdone
on the NovaSeq with 2 × 150bp. Coverage depth was 30X. Reads fil-
tered onquality andwere aligned to theDasNov3.0genome fromNCBI
using BWA54. Variants were called from the BAM files using the GATK
Unified Genotyper55 following best practices for DNA variant calling56

(Supplementary Fig. 6).

Armadillo personal genome generation
We used g2gtools (unpublished, https://github.com/churchill-lab/
g2gtools v0.2.0) to generate a personal quadruplet genome for each
quadruplet set. We first created VCI files of the SNPs and INDELs using
the g2gtools vcf2vci with the –pass and –quality tags. This is an
indexed version of the VCF file required by g2gtools. Homozygous
(alternate) SNPs and INDELs that passed quality control were kept.
SNPs were incorporated into reference genome FASTA file using the
g2gtools patch command. INDELs were then incorporated into the
patched genome with the g3gtools transform command. A chain file
was generated using the g2gtools vcf2chain command. We updated
the genome annotation file (liftover) using the new genome with the
g2gtools convert command. As the genome of the armadillo is not
assembled beyond a large number of scaffolds, the patches and
transformations were done per scaffold. Once completed, we con-
catenated all the scaffold FASTA files back into one. With these five
personal genomes, we generated individual STAR indices. Using sam-
tools (v.1.9), we generated index files for the new genomes, and dic-
tionary files with picard from GATK (v3.6.0)55.

Armadillo personal genome mapping and allele specific
expression analysis
Following quality control, we mapped reads from each quadruplet to
their personal genome with STAR (v2.7)53 (Supplementary Table 5).
The resulting bam files were then run throughGATK’s v3 best practices
pipeline56 to filter for quality alignments. Briefly, the pipeline involves
adding read groups, marking duplicates, and then splitting and trim-
ming based on CIGAR. A WIG file was then built using the count
command in IGVTools (v2.3.80)57. We then generated a VCF file with
the heterozygous and homozygous (alternate) SNPs for each quad-
ruplet. This VCF file was converted to a BED file, and then liftover to
update the coordinates to the personal genome. This was then con-
verted back to a VCF file. The SNPs (VCF) and counts (WIG) were then
overlapped to obtain allele specific counts. Once again these were all
performed on individual scaffolds, and recombined at the end of the
analysis, which allowed for parallelization of the pipeline.

Defining the armadillo X-chromosome
As the genome of the armadillo is unassembled, we constructed the
X-chromosome by identifying which scaffolds were most syntenic to
mammalian X-chromosomes. As the X-chromosome has high synteny
between mammalian species (e.g., mouse and humans 95%, Supple-
mentary Fig. 7), we used alignments of armadillo scaffolds to the
X-chromosome of both human andmouse. We used the UCSC58 chain/
liftover files between the armadillo genome and the human (hg38) and
mouse (mm10) genomes. We extracted the scaffolds from these files
that align to the respective Xs of the species. There were over amillion
human alignments (1,231,264) to around 2K armadillo scaffolds
(Supplementary Fig. 8). The largest and most overlapping to the
human X was scaffold JH573670.1, but holds no annotated human X

homologs. To the mouse, there were less than a million alignments
(873,607) to around 1.6 K armadillo scaffolds. The largest is once again
scaffold JH573670.1. We included smaller scaffolds with a high overlap
(90% alignment) with the human and mouse X as the remaining
potential X scaffolds.We consider these scaffolds to representmost of
the X-chromosome of the armadillo. As a final X identifier, we located
an XIST homolog which is not annotated in the current annotation.
Using the human XIST sequence (NC_000023.11), we performed a
BLAST59 search on the armadillo genome. Of the 16 hits that were to
annotated armadillo genes, we then performed a reverse BLAST on the
human genome to find the reciprocal top hits. The two genes
(ENSDNOG00000033080 and ENSDNOG00000047775) match to
two XIST exons, and both these genes belong on the same armadillo
scaffold (JH583104.1) and are within a few 100Kbp (Supplementary
Table 6). These two genes were also hits using the mouse Xist
(NC_000086.7, Supplementary Table 7). Using these genes as place-
holders, we could derive the rest of XIST from the read pileups (Sup-
plementary Fig. 9). The locus is JH583104.1:145,010-175,550.

Building functional annotation sets for the armadillo
Currently, no gene functional annotations exist for the armadillo. We
used the gene annotations from Ensembl52 to generate a gene ID map
between human and armadillo homologs. From the total of 33,374
coding and non-coding genes and transcripts annotated for the
armadillo, there are 13,492 human homologs. In close parallel to the
GO60 annotation project’s ownprocess, we built an armadillo ontology
using human gene-GO annotations61. Within our current mapping, on
average, each armadillo gene belongs to ~85 GO groups, and each GO
group has on average ~56 genes.

X-chromosome inactivation analysis and cell number estimates
For every female armadillo, we estimated the X inactivation ratios of
genes with alleles. For this, we took the variants called on the X scaf-
folds. For each gene, we combined the three timepoints by adding the
count data. Since we do not have phasing information but wished to
summarize the allelic ratios to a single gene,we took themostpowered
SNP (that with the most reads) as the representative SNP and calcu-
lated the allelic ratio as

ASEg = rg=cg ð1Þ

where ASEg is the allelic ratio for gene g, rg is the number of reads
mapping to the reference allele, and cg is the total read count. The
gene ratiosASEg were then used to estimate the X skewing ratio for the
individual female armadillos. For each individual i, we fitted a folded
normal to the ratios fASEggg2chrX andused themaximum log likelihood
estimate to obtain the estimated overall folded skew f i Finally, we took
the variance of the estimated unfolded skew values f1� f i, f igi2f emales

to estimate the number of cells (N) in the original starting pool62. The
formula for the variance of a binomial distribution was used. Since we
assume that the probability of a cell inactivating either X is 0.5,
p = q =0.5 so the formula becomes:

N =
pq

Variance
ð2Þ

N =
1

4Variance
ð3Þ

Detecting allelic imbalance
To detect SNPs with significant allelic imbalance, we modeled the ASE
of the specific SNP g from one of the alleles using the binomial
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distribution as follows

Binom k, cg , pg

� �
=

cg
k

� �
pk
g 1� pk

g

� �cg�k
ð4Þ

where k is the amount of sequencing reads that contain the reference
allele for g, cg is a total read count overlapping the genomic locationof
g, and pg is the probability that the expressed mRNA is transcribed
from one of the alleles with g. Because all individuals within the
quadruplet are genetically identical, we assume the null model in
which no epigenetic canalization occurred and pg is shared within the
quadruplet. pg for each quadruplet was estimated in two different
ways; one is the ratio of ASE by pooling all sequencing reads from the
quadruplet and another is the average of the ASE ratios computed for
each individual. Because pg values estimated in thoseways were highly
correlated (Pearson correlation coefficient = 0.989), we only show the
results for pg estimated by the pooling method.

To test the deviation from the null model that all four individuals
have an identical ASE ratio pg (no canalization at any stages), we used
Fisher’smethod to combine the p-values computed for each individual
as follows:

�2
X4
i = 1

lnP k ≤ ki, cg , pg

� �
ð5Þ

where ki represents the observed ASE for the ith individual. While
Fisher’s method is known to follow a χ2 distribution, the observed
distribution was largely different from the expected null distribution.
Several reasons may explain this phenomenon, such as reference bia-
ses or stochastic sequencing errors. To obtain a more conservative
result, we sampled ASE ratios from the null binomial distributions
(with common parameter pg , but preserving individual coverage) for
10,000 times, generating a null distribution of Fisher statistics from
which we deduced an empirical p-value. To test the time-invariance of
ASE ratios within the quadruplet, we computed the Pearson and
Spearman correlation of a quad’s ASE ratios between the first and later
time points (Fig. 3f).

Measuring identity
As a test for individuality, we developed a machine-learning method
that tests for the relative consistency of expression across individuals
from an armadillo quadruplet across time. This is equivalent to iden-
tifying differentially expressed genes, but rather than looking between
two conditions or two individuals, it is across four. The idea here is that
differentially expressed genes in this way are indicators of identity.We
first select a feature set of genes based on correlations between two
timepoints. For each gene, we calculate the Spearman rank correlation
between the values across a quadruplet for one time point and a sec-
ond timepoint. If the rank ordering is consistent (i.e., the correlation is
1), then this gene is selected as a feature gene. We then test for con-
sistency in the third time point. As the first two time points are per-
fectly correlated, these genes form the training set, and the left out
timepoint is the test set. A gene scoringmatrix (4 by4) is built per gene
by comparing the ordering of the test and training data. Each indivi-
dual gives a scoreof 1 to the test data individual it thinks it is (i.e., which
rank it matches), and a 0 otherwise. We then sum all the feature gene
scoring matrices to produce an aggregate scoring matrix. Then, in a
winner takes all strategy, we calculate a score which represents the
number of armadillos that correctlypredict themselves. Thefinal score
is between 0 and 4, with 4 as perfect predictability i.e., each armadillo
correctly identifies its future (or past) self. We repeat this three times,
using the first and second time points as training, the first and third,
and finally the second and third, and then testing in the left out time
point. We average this across time points to get quadruplet specific
scores, and also across all to get afinaloverall score for the analysis.We

calculate an analytic p-value for this score by convolution of the
expected distributions. We calculate an empirical p-value by repeating
the learning task on randomly selected genes.

Minimum requirements to detect allelic imbalance
To determine the requirements for detecting SNPs with canalized
allelic imbalance, we performed an in silico assessment of the SNP
discovery with a wide variety of experimental conditions. We used five
parameters as controlled variables; coverage of total read counts for
each SNP of each individual (coverage), ratio of canalized SNPs (ratio),
statistical replicates to reduce the randomnessof AUROCs (N), number
of armadillo quadruplets, and number of cells at the timing of canali-
zation (cell). In our simulations, each SNP is assigned to be either
canalized or randomly sampled from both alleles. For canalized SNPs,
we first sampled the background (canalized) ASE level for each indi-
vidual from a binomial distribution with p =0.5 and n = cell. We then
sampled haplotype specific reads from a binomial distribution with p
as determined in the previous step and n = coverage. Next, for each
quad,we computed ap-valueby extracting the two individualswith the
minimum and maximum ASE ratios, then testing for equal ASE ratios
using the chi-squared test (and Fisher’s exact test if the minimum read
count is 5 or fewer). For non-canalized SNPs, we sampled p-values
directly from the uniform distribution on the [0,1] interval. The p-
values were then converted into False Discovery Rates using the Ben-
jamini and Hochberg procedure63. The significance of the ASE bias for
each SNP was judged according to the minimum adjusted p-values
across multiple quads. Finally, we summarized performance as an
AUROC by framing results in a binary classification setting, asking how
well the minimum adjusted p-values were able to predict the ground
truth SNP status (canalized/random).

Empirical models to estimate genes and lineage
From the identity analysis, we estimate the number of genes that could
drive the signal through a series of empiricalmodels. In ourfirstmodel,
we simulate our allelic identity experiment. We took the underlying
allelic expression data and added a proportion of variance to a fraction
of the genes.We then calculated the average identity performance.We
then convert the variance of the underlying data to a number of cells
estimate by extending the analysis from theX inactivation estimate. To
summarize, we assume that autosomal genes that display allelic
imbalances are under regulatory control and are being expressed
either monoallelically (some cells express one or the other), or dif-
ferentially (one allele is expressed at a higher or lower amount). We
also assume that this is persistent across time, such that once a cell is
committed to expressing an allele, its lineage will continue to express
this allele at a similar or equal amount.We also assume that this choice
is random in apool of cells at the same time.With these inmind,wecan
estimate the number of cells and the fraction of the genome that gives
rise to the performance observed.

Haplosufficiency modeling
To model the relationships between hetero- and homozygous muta-
tions and disease appearance, we used the combination of a binomial
distribution and a cumulative beta distribution. Let μ be the probability
of the occurrence of a disease-related SNP across the population. We
assume random mating in the parental generation so that each allele is
inherited independently with probability μ, such that the fraction of
homozygous and heterozygous individuals is defined as μ2 and
2μ 1� μð Þ, respectively. In our model, the individuals with homozygous
alleles are assumed to always show the disease phenotype. On the other
hand, the phenotype for heterozygous individuals depends on their ASE
level, which is randomly drawn from a binomial distribution with p=0:5
and a fixed population size c representing the number of cells at the
timing of X chromosome inactivation or any canalized regulation event.
To model disease penetrance, we used the cumulative beta distribution
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with parameters α =4 and β = 1, corresponding to increasing likelihood
to develop the disease for higher ASE levels (Fig.4A). Note that we set
Beta 0,α,βð Þ=0 to be consistent with the case that no disease pheno-
type is shown in the absence of transcripts from the disease-causing
allele. Finally, the probability of showing a disease phenotype for a
heterozygous individual is obtained by

P Disease, c, pjHeterozygousð Þ=
Z c

0
Binom x, c, pð Þ

Z q

0
Beta y, α, βð Þdy dx

ð6Þ

where x corresponds to the number of cells expressing the disease
allele and qð= x=cÞ is the ASE level. We computed an approximated
probability by computing the above sum for each q from 0 to 1 with
the step 0.000001 (using the average of Binom qc, c,pð Þ and
Binom ðq� 0:000001Þc, c,pð Þ). Considering the probability of
occurrence of the hetero- and homozygous genotypes, the ratio
of disease individuals across the population is obtained
as P Disease, c,μð Þ=μ2 + 2μ 1� μð ÞPðDisease, c,pjHeterozygousÞ.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are available in the main text, source data, or the supplemen-
tary materials. The accession numbers for the sequencing datasets
reported in this paper have been deposited in Gene Expression
Omnibus (GEO) under GSE141951 and Sequence Read Archive (SRA)
under SRP233269. Source data are provided with this paper.

Code availability
Source code is available onGitHub andhas been archivedbyZenodo at
https://doi.org/10.5281/zenodo.8433151.
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