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Strong protective effect of the APOL1
p.N264K variant against G2-associated focal
segmental glomerulosclerosis and kidney
disease

A list of authors and their affiliations appears at the end of the paper

AfricanAmericans have a significantly higher risk of developing chronic kidney
disease, especially focal segmental glomerulosclerosis -, than European
Americans. Two coding variants (G1 and G2) in the APOL1 gene play a major
role in this disparity. While 13% of African Americans carry the high-risk
recessive genotypes, only a fraction of these individuals develops FSGS or
kidney failure, indicating the involvement of additional disease modifiers.
Here, we show that the presence of theAPOL1 p.N264Kmissense variant, when
co-inheritedwith theG2APOL1 risk allele, substantially reduces thepenetrance
of the G1G2 and G2G2 high-risk genotypes by rendering these genotypes low-
risk. These results align with prior functional evidence showing that the
p.N264K variant reduces the toxicity of the APOL1 high-risk alleles. These
findings have important implications for our understanding of the mechan-
isms of APOL1-associated nephropathy, as well as for the clinical management
of individuals with high-risk genotypes that include the G2 allele.

African Americans develop kidney disease at a rate five times higher
than European Americans1. Two African ancestry-associated variants
(G1 and G2) in the apolipoprotein L1 (APOL1) gene constitute major
contributors to this disparity. APOL1 is a component of the innate
immune system targeting African trypanosomes, and the G1 and G2
variants likely rose to high population frequency by conferring resis-
tance to Trypanosoma brucei rhodesiense (particularly G2) and Trypa-
nosoma brucei gambiense (exclusively G1)2,3. However, the putative
evolutionary benefits come at a cost of increased lifetime risk for
kidney disease in individuals with two copies of these variants (i.e., G1/
G1, G2/G2, or G1/G2, identified as APOL1 high-risk genotypes). This is
thought to be mediated by the ability of G1 and G2 variants to form
cation-selective channels in podocytes resulting in subsequent acti-
vation of cytotoxic pathways4–6. This predisposes to progressive kid-
ney disease, with odds ratios for hypertension-associated end stage
kidney disease (ESKD), focal segmental glomerulosclerosis (FSGS), and
HIV-associated nephropathy exceeding 7, 17, and 30, respectively,
when comparing APOL1 high-risk (APOL1-HR, i.e., individuals carrying

either the G1/G1, G1/G2, or G2/G2 genotypes) to low-risk (APOL1-LR)
genotypes3,7.

The number of at-risk individuals forAPOL1-associated FSGS and
kidney disease is considerable. In the United States, it is estimated
that 13% of African Americans carry two high-risk alleles8, and in
certainWest African populations, the rate of high-risk genotypesmay
be as high as 20–25%8,9. Approximately 15% of individuals with an
APOL1-HR genotype will develop ESKD, and a smaller fraction, esti-
mated at 5%–8%, will develop FSGS8. Due to the high frequency of
these genotypes, we estimate that at least 200,000 individuals in the
US have APOL1-associated FSGS. The incomplete penetrance of
APOL1-HR genotypes is thought to reflect the requirement for dis-
ease modifiers that potentiate APOL1 cytotoxicity. A number of
“second hits” have been proposed, with the most commonly recog-
nized being high-interferon states (which result in increased APOL1
expression), either due to direct interferon administration, or caused
by viral infections (e.g., HIV, SARS-CoV-2)10,11. Genetic modifiers have
been suggested but, to date, the identification of modifier genetic
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variants for APOL1-mediated kidney disease and, particularly, FSGS,
remains elusive. The few reported in the literature still require
validation12,13.

In 2019, we studied the cytotoxic effect ofmultiple naturally and
non-naturally occurringAPOL1haplotypes in experimental cell-based
systems. We found that the toxicity of G1 and G2 alleles was sub-
stantially reduced when expressed on the haplotype defined by
the APOL1 missense variant p.N264K (chr22:36265628C > A;
rs73885316)14, also associated with a partial loss of trypanolytic
function15. These data suggested, at a functional level, a protective
effect for this variant against the deleterious cellular effects of the G1
and G2 APOL1 risk variants. The p.N264K defines one of the common
G0 (non-risk) APOL1 haplotypes, which is more frequent in indivi-
duals of European ancestry, but it is also present on a small fraction
of G2 haplotypes in absence of G0, indicating two independent
mutational events during evolution only on these two haplotypes.
The p.N264K is therefore expected to be mutually exclusive with the
APOL1 G1 allele.

In this work we show a strong protective role of the APOL1
p.N264K variant against APOL1-related FSGS and CKD, in the context
of high-risk G2-containing genotypes of African origin. Therefore, this
variant, based on prior functional and current genetic data, counters
the toxic effect of the G2 allele, allowing the reclassifying of APOL1
high-risk individuals as non-high-risk if they carry the p.N264K mis-
sense variant.

Results
To test the hypothesis that the G2-p.N264K haplotype differs in its
genetic impact from the more common G2 risk allele without the
p.N264K variant, we sought to compare its frequency in APOL1-HR
subjects with FSGS to APOL1-HR controls without kidney disease
(Fig. 1A). First, to eliminate potential confounding by the p.N264K
haplotype defined by the more common APOL1 non-risk G0 allele, we
excluded all individuals with non-risk, G0-containing genotypes, i.e.,
G0/G0, G0/G1, and G0/G2. We studied two case-control FSGS dis-
covery cohorts: the first consisted of 434 APOL1-HR FSGS cases and
2398 genetically matched APOL1-HR population controls subjected to
Illumina DNA microarray genotyping and imputation; the second
included 94 APOL1-HR FSGS cases and 208 genetically matched
APOL1-HR controls with whole genome sequencing data (Supple-
mentary Fig. 1), for a total of 528 FSGS cases and 2606 population
controls with no known kidney disease. Next, in order to investigate
the impact of the p.N264K variant, we conducted a comprehensive
analysis only on APOL1 high-risk individuals, employing categorical
approaches (based on allelic frequency) and, as sensitivity analysis,
regression-based (based on genotypes) statistical tests. The primary
analysis was conducted on categorical variables using a
Cochran–Mantel–Haenszel (CMH) test and considering potential
confounding factors such as sex and array-based vs sequence-based
genotyping. We then conducted a set of sensitivity analyses: first, we
used Firth’s regression test and also incorporated principal

Fig. 1 | Protective effect of the APOL1 p.N264K missense variant against G2-
associatedFSGS.AGraphical representation of the studydesign, cohorts andmain
results of the study. Stratified association analysis of the combined cohort of 528
APOL1 high-risk FSGS and 2606 genetically-matched APOL1 high-risk controls:
B stacked bar plot for the p.N264K MAF across APOL1-HR genotypes in cases and
controls; the Allele C is the reference allele encoding for the p.N264; the Allele A is
the minor allele resulting the p.K264 variant amino acid; C Forest plot for the
p.N264K association analysis showing significantly protective odds ratios across
APOL1 high risk (G1G1, G2G2 andG1G2) genotypes. Theplotdescribesodd ratioand
confidence interval for HR (OR =0.067), G1G2 (OR =0.136), G2G2 (OR =0) and

G1G2 +G2G2 (OR=0.081). The P values were obtained separately for aforemen-
tioned individual risk alleles using two sided Cochran-Mantel-Haenszel chi-squared
test without multiple correction across the alleles (See Methods). No OR or CI for
the G1G1 genotype (263 cases, 991 controls) are shown in forest plot because the
p.N264Kwas absent in both groups (the APOL1G1 and p.N264K alleles aremutually
exclusive), resulting in undefined OR, infinite CI, and a p-value of 1. FSGS focal
segmental glomerulosclerosis, CKD chronic kidney disease, ESKD end-stage kidney
disease, AF allele frequency, Ctrls controls, OR odds ratio, CI = 95% confidence
interval, MAF minor allele frequency. The cartoon in (A) has been created using
BioRender at www.biorender.com.
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components (PCs) as covariates in order to account for potential
residual population stratification; second we conducted haplotype-of-
origin analysis using Tractor16.

In our APOL1- HR FSGS cohorts, we observed a strong protective
effect for the p.N264K minor allele ‘A’ (MAF cases = 0.19% and MAF
controls = 2.7%, OR =0.07, 95%CI = 0.01–0.25, CMH test P = 3.4 × 10−9)
as compared to APOL1-HR controls. Stratifying the cohort for the three
APOL1 high-risk genotypes showed that this variant was only observed
within APOL1-HR individuals carrying the G2 allele (i.e., G1/G2 and G2/
G2) and, as expected, never in G1/G1 subjects (Fig. 1, Supplementary
Fig. 2). These findings support a protective effect of the p.N264K
variant only in the context of G2-containing APOL1-HR genotypes. In
fact, the p.N264K variant seemed to confer complete protection
against FSGS as it was never observed in cases in the presence of the
G2/G2 genotype: OR =0, 95%CI 0–0.41; CMH test P = 4.4 × 10−4. A
strong and significant protective effect was also observed for the G1/
G2 genotype with a p.N264KMAF of 3.57% in controls as compared to
0.49% in cases (OR =0.14, 95%CI:0.16–0.52; CMH test P = 4.0 × 10−4).
Consistent with these findings, analyzing individuals with G1/G2 or G2/
G2 genotypes combined increased the level of statistical significance
for the p.N264K protective effect (OR =0.08, 95%CI 0.01–0.3, CMH
test P = 2 × 10−7).

The FSGS case-control samples were well-matched on principal
component analysis (PCA) (Supplementary Fig. 1). In fact, our sensi-
tivity analyses that additionally adjust for population structure con-
firmed the results obtained by CMH, as Firth’s regression tests
supported the strong protective effect of the p.N264K variant against
FSGS with comparable effect sizes (Supplementary Fig. 2).

As expected from population distribution of haplotypes, in the
context of APOL1-HR genotypes, the p.N264K is limited to G2-
containing genotypes (i.e., G1/G2 or G2/G2). Nevertheless, a recombi-
nation event between the p.N264K and the G1 or G2 alleles (although
very unlikely given the proximity of these APOL1 alleles), could result
in contamination from the European G0-p.N264K haplotype due to
local ancestry admixture. To evaluate this scenario, in our final sensi-
tivity analysis we conducted haplotype-of-origin analysis in the dis-
covery cohort using Tractor16, a statistical framework that
deconvolutes the local haplotypes into ancestral (in this case European
and African) haplotypes. This confirmatory analysis showed a sig-
nificant protective effect of the p.N264K variant exclusivelyoriginating
from the African haplotype (OR =0.10, 95%CI = 0.02–0.29,
P = 1.3 × 10−7), while the European haplotype was non-significant
(OR(ADJ) = 0.74, 95%CI = 0.00–11.37, P = 0.85) despite larger sample
size (Supplementary Fig. 3). Again, stratifying for G1/G2 or G2/G2 fur-
ther validated the G2-specific protective effect of the p.N264K variant
for theAfricanhaplotype (OR =0.12, 95%CI = 0.02–0.35, P = 3.53 × 10−6)
but not for the European haplotype (OR(ADJ) = 0.76,
CI = 0.00–12.75, P =0.86).

Overall, these results support a strong protective effect of the
APOL1 p.N264K missense variant against APOL1-associated FSGS, but
this effect occurs exclusively on G2-containing APOL1 high-risk geno-
types of African origin. In practical terms, based on these analyses,
APOL1-HR individuals are at least 8.3 times less likely todevelop FSGS if
they carry one copy of the p.N264K missense variant.

Finally, to test the generalizability of these findings to milder
forms of APOL1-associated kidney disease, we investigated the pro-
tective effect of theAPOL1p.N264K in individuals from theREasons for
Geographic and Racial Differences in Stroke (REGARDS)17 and Elec-
tronic Medical Records and Genomics Phase III (eMERGE-III)18 studies.
In aggregate, these cohorts included 1573 APOL1-HR individuals with
available kidney function data. Of these, 276 had CKD stage 3
(REGARDS, N = 150; eMERGE-III, N = 126) or worse (considered as
cases), and 1297 genetically-matched APOL1-HR controls (REGARDS,
N = 893; eMERGE-III, N = 404) with estimated glomerular filtration rate
(eGFR) > 60ml/min/1.73m2 (Supplementary Fig. 4A, B). Despite the

smaller sample size, milder form of APOL1-associated kidney disease,
and incomplete clinical data to classify and exclude unrelated causes
for CKD in these cohorts, the findings revealed a direction-consistent
protective effect for the p.N264K variant among individuals with the
G2-APOL1-HRgenotypes, bywhichp.N264Kcarrierswere 3.3 times less
likely to have CKD3 or worse (OR =0.30, 95%CI: 0.11–0.83, CMH
P =0.023, Supplementary Table 2 and Supplementary Fig. 4C), with
this likely representing an underestimation due to confounders as
mentioned above.

Discussion
Here we report on the strong protective effect of the APOL1 p.N264K
missense variant against G2-mediated FSGS and kidney disease. These
findings are also supported by a recent report from theMillion Veteran
Program, reporting reduced risk for CKD and ESKD in APOL1-HR
individuals with this variant19. These results have immediate and broad
implications for translational research and clinical practice. First, from
the genetic standpoint, it is important to note that we observed a very
large effect of p.N264K onmitigating the consequences of the G2 risk
allele but saw no evidence of this variant on the more common G1 risk
allele. As consequence, because p.N264K and G1 alleles are mutually
exclusive, this finding raises the possibility of additional genetic
modifiers specific to G1 and, in general, identifiable by considering
genotype-specific APOL1 studies. In addition to studies of the APOL1
high-risk genotype as a single genetic driver, analyses conducted by
partitioning cohorts into the three specific APOL1 high-risk genotypes,
although might require larger sample sizes, are likely to provide sig-
nificant additional insight into the genetics and underlying biology of
APOL1-associated FSGS and kidney disease. Second, our genetic
observations are in agreement with our previous functional studies
showing that the p.N264K variant is able to reverse the cytotoxic effect
of both G1 and G2 risk variants in cell-based assays14. Therefore, con-
ceptually, it may be best to regard the p.N264-G2 and p.K264-
G2 simply as different alleles that encode different proteins. As such,
they likely adopt different conformations and/or have different activ-
ities at the protein level. This will become clearer as we learn more
about the APOL1 protein structure(s) in the future.

Taken together, these data support the hypothesis that the
p.N264Kmissense variant negates the toxic effect of the G2 allele, and
will allow the reclassification of a fraction of APOL1 G1/G2 or G2/G2
high-risk individuals as having a non-high-risk genotype if p.N264K is
also present. This discovery has substantial, immediate, and clinically-
relevant implications. First, individuals affected by CKD or ESKD with
APOL1 G1/G2 or G2/2 high-risk genotypes but with the p.N264K mis-
sense variant are unlikely to have APOL1-associated FSGS, and there-
fore an additional cause (immune, toxic, structural, or others) should
be investigated because this will likely result in a different therapeutic
approach. Second, importantly, in kidney transplant settings, these
results can significantly affect donor selection and both donor kidney,
and recipient graft, outcome. In fact, APOL1 G2-HR donors who are
p.N264K positive will likely have kidney outcomes similar to any of the
G1G0, G2G0, and G0G0 low-risk donors, thus expanding donors’ pool;
kidney transplant recipients of a APOL1-HR-p.N264K kidney will likely
have low risk for developing de novo FSGS on the graft or graft failure
from APOL1-associated kidney disease. Third, incorporation of this
knowledge will allowmore accurate study design for new intervention
trials by which individuals with APOL1-HR-p.N264K genotypes should
not be included in the intervention arm as cases since this genotype is
genetically and functionally a low-risk genotype. Finally, the knowl-
edge presented here will affect family risk stratification and planning,
and, in general, CKD risk ascertainment at the population level.

Methods
Written informed consent was collected from all participating patients
seen at Columbia (and collaborating Institutions) and/or their
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guardians in accordance with the Columbia University Institutional
Review Board (Protocol AAAC7385) and the policy on bioethics and
human biologic samples of AstraZeneca. All internationally recruited
patients and/or their guardians were consented according to the
Declaration of Helsinki and in compliance with the local ethic com-
mittees, as part of the parent IRB protocol approved at Columbia
University.

FSGS cohorts, controls, genotyping and imputation, and
association tests
FSGS case-control cohort 1: The cohort consisted of 434 FSGS APOL1-
HR cases (Supplementary Table 1) and 2398 APOL1-HR controls. The
genotyping of the cases was performed using multiple versions of the
IlluminaMulti-EthnicGlobalArray (MEGA) chips (n = 196) that included
MEGA 1.0, MEGA 1.1 and MEGAEX, and the Illumina
HumanOmniExpress-12 (n = 238). The controls were genotyped on
MEGA1.0 and were selected based on genetic ancestry and APOL1
genotype status from over 50,000 individuals from the PAGE
consortium20. We extracted G1 (rs73885319) and G2 (rs71785313) from
the MEGA arrays to define APOL1 high-risk cohort. Also, the p.N264K
(chr22:36265628C >A; rs73885316) variant was included on theMEGA
arrays and hence directly genotyped, while imputed with R2 >0.8 in
the Illumina HumanOmniExpress-1221. The differences between the
chipswerecorrectedfirst bymapping all the SNPs to a commoncluster
file in Genome Studio software for individual platforms and further
using Snpflip (https://github.com/biocore-ntnu/snpflip) software. In
total, we used 767,100 SNPs as input for imputation after quality
control, which included filtration for MAF > 1%, missing SNPs <95%,
HWE (controls) P < 0.00001, and the McCarthy Group Tools (https://
www.well.ox.ac.uk/~wrayner/tools/) for strand bias and removal of
SNPs that deviated from expected allele frequency using the 1000
Genome Project. The same quality control was applied for cases from
HumanOmniExpress-12 separately.

We performed imputation on APOL1-HR cases (MEGA and
HumanOmniExpress) and controls (MEGA) together using theTopMed
reference imputation panel22. SNPs with R2 >0.8, MAF > 1%, missing
SNPs <95%, andHWE (controls)P >0.00001were retained. All analyses
were done on unrelated samples after removing the relatedness up to
two degree using KING v2.3.023. PCs were calculated using PLINK 2
based on the LD-pruned SNPs24.

FSGS case-control cohort 2: The cohort for this study consisted of
94 APOL1-HR cases (refer to Supplementary Table 1) and 208 APOL1-
HR controls, all subjected to 30X whole-genome sequencing. To
obtain the genetic data, the raw FASTQ files for the cases were aligned
to the hg19 assembly25. The alignment data underwent processing
using the DRAGEN pipeline, resulting in recalibrated GVCFs (Genomic
VCFs)26. The GVCFs were jointly called using GATK 4.3 separately for
samples from the DUKE and CureGN cohorts27. For the control group,
we included APOL1-HR samples obtained from the 1000 Genomes
Project, MESA cohort, and internal controls from the Columbia Uni-
versity Institute for Genomic Medicine28,29. Genotypes were extracted
after performing internal harmonization. Initially, all the case samples
were lifted from the hg19 to the hg38 assembly using the rtracklayer R
package30. Then, the genotypes from the cases and controls were
merged based on common SNPs.

The APOL1 G1, G2, and p.N264K variants were directly sequenced
to obtain specific genetic information. To ensure the analysis was
performed on unrelated individuals, we removed relatedness up to
two degrees using the KING v2.3.0 software. The same quality control
measures were applied to the FSGS cohort 2, as for the initial FSGS
cohort, before calculating PCs.

Statistical analyses
Stratified analysis on alleles was conducted on the two FSGS cohorts
using the CMH test statistic. The CMH test was performed using the

mantelhaen.test function in R with the exact = TRUE option31. The
cohorts were stratified based on the variables of cohort and sex for
each of the haplotypes (G1/G1, G1/G2, G2/G2) both individually and
combined.

Furthermore, Firth regression was performed separately for each
haplotype within each cohort using PLINK232. The covariates used in
the regression analysis were sex and the first two PCs. Finally, a meta-
analysis was conducted to combine the results from the two cohorts.
The fixed-effect model was utilized, considering the effect sizes and
standard errors obtained from the PLINK2 analysis33.

Ancestry resolution analysis at theAPOL1 locus onFSGS cohort 1
Phased genotypes from the first FSGS cohort were utilized after
imputation with the TOPMed reference panel. These genotypes were
employed for predicting local ancestry inference (LAI) using RFMix
v234. The LAI prediction was performed against samples harboring
common variants obtained from the 1000 Genomes Project, specifi-
cally YRI (representing the African population) and CEU (representing
the European population). The output from RFMix was subsequently
integrated into the Tractor pipeline to deconvolute ancestry-specific
dosages, variant call files), and haplotype counts for each sample and
SNP16. Within Tractor, ancestry-specific haplotype counts and dosages
for the p.N264K variant were extracted. Firth regression analysis was
conducted using the logistf R package, incorporating sex, admixture
fraction (derived fromRFMix), and haplotype counts as covariates in a
fixed effect model32. This analytical approach facilitated the assess-
ment of the p.N264K variant’s association with FSGS by incorporating
LAI, deconvolution of dosages and haplotype counts, and regression
analysis with appropriate covariates.

CKD cohorts, genotyping, and analyses
TheREGARDS study: The REGARDS study investigates the incidenceof
stroke in a population of 30,239 Black and White adults (≥45 years of
age)17. Within this study, we identified 8198 Black participants with
genotyped APOL1 risk alleles (G1 & G2) using TaqMan SNP Genotyping
Assay35 and genome-wide genotyping using the MEGA. To increase
sample size, we imputed APOL1 genotypes for an additional 534 sub-
jects using the TOPMed Imputation Server21. Using kinship analysis, we
identified and removed related samples (up to 2nd degree) between
the REGARDS and PAGE consortiums. Finally, we removed all indivi-
duals with an APOL1 low-risk genotype, i.e., G0/G0, G0/G1, G0/G2. Our
final cohort was composed of 1043 APOL1 high-risk individuals with
genotypes G1/G1 (n = 417), G1/G2 (n = 455) and G2/G2 (n = 171). The
p.N264K variant was included and directly genotyped in the MEGA
array. To compare the allele frequency of the p.N264K variant, we
stratified samples into the two following groups: cases - estimated
glomerular filtration rate (eGFR) < 60, or ESKD, or self-reported kidney
failure (N = 150); control: eGFR > 60 (N = 893). eGFR was measured
from the CKD-Epi equation.

Electronic Medical Records and Genomics (eMERGE) study: The
eMERGE network has made available electronic health record infor-
mation connected to GWAS data for a total of 102,138 individuals18.
These individuals were recruited in three phases (eMERGE-III) from 12
participating medical centers spanning the years 2007–2019. The
study cohort consisted of 54% females,with an average age of 69 years.
Self-reporteddemographics indicated that 76% identified as European,
15% as African American, 6% as Latinx, and 1% as East or
Southeast Asian.

Every individual underwent genome-wide genotyping, and the
specific procedures for genotyping, quality control analyses, and
imputation have been previously documented36. PCs were derived
using FlashPCA37 on a collection of 48,509 common variants (minor
allele frequency ≥0.01) that were independent (pruned in PLINK using
the –indep-pairwise 500 50 0.05 command). Imputation of the APOL1
variants G1 (R2 =0.998), G2 (R2 =0.995), and N264K (R2 =0.8445) was
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performed using the TOPMed imputation server, as outlined in the
referenced publication22. From this cohort, we selected 530 APOL1-HR
individuals with available kidney function data in order to classify 126
cases based on eGFR <60 (CKD3-5 or ESKD) and 404 controls (eGFR
>60), in the same way as for the REGARDS study above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information and from
the corresponding author upon request. Genome-sequencing data
from the CureGN (Accession phs002480.v3.p3) eMERGE network
phase III (Accession: phs001584.v2.p2), REGARDS (Accession:
phs002719.v1.p1), Population Architecture using Genomics and Epi-
demiology (PAGE) (Accession: phs000356.v2.p1), and MESA (Acces-
sion phs001416.v3.p1) studies is deposited in dbGaP. Illumina DNA
microarray data generated for the FSGS cohort 1 analysis was used to
extract genetic information for the p.N264K single variant analysis,
associated only to a sparsemarkersmap in order to generate principal
components for ancestry adjustments. As such, a complete genome-
wide analysis of these data has not yet been conducted and the full
data will be deposited in dbGaP at completion of the genome-wide
analyses. The deidentified individual-level DNA microarray data are
currently available to investigators upon request by contacting the
corresponding author, Dr. Sanna-Cherchi, at ss2517@cumc.co-
lumbia.edu. The corresponding author will provide an initial response
within one week from request, and the data will be shared upon
establishment of a Data Use Agreement (DUA).
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