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Accurate de novo peptide sequencing using
fully convolutional neural networks

Kaiyuan Liu 1, Yuzhen Ye1, Sujun Li1,2 & Haixu Tang 1

De novo peptide sequencing, which does not rely on a comprehensive target
sequence database, provides us with a way to identify novel peptides from
tandemmass spectra. However, current de novo sequencing algorithms suffer
from low accuracy and coverage, which hinders their application in pro-
teomics. In this paper, we present PepNet, a fully convolutional neural network
for high accuracy de novo peptide sequencing. PepNet takes an MS/MS
spectrum (represented as a high-dimensional vector) as input, and outputs the
optimal peptide sequence along with its confidence score. The PepNet model
is trained using a total of 3 million high-energy collisional dissociation MS/MS
spectra from multiple human peptide spectral libraries. Evaluation results
show that PepNet significantly outperforms current best-performing de novo
sequencing algorithms (e.g. PointNovo and DeepNovo) in both peptide-level
accuracy and positional-level accuracy. PepNet can sequence a large fraction
of spectra that were not identified by database search engines, and thus could
be used as a complementary tool to database search engines for peptide
identification in proteomics. In addition, PepNet runs around 3x and 7x faster
than PointNovo and DeepNovo on GPUs, respectively, thus being more sui-
table for the analysis of large-scale proteomics data.

The past decade has witnessed great advances in mass spectrometry
techniques, particularly liquid chromatography coupled tandemmass
spectrometry (LC-MS/MS). With enhanced throughput and sensitivity,
LC-MS/MS has become one of the most widely used approaches to
functional studies of proteins at the whole proteome scale across
various physiological (e.g., diseases) conditions in higher organisms
including humans.

In a typical proteomics experiment, after MS/MS spectra are
acquired, the first and arguably most important step is to identify the
peptides from these spectra. Numerous algorithms have been devel-
oped to address this problem, which mostly fall into three categories:
protein database searching, spectral library searching, and de novo
sequencing. Protein database searching is the predominant approach
used for peptide identification. The peptide sequence tagmethod1 and
the Sequest algorithm2 were the early algorithms of this category.
More recent developments include Mascot3, X!Tandem4, OMSSA5,
MyriMatch6, Protein Prospector7,8 and MSGF+9. Those methods

compare the experimental spectra with the theoretical spectra gen-
erated from the peptides in a protein database and report those likely
true peptide-spectrum matches (PSMs).

By contrast, the spectral library search approach compares newly
acquired MS/MS spectra against a library containing previously char-
acterized experimental spectra that were used in early computational
analysis10,11. Thanks to the improved repeatability and reproducibility
of MS/MS data as well as the increasing availability of massive
experimental spectra (e.g., from the proteomics data repository12 and
large-scale synthetic peptides projects13), the spectral library search
approach has becomemore increasingly adopted and is implemented
in software tools such as X!hunter14, SpectraST15 and msSLASH16.

Finally, de novo sequencing algorithms attempt toderive a peptide
sequence directly from its MS/MS spectrum without using references
such as a spectral library or a protein sequence database17. Many de
novo sequencing algorithms adopted a graph theoretical formulation
to compute the longest path in the spectrum graph by employing a
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dynamic programming algorithm18,19 and adaptive scoring schemes20–22.
With the advancement of high-resolution MS instruments, the perfor-
mance of de novo sequencing algorithms improves significantly23,24, in
particular with more sophisticated scoring schemes. More recently,
DeepNovo25–27 and its successor PointNovo28 were developed using
deep learning algorithms, which automatically learn the fragment ion
patterns relevant to peptide sequences frommassiveMS/MS spectra of
peptides and reported improved performance. These methods exploi-
ted a deep neural network (DNN) architecture to capture the depen-
dence among fragment ions in the input tandemmass spectra thatwere
subsequently used to construct the peptide in a sequential order.
Although these methods have exhibited better performance than con-
ventional de novo sequencing algorithms, we observed they can
sequence relatively fewer long peptides, in particular from charge 3+
MS/MS spectra, perhaps due to the challenge of modeling complex
long-range patterns among fragment ions. On the other hand, the
convolutional neural network (CNN) architecture adopted by PredFull29

for full MS/MS spectra prediction demonstrated the advantage of CNN
to learn complex patterns in MS/MS spectra.

In this work, we develop a deep learningmodel called PepNet that
achieves substantially improved performance for de novo peptide
sequencing from tandem mass spectra compared to previous meth-
ods. PepNet demonstrates strong performanceonMS/MSspectra data
from both human and various non-human organisms. On average,
PepNet can sequence 2.5-19x more unidentified spectra than other
tools at comparable levels of precision. These results suggest that
PepNet significantly advances the accuracy of de novo peptide
sequencing, and thus could serve as a complementary tool to database
search engines for peptide identification in proteomics.

Results
Accurate HCD-MS/MS spectra de novo sequencing by deep
learning
We present a deep learning algorithm, PepNet, that directly outputs the
peptide sequence fromagivenHCD-MS/MS spectrawith high accuracy.
As depicted in Fig. 1, the input for our model is a 20,480× 4matrix that
represents the input spectrum (for details see theMethod section). The
input matrix will go through five continuing temporal convolutional
network (TCN) blocks30 and down-sampling layers to capture the rela-
tionships between observed peaks, as depicted in the TCN branch of
Fig. 1. These five TCN blocks work on different resolution levels, cap-
turingglobal and local informationof the spectra, andamergingbranch
(bottom-up branches in Fig. 1) is used to fuse the global and local
information into a single feature tensor. The feature tensor is then
converted by a softmax decoding layer into a probability matrix of size

32 × 23, in which each column contains the softmax probabilities of the
target amino acid at the corresponding position in the peptide (as
illustrated in Supplementary Fig. S1). Here, the 32 columns in the
probabilitymatrix represent the up to 30positions in the target peptide
(which of a maximum length of 30), one ending character, and one or
more padding characters. The 23 rows represent the one-hot prob-
ability of the following characters: 20 characters of standard amino
acids (at that position), one starting character (reserved for compat-
ibility but not currently used), one ending character, and one padding
character. From the final probabilities matrix, we derive the optimal
peptide sequence by choosing the amino acid with the highest prob-
ability at each position. Additionally, the feature tensor is also sent to
several relatively easy auxiliary tasks (auxiliary tasks branch in Fig. 1) to
guide and regularize the target de novo sequencing task.

It is worth noting that, we do not force the model to output a
peptide that has the matched precursor mass; instead, we design the
loss function to encourage the model to output the peptide sequence
containing asmany correct amino acids as possible. This approach can
prevent the model from outputting a peptide that has the desirable
amino acid composition, but neglecting the sequence information in
the input MS/MS spectrum, in particular during the early stage of the
training process when themodel has not learned sufficient knowledge.

We collected the HCD spectra from multiple peptide spectral
libraries to build our learning dataset, which is split into three sets of
training, validation, and testing. Here we retained spectrawith charges
of 1+ to 8+ and from peptides of length no longer than 30, which
resulted in 3,041,570 HCD-MS/MS spectra from 1,066,296 distinct
peptides (see the Method section for details). We then employed two
independent proteomics datasets to evaluate the performance of
PepNet, in which we excluded all spectra that shared the same pep-
tides as our learning dataset. We implemented PepNet using
Tensorflow31 and trained it using the RAdamoptimizer32 for 50 epochs
(using a learning rate of0.02). The entirePepNetmodel contains about
77 million parameters. Notably, we did not distinguish spectra that
were acquired by different types of instruments during training and
testing, as we observed that the HCD spectra acquired using different
instruments (e.g., Orbitrap, Fusion, or Q-Exactive) could all be
sequenced with high accuracy using a singlemodel. PepNet is released
as open-source software atGitHub (https://github.com/lkytal/PepNet).
It is also available online at https://denovo.predfull.com/.

Evaluation criteria
Weevaluated the performance of PepNet over two proteomics datasets.
For these datasets, we re-used the database search results from the
original publication (which was conducted using MaxQuant33), and only
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Fig. 1 | The Neural Network Architecture of PepNet. The PepNet Network uses a
series of temporal convolutional network (TCN) and down-sampling layers to
encode the input MS/MS spectrum, from which the global and local information in

the spectrum is fused into a single feature tensor and then decoded into the pep-
tide sequence.
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preserved results with a false discovery rate (FDR) no greater than 1%
and with a precursor mass difference no greater than 10 ppm as the
ground truth. Then we computed two measurements to evaluate the
accuracy of the de novo peptide sequencing: the positional accuracy,
defined as the fraction of correct amino acid residues reported by de
novo sequencing algorithms, and the peptide-level accuracy, defined as
the fraction of spectra that the sequenced peptides are completely
correct. Note that for both measurements, we do not distinguish the
amino acids of Leucine (Leu) and Isoleucine (Ile). These two accuracy
measurements, aswell as the Precision-Coverage curves of PepNet, were
compared with the current state-of-the-art de novo peptide sequencing
algorithm PointNovo26 and its predecessor DeepNovo25. Finally, we
present here only the de novo sequencing of 2+ and 3+ HCD spectra of
unmodified peptides as they are most common in shotgun proteomics
data, although thismodel can sequence spectraofother charges (charge
1+ to 8+), and could be easily extended to sequencing spectra from the
peptides containing common post-translational modifications (PTMs).

In the following sections, we report the performance of PepNet in
comparison with DeepNovo and PointNovo on a large-scale human
proteomics dataset and a large-scale dataset acquired from multiple
non-humanorganisms.Wefirst compare their accuracyon the subset of
spectra identified by MaxQuant in these datasets to show that PepNet
achieves higher sequencing accuracy, and then show that PepNet can
sequence more peptides than the other two tools (under the cutoffs
corresponding to the sameprecision level) on thoseMS/MSspectra that
were not identified byMaxQuant. All evaluations were conducted on an
8x NVIDIA A6000 server. Notably, when executed on a single NVIDIA
A6000GPU, PepNet can sequence 10,000 spectra in about 59 seconds,
which is around 3 times faster than PointNovo (about 161 seconds) and
over 7 times faster than DeepNovo (about 431 seconds).

Performance evaluation on a large-scale human proteomics
data set
We first evaluated the performance of PepNet using the HCD spectra
from a large-scale human proteomics project (ProteomExchange ID:

PXD019483) in comparison with PointNovo and DeepNovo. In this
section, we report the de novo sequencing results on the subset of
identified spectra from the original study34, while the de novo
sequencing results on the remaining unidentified spectra are reported
in a separate section below. After filtering, 393,206 charge 2+ and
206,930 charge 3+ spectra identified by MaxQuant were preserved,
adhering to the criteria of FDR ≤ 1% and precursormass difference ≤ 10
ppm, as previously described. Note that we only use spectra of pep-
tides not present in the training dataset for testing, for a fair
evaluation.

As shown in Fig. 2, PepNet gave significantly more accurate pep-
tide sequencing than PointNovo and DeepNovo. PepNet achieved
peptide-level accuracy of 0.725 (i.e., 72.5% of identified peptides are
completely correct) and 0.450 for charge 2+ and 3+ spectra, respec-
tively. And the peptide accuracy increased to 0.776 and 0.543,
respectively, after filtering out the apparently wrong identifications
with unmatched precursor masses. On positional accuracy, PepNet
achieved 0.888 and 0.696 on charge 2+ and 3+ spectra, respectively.
All these results are substantially superior to those of PointNovo and
DeepNovo.

Also, the Precision-Coverage curves depicted in Fig. 2 demon-
strate that PepNet can sequence more peptides with higher accuracy.
Here, for each point in a Precision-Coverage curve, the Coverage
(represented in the x-axis) is computed as the fraction of ground truth
peptides covered by the sequencing results that with quality scores
above the specific threshold, while the Precision is computed as the
fraction of correctly sequenced spectra (i.e., the sequenced peptides
matching the peptides identified by MaxQuant) among all spectra
sequenced by the respective algorithm with the quality scores above
the same threshold. When applying a precision threshold of 95%,
PepNet exhibits superior performance by sequencing a much larger
fraction of spectra as compared to PointNovo and DeepNovo.
Remarkably, when the precision threshold is elevated to 99%, PepNet
can still sequence approximately 50% and 32% of peptides for charge
2+ and 3+ spectra, respectively, while neither PointNovo nor

Fig. 2 | The accuracy and the Precision-Coverage curves of PepNet, PointNovo,
andDeepNovo on the charge 2+ (upper half) and charge 3+ (lower half) spectra
in the human proteomics dataset. Here, the “Filtered Peptide Accuracy" is
referred to as the peptide-level accuracy on the sequenced peptides after removing

the sequencing results with unmatched precursor masses (i.e., over 10 ppm). The
dotted lines represent the precision levels of 0.95 and 0.99, respectively.
aAccuracyon charge2+ spectra,bPrecision-Coverage curves on charge 2+ spectra,
cAccuracyon charge 3+ spectra,dPrecision-Coverage curveson charge 3+ spectra.
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DeepNovo can reach this level of precision, resulting in no remaining
results.

We further investigated the performance of PepNet, PointNovo,
and DeepNovo on spectra from the peptides of different lengths, as
depicted in Fig. 3. Not surprisingly, the positional accuracy of PepNet
(as well as PointNovo and DeepNovo) reduced with the increasing
lengths of peptides, perhaps because 1) longer peptides are more
challenging to be de novo sequenced due to more complex frag-
mentation patterns, and 2) the training dataset contains relatively
fewer training samples of longer peptides. Nevertheless, the perfor-
mance of PepNet is consistently better thanPointNovo andDeepNovo,
especially for longer peptides.

Performance evaluation on proteomics data from non-human
organisms
Next, we evaluated the performance of PepNet on the proteomics data
collected from a variety of non-human organisms. We used the HCD
spectra from a large-scale proteomics project (ProteomExchange ID:
PXD014877) aiming to elucidate the evolutionary landscape of the
proteomes in 56 organisms including bacteria, fungi, plants, and ani-
mals. The numbers of testing spectra of each organism on the dataset
PXD014877 can be found in Supplementary Fig. S2. Similar to the
results shown above, here we report the de novo sequencing results on
the subset of identified spectra reported by the original study34 (filtered
by the criteria of FDR ≤ 1% and precursor mass difference ≤ 10 ppm).

As illustrated in Fig. 4, the performance of PepNet remains con-
sistent across various organisms, and is consistently higher than
PointNovo andDeepNovo in terms of positional accuracy. Notably, the
performance of PepNet on the proteomics data from these varieties of
organisms is comparable with the performance on the human pro-
teome data (mentioned in the above section), indicating that even
though PepNet was trained using MS/MS spectra mostly from human
peptides, the model is well-generalized for the de novo sequencing of
non-human peptides.

To further assess PepNet’s ability for sequencing peptides from
no-human organisms, we arbitrarily selected two organisms ("Sus
scrofa" and “Arabidopsis thaliana Callus", respectively), and investi-
gated if the peptides sequenced by PepNet from the proteomics data
match the proteins from the respective organism. Specifically, among
the peptides sequenced by PepNet on all spectra (including both
identified and unidentified spectra by MaxQuant) from each of these
two organisms with the score above the cutoff corresponding to the
95% peptide-level accuracy, we observed a substantial fraction (58.2%
and 47.2%, respectively) matched the peptides (with at most one

mutation) from the corresponding organisms (see Supplementary
section “Sequencing results on Selected Organisms" for details). This
result again confirms that PepNet can be used to sequence non-human
peptides.

Denovo sequencing of spectra not identified by database search
engines
In this section, we demonstrate that PepNet can identify a large fraction
of MS/MS spectra that cannot be confidently identified by the database
search engines. We applied PepNet to the subset of MS/MS spectra that
were not identified by MaxQuant in the human proteomics dataset
(ProteomExchange ID: PXD019483, as described above). We then
computed aQuality Score for each sequenced peptide as the product of
the probabilities of all amino acids in the sequenced peptide.

As PepNet, PointNovo, and DeepNovo all output an estimated
quality score for each sequencing result, we need to determine the
appropriate cutoff for each model. For a fair comparison, we choose
cutoffs for PepNet, DeepNovo, and PointNovo that allow each algo-
rithm to yield > = 95% full peptide accuracy on the identified spectra.
After removing sequencedpeptideswith unmatchedprecursormasses
or with a quality score lower than the selected cutoffs, we observed
that PepNet sequenced much more spectra (Fig. 5). On the charge 2+
spectra, PepNet sequenced 2.5x more spectra than PointNovo and 15x
more spectra thanDeepNovo. The difference is even greater on charge
3+ spectra, on which PepNet sequenced about 19x more spectra than
PointNovo, while DeepNovo sequenced almost no spectra under the
expected accuracy. While comparing the unique peptides sequenced
from these spectra, PepNet sequenced even greater folds of unique
peptides than PointNovo and DeepNovo (Fig. 5), suggesting its
superior performance for sequencing the spectra that are not identi-
fied by database search engines. Notably, the gap of performance
between PepNet and PointNovo/DeepNovo is much greater on the
charge 3+ spectra, which suggests that PointNovo and DeepNovo are
trained with the bias toward the 2+ spectra, as the 2+ spectra aremuch
more abundant in the training dataset. On the other hand, the Multi-
task Learning (MTL) strategy adopted by PepNet may contribute to its
performance on charge 3+ spectra.

To understand what kind of unidentified spectra can be
sequenced by PepNet, we search these sequenced peptides against the
UniProt human proteins database35 (20,383 human proteins) using
RAPSearch236 (also, without distinguishing amino acids of Leu and Ile).
We observed that for charge 2+ spectra, only 44,831 and 4,848 unique
peptides sequenced by PointNovo and DeepNovo matched with
human proteins in Uniprot with at most one mutation (Fig. 6 and

Fig. 3 | Impact of peptide lengthon sequencing accuracy.The positional accuracy of PepNet, PointNovo, andDeepNovo on peptides of different lengths for the spectra
of charge 2+ (a) and charge 3+ (b) in the human proteomics dataset.
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Fig. 4 | Sequencing accuracies of peptides from non-human organisms. Performance of PepNet, PointNovo, and DeepNovo are shown on the spectra of charge 2+ (a)
and charge 3+ (b) in the proteomics datasets acquired from different non-human organisms.

Fig. 5 | Numbers of sequenced spectra andpeptides.The numbers of de novo sequenced spectra and unique peptides by PepNet are shown in comparisonwith those by
PointNovo and DeepNovo on spectra of (a) charge 2+, and (b) charge 3+, respectively.
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Supplementary Fig. S4), respectively, which are only around 31.3% and
3.3% compared to those discovered by PepNet (143,553 unique pep-
tides). This is consistent with their Precision-Coverage curves (Fig. 2)
on the spectra identified by MaxQuant, as presented in the previous
section. Similar trends were observed in other comparative results
among PepNet, PointNovo and DeepNovo, such as the number of
sequenced unique peptides matching with peptides identified by
MaxQuant, the number of unique peptides matching with non-human
proteins in Uniprot, and the number of unique new peptides. For the
charge 3+ spectra, the unique peptides sequenced by PointNovo and
DeepNovo are nearly negligible. Finally and not surprisingly, most of
the peptides sequenced by PointNovo and DeepNovo that match with
human proteins in Uniprot were also sequenced by PepNet (see Sup-
plementary Fig. S5).

We further searchPepNet’s sequencing results against theUniprot
proteins database35 (568,002 proteins, including 20,383 human pro-
teins). As shown in Fig. 7, for charge 2+ spectra, 315,192 spectra were
sequencedwith peptides thatwere also identified byMaxQuant. These
spectra are likely to have relatively lower quality and thus were not
identified by MaxQuant due to the FDR cutoff. Meanwhile, PepNet
sequenced 576,603 spectra (1.47x, compared to the number of spectra
identified by MaxQuant) as the peptides that either matched perfectly
with humanproteins orwith onemutation (substitution, insertion, and
deletion). Besides, another 63,759 spectrawere sequenced as peptides
that match non-human proteins in Uniprot with at most onemutation.
While for charge 3+ spectra, the number of spectra sequenced by
PepNet is also comparable to the number obtained by MaxQuant.
These results suggest that the de novo sequencing results producedby
PepNet are complementary to the database search engines (such as
MaxQuant). Further analyses of the de novo sequenced peptides that

were not identified by database search engines may lead to the dis-
covery of additional peptides/proteins expressed in the proteome
samples, including those absent from the target protein database. For
instance, sequencing results that were illustrated in pink in Fig. 7,
represent the sequenced spectrawith high-quality scores andmatched
precursor masses but do not match any sequence in the proteins
database.

Besides the large advantage in the number of sequenced spectra
and peptides by PepNet, we observed that the average length of the
peptides sequenced by PepNet is notably longer than the average
length of peptides sequenced by PointNovo and DeepNovo (Supple-
mentary Fig. S3), suggesting that PepNet is capable of sequencing
longer (and thusmore complex) peptides, which is consistent with the
observation on the sequencing results of the spectra identified by
MaxQuant (see Fig. 3).

Finally, we expect the spectra sequenced by PepNet with high
quality scores (above 95% precision) and matched precursor masses
but notmatchingwith anyproteins inUniprot (i.e., illustrated inpink in
Fig. 7) should contain a considerable number of correctly sequenced
peptides. Because they do not match with any proteins in Uniprot, we
employed two orthogonal measurements to validate these results.
Firstly, we investigated the cosine similarity between the experimental
spectra and the “theoretical spectra" predicted by Predfull29 using the
sequenced peptides. We observed that the distribution of spectra
similarities for these newly sequenced peptides is very similar to that
of the peptides matching proteins in Uniprot, with both average
similarities around0.6 (Fig. 8).Moreover, these average similarities are
not far from the average cosine similarities between replicates of
spectra identified byMaxQuant (Supplementary Fig. S7). Secondly, we
compared the retention time of the experimental spectra and the

Fig. 6 | Peptides sequenced on unidentified spectra. The number of unique peptides sequenced by PepNet are comaredwith those by PointNovo and DeepNovo on the
unidentified spectra and their matches with the proteins in Uniprot (identical or with one mutation) for spectra of charge 2+ (a) and charge 3+ (b).

Fig. 7 | The composition of the sequencing results. The composition of the sequenced peptides on the spectra of charge 2+ and charge 3+ are shown in (a) and (b),
respectively. Here, the pull-out parts represent sequenced spectra with a matched precursor mass (≤10 ppm) and a quality score ≥ 95% precision cutoff.
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retention time of sequenced peptides predicted by DeepLC37, and
observed that they arequite similar (Supplementary Fig. S8). Together,
these results show that even though these peptides are not highly
similar to any protein in Uniprot, the quality of these sequencing
results is still comparablewith thosewithUniprotmatches, implicating
many of these sequencing results are likely to be correct. Future work
will focus on further validating these results and exploring the
potential applications of PepNet in a wide range of biological and
clinical studies.

Performance of PepNet on proteomics data from Data-
Independent Acquisition (DIA)
We further demonstrate that PepNet is also capable of the de novo
sequencing of the MS/MS spectra derived from the data acquired by
using Data Independent Acquisition (DIA). We compared the perfor-
mance of PepNet against PointNovo and DeepNovo-DIA on a dataset
acquired from a human plasma sample (provided by DeepNovo-DIA 27

in their original publication), which contains a total of 56,879 MS/MS
spectra derived from DIA data. Notably, DeepNovo-DIA is a refined
DeepNovo model using DIA-derived MS/MS spectra as training data;
by contrast, we directly applied the PepNet model trained to the HCD-
MS/MS spectra from Data Dependent Acquisition (DDA) as described
above without any further refinement.

The performance of PepNet is significantly better thanPointNovo,
which is not surprising. What is encouraging is that PepNet also out-
performsDeepNovo-DIA, whichwasfine-tuned specifically for theDIA-
derived spectra. As shown in Fig. 9, PepNet achieved a positional
accuracyof 0.725 andpeptide-level accuracyof 0.533 on the combined
set of 2+ and 3+ spectra (the separated performance on charge 2+ and
3+ are shown in Supplementary Fig. S9). These results showed PepNet

achieved comparable performance on the DIA-derived spectra as on
theDDA-acquired spectra, indicating that PepNet is robust for de novo
sequencing of not only the DDA-acquired MS/MS spectra but also the
MS/MS spectra derived from DIA data.

Observed factors related to performance
We found multiple factors influencing the performance of PepNet that
are worth discussing. We observed that the number of most intensive
peaks retained in the inputMS/MS spectrum to PepNet has a significant
impact on its performance, as shown in Fig. 10. The performance of
PepNet significantly decreases when fewer peaks are retained in the
spectra given as input to the PepNet. This result indicates that the peaks
of low intensities, including some non-backbone fragment ions that
were considered as “noise" peaks and thus ignored by many conven-
tional de novo sequencing algorithms, also provide useful information
for the PepNet model, especially for determining the residues at some
positions where the supportive backbone ions are missing.

Besides, we observed that the positional accuracy by PepNet
shared a similar trend for the sequenced peptides of different lengths.
As shown in Supplementary Fig. S6, for the charge 2+ spectra, the
positional accuracy is relatively low for the first few amino acid resi-
dues at theN-terminus, and then increases beforedecreasing gradually
until the last residue at the C-terminus. It is not surprising that the
C-terminal residue is determined accurately because most tested
spectra are tryptic peptides. This trend of sequencing error distribu-
tion is largely due to the coverage of the observed fragment ions: the
first few residues are easier to determine because the b1 and b2 (and
even some b3) ions are often missing in HCD spectra, while y-ions are
weaker than b-ions, causing the C-terminal residues are harder to be
determined.

Fig. 8 | The similarity between the experimental and predicted spectra of sequenced peptides. The distributions of the similarities between the experimental and
predicted spectra (by PredFull) on the sequenced peptides of charge 2+ and charge 3+ are shown in (a) and (b), respectively.

Fig. 9 | Peptide sequencing accuracies on DIA spectra. The sequencing accuracy
(a) and the Precision-Coverage curve (b) of PepNet, PointNovo, andDeepNovo-DIA
are compared on a dataset of DIA-derived MS/MS spectra. The Filtered Peptide

Accuracy is referred to as the peptide-level accuracy on the sequenced peptides
after removing those with unmatched precursor masses (i.e., over 10 ppm).

Article https://doi.org/10.1038/s41467-023-43010-x

Nature Communications |         (2023) 14:7974 7



Discussion
In this research, we present PepNet, a deep learning model designed
for accurate de novo peptide sequencing from HCD-MS/MS spectra.
We first demonstrate that PepNet is capable of sequencing humanMS/
MS spectra with high accuracy, and then we show that PepNet can
perform consistently well across MS/MS data from many non-human
organisms. Furthermore, the de novo sequencing results on uni-
dentified spectra demonstrate that PepNet has the capability to dis-
cover numerous identifications from spectra that MaxQuant
overlooks, yielding several times more identifications than those pre-
viously detected by MaxQuant. This suggests that although PepNet
was trained using peptides sequenced by database searching tools like
MaxQuant, PepNet (andother denovo algorithms) is not limited by the
specific peptide knowledge of the training samples. Therefore, PepNet
can be used as a powerful tool for proteomic data analysis, especially
when a comprehensive target protein sequence database is not avail-
able (e.g., in metaproteomics38).

We believe that the ability to sequence peptideswith high accuracy
will enable the increasing applications of de novopeptide sequencing in
proteomics data analysis. In addition to the peptide sequencing for
HCD spectra as presented in this paper, PepNet can be extended to the
MS/MS spectra acquired by using other fragmentation methods, such
as the electron transfer dissociation (ETD), Electron-Transfer/Higher-
Energy Collision Dissociation (EThcD), photodissociation (PD) and the
infrared multiphoton dissociation (IRMPD). These methods were often
considered to result in complex MS/MS spectra, in which those rich
information embedded in the complex MS/MS spectra may hopefully
improve the accuracy of de novo peptide sequencing. Therefore, we
anticipate that PepNet will enhance the efficiency of proteomics data
analysis and will benefit the life science research community.

Methods
Representation of the MS/MS spectra
We represent the input MS/MS spectrum as a one-dimensional (1-D)
vector by binning the spectrumwith a given bin width. We considered
only the peaks within the range of mass-to-charge ratio (m/z) between
0 and 2000 as most experimental spectra do not contain peaks with
m/z above 2000. Bydefault, we use a binwidth of 0.1 Th,which yields a
vector representation of 20,000 dimensions. Based on our experi-
ment, using an even smaller bin size (i.e., higher mass resolution) did
not improve the performance of de novo sequencing but required
longer running times. Finally, we removed the precursor peak in each
spectrum, and normalized each spectrum by dividing each peak over
the intensity of the maximum peak in that spectrum, similar to our
previous work for MS/MS spectrum prediction29.

Deep neural network architecture
The PepNet model is primarily based on the temporal convolutional
network (TCN) blocks30. We expect PepNet to have a large enough

receptive field to capture the potential associations between distant
peaks in the MS/MS spectra while maintaining a relatively low com-
putational cost. TCN blocks, which are stacked dilated convolutional
layers with their dilation rate growing exponentially, can efficiently
cover a large receptive fieldby stackingmore dilated layers. The size of
the effective receptive fields of each TCN block can be calculated by
1 + 2*(kernel_size − 1)*(2n − 1)30, where n denotes the number of the
dilated layers.

Firstly, zero-padding is applied to the end of the vector repre-
sentation of each spectrum, extending its dimension from 20,000 to
20,480. This extension avoids non-integer dimensions in the following
down-sampling layers. The m/z array is also extended into a 20,480
dimensional vector in the samemanner. These two vectors, along with
their reversed counterparts, are then stacked together to create an
input matrix of a shape 20,480 × 4. Then, as depicted in the TCN
branchof Fig. 1,five consecutive TCNblocks anddown-sampling layers
are designed to capture the relationships between observed peaks.
These lower TCN blocks are designed to have larger receptive fields
but have fewer channels, while after each down-sampling layer, the
following TCN block will have halved receptive fields but with
approximately 1.5 times more channels.

Although those TCN blocks are capable of extracting most of the
information from the input MS/MS spectrum, they work at different
levels of resolution, thereby obtaining complementary information:
the topmost TCN block emphasizes the detailed local structures of the
input spectrum whereas the bottom-most block considers mostly the
global features of the spectrum. To fuse global and local information,
we introduce a bottom-up branch that merges output from all TCN
blocks into a single feature tensor, as depicted in Fig. 1.

After that, meta-information (e.g. charge of the spectra; M/z of
the precursor; normalized collision energy, if known) will be
transformed by a linear layer (with Sigmoid activation function) and
concatenated to the end of the previouslymentioned feature tensor
to yield the final feature tensor, which is then converted into a final
probabilities matrix of the size 32 × 23 by a softmax decoding layer.
As each column in the matrix represents the probabilities of each
amino acid at the corresponding position (20 characters of stan-
dard amino acids and 3 special symbols, as stated in the Result
section), we can derive the optimal peptide sequence by choosing
the amino acid with the highest probability in each column, until we
meet the position at which the ending character is of the highest
probability. As a post-processing step of this strategy, if the theo-
retical mass of the inferred peptide differs from the experimental
precursor mass by more than 10 ppm, we attempt to check if any
sub-optimal peptide has matched precursormass: we substitute the
amino acid at each position with the one with the second-highest
probability; if the resulting peptide has a matched precursor mass,
it will be the output as the finalde novo sequencing result; other-
wise, the original optimal peptide sequence will still be reported.

Fig. 10 | The impact of retainednumber of peaks on the performance ofPepNet.The positional and peptide-level accuracy of PepNet are shown on the input charge 2+
(a) and 3+ (b) spectra in the testing dataset, on which different numbers of most intensive peaks are retained.
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In addition to the de novo sequencing task, several relatively
easy tasks (the auxiliary task branch in Fig. 1) are trained simulta-
neously to achieve better performance, as described in the follow-
ing section.

Optimizing hyper-parameters for PepNet’s main architecture
When designing the primary architecture of PepNet, crucial
hyperparameters such as the number of TCN blocks, kernel sizes,
and the number of channels were determined based on the trade-off
between the runtime and the performance. We employed five TCN
blocks because more blocks show no improvement in performance,
as the receptive field of five TCN blocks is already large enough, as
shown in Supplementary Fig. S11. Regarding the number of con-
volutional channels, we observed that the performance of PepNet
continues to improve as it increases, although the improvement
gradually diminishes. We finally selected the number of layers as
[192, 288, 384, 576, 768] for each TCN block, since more layers will
be too computationally expensive. Also, Supplementary Fig. S11
shows the performance of PepNet under different kernel sizes of
TCN layers: the performance hardly improves after the kernel size
reaches 5*25.

Loss functions and auxiliary tasks
Well-designed loss functions are critical for achieving optimal
training performance in deep neural networks. We employ the
average cross-entropy on non-padding positions (termed mas-
ked_ce_loss) as the major part of the loss, while monitoring the
average accuracy on non-padding positions to select the optimal
model. As emphasized in the previous sections, we do not enforce
the model to output a peptide sequence with an exactly matched
precursor mass, which is, however, an important constraint for de
novo peptide sequencing. Thus we add the mean absolute error
(MAE) of the predicted sequence and the mass of the true sequence
to the final loss functions, i.e., loss = masked_ce_loss+ c * MAE. Here,
the weight c should be sufficiently small to prevent the MAE part
from dominating the loss during the initial training stages, when the
model has not learned enough knowledge to generate a reasonable
sequence. In practice, we manually select c to ensure that c*MAE
does not exceed 10% of the total loss.

Auxiliary tasks also play a crucial role in improving the model’s
performance, including 1) whether the target peptide is a tryptic pep-
tide; 2) the length of the target peptide; 3) the existence of amino acid in
the target peptide; 4) the amino acid composition of the target peptide;
and 5) the composition of adjacent amino acid pairs in the peptide (see
supplementary materials for details). These auxiliary tasks serve as the
guidance and regulations for the de novo sequencing task. Rather
unexpectedly, predicting the length of the target peptide could sig-
nificantly improve the training stability during the early stages. Addi-
tionally, predicting amino acid occurrences (rather than their exact
locations) serves as a simple but beneficial task that guides the model
throughout its preliminary stages, which reached approximately 90%
training accuracy only after the first epoch. Contrastively, the prediction
of the existence of adjacent amino-acid pairs shows its value during the
final stages. It is the only task that remains improving at the last few
epochs of training (although only marginally), thus potentially con-
tributing to the final refinement of the model. The ablation study of the
auxiliary tasks shows that, while the impact of each individual task
appears negligible, their combined effect yields amodest yet consistent
improvement (around 0.006 improvement in positional accuracy
compared to the baseline, as shown in Supplementary Fig. S10).
Therefore, we conclude that incorporating auxiliary tasks during train-
ing is beneficial, especially considering that these auxiliary tasks con-
sume less than 1% FLOPS (floating point operations per second) within
the model.

Training datasets and process
To compile the training data set, we collected HCD spectra from
multiple peptide spectral libraries including the NIST HCD
library39, the NIST Synthetic HCD library39, the Human HCD
library from MassIVE40, and the synthetic HCD library from
ProteomeTools13. The number of spectra in these libraries is
summarized in Supplementary Table S1. In total, by retaining
spectra with the charges of 1+ to 8+ and from peptides of length no
longer than 30, we collected 3,041,570 HCD-MS/MS spectra from
1,066,296 distinct peptides.

The whole data set was randomly split into the training set con-
taining 2,908,323 (95.6%) spectra, the cross-validation set containing
54,018 (1.8%) spectra, and the testing set which contained the
remaining 79,229 (2.5%) spectra. Note that this testing set is only used
to evaluate the training process, while all results in this paper were
reported on other two independent large-scale proteomics datasets.
We ensured that the training set, the cross-validation set, and the
testing set shared no spectra from the same peptide in order to avoid
information leakage.

We use the RAdam optimizer32 with the learning rate of 0.02 to
train the model for 50 epochs (8 GPUs, batch size of 32 spectra per
GPU). The complete training process takes around 80 hours using 8
cards of NVIDIA A6000 GPU. We pick the model weight from the
epoch that performs best on the cross-validation set after the training
is completed. More details can be found in the “Training process"
section of the supplementary materials.

Configuration of PointNovo and DeepNovo
To build PointNovo and DeepNovo for comparison, we directly used
the source codes provided by their original publication. Both models
were retrained using the same training set employed by PepNet. As
shown in the Supplementary section “Training PointNovo and Deep-
Novo", we observed no significant performance improvement under
various combinations of key hyperparameters (e.g., the learning rate,
the dropout rate, and the batch size). Therefore, we choose the
weights trained using the unaltered hyper-parameters as specified in
their original source codes. Both models converge within predefined
training epochs and the bestweight on the validation set is selected for
testing. Both PointNovo and DeepNovo were executed using their
default configurations without modifications. For DeepNovo-DIA, we
directly used the pre-trained weights provided by the original
publication.

Data availability
The proteomic data used for this study were taken from previous
datasets with ProteomeXchange identifiers of PXD019483 [https://
proteomecentral.proteomexchange.org/PXD019483] and PXD014877
[https://proteomecentral.proteomexchange.org/PXD014877], the
MaxQuant search results provided in these studies were directly
reused. The trained models of PepNet have been deposited in the
Zenodo database under accession code 7869847 [https://zenodo.org/
record/7869847]. The experiment results of PepNet have been
deposited in the Zenodo database under accession code 7869927
[https://zenodo.org/record/7869927]. Source data are provided with
this paper.

Code availability
Source code and scripts are available on GitHub at https://github.com/
lkytal/pepnet41.
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