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Reversed asymmetric warming of
sub-diurnal temperature over land
during recent decades

Ziqian Zhong 1,2, Bin He 1 , Hans W. Chen 2, Deliang Chen 3,
Tianjun Zhou 4, Wenjie Dong5, Cunde Xiao6, Shang-ping Xie 7,
Xiangzhou Song 8, Lanlan Guo1, Ruiqiang Ding 6, Lixia Zhang4, Ling Huang9,
Wenping Yuan 5, Xingming Hao10, Duoying Ji 1 & Xiang Zhao11

In the latter half of the twentieth century, a significant climate phenomenon
“diurnal asymmetric warming” emerged, wherein global land surface tem-
peratures increased more rapidly during the night than during the day. How-
ever, recent episodes of global brightening and regional droughts and
heatwaves havebrought notable alterations to this asymmetricwarming trend.
Here, we re-evaluate sub-diurnal temperature patterns, revealing a substantial
increase in the warming rates of daily maximum temperatures (Tmax), while
daily minimum temperatures have remained relatively stable. This shift has
resulted in a reversal of the diurnal warming trend, expanding the diurnal
temperature range over recent decades. The intensified Tmax warming is
attributed to awidespread reduction in cloud cover,whichhas led to increased
solar irradiance at the surface. Our findings underscore the urgent need for
enhanced scrutiny of recent temperature trends and their implications for the
wider earth system.

The surface air temperature (SAT) is a commonly usedmeasure of land
surface climate change due to its ability to represent terrestrial energy
exchange with reasonable accuracy1,2. In addition to daily average
temperatures, the diurnal temperature range (DTR), defined as the
difference between the daily maximum temperature (Tmax) and daily
minimum temperature (Tmin), provides useful information about the
climate3,4. Changes in DTR have received considerable attention
because it is closely linked with crop yields5–7, plant growth8–11, animal
wellbeing12,13 and human health14–16. Existing studies found that the

surface warming since the 1950s has been associated with larger
increases in Tmin than in Tmax, i.e., decreases in DTR, which is com-
monly known as night warming or asymmetric warming17–20.

Changes in DTR are complex; the changes are subject to many
factors, including cloud cover21–23, solar radiation24,25, aerosols26,
precipitation27,28, planetary boundary layer height29, land use
change30,31 and deforestation32,33. For example, an increase in total
cloud cover reduces DTR due to a decrease in daytime surface inso-
lation and an increase in night-time downwards longwave radiation34.
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Increases in precipitation and soil moisture can reduce Tmax and
therefore DTR through increased evaporative cooling35. However,
considering known changes in these processes, the higher warming
rate of Tmin than that of Tmax is seemingly inconsistent with two recent
phenomena. One contradiction is the increase in surface solar radia-
tion that has occurred since the late 1980s, which is referred to as
brightening after dimming36–38. Solar radiation affects Tmax more than
Tmin

26, thus, brightening should contribute to further warming of Tmax.
The second contradiction is the increased occurrence of drought
events and heatwaves, especially in spring and summer39–41. This phe-
nomenon indicates that the cooling effect of soil moisture may have
been weakened, which should lead to a faster increase in Tmax. Moti-
vated by these different changes, we re-evaluated the warming rates of
Tmax and Tmin over the period of 1961–2020 and investigated the
causes behind the associated changes in DTR.

Results
Observed reversing asymmetric warming
With changes in recent years included, we evaluated the surface
warming rates of Tmax and Tmin using two station observation-based
datasets from Berkeley Earth Surface Temperatures (BEST)42 and the
Climatic Research Unit Time-Series version 4.07 (CRU TS)43. Both
datasets were gridded and gap-filled over the land masses, and BEST
was used to detect global surface temperature changes in the Inter-
governmental Panel on Climate Change (IPCC) sixth assessment
report44. As shown in Fig. 1a, b, the trends in the global area-weighted
average of Tmax calculated using a 30-year moving window increased
faster than that of Tmin during 1961–2020. The warming rate in global
average Tmax reached the warming rate in Tmin in recent decades, with
an earlier surpassing moment in BEST than in CRU TS. In the last 30-
year window (1991–2020), both datasets exhibit a slight (CRU TS
dataset) or substantially more pronounced (BEST dataset) rise in the
global average of Tmax compared to that of Tmin. Spatially, a stronger
warming rate of Tmax was found in almost 25% of the land area in the
earlier timewindow (1961–1990); the area expanded rapidly, and in the
recent time window (1991–2020) the area of stronger warming rate of
Tmax was found in at least half of the area (approximately 52% in CRU
TS and 70% in BEST, Fig. 1e, f, with consistent results between the two
datasets in 61% of the total land area). Observations from stations
based on Global Surface Summary of the Day (GSOD) support the
finding of a greater increase in Tmax than in Tmin from 1991–2020
(Fig. 2). Analyzes of all observed monitoring sites indicate that 63% of
the sites exhibited an overall upward trend in DTR, while more than
one-third (35%) of all sites displayed a statistically significant increase
in DTR during 1991–2020. Spatially, a widespread decreasing trend in
DTRwasdetected (81% and 76% land area fraction in the BEST andCRU
TS temperature datasets, respectively) for the period 1961–1990, with
the exceptions of southern Africa, Southern Europe, and some regions
inNorthernAmerica (Fig. 1c, d). However, during the recent decades of
1991–2020, both temperature datasets show a consistent increase in
DTRovermore thanhalf of the land area, in particular over thewestern
United States, southern Europe, West Africa, inner East Asia, and
Australia.

Our analyzes reveal that the reversal of asymmetric warming was
more pronounced in the BEST dataset compared with CRU TS. We
assessed the accuracy of these two sets of gridded DTR data by com-
paring them against GSOD station DTR data (see Methods). The find-
ings revealed a significantly stronger correlation between BEST’s DTR
data and the GSOD station dataset (one-tailed t-test, p <0.001) com-
pared to the correlation between CRU TS’s DTR data and the GSOD
stationdataset (SupplementaryFig. 1). Thus, in the subsequent analysis
we used the BEST dataset to study annual and seasonal trends in Tmax,
Tmin and DTR for the periods 1961–1990 and 1991–2020.

A significant decline in the global average of DTR (−0.08 °C
decade −1, p <0.05) was found during 1961–1990. For the period

1991–2020, the globally averaged DTR increased at a rate of 0.06 °C
decade−1 (p <0.05) (Supplementary Fig. 2c). This reversal in DTR
occurred mainly due to a marked increase in Tmax for the latter period
(0.35 °C year−1 decade−1, p <0.05 during 1991–2020 vs. 0.13 °C year−1

decade−1, p < 0.05 during 1961–1990, Supplementary Fig. 2a, b). Sea-
sonally, the largest decline in DTR was detected in winter during
1961–1990, which is consistent with previous findings35. Significant
increases (p < 0.05) in DTR were detected in spring, summer and
winter, which were mainly caused by a significant increase in Tmax

(Supplementary Fig. 2a). All these evidences point to a reversing
asymmetric warming over land in recent decades.

Potential mechanisms behind reversing asymmetric warming
Earlier studies suggested that the recent global warming is mainly
forced by greenhouse gases45, while changes in DTR are influenced
largely by cloud cover23,46. In addition, aerosols and soil moisture may
also have affected the variability of DTR47,48. These potential drivers of
DTR exhibit a high degree of correlation. For instance, the phenom-
enonof aerosol-cloud interactions, such as the influenceof aerosols on
cloud albedo49 and lifetime50, has gained growing attention51–53.
Moreover, clear associations can be observed between cloud cover
and soil moisture, as increasing cloud cover is associated with
enhanced precipitation54, which subsequently leads to soil wetting.
The intricate interactions among these factors highlight the presence
of high multi-collinearity when performing regression analysis with
them as independent variables, posing challenges in discerning the
dominant drivers of DTR change. To address the impact of multi-
collinearity and accurately identify relationships, we conducted ridge
regression analyzes55 at individual grid points. This analysis (Methods)
employed as independent variables monthly total cloud cover from
thefifth-generation ECMWF reanalysis (ERA5)56 dataset, aerosol optical
depth from Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA-2)57, and soil moisture from the Global
Land Evaporation Amsterdam Model (GLEAM)58 dataset, while DTR
was calculated from the BEST dataset as the dependent variable
spanning 1981 to 2020. Ridge regression is a linear regression method
with regularization that can effectively address the issue of multi-
collinearity. By introducing a penalty term in the cost function that
discourages overly large parameter values, it improves upon the
ordinary least squares regressionmodel in scenarios where there exist
strong correlations among independent variables. An evaluation of the
ridge regression (Methods) shows that the ridge regressionmodel can
capture themajority of the explained variance in DTR (Supplementary
Fig. 3a), except in certain regions in particularly Africa, South America,
and Northern Hemisphere high-latitudes.

The analysis using ridge regression suggests aworldwide negative
response of DTR to changes in total cloud cover and soil moisture
(Supplementary Fig. 3b, d), with generally stronger negative impacts of
cloud cover than soil moisture. This result aligns with previous
findings21,23. Negative responses of DTR to aerosol concentrations are
detected in Western Africa, the Arabian Peninsula, India and southern
China (Supplementary Fig. 3c). To make a quantitative comparison,
Fig. 3 shows a cyan-magenta-yellow (CMY) composite map (see
Methods)of the relative contributionsof total cloud cover, aerosol and
soil moisture to DTR. Generally, changes in DTR during 1981–2020
weredominatedby cloud cover variations over 83.5%of the global land
area; this phenomenon is widely detected in most of North America,
southern South America, Europe, southern Africa, Central Asia, and
East Asia. Moreover, the dominant effect of cloud cover on DTR over
land is further confirmedwhen using an independent total cloud cover
dataset obtained from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) satellite during 2003–2020 (84.4% of the total
land area; Supplementary Fig. 4).

The ridge regression analysis assumes linear relationships
andmay overlook the non-linear associations among cloud, aerosol,
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soil moisture, and DTR. To address this limitation, we repeated
the regression analysis using the Random Forest algorithm59

(Methods). Random Forest is a machine learning technique based
on decision trees and can capture non-linear relationships.
The results from the Random Forest regression consistently cor-
roborate our prior findings, indicating that total cloud cover is
indeed the dominant driving force behind DTR fluctuations in ter-
restrial regions, encompassing a substantial proportion (79.1%) of
the land area (Supplementary Fig. 5). DTR is significantly negatively
correlated with total cloud cover in most regions of the terrestrial
land surface, suggesting that DTR is greatly influenced by
cloud cover.

To further elucidate the influence of different environment vari-
ables on DTR, we analyzed the changes of DTR, total cloud cover,
aerosol optical depth and soil moisture over the global land area
during recent decades (Supplementary Fig. 6). During the 1960s to the
early 1970s, there was a strong and significant upward trend in total
cloud cover, which later stabilized. However, a remarkable downward
trend emerged from the mid-1980s onwards. This decline in cloud
cover corresponded with an increase in DTR during the same period.
Between 1981 and 2020, a significant (p <0.05) negative correlation
was foundbetween the annual average global surface total cloud cover
and DTR. The mean bootstrapped partial correlation coefficient
(−0.47; −0.54 to −0.41, 95% confidence interval (CI)) between these two

Fig. 1 | Trends in the daily maximum temperature (Tmax), daily minimum
temperature (Tmin) and diurnal temperature range (DTR). a, b Global area-
weighted averagewarming rates derived from the CRUTS (a) and BEST (b) datasets
in Tmax (red) and Tmin (blue). The trends were calculated using a 30-year moving
window over 1961–2020. The x-axis shows the central year (rounding down) of the

moving window. The inset shows the area fraction over land (%) with faster
warming rates of Tmax than Tmin. c–f Spatial distribution of the trend in DTR in CRU
TS during 1961–1990 (c) and 1991–2020 (e), and in BEST during 1961–1990 (d) and
1991–2020 (f).
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variables was higher than that of the mean correlation between DTR
and soil moisture (−0.31; −0.39 to −0.23, 95% CI), as well as the cor-
relation between DTR and aerosol optical depth (−0.18; −0.28 to
−0.07, 95% CI).

Cloud cover can influenceDTR through twoprimarymechanisms.
On the one hand, diminished cloud cover leads to greater daytime
solar radiation, resulting in elevated daytime maximum temperatures
and, consequently, an expanded DTR. Conversely, reduced cloud
cover leads to decreased night-time outgoing radiation at the surface,
causing lower minimum temperatures and further increasing DTR23,46.
To discern the predominant effect, we calculated the partial correla-
tions between both cloud cover and Tmax and cloud cover and Tmin

(Supplementary Fig. 7). The results indicate that, overall, the prevalent
association is a negative correlation between cloud cover and max-
imum temperatures. This suggests that decreased cloud cover has led
to an increased DTR in recent decades, primarily due to the associated
increase in incoming solar radiation, while the impact of night-time
cooling has played a secondary role.

To reveal the spatial patterns of cloud and radiation changes, we
compared the trends in total cloud cover and solar radiation during

the earlier decades (1961–1990) and the recent decades (1991–2020)
(Fig. 4). Specifically, a global (over 69% of land) increase in cloud cover
corresponded to a decline in solar radiation at the surface over almost
three-quarters (74%) of the land area for the period 1961–1990; the
dimming has disappeared since the 1990s, and increases in solar
radiation were detected in over 63% of global land, which is partly due
to an extensive (over 66% of land) decrease in cloud cover. Over the
period 1961–1990, centralNorthAmerica, southern SouthAmerica, the
Mediterranean, and Australia saw weak decreases in solar radiation,
with the local DTR narrowing or experiencing little change. However,
during 1991–2020, a substantial increasing trend in solar incident
radiation was detected over central North America, southern South
America the Mediterranean, and Australia, corresponding to a local
general increase of DTR.

To further elucidate the relationship between incident solar
radiation and DTR, we conducted a partial correlation analysis
between DTR and incident shortwave radiation extracted from
ERA5 (1961–2020), CERES (2001–2020), and MERRA-2 (1981–2020),
while adjusting for the influence of soil moisture (Supplementary
Fig. 8). The results show a significant positive correlation between

Fig. 3 | Cyan-magenta-yellow (CMY) composite of diurnal temperature range
(DTR) sensitivity. The contributions of total cloud cover (CLD; magenta), aerosol
optical depth (AOD; cyan) and soil moisture (SM; yellow) to DTR changes during
1981–2020.The color of the compositewasdeterminedby the relative contribution
from themagnitude of the ridge regression coefficients. Only the grid cells with the

regression result that passed the test of significance (p <0.05) in the training set are
shown. The CLD was from the fifth-generation ECMWF reanalysis (ERA5) dataset,
AOD was from Modern-Era Retrospective analysis for Research and Applications,
version 2 (MERRA-2), and SM was from the Global Land Evaporation Amsterdam
Model (GLEAM) dataset.

Fig. 2 | Spatialdistributionof the trend indiurnal temperature range (DTR) inGlobalSurface Summaryof theDay (GSOD)during 1991–2020.The insets in thefigure
depict the percentage of sites showing a significant increasing (Inc; p <0.05; red) and significant decreasing (Dec; p <0.05; blue) trend in DTR.
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DTR and surface solar radiation over most land areas of the
world in all four datasets, confirming a credible positive influence of
solar radiation on DTR, consistent with previous studies24,25. The
above results indicate that the recent global decrease in cloud
cover60–62 has increased incoming solar radiation at the surface,
resulting in a greater increase in Tmax than in Tmin, ultimately
expanding DTR.

Our analyzes show that the reversed asymmetric warming was
mainly driven by changes in cloud cover which led to enhanced
solar radiation. Further, the influence of soil moisture or aerosols on
DTR appears to be particularly noticeable in certain regions.
Although the influence of soil moisture on DTR may not be as
substantial as that of cloud cover, it shows relatively extensive
spatial distributions across terrestrial surfaces on a global scale
(Supplementary Fig. 3d). In those regions, decreasing soil moisture
may have contributed to the acceleration of Tmax increases and thus
decreasing DTR, possibly due to less effective daytime evaporation
cooling on air temperature during dry conditions. Additionally, the
increase in DTR in the Mediterranean over the past three decades
may be related to a decrease in aerosol concentrations (Supple-
mentary Fig. 9b), which is likely linked to reductions in local aerosol
and precursor emissions63. However, due to the little change in
global drought64 and the relatively short-lived influence of aerosol
on DTR65, the overall impact of soil moisture and aerosols on the
global asymmetric warming patternwas limited. In addition to these
three environmental factors, changes in DTR may be closely asso-
ciated with land use/land cover change (LULCC). Given the com-
plexity of LULCC’s effects, our study specifically focuses on
exploring one potential impact: changes in albedo. However, we
found that there was no significant positive or negative correlation
between changes in albedo and DTR across the majority of land
areas (Supplementary Fig. S10). This finding indicates a limited
influence of LULCC on global asymmetric warming.

Discussion
The reversing asymmetric warming is supported by regional increas-
ing DTR trends in Europe66, Central Asia67, South India68 and Australia69

during recent decades. Globally, it was reported that most of the
global-mean DTR decrease occurred between 1960 and 1980. After
that period, globally averagedDTRexhibited little change from 1979 to
201270. Herewe found that globalDTRhas reversed fromdecreasing to
increasing in the recent three decades basedon twoobservation-based
datasets and station observations.While there are differences between
the two gridded temperature datasets, particularly in South America
and Africa where the observational coverage is limited71,72, the
increasing DTR in Europe, Australia, and Northern America is robust
due to the dense observations in these regions. It is worth noting that
the large number of land stations (approximately 39,000 records) and
the diverse range of sources (8 sources) integrated within the BEST
temperature dataset could potentially explain its higher correlation
with the observed temperatures from the stations in theGSODdataset,
as compared to the CRU TS temperature dataset. In addition to dis-
parities in station selection, variations in gridding and interpolation
methodologies69, as well as the implementation of quality assurance
procedures73, may also contribute to the differences in detected
regional DTR trends between these two datasets. With that said, irre-
spective of the dataset employed, it is evident that more than half of
the global land surface has displayed a discernible increasing trend in
DTR over the past three decades. This finding signals a fundamental
shift in the pattern of asymmetric warming.

The results of the ridge regression analysis in this study suggest
that statistical models incorporating total cloud cover, aerosol optical
depth, and soil moisture as independent variables can effectively
capture the variations in DTR across most land areas. The model fit is
relatively low in regions such as South America and Africa (Supple-
mentary Fig. 3a) where the observational coverage is limited. These
regions are also where the CRU TS and BEST gridded temperature

Fig. 4 | Comparisons of trends in total cloud cover and solar radiation between
two periods. a, b The spatial distribution of trends in total cloud cover during
1961–1990 (a) and 1991–2020 (b). c, d The spatial distribution of trends in solar

radiation during 1961–1990 (c) and 1991–2020 (d). The black dots mark the areas
where trends are significant at the p <0.05 level. The total cloud cover and solar
radiation were from the fifth-generation ECMWF reanalysis (ERA5) dataset.
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datasets show the largest discrepancies in DTR trends in the later
period (1991–2020), which shows that there are considerable uncer-
tainties in the estimated DTRs in regions with few observations.
Additionally, in this study,wedidnot includeotherpotentially relevant
factors such as precipitation28,74, atmospheric water vapor23,75,
vegetation76, LULCC45,77,78 and regional atmospheric circulation79. This
omission may introduce further uncertainty. Increased precipitation,
for example, is closely linked to decreased DTR, which can be attrib-
uted to the strong association between precipitation, cloud cover,
atmospheric water vapor, radiation, and soil moisture29,74. Future stu-
dies are needed to disentangle the effects of these highly correlated
variables on DTR. Prior research conducted in specific regions, such as
China and India77,78, has demonstrated that LULCC exerts a notable
influenceonDTR. In light of the intricate nature of LULCC’s effects, our
study specifically focuses on exploring the potential impact of changes
in albedo. However,we found that there is a relativelyweak correlation
between DTR and albedo across the majority of land areas. This could
be attributed to the fact that LULCC encompasses other processes,
such as vegetation dynamics76,80,81. Further studies are needed to gain a
comprehensive understanding of the entire scenario.

We found that the reversed asymmetric warming is closely linked
with changes in solar radiation associated with total cloud cover. This
finding offers fresh insights into and a different perspective on global
climate change in recent decades. Given that clouds may continue to
have a positive feedback on global warming through radiative
fluxes82,83, this radiation-induced phenomenon, in which the rising rate
of Tmax exceeds that of Tmin,maypersist andpotentially intensify in the
future. Therefore, more attention needs to be paid to this asymmetric
warming phenomenon from the perspective of tackling the ongoing
challenges posed by global warming.

Methods
Data
The Tmax and Tmin data utilized in this study were obtained from the
Climatic Research Unit Time-Series version 4.07 (CRU TS)43 and Ber-
keley Earth Surface Temperatures (BEST) datasets42. The CRU TS
temperature dataset is derived from a blend of data sources including
weather station records, ship logs, and more recent satellite observa-
tions. This dataset undergoes meticulous calibration to account for
biases and variations in measurement methods, making it an exten-
sively used resource in climate research for documenting long-term
temperature trends and variations. It provides spatiotemporal reso-
lutions of 0.5° × 0.5° on amonthly basis, covering the period from 1901
to 2022.

The BEST dataset encompasses a larger sample of approximately
39,000 records. It employs advanced statistical techniques to quantify
and adjust measurement biases, ensuring a highly accurate repre-
sentation of global temperature trends. This dataset offers spatio-
temporal resolutions of 1° × 1° on amonthly basis, spanning from 1850
to the present.

In situ Tmax and Tmin records were acquired from the Global Sur-
face Summary of the Day (GSOD) database, downloaded in September
2021 from https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:
C00516. The GSOD dataset originates from the Integrated Surface
Hourly (ISH) database developed by the US National Climatic Data
Center. This dataset contains meteorological variables, including
temperature, precipitation, and wind speed, from over 9000 weather
stations. The original observations undergo rigorous quality control
procedures to ensure their accuracy84. Specifically, we selected daily
maximum and minimum temperature data with relatively complete
records from all stations covering the period 1991 to 2020. We
employed stringent selection criteria to exclude incomplete data ser-
ies, only including stations withmissing values not exceeding one year
of the analysis period (1991 to 2020) and with complete records for all
12 months. Furthermore, we required each monthly value to be

derived from at least 15 days of data. Consequently, our trend analysis
encompassed a total of 2557 stations.

Monthly data on total cloud cover were obtained from the fifth-
generation ECMWF reanalysis (ERA5) dataset56 on a 0.25° × 0.25° reg-
ular latitude–longitude grid (the native resolution of ERA5 is about
31 km). In addition, monthly total cloud cover was obtained from the
MODIS MCD06COSP data at a spatial resolution of 1° × 1° after 2003.
ERA5 total cloud cover was used for the main analyzes.

The monthly incident shortwave radiation data in all-sky condi-
tions were obtained from the ERA5 dataset on a 0.25° grid, the Cloud
and the Earth’s Radiant Energy System energy balanced and filled
edition 4.1 (CERES–EBAF)85 dataset at a spatial resolutionof 1° × 1° after
March 2000, and the Modern-Era Retrospective analysis for Research
and Applications, version 2 (MERRA-2)57 dataset with a spatial resolu-
tion of 0.625° × 0.5° after 1980.

The monthly average aerosol optical depth and surface albedo at
a spatial resolution of 0.625°×0.5° was obtained from the MERRA-2
dataset beginning in 1980. The monthly surface soil moisture at a
spatial resolution of 0.25° was obtained from the Global Land Eva-
poration Amsterdam Model (GLEAM) version 3.5 dataset58, which is a
global dataset spanning 40 years from 1981 to 2020 and based on
satellite and reanalysis data. The cloud cover, radiation, aerosol optical
depth, and soil moisture data sets were aggregated to a common
0.5° grid.

Assessment of temperature-gridded data
Weassessed the accuracy of the temperaturegriddeddata usingGSOD
station temperature dataset. The evaluation period spanned from1978
to 2020, during which the GSOD data records were relatively com-
plete. Following a similarmethodology used in analyzing station-based
DTR trends, we selected a total of 2,058 stations with missing obser-
vations comprising less than 5% of the evaluation period for
temperature-gridded data assessment. In the evaluation process, we
extracted the time series of DTR from the gridded BEST and CRU TS
datasets corresponding to each station’s location. Daily data were
averaged to obtain yearly data and missing values at these stations
were filled using linear interpolation. We then computed Pearson
correlation coefficients between the annual station observation series
and the observedDTR sequence at each station, serving as an indicator
of accuracy. The significance of the correlation coefficient differences
between the DTR station data and the two sets of DTR gridded data
was tested by the one-tailed Student’s t-test.

Seasonal analysis
To analyze DTR variations by season, we defined the seasons as fol-
lows: March, April, May for spring (autumn), June, July, August for
summer (winter), September,October,November for autumn (spring),
and December, January, February for winter (summer) in the Northern
Hemisphere (Southern Hemisphere). Correspondingly, the annual
average value of a variable in one year is defined as the average of
12 months from December in the preceding year to November of
that year.

Ridge regression
Ridge regression is a method for estimating coefficients in multiple
linear regression models in scenarios characterized by high correla-
tions among the independent variables. In ridge regression, a reg-
ularization term is introduced to the standard least squares objective
function, aiding in stabilizing the estimated coefficients. This regular-
ization term is controlled by a tuning parameter denoted as λ. The
ridge regression objective function can be expressed as follows:

β^ =
Xn

i= 1

yi � β0 �
X

βixi

� �2
+ λ

X
β2
i ð1Þ
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where β̂^ represents the estimated regression coefficients, yi is the
dependent variable, β0 is the intercept term, and βi signifies the
regression coefficient for the independent variable xi. The tuning
parameter λ governs the extent of shrinkage applied to the coeffi-
cients. When λ is set to zero, the regularization term exerts no effect,
and ridge regression reduces to ordinary least squares regression.
However, as λ increases, the penalty term gains influence. The larger λ
becomes, the more pronounced is the shrinkage applied to the coef-
ficients. Consequently, ridge regression effectively mitigates the
impact of multi-collinearity.

Prior to performing the ridge regression analysis in this study, all-
time series were detrended by subtracting the linear trend and trans-
formed into z-scores by subtracting the monthly climatology means
dividing by the monthly climatological standard deviations from 1981
to 2020. For validation, the z-scores were randomly divided into an
80%calibrationdataset and a 20%validationdataset. Thedataset in the
training set was used to train the ridge regression model, while the
dataset in the validation set was employed to assess the performance
of the ridge regression model. Afterwards, all the datasets were
merged to determine the ridge regression coefficients.

The ridge regression was performed on the variables in each grid
cell, and the tuning parameter λ was determined for each grid cell
based on the Variance Inflation Factor (VIF) of the independent vari-
ables within each individual grid cell. VIF serves as a measure of multi-
collinearity among the independent variables in the regressionmodel.
The following formula was used to calculate the VIF:

VIFi =
1

1� R2
i

ð2Þ

where Ri² denotes the coefficient of determination between the ith
independent variable and all other independent variables. A higher VIF
value indicates stronger multi-collinearity within the regression
model’s independent variables. Here, a VIF value less than 3 suggests
an acceptable level of multi-collinearity86.

Throughout the regression analysis process, the initial value of λ
was set to 0 and incremented by a step size of 0.01. As λ increased, the
degree of multi-collinearity decreased, subsequently resulting in a
decline in the VIF value. The incrementation of λ ceased when the VIF
value dropped below 3, with this λ value being determined as the
tuning parameter at this grid point. The significance of the ridge
regression analysis was assessed utilizing an F-test at a significance
level of 0.05. The accuracy of the ridge regression model was eval-
uated by employing the coefficient of determination on the validation
dataset.

CMY composite
The color of the cyan-magenta-yellow (CMY) composite was deter-
mined by the relative contributions from the magnitudes of the ridge
regression coefficients (R.c), which can be expressed as follows:

C =
R:cx1
�� ��

R:cx1
�� ��+ R:cx2

�� ��+ R:cx3
�� �� ð3Þ

M =
R:cx2
�� ��

R:cx1
�� ��+ R:cx2

�� ��+ R:cx3
�� �� ð4Þ

Y =
R:cx3
�� ��

R:cx1
�� ��+ R:cx2

�� ��+ R:cx3
�� �� ð5Þ

Here, R.cx1, R.cx2, R.cx3 represent the R.c of DTR to variables x1, x2,
and x3, respectively.Wedenoted the relative contributions of variables
x1, x2, and x3 to DTR as C, M, and Y, respectively. These contributions

then served as the brightness values for the cyan, magenta, and yellow
channels, respectively, culminating in the generation of a CMY image.

Random Forest regression analysis
Wealso utilized the RandomForest algorithm for regression analysis59.
The input to the Random Forest was standardized in the same way as
for the ridge regression analysis, and the data was also randomly
partitioned into an 80% calibration dataset and a 20% validation
dataset for the validation. During the modeling process at individual
grid cells, the Random Forest algorithm leveraged the provided
sequences of independent variables and dependent variables in the
calibration dataset to train 100 decision trees. Each decision tree
independently predicted DTR values based on the given predictor
variables. Moreover, we employed out-of-bag (OOB) prediction error
estimation, an inherent capability of the Random Forest algorithm.
Additionally, we assessed the importanceof predictors by enabling the
OOB Predictor Importance feature, providing insights into the relative
contributions of total cloud cover, aerosol optical depth, and soil
moisture in predicting DTR. Similar to the ridge regression coeffi-
cients, these Predictor Importance featureswere subsequently utilized
in generating a CMY image.

Partial correlation analysis and bootstrap method for assessing
relationships
To determine the magnitude of the relationship between annual solar
radiation and DTR, Tmax or Tmin at individual grid points, while con-
trolling for the effect of soil moisture, we conducted a partial corre-
lation analysis. Partial correlation analysis is a statistical technique
used to assess the relationshipbetween two variableswhile controlling
for the influence of one or more additional variables. Here, both the
variables involved in the correlation analysis and the variable being
controlled for were specific to each individual grid cell. The sig-
nificance of the partial correlations was evaluated at a threshold
of p < 0.05.

The uncertainties of the partial correlations between global
annual DTR and total cloud cover, soil moisture, or aerosol optical
depth were assessed using the bootstrap method87. Specifically, we
generated 1000 bootstrap samples through random samples with
replacements from the original data to create samples of equal size to
the original dataset. For each bootstrap sample, we computed the
partial correlation coefficient between DTR and an environmental
factor while adjusting for the potential confounding effect of other
variables. Subsequently, we calculated the mean correlation coeffi-
cient across all bootstrap samples and determined the 95% confidence
interval using the 2.5th to 97.5th percentile of the bootstrap
distribution.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Materials. The source data
underlying Figs. 1–4 are provided as Source Data files and have been
deposited in the Figshare repository available at https://doi.org/10.
6084/m9.figshare.24310699.v188. The CRU temperature dataset is
from https://crudata.uea.ac.uk/cru/data/hrg/. The Berkeley Earth Sur-
face Temperature dataset is from https://berkeleyearth.org/data/. The
Global Surface Summary of the Day dataset is from https://data.nodc.
noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00516. The ERA5 cloud
cover, incident shortwave radiation and temperature dataset is from
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
single-levels-monthly-means?tab=form. The MODIS cloud dataset is
from https://modis.gsfc.nasa.gov/data/. The Cloud and the Earth’s
Radiant Energy System energy balanced and filled cloud cover and
incident shortwave radiation dataset is from https://asdc.larc.nasa.
gov/project/CERES/CERES_EBAF_Edition4.1. The MERRA-2 downwards
shortwave radiation, aerosol optical depth and surface albedo dataset
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is from https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. The
GLEAM soil moisture data is from https://www.gleam.eu/#datasets.

Code availability
The code for the analysis and mapping can be obtained from the Fig-
share repository (https://doi.org/10.6084/m9.figshare.24310699.v1)88.
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