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Fragment-sequencing unveils local tissue
microenvironments at single-cell resolution

Kristina Handler 1, Karsten Bach1, Costanza Borrelli 1, Salvatore Piscuoglio2,3,
Xenia Ficht 1, Ilhan E. Acar 1 & Andreas E. Moor 1

Cells collectively determine biological functions by communicating with each
other—both through direct physical contact and secreted factors. Conse-
quently, the local microenvironment of a cell influences its behavior, gene
expression, and cellular crosstalk. Disruption of thismicroenvironment causes
reciprocal changes in those features, which can lead to the development and
progression of diseases. Hence, assessing the cellular transcriptome while
simultaneously capturing the spatial relationships of cells within a tissue
provides highly valuable insights into how cells communicate in health and
disease. Yet, methods to probe the transcriptome often fail to preserve native
spatial relationships, lack single-cell resolution, or are highly limited in
throughput, i.e. lack the capacity to assess multiple environments simulta-
neously. Here, we introduce fragment-sequencing (fragment-seq), a method
that enables the characterization of single-cell transcriptomes within multiple
spatially distinct tissue microenvironments. We apply fragment-seq to a
murinemodel of themetastatic liver to study liver zonation and themetastatic
niche. This analysis reveals zonated genes and ligand-receptor interactions
enriched in specific hepatic microenvironments. Finally, we apply fragment-
seq to other tissues and species, demonstrating the adaptability of our
method.

Biological tissues are multicellular communities arranged in spatially
distinct patterns that facilitate efficient cell–cell interaction and
maintain tissue homeostasis. Tissue composition can be altered in
diseases like cancer where cells interact in different ways to either
promote or counteract the diseased state. Single-cell RNA-sequencing
(scRNA-seq) has been widely used to characterize cellular composi-
tions in various tissues and diseases. However, during tissue dissocia-
tion, a cell’s spatial position is lost. To overcome this limitation, recent
years have seen rapid technological developments to capture both
transcriptomic features as well as corresponding tissue coordinates.
Current strategies include imaging-based approaches like in situ
hybridization (ISH)1–3 and in situ sequencing (ISS)4,5, mRNA capture-
based approaches employing arrays of spatial barcodes6–9, or labeling

of cells from distinct spatial areas prior to tissue dissociation10–12.
However, each of thesemethods has inherent limitations, for example,
unsupervised mRNA capture-based methods usually preclude single-
cell analysis, while imaging-based techniques require prior knowledge
for targeted panel assembly13. In addition, many methods have sig-
nificant hurdles to their implementation, such as the need for
advanced microscopic devices13,14. Alternatively, spatially coordinated
gene expression has been studied through methods that partially
retain native tissue microenvironments such as Paired-cell
sequencing15, PIC-seq16, and Clump-seq17, which analyze spatial com-
munities of 2–10 cells together in bulk. Of note, all three of these
methods rely on computational deconvolution to approximate single-
cell transcriptomes, which is inherently imprecise, especially for genes
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that are expressed inmultiple cells. Paired-cell sequencingwas applied
to reconstruct the spatial gene expression of liver endothelial cells
(LECs), by selectively enriching for hepatocyte–endothelial cell pairs
and exploiting previously established zonated genes in hepatocytes as
landmarks15. This approach is made possible by the repetitive micro-
anatomy of the liver, organized into hexagonal hepatic lobules, in
which blood flows from the portal to central veins through sinusoids
flanked by linear cords of hepatocytes. Differential oxygen and nutri-
ent availability along the central-portal axis imprint zonation of cell
functions and gene expression patterns in liver resident cells, parti-
cularly in hepatocytes and LECs15,18–20. Furthermore, multiple studies
have reported zonation of immune cells, including liver-resident

macrophages called Kupffer cells (KCs), T, and NKT cells, which were
all found to be periportally enriched21,22. The liver is not only a vitally
important metabolic organ but is also frequently affected by meta-
static disease, particularly colorectal cancers23. However, the impact of
metastatic seeding on gene zonation in parenchymal, endothelial, or
immune cell subsets remains unclear. In addition, ametastasis-bearing
livermay host additional infiltrating adaptive and innate immune cells,
suchas effector T cells,monocytes, andmacrophages,which shape the
tumor microenvironment (TME)24. Characterizing the composition of
the TME, as well as the changes in cell and gene zonation in the
metastases-bearing liver are therefore interesting research questions
for spatial transcriptomics.
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Fig. 1 | Overview of fragment-seq and assessment of quality and accuracy.
a Schematic illustration of fragment-seq workflow. scRNA-seq: single-cell RNA-
sequencing. Created with BioRender.com. b Brightfield microscopy images of
representative liver fragments. Scale bar: 100μm. Imaging was performed for 9 96-
well plates in one experiment with results shown in Supplementary Fig. 1b, here six
representative fragments are shown. c Fragment-size distribution of sorted frag-
ments from different tissues visualized in boxplots [n = 82 (murine spleen), 1468
(murine liver), 138 (CRC organoid) fragments]. Black dots indicate fragments. For
box andwhiskers plots themiddle line represents themedian; the upper and lower
lines are the first and third quartile (Q1 andQ3); thewhiskers indicate the upper and
lower limits of data spreadby subtracting 1.5* interquartile range (IQR) fromQ1 and
adding 1.5* IQR toQ3. d Scatter plot showing the fraction ofmismatched cells. Dots
represent fragments and their color indicates the percentage of mismatched cells

(human cells within mouse fragments and mouse cells within human fragments)
(n = 139 fragments from 1 sample). UMI unique molecular identifier. e Barplot
showing cell type proportions per fragment; only fragments with at least 5 cells are
considered (n = 1568 fragments from a total of 10 samples). LEC liver endothelial
cell, LSECs liver sinusoidal endothelial cells, LVECs lymphatic vascular endothelial
cells.MACmacrophages fUniformmanifold approximationandprojection (UMAP)
visualization of batch-corrected (see the “Methods” section), single-cell tran-
scriptomes from fragment-seq and scRNA-seq of mouse metastatic liver samples.
Cells are clustered, annotated, and colored by their cell type. Cells are separated
based on the protocol [conventional scRNA-seq (n = 2 samples) and fragment-seq
(n = 10 samples)]. For c and d the source data are provided as a Source Data file.
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Here, we introduce fragment-sequencing (fragment-seq),
enabling the transcriptomic characterization of single cells within
spatially distinct tissue niches, which are partitioned using a large
fragment biosorter and later reconstructed based on landmark genes
or cell types. Fragment-seq was inspired by previously published
approaches, such as Paired-cell sequencing15, PIC-seq16, and Clump-
seq17. It refines these approaches and achieves single-cell resolution
while simultaneously capturing larger communities of cells than its
predecessors, thus reflecting biologically relevant tissue micro-
environments in three-dimensional space. For greater analytical
power, fragments are grouped based on landmark genes or the pre-
sence/absence of one cell type to represent distinct spatial niches.
Thus, fragment-seq exploits the spatial proximity of landmark cells or
genes to other cell types to more accurately reconstruct tissue niches,
without assigning a specific physical location to a cell or transcript.
Importantly, this enabled us to predict ligand–receptor (L–R) inter-
actions which are not only significantly enriched in a scRNA-seq
dataset, but actually co-occur in specific microenvironments. To this
end, fragment-seq combines previously established methods of single
object sorting using a large fragment biosorter, cell hashing using
lipid-tagged barcodes25, and scRNA-seq26,27. We apply fragment-seq to
dissect spatially distinct niches in the metastasis-bearing mouse liver
and shed light on the importance of immune zonation by reporting
zonated gene expression in KCs in the metastasis-carrying liver. Fur-
thermore, we identify spatially restricted L–R interactions involving
different macrophage subsets within hepatic and metastatic com-
partments. These results highlight the potential of fragment-seq to
capture spatial heterogeneity within complex tissues.

Results
Fragment sorting with a large fragment biosorter enables the
characterization of individual cellular communities
Fragment-seq is based on partial tissue dissociation followed by size-
dependent sorting of individual Ø 200–450 µm cellular communities
(fragments) with a large fragment biosorter into single wells of a 96-
well plate; one fragment per well. Subsequently, fragments are dis-
sociated into single cells within each well and hashed with a fragment-
specific lipid-tagging barcode25 to preserve information about a cell’s
neighborhoodprior to pooling for scRNA-seq (Fig. 1a). The accuracy of
the sorting approach was assessed by sorting, plate imaging, and
counting of fragments per well. The majority of wells contained a
single fragment, and multiple fragments per well were rare, therefore
we concluded that the sorting process is sufficiently accurate (Sup-
plementary Fig. 1a, b). Due to partial dissociation, fragments may vary
in shape (Fig. 1b). However, fragments can be size-gated during sorting
by estimating the size from a regression of the acquired time-of-flight
(TOF) on the size of standardized beads (Fig. 1c, Supplementary
Fig. 1c). To assess whether cells assigned to the same fragment truly
derive from the same cellular neighborhood, we performed a species-
mixing experiment:wemixedGFP+mouse andGFP−human colorectal
cancer (CRC) organoids to represent fragments. Using fluorescent
index sorting we then sorted 144 wells with GFP+ and 144 wells with
GFP− organoids. We then applied the fragment-seq procedure, mouse
or humanuniquemolecular identifiers (UMIs)wereused to identify the
species of origin for each cell, and the percentage of cells that reflected
the expected or mismatched species based on GFP-signal from
indexed sorting was plotted (Fig. 1d, Supplementary Fig. 2a, b). This
revealed that 95% of cells were accurately assigned (Supplementary
Fig. 2c). Altogether this confirmed the validity of the fragment-seq
approach. Next, we applied both fragment-seq and conventional
scRNA-seq tomouse liver samples harvested 2 weeks after intrasplenic
injection of murine CRC organoids. Resulting single-cell tran-
scriptomes were annotated using known marker genes from the liver
cell atlas22, assigned to their fragment of origin, and different cell type
proportions per fragment were plotted (Fig. 1e, Supplementary

Fig. 3a–c). Comparison of fragment-seq datawith conventional scRNA-
seq data of murine metastatic livers showed a similar distribution of
cell types and cellular quality (Fig. 1f, Supplementary Fig. 3d).

Reconstruction of fragment position along the central–portal
axis based on zonated gene expression
To reconstruct the native position of a fragment along the
central–portal axis (lobule layers L1–L10) we used a previously iden-
tified LEC zonation-specific gene expression signature15. For each
fragment, a zonation coordinate between 0 (=central) and 1 (=portal)
was calculated basedon the average expressionofperiportal landmark
genes (pLM) in LECs divided by the sum of the average expression of
periportal and pericentral landmark genes (cLM) (Fig. 2a). Based on
zonation coordinates, fragments were assigned to a lobule layer or
simply grouped into pericentral and periportal zones (Supplementary
Fig. 4a). The accuracy of the reconstruction was corroborated by
zonated gene expression in hepatocytes from pericentral and peri-
portal fragments which matched previously published landmark
genes20 (Supplementary Fig. 4b). This spatial ordering allowed us to
characterize differentially expressed genes in LEC from different
zones, including genes that were not reported as zonated in the
reference dataset (For example for Plpp1, mean expression across
lobule layers: L1–3: 2.64, L4: 2.63, L5: 2.13, L6: 1.39, L7: 0.991, L8-10:
0.739, with respective standard deviation [SD] L1–3: 1.65, L4: 1.34, L5:
1.23, L6: 1.06, L7: 0.948, L8–10: 1.16, was found to be significantly
zonated using a two-sided empirical Bayes quasi-likelihood F-test, p-
value = 1.18e−18; as wasGalnt15, mean expression across lobule layers:
L1–3: 0.81, L4: 0.637, L5: 0.987, L6: 1.78, L7: 3.14, L8–10: 4.51 with an SD
of L1–3: 0.538, L4: 1.24, L5: 1.31, L6: 1.58, L7: 2.35, L8–10: 3.79, p-
value = 2.17e-37) (Fig. 2b, c). Some of the identified genes were also
zonated in LEC from healthy mouse liver and are therefore likely
involved in homeostatic processes (Supplementary Fig. 4c). For
example Plpp1, a phospholipid phosphatase, was centrally zonated
(mean expression portal: 1.50, central: 2.39, SD portal: 0.964, central:
1.21, two-sidedWilcoxon signed-rank test,p-value = 5.5e−07)—implying
a link to pericentral lipogenesis18—whileGalnt15, putatively involved in
O-linked oligosaccharide biosynthesis, was portally zonated (mean
expression portal: 0.573 and central: 0.224 with SD portal: 0.520,
central: 0.280, two-sided Wilcoxon signed-rank test, p-value = 4.4e
−06), which is in accordance with periportal gluconeogenesis18. Next,
we performed molecular cartography (MC), a highly-multiplexed
fluorescence in-situ hybridization (FISH) approach, with a custom
100-genepanel that includedmarker genes for key cell types, aswell as
genes that displayed a spatially variable expression pattern in
fragment-seq (Supplementary Fig. 5a–d). This validated zonation pat-
terns of metabolic genes in LECs (Plpp1 mean expression portal: 58.2
and central: 134, with SD portal: 30.9 and central: 43.4, was found to be
significantly zonated using a two-sided empirical Bayes quasi-
likelihood F-test, p-value = 4.30e−49, as was Galnt15, with mean
expression portal: 99.2 and central: 31.5, SD portal: 81.6 and central:
38.2,p-value = 9.94e−26) (Fig. 2b,d; Supplementary Fig. 4d).Moreover,
we could validate zonated gene expression of Plpp1 and Galnt15 in
publicly available Visiumdatasets fromhealthy and non-alcoholic fatty
liver disease (NAFLD) murine livers22 (Supplementary Fig. 4g, h).
Fragment-seq furthermore permitted the investigation of zonated
genes in other cell types after assigning a fragment to periportal or
pericentral zones according to LEC gene expression patterns. For
example, Vcam1 was found to be significantly enriched in periportal
KCs using a two-sided empirical Bayes quasi-likelihood F-test (p-
value = 2.13e−06, mean expression across lobule layers L1–3:4.578, L4:
5.62, L5: 6.13, L6: 8.56, L7: 11.415, L8–10: 10.36, with respective SDs of
L1–3: 4.258, L4: 3.917, L5: 3.89, L6: 5.498, L7: 6.939, L8–10: 6.454)
(Fig. 2e). This could be independently validated by MC (two-sided
empirical Bayes quasi-likelihood F-test, p-value = 4.44e−05, average
portal expression of 107 with a SD of 77.6, while average central
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expression was 59.1, SD = 48.7) (Fig. 2e). Interestingly, we did not find
Vcam1 to be significantly zonated in KCs in healthy livers (mean portal:
99.2, central: 31.5 and SD portal: 81.6, central: 38.2, not significant [NS]
in a two-sided non-parametric Wilcoxon signed-rank test), suggesting
its upregulation is a response to an inflammatory process (Supple-
mentary Fig. 4e). This is in line with Vcam1 being more heavily
expressed and zonated in NAFLD compared to healthy livers in

previously published data22 (Supplementary Fig. 4g, h). However, due
to the lack of single-cell resolution of Visium data, it cannot be directly
determined whether zonated gene expression is caused by KCs or
LECs. In fact, prior knowledge of the importance of Vcam1 in LECs
would likely lead to neglecting its zonation in KCs. Upregulation of
VCAM-1 during metastatic disease has been previously reported for
LECs and may contribute to immune cell recruitment by interactions
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with its binding partner integrinα4β128. Todate, the function of VCAM-
1 in KCs has not beenwell studied, but Okada et al. have described that
VCAM-1 can mediate interactions of KCs and lymphocytes, which in
turn promotes KC activation29. This spurred us to perform L–R inter-
action analysis30 for KCs and lymphocytes (T and B cells) in the peri-
portal and pericentral zones. This analysis predicted an enrichment of
interactions of the KC-expressed ligand VCAM-1 with α9β1, α4β7, and
α4β1 integrin complex receptors on T and B cells in periportal com-
pared to pericentral zones (Fig. 2f, Supplementary Fig. 4f). MC could
validate an enriched periportal gene expression of Vcam1 and Itgb1
(Integrin subunit β1) (Fig. 2g). A primary function of α4β7 and α4β1
integrins on T cells is mediating tissue homing and adhesion to the
vessel wall31, indicating that periportal KCs may have upregulated
Vcam1 expression to promote lymphocyte recruitment. This is in line
with an increase in predicted CCL3|CCR5 interactions between peri-
portal KCs and T cells, as CCR5 was reported to mediate the recruit-
ment of T cells to the liver during acute inflammation31. Additionally,
we could confirm the upregulation and zonation of Vcam1|Itgb1 and
Ccl3|Ccr5 inNAFLD livers, suggesting thatupregulationof these ligands
and receptors is a response to inflammatory liver perturbations in
general (Supplementary Fig. 4g, h). Next, we set out to assess potential
biases caused by different fragment sizes and fragment cell counts.
First, we compared pericentral and periportal fragments and found
them to be comparable in size (Supplementary Fig. 6a), while cell
counts were on average slightly lower in periportal than in pericentral
fragments (Supplementary Fig. 6b). In order to test for biases intro-
duced by fragment size or cell number, we divided the dataset
according to fragment size into small (211–325μm) or big fragments
(326–457μm) or applied different minimum cutoffs for cell numbers
(≥5 or ≥20 cells per fragment). Next, we performed differential gene
expression (DGE) analysis for LECs or KCs, which did not reveal any
significant changes (Supplementary Fig. 6c,d). A similar pattern of
significantly upregulated zonated genes could be found in all scenarios
(Supplementary Fig. 6e).Moreover, recovered cell types andpredicted
L–R interactionswere similarbetweendifferent cutoffs, with only a few
L–R interactions not being replicated across all size gates (Supple-
mentary Fig. 6f and Supplementary Fig. 7a). In order to assess whether
this effect is caused by differential fragment sizes, or is rather a con-
sequence of undersampling, we compared L–R interactions from the
complete pericentral and periportal datasets with datasets from small
fragment sizes (211–325 µm), and a downsampled dataset, represent-
ing the same amount of cells as the small fragment size data, but
covering the complete size range (211–457 µm) (Supplementary
Fig. 7b). This revealed that interactions such asVcam1|Itga9 andCxcl14|
Cxcr4 were lost in both analyses (211–325 and 211–457 µm down-
sampled), indicating that the overall number of acquired fragments is
more critical to the robustness of results than the consistency of

fragment sizes. Therefore, we recommend prioritizing sample size
over restrictive gating or subsampling of fragment sizes. All in all, this
demonstrated that neither fragment size nor the number of cells
recovered per fragment significantly impacted our findings, at least
not within the given cutoffs of ≥5 cells per fragment and 200–450 µm
diameter.

Fragments from metastatic-proximal and -distal sites reveal
differences in local microenvironments
Instead of grouping fragments according to liver zonation, we next
grouped them based on their relation to metastatic sites. Fragments
containing metastatic cells were defined as ‘proximal’ and fragments
without metastatic cells as ‘distal’ to metastatic sites (Fig. 3a, b). Of
note, we only included samples frommicewith visiblemetastasis and a
sufficient number of recovered metastatic cells in this analysis, to
exclude animals with very low tumor burden (Supplementary Fig. 8a,
b). Groups did not show any significant variability in fragment size or
cell numbers per fragment (using a two-sided Wilcoxon signed-rank
test, mean size distal: 355.1 µm and proximal: 349.0 µm with SD distal:
58.8 µm and proximal: 58.9 µm, p-value = 0.3, and for cell counts we
obtained means of distal: 28.3 cells and proximal: 31.2 cells, with SD
distal: 17.5 cells and proximal: 20.1 cells, p-value = 0.46) (Supplemen-
tary Fig. 8c, d). We then assessed cell-type proportions of key cell
subsets and found that proximal areas had a significantly higher pro-
portion of macrophages/monocytes (mean proportion of 0.04 ± 0.01
distal and 0.2 ± 0.01 proximal, p-value = 6.17e−08, two-sided empirical
Bayes quasi-likelihood F-test) andmetastatic cells (meanproportion of
0.00 ±0.00 distal and 0.09 ± 0.01 proximal, p-value = 2.62e−10, two-
sided empirical Bayes quasi-likelihood F-test), while KCs (mean pro-
portion of 0.40 ±0.05 distal and 0.27 ± 0.02 proximal, p-value = 4.72e
−06, two-sided empirical Bayes quasi-likelihood F-test) and LECs
(mean proportion of 0.43 ±0.05 distal and 0.30 ±0.02 proximal, p-
value = 6.04e−06, two-sided empirical Bayes quasi-likelihood F-test)
were reduced (Fig. 3c, Supplementary Fig. 8e). Segmentation and cell-
type annotation of MC data validated those findings (Fig. 3d, e; Sup-
plementary Fig. 8e), highlighting that fragment-seq faithfully recapi-
tulates in situ cell-type proportions. We decided to investigate the
macrophage/monocyte subset more closely and found that proximal
areas showed a trend for the enrichment of C1q+macrophages (Fig. 3f,
Supplementary Fig. 3c). We could validate the increased expression of
complement genes (C1qb, C1qc) in macrophages/monocytes within
proximal areas in MC data (Fig. 3g). C1q+ macrophages are reportedly
involved in T cell exhaustion and are an indicator of poor prognosis in
many cancers32. Therefore, we wanted to investigate cellular crosstalk
between macrophages/monocytes and T cells further. Due to con-
straints in cell numbers of fragment-seq data and cell type markers
included in MC, we did not further differentiate between T or

Fig. 2 | Fragment-seq application to investigate gene zonation during liver
metastasis. a Schematics of liver microanatomy and fragment zonation approach.
Created with BioRender.com. b Differentially expressed genes (DEGs) of LECs in
spatially ordered fragments. Left, fragment-seq (1384 fragments across 9 samples).
Right, Molecular Cartography (MC) (155 areas across 4 samples). Colored dots
represent significantly enriched genes; red, enriched in pericentral zones; yellow,
enriched in periportal zones. Gene labels indicate genes significantly enriched in
both analyses. p_FDR: false discovery rate adjusted p-value. c Boxplots showing
gene expression in LECs of spatially ordered fragments (n = L1–L3: 137, L4: 214, L5:
402, L6: 409, L7: 196, L8–L10: 26 fragments across 9 samples). Black dots represent
individual fragments. d Representative images of MC of Plpp1 (red) and Galnt15
(yellow) are shown as an overlaywith DAPI signal (white). CV central vein, PV portal
vein. e Boxplots of Vcam1 gene expression in Kupffer cells (KCs) of spatially
ordered fragments or spatial areas. Left, fragment-seq (like in c) (n = L1–L3: 115, L4:
206, L5: 379, L6: 387, L7: 182, L8–L10: 26 fragments across 9 samples); right, MC
comparing pericentral and periportal. f Predicted ligand–receptor (L–R) interac-
tions between KCs and T cells in grouped fragments from pericentral or periportal

origin (n = 9 samples). Interaction scores were calculated from grouped fragment-
seq data by CellPhoneDB, which uses a permutation test to generate p-values
(unadjusted) indicating significantly enriched L–R interactions. Interactions refer-
enced in themain text are highlightedwith red squares andwhite numbers indicate
interaction scores. g Representative MC of Vcam1 (purple), Itgb1 (yellow), and
Cyp2f2 (red) shown as an overlay with DAPI signal (white). For MC in d, e, and g the
complete dataset (as shown in d) was from pericentral n = 89; periportal n = 66
areas across four samples from four separate experiments. Forb, c, and e, weused a
negative binomial generalized log-linear model (‘glmQLFTest‘ function of edgeR),
which uses a (two-sided) empirical Bayes quasi-likelihood F-test. P-values
(Benjamini–Hochberg adjusted) of <0.05 were considered significant (***<0.001).
For b, c, e, and f the source data are provided as a Source Data file. For all box and
whiskers plots themiddle line represents themedian; the upper and lower lines are
the first and third quartile (Q1 and Q3); the whiskers indicate the upper and lower
limits of data spread by subtracting 1.5* interquartile range (IQR) from Q1 and
adding 1.5* IQR to Q3. L–R: ligand–receptor.
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macrophage cell subsets. We found significantly more colocalization
of macrophages/monocytes and T cells within proximal areas in MC
data (Fig. 3h, Supplementary Fig. 8f) suggesting a potential role for
macrophage/monocyte|T cell interactions in shaping the immune
response in the metastatic microenvironment. To identify potential
drivers of these interactions we performed L–R interaction analysis30

on fragment-seq data which revealed a number of spatially enriched

interactions (Fig. 3i). Notably, this included interactions of Secreted
Phosphoprotein 1 (Spp1), Fibronectin-1 (Fn1) and Vcam1 on macro-
phages/monocytes with α4β1 integrin complexes on T cells. Their
proximal enrichment could be validated by MC (Fig. 3j). Additionally,
we could validate the proximal enrichment of SPP1 and VCAM-1 pro-
tein expression with immuno-fluorescence (IF) (Supplementary
Fig. 8g). While VCAM-1|α4β1 interactions are mostly considered to be
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adhesive interactions, SPP1 and FN1 are associated with a poor prog-
nosis in various cancer types33–35. SPP1 was previously found to sup-
press T cell responses in the TME36, while Fn1 reportedly correlates
with the infiltration of anti-inflammatory macrophages35. Interactions
of both of thesemacrophage/monocyte-derived ligands with integrins
on other immune cells were found to be enriched in colorectal cancer
and might be involved in promoting tumorigenesis37. In addition, we
found a proximal enrichment of Cxcl10|Cxcr3, an interaction that is
well-known for mediating effector T cell recruitment38 and has been
found to be enriched between C1q+ macrophages and other immune
cell subsets in colorectal cancer37.

Application of fragment-seq to other tissues and comparison to
Visium and MC
Fragment-seq can be easily adapted to other tissue types and species
with minor adjustments to the single-cell dissociation protocol. We
have created proof-of-principle datasets from the mouse spleen
(Supplementary Fig. 9a–c) and further showed that the method is
compatible with clinical samples by applying it to Crohn’s disease
biopsies (Supplementary Fig. 9d–f). For clinical samples, we intro-
duced size selection based on sequential filtering and manual picking
of fragments to demonstrate the feasibility of the protocol in the
absence of an expensive biosorter apparatus (Supplementary Fig. 9g).

Direct comparison toVisium39, oneof themostwidely used spatial
transcriptomicsmethods, demonstrates the strength of fragment-seq.
Visium’s in situ permeabilization protocols need to be optimized for
different tissue compositions, resulting in compromised solutions and
uneven data quality in heterogeneous tissues such as metastasis-
bearing organs, while fragment-seq demonstrates far more consistent
results (Supplementary Fig. 10a-c). The greatest advantage of
fragment-seq compared to slice-based spatial transcriptomics is
single-cell resolution. In contrast, Visium data requires deconvolution
of spots into single cells, which revealed a clear bias towards hepato-
cytes in our datasets (Supplementary Fig. 10d). This phenomenon has
been previously described40 and is attributed to the RNA content of
hepatocytes superseding that of smaller cells like LECs. As described
before, we could show zonated gene expression in publicly available
Visiumdatasets (Supplementary Fig. 4g, h), however, the lackof single-
cell resolution precludes reliable allocation of gene expression to one
specific cell type. In sum, comparison with Visium demonstrates
fragment-seq’s superior performance in uncovering zonated gene-
expression patterns in less frequent cell types. Comparison of
fragment-seq to the imaging-based spatial transcriptomics approach
MC revealed that fragment-seq relatively overrepresented KC, and
LECs, while underrepresenting cell types like hepatocytes, and stromal
or metastatic cells (Supplementary Fig. 10e).

Combining slice-based spatial transcriptomics and fragment-
seq for refined reconstruction of spatial niches
Like any methodology that uses spatial reconstruction, fragment-seq
mainly relies on prior knowledge of landmark gene expression
patterns41 to determine the spatial origin of fragments within tissues.
As proof of principle, we explored the possibility of using landmark
genes derived fromMC datasets to sort fragments into their niches of
origin. To this end, we filtered MC datasets from distal and proximal
areas of metastases-bearing mice for cell types that are readily repre-
sented in fragment-seq (i.e. B cells, KCs, LECs, metastatic cells, mac-
rophages/monocytes, and T cells). Next, we identified the top ten
differentially expressed genes in distal and proximal areas, resulting in
a set of 20 landmark genes (Supplementary Fig. 11a). Subsequently, we
transformed fragments from a singlemouse (tomitigate batch effects)
into pseudobulks, clustering them exclusively using the 20 established
landmark genes, which unveiled two distinct clusters of fragments
(Supplementary Fig. 11b). Feature plots confirmed the differential
expression of top landmark genes, with distal landmark genes pre-
dominantly enriched in cluster 1 and proximal landmark genes in
cluster 2 (Supplementary Fig. 11c). Finally, we assessed the cell type
proportions among fragments from each cluster, which confirmed
that cluster 2was enriched inmetastatic cells (Supplementary Fig. 11d).
We envision that using more agnostic and comprehensive slice-based
spatial transcriptomics methods (for example laser capture micro-
dissection or array-based approaches) could be used to build even
more refined reference maps for spatial landmarks in different tissues
and diseases.

Discussion
Here, we present fragment-seq, a method that provides single-cell
transcriptomes from cellular communities while allowing the recon-
structionof their anatomical nicheof origin basedon the abundanceof
landmark genes or cell types. By applying fragment-seq to the per-
turbed mouse liver we showed that we can capture different micro-
environments, i.e. lobule layers along the central-portal axis or areas
distal and proximal to metastatic sites. For example, this revealed that
periportal KCs upregulate Vcam1 expression and L–R interaction
analysis predicted an increased involvement of VCAM-1 ligand inter-
acting with integrin receptors on T and B cells periportally. We hypo-
thesize that increased Vcam1 expression could serve to boost immune
cell recruitment from the portal blood in order to counteract the
perturbation after injection of metastatic cells42.

To demonstrate that fragments can be assigned to a micro-
environment of origin by using landmark cell types, we grouped
fragments into proximal or distal to metastatic sites according to the
presence or absence of metastatic cells. This demonstrated that

Fig. 3 | Fragment-seq application to investigate local differences inmetastatic-
proximal and -distal microenvironments. a Schematics of reconstructing frag-
ment position basedon the presence ofmetastatic cells (distal = fragments without
metastatic cells; proximal = fragments with metastatic cells). Created with BioR-
ender.com. b Separated UMAPs based on reconstructed groups from integrated
samples (n = 3). Cells are clustered, annotated, and colored by their cell type. cDot
plots representing cell type proportions of grouped fragment-seq data
(n = 3 samples). From left to right: macrophages/monocytes (Mac/Mono), meta-
static cells, KCs, and LECs. Dots represent individual mice and dots with black
circles represent grouped proximal fragments. d As in c, but dots represent areas
frommolecular cartography (MC). eRepresentativeMC images; upper image: DAPI
(white); lower image,DAPI stain overlayedwith cell type annotations. fAs in c, from
indicated Mac/Mono subtypes (n = 3 samples). g Differentially expressed genes
(DEGs) of macrophages/monocytes between distal and proximal regions from MC
highlighted in a volcano plot. Colored dots represent significantly enriched genes;
blue, enriched in proximal; red, enriched in distal. p_FDR: false discovery rate
adjusted p-value. h Cell colocalization map built from MC data comparing the

frequency of colocalization in distal and proximal areas using a two-sided permu-
tation test, no correction for multiple comparisons. i Predicted ligand–receptor
(L–R) interactions between macrophages/monocytes and T cells in distal or prox-
imal areas based on fragment-seq data (n = 3 samples). Interaction scores were
calculated from grouped fragment-seq data by CellPhoneDB using a permutation
test (unadjusted p-value indicated). j Representative MC image of Spp1 (green),
Vcam1 (purple), and Itgb1 (yellow) shown as anoverlay with DAPI signal (white).MC
data in d, e, g, h, and j represents two samples from two independent experiments
from mice with visible macrometastases (n = distal: 71, proximal: 11 areas). For
c, d, f, and g, we used a negative binomial generalized log-linear model
(‘glmQLFTest‘ function of edgeR), which uses a (two-sided) empirical Bayes quasi-
likelihood F-test. P-values (Benjamini–Hochberg adjusted) of <0.05 were con-
sidered significant. For, c, d, and f–i the source data are provided as a Source Data
file. For all box andwhiskers plots themiddle line represents themedian; the upper
and lower lines are the first and third quartile (Q1 andQ3); thewhiskers indicate the
upper and lower limits of data spread by subtracting 1.5* interquartile range (IQR)
from Q1 and adding 1.5* IQR to Q3. L–R: ligand–receptor.
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fragment-seq is a powerful tool to probe the metastatic micro-
environment. To confirm the correct assignment of fragments to
specific niches, future experiments would require anchoring labels
that are directly linked to the spatial locationwithin the tissueof origin.
Unlike other methods that allow the investigation of spatial metastatic
niches11,43, fragment-seq does not rely on transgenic mice to induce a
fluorescent reporter or tissue slicing and photoactivation of regions of
interest. Fragment-seq allows the investigation of different metastatic
niches in a three-dimensional, high throughput, andunsupervisedway.
For example, we uncovered an increased abundance ofC1q-expressing
macrophages in metastatic-proximal sites, which were previously
described as a subset that is increased in cancer correlating with poor
prognosis and T cell exhaustion32. L–R interaction analysis further
allowed us to identify proximal enrichment of interactions involving
Spp1 or Fn1, which were previously found to be associated with CRC
tumorprogression37. Thesebiologicalfindings highlight that fragment-
seq can be used to capture small local spatial differences within
complex tissues, while its single-cell resolution allows niche-specific
L–R interaction analysis.

We could further demonstrate in two proof-of-principle experi-
ments that fragment-seq can be easily adapted to other biological
tissues and species, as shown for the murine spleen and human
Crohn’s disease biopsies. For the latter, we established a manual
sorting approach, tomake fragment-seq feasible also in the absence of
a large fragment biosorter. Our preliminary data show that fragment-
seq can be applied to fresh human tissues, which could be potentially
used to address fundamental questions about disease mechanisms in
humans. For example, fragment-seq could distinguish fibrotic and
non-fibrotic microenvironments in Crohn’s disease samples based on
the presence or absence of activated fibroblasts or could be used to
separate pro- or anti-inflammatory microenvironments within solid
tumors. Of note, fragment-seq is limited by cell loss, therefore, small
tissue samples (~<1 cm3) may require pooling.

However, like any spatial transcriptomics methodology, fragment-
seq has inherent strengths and limitations. Single-cell resolution is one
of its strongest advantages because it enables precise L–R interaction
prediction within distinct spatial locations. Another advantage of
fragment-seq is its compatibility with existing downstream protocols
used for scRNA-seq, such as the vast existing catalog of computational
methods. Furthermore, fragment-seq has the potential to profile other
modalities, such as chromatin accessibility or proteins, solely by
adapting the scRNA-seq protocol to ATAC-seq44,45 or CITE-seq46

approaches, respectively. So far, fragment-seq has been exclusively
applied to fresh tissues, however, the protocol could be modified for
frozen tissues. Fragment-seq could theoretically be adapted to single
nuclei RNA sequencing by modifying lysis protocols and exchanging
lipid- with cholesterol-tagging barcodes25. Unlike sliced-based spatial
transcriptomicsmethods, fragment-seq is not limited to individual two-
dimensional regionsof interest and is, therefore,more representativeof
the sample tissue as a whole. In addition, fragment-seq is not limited by
a panel of marker genes and does not require digital segmentation to
achieve single-cell resolution, which is a clear advantage compared to
many sliced-based spatial transcriptomics methods such as MC. How-
ever, fragments are generated in a random process and rare niches
might not be reliably captured. This could be amended by introducing
fluorescently labeled antibodies or fluorescent reporter genes to indi-
cate rare niches of interest and select signal-positive fragments with the
large sample sorter. Alternatively, it may be possible to combine
fragment-seq with proximity-labeling systems such as sLP-mCherry
(which is based on cell-permeable mCherry that is secreted by a sender
cell to integrate into the cell membrane of neighboring cells43) or
recently developed cell–cell contact tracing models47, e.g. to label
tumor-proximal areas with fluorescent signals that could be selectively
enriched with the biosorter. As with any other spatial or scRNA-seq
methods cell type biases are introduced by fragment-seq. Certain cell

types like stromal cells and hepatocytes were underrepresented com-
pared to imaging-based MC. However, a comparison of fragment-seq
with conventional scRNA-seq suggests that both share similar biases,
possibly introduced due to ex vivo liver digestion22, in this regard,
fragment-seq and scRNA-seq data are comparable.

As demonstrated here, fragment-seq enables unsupervised spatial
hypothesis generation for entire tissues. This makes fragment-seq an
ideal method for exploratory research, which can then be validated by
imaging-based spatial transcriptomics or proteomics methods that
offer subcellular spatial resolution but require prior knowledge of
gene expression for panel assembly. In sum, we show that fragment-
seq is a powerful tool to investigate differences in cellular composition
and gene expression between distinct tissue niches and serves as a
valuable addition to currently available technologies in the field of
spatial transcriptomics.

Methods
Ethics statement
All experimental procedureswereperformed in accordancewith Swiss
Guidelines. Animal experiments were approved by the Cantonal
Veterinary Office Basel-City under the national license number 35370.
Ethical approval for collecting tissue specimens from IBD patients was
received by the Cantonal Ethics Committee of Canton Zürich (BASEC-
No. EK-1755/ PB_2019-00169). Ethical approval for collecting tissue
specimens from colorectal cancer patients was received by the Basel
Ethics Committee (EKBB, approval number 2019-00816). Written
informed consent was collected before study inclusion from all
participants.

Mice
For all experiments C57BL/6Jmicewere obtained from Janvier-Labs (Le
Genest-Saint-Isle, France), mice were used aged 6–10 weeks, and male
and femalemicewere used interchangeably. Animalswerehousedon a
12 h day–night cycle, with ad libitum access to a standard diet and
drinking water in a room with controlled temperature (21 ± 2 °C) and
humidity (55 ± 10%). For experiments with liver metastases, the Can-
tonal authorities under this license foresee humane endpoints in case
of weight loss of more than 15%, signs of infection, a palpable tumor
diameter of more than 1.5 cm, or the presence of severe behavioral
anomalies indicating pain. These limits have not been exceeded in
this study.

Mouse model of liver metastasis
VilCreERT2;APCfl/fl;Tp53fl/fl;KrasG12D/wt (AKP) organoids, obtained
from Owen Sansom from Beatson Institute for Cancer Research in
Glasgow, were modified with an additional knockout in Smad4,
resulting in VilCreERT2;APCfl/fl;Tp53fl/fl;KrasG12D/wt;Smad4KO
(AKPS). Organoids were cultured in Matrigel (Corning) following
standard protocols in the field48,49. The culture medium (Advanced
DMEM/F12, Life Technologies™) was supplementedwith 10mMHEPES
(Life Technologies™), 2mM L-Glutamine (Life Technologies™),
100mg/mL Penicillin/streptomycin, 1x B27 supplement (Life Tech-
nologies™), 1x N2 supplement (Life Technologies™) and 1mM
N-acetylcysteine (Sigma-Aldrich). Organoids were split by mechanical
dissociation every 3 days. For splenic injections, AKPS organoids (4
domes per mouse) were repeatedly washed in ice-cold PBS to remove
all Matrigel, then mechanically dissociated into small fragments,
resuspended in 50μL PBS, and loaded in an insulin syringe (BD,
MicroFine, 0.3ml, 30G). C57BL/6 mice were administered Carprofen
(5mg/kg) subcutaneously 30min before surgery, then anesthetized
with isoflurane gas and kept warm on a 37 °C thermal pad. After
shaving and disinfection with betadine, a mixture of 0.5% lidocaine
(5mg/ml) and 0.25% bupivacaine (2.5mg/ml) was subcutaneously
injected along the planned incision line. The spleen was exposed and
the organoids were injected under the splenic capsule. After 10min,
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the spleenwas resectedby ligation. Thewoundwaswashedwith sterile
PBS, the peritoneal wall was closed with an absorbable polyglactin
suture (Vicryl 4-0 or 5-0 coated), and the skin with wound clips.
Buprenorphine (0.1mg/kg) was injected subcutaneously during the
wake-up phase. The animals were monitored until awake and in the
days following surgery. The experiment was terminated 14 days after
intrasplenic injection. All experimental procedures were performed in
accordance with Swiss Guidelines and were approved by the Cantonal
Veterinary Office Basel-City.

Colon cancer organoids mixing species experiment
GFP+mouse and GFP− human colon cancer organoids weremixed in a
ratio of 1:1 and used for fragment-seq. Based on the GFP signal 144
wells were sorted with GFP+ mouse and 144 wells with GFP− human
organoids.

Cultivating human colon cancer organoids. Human colon cancer
organoids were obtained from the Visceral Surgery Research Labora-
tory led by Salvatore Piscuoglio at the University of Basel and cultured
in Matrigel (Corning) as described above with the following adapta-
tions to culture conditions: The culture medium (Advanced DMEM/
F12, Life Technologies™) was supplemented with 10mM HEPES (Life
Technologies™), 2mM Glutamax (Gibco), 1x B27 supplement (Life
Technologies™), 10mM Nicotinamide (Sigma Aldrich), 1.25 mM N-
acetyl-l-cysteine (Sigma Aldrich), 500nM A83-01 (Stemcell #100-
0245), 50 ng/ml Human epidermal growth factor (hEGF) (Stemcell
#78006.1), 100 ng/mlRecombinant humanNoggin (Stemcell #78060),
100 ng/ml human R-spondin (LuBioScience #120-38-20), 10 nM Pros-
taglandin E2 (PGE2) (Stemcell #72634), 10 µM SB202190 (Stemcell
#72634), 10 µM Y-27632 dihydrochloride (Rock inhibitor) (Stemcell
#72304) and 10 nM Gastrin (Sigma Aldrich, #G9145).

Cultivating mouse colon cancer organoids. VilCreERT2;APCfl/
fl;Tp53fl/fl;KrasG12D/wt (AKP) organoids obtained fromOwen Sansom
were labeled with the plasmid pMSCV-loxp-dsRed-loxp-eGFP-Ruo-
WPRE50 and cultured as described in ‘Mouse model liver metastasis’
section with the addition of 100 µg/ml murine recombinant Noggin to
the culture medium (LuBioScience, #250-38-250).

Tissue collection
Liver. Mice were euthanized and the liver was perfused with PBS (pH
7.4, Gibco) at aflow rate of 2–3mL/minover an insertion of the cannula
in the inferior vena cava. After the liver was fully perfused the gall-
bladder was removed and the liver was collected in ice-cold PBS. For
Molecular Cartography and Visium, a piece of the liver was embedded
in O.C.T.™ compound (Tissue-Tek) and snapped frozen in a metal
beaker filled with isopentane (Sigma Aldrich) in liquid nitrogen. Snap-
frozen tissues were stored at −80 °C. Molecular Cartography and Vis-
ium were performed on samples frommice that were also included in
fragment-seq data.

Spleen. Mice were euthanized, the spleen was removed and collected
in ice-cold PBS.

Crohn’s biopsy. Tissue was surgically resected and collected inMACS
tissue storage solution (Miltenyi Biotec #130-100-008) on ice for
around 4–6 h before further processing. Recruitment of patients was
carried out by the University Hospital of Zurich in accordance with
ethics regulations. Coded patient IDs were provided to the study team,
and the study has no further information on patient characteristics to
report.

Colon cancer organoids. Matrigel of domes was dissolved with ice-
cold PBS and organoids were collected in ice-cold PBS after shaking on
ice for 30min to remove all residual matrigel.

Liver digestion for conventional scRNA-seq
Collected livers were cut into small pieces and incubated at 37 °C
300 rpm in a buffer containing low glucose DMEM (1 g/L D-Glucose/L-
Glutamine, Pyruvate, Gibco #31885-023), 15mM HEPES (Gibco) and
32 µg/ml liberase™ (Sigma Aldrich #05401119001) and 1x TripLE
(diluted from 10x TripLE) (Gibco). After dissociation cells were filtered
through a 100 µm strainer (Corning) and spun down at 300×g for
10min to collect cells. Cells were then used for scRNA-seq capture on
the BD Rhapsody system.

Fragment-sequencing workflow
Partial dissociation into fragments. Tissues were partially dissociated
into fragments using themechanical forceof a scissor. Fragmentswere
then first filtered with a 400 µm strainer (PluriSelect #43-50400-03) to
remove larger fragments that would clog the biosorter. Then frag-
ments were filtered a second time using a 40 µm strainer (PluriSelect
#43-50040-51) to remove single cells. Thereby, after the solution was
filtered through the 40 µm strainer, the strainer was turned and larger
than 40 µm fragments were washed off the strainer and collected in a
50ml falcon tube in PBS for the spleen. Liver fragments were collected
and sorted in low glucose DMEM (1 g/L D-Glucose/L-Glutamine, Pyr-
uvate, Gibco #31885-023). The same filtering approach was used for
Crohn’s disease biopsies with a lower size strainer of 200 µm and a
higher size strainer of 500 µm resulting in a suspension of fragments
between 200 and 500 µm. Solution (Advanced DMEM/F12, Life Tech-
nologies™)with fragmentswas thenput into a Petri dish and fragments
were manually picked under a stereomicroscope (Leica) using a P200
pipette and tips.

Fragment sorting using a large fragment biosorter (Copas). Frag-
ments were sorted into 96-well plates (non-binding, v-shaped, Grei-
ner bio-one #651901) filled with 30 µl dissociation medium (see
single-cell dissociation section), one fragment per well using a large
fragment biosorter (Copas) with a 1000 µm large nozzle. The gates
were set to allow the sorting of fragments within specific size ranges
between 200 and 400 µm. The size was defined with a linear model
by acquiring time of flight (TOF) of standard-sized beads (Megabead
NIST Traceable Particles (Polysciences): 60 µm (#64200-15), 125 µm
(#64225-15) and 175 µm (#64235-15)). TOF on the x-axis and extinc-
tion of the y-axis measures were then predicted for sizes between
200 and 400 µm from the linear model to the gate and sorted
accordingly. For the organoid species mixing experiment GFP+
mouse organoids were sorted using the 488 nm blue laser at a power
of 50. Gates for positive ones were drawn against a GFP− organoid
control with a similar organoid size. Solution with fragments was
diluted to around 10 events per second for proper sorting with pure/
no doublets sorting mode. Other settings were the following: Power
50mW; gain 1.0; PMTVolts green 600, red 750; drop width 7mS; sort
delay 23mS; sample cup pressure 0.42 psi; diverter pressure 2.5 psi;
sheath flow rate 57%. The sheath flow solution was PBS (pH 7.4,
Thermo Fisher). Fragments were sorted directly into dissociation
buffers. Spleen dissociation buffer was PBS (pH 7.4, Gibco). Liver
dissociation buffer was a mix of low glucose DMEM (1 g/L D-Glucose/
L-Glutamine, Pyruvate, Gibco #31885-023), 15mM HEPES (Gibco) and
32 µg/ml liberase™ (Sigma Aldrich #05401119001) and 1x TripLE
(diluted from 10x TripLE) (Gibco). Colon cancer organoids were
sorted into 30 µl of 1x TripLE (Gibco).

Manual picking of fragments from Crohn’s disease biopsies. Frag-
ment solution (200–500 µmI) after partial dissociation was put into a
Petri dish and placed under a stereo microscope (Leica). Using a
P200 pipette and low retention tips fragments were manually picked
one by one into 100 µl epithelial dissociation medium
(HBSS(–Ca2+–Mg2+) (Sigma Aldrich), 10mM HEPES (Gibco) and 5mM
EDTA (Lonza)).
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Testing of sorting purity of single fragments per well. Liver tissue
was partially dissociated and used for sorting fragments between 200
and 450 µm in diameter. Nine plates were sorted and used for imaging
on a Leica Thunder Imaging System. Plate scans were then visually
inspected to count wells with none, one, or multiple fragments.

Single-cell dissociation. Spleen fragments were dissociated by
applying mechanical force by pipetting up and down around 50 times
using a P20 multichannel pipette. The Crohn’s biopsy fragments were
incubated at 37 °C and 300 rpm for two times 15min with vortexing of
plates in between for 30 s. After incubation plates were spun at 400×g
for 10min at 4 °C and the supernatant was carefully removed after-
ward. Then 100 µl of digestion medium (HBSS(+Ca2+, +Mg2+) (Sigma
Aldrich), 0.5mg/ml DNAseI (Roche Diagnostics #10104159001), and
0.5 Collagenase from Clostridium histolyticum (SigmaAldrich #C5138))
were added and incubated at 37 °C and 300 rpm for 30min. After
incubation enzyme activity was inactivated by adding 50 µl of 20mM
EDTA/PBS (Lonza, pH 7.4 Gibco) shaking at 300 rpm 37 °C incubating
for 5min. Then plates were spun at 4 °C 400 rpm for 10min and
supernatant except around 30 µl was removed after. Colon cancer
organoids were incubated at 37 °C for 12min at 300 rpm and liver
fragments were incubated at 37 °C for 22min at 300 rpm.

Labeling of cells with fragment-specific barcodes. For labeling of
fragments, the MULTI-seq lipid hashing method was used25. Lipid
anchor and co-anchor were obtained from Zev J. Gartner laboratory at
the University of California San Francisco. We designed a set of 288
barcodes with a minimum hamming distance of 3 using the Bio-
conductor package DNAbarcodes51 (Version 1.20.0), incorporated
primer binding sequences from the MULTI-seq method25 and ordered
them with a purity of standard desalting (MULTI-seq primers are
provided in the Supplementary Data Files 1 and 2). Anchor and bar-
codes were mixed beforehand in a volume of 20 µl in PBS in a con-
centration of 50nM for spleen, liver, and organoids and 100nM for
Crohn’s biopsies in a ratio of 1:1. Co-Anchors were also diluted
beforehand in PBS in the same concentrations. After the dissociation
of fragments, 20 µl of Anchor:Barcode mix was added to the wells and
mixed for 30 s at 700 rpm on a thermomixer at 20 °C. Then the cells
were incubated on ice for 5min. After incubation, the diluted co-
anchor is added and againmixed for 30 s at 700 rpm at 20 °C followed
by incubation on ice for 5min. To quench the binding of lipids to the
cells 100 µl of 10% BSA (Sigma Alrich) in PBS were added, mixed for
30 s at 700 rpm, and incubated on ice for 5min. After incubation, cells
from all wells were pooled into FACS tubes (Falcon) and spun at 400×g
for 10min for Crohn’s biopsy and spleen, 300×g for 10min for liver,
and 300×g for 5min for colon cancer organoids. Cells were then
washed at least 2–3 times with 1% BSA in PBS. For the last wash cells
were transferred into a 1.5ml DNA low-binding tube (1.5ml, Eppen-
dorf) and spun a last time to then resuspend cells in only around
50–100 µl for counting and quality check using a hemocytometer and
trypan blue solution (0.4%, Thermo Fisher). Samples were processed
further for scRNAseq if therewere at least 10,000 cells and the viability
of cells was at least 70%.

Single-cell RNAseq library preparation for fragment-seq experi-
ments using BD Rhapsody and MULTI-seq. Whole transcriptome
analysis (WTA) onMULTI-seq labeled cellswas performedusing theBD
Rhapsody Single-Cell Analysis System (BD Biosciences). In total, 9 liver
samples were processed of mice that were injected with colon cancer
organoids, one sample of healthy mouse liver, one sample of mixed
colon cancer organoids, and two samples of Crohn’s disease biopsies.
In addition, cells from two livers of mice that were injected with colon
cancer organoids were used for two experiments of conventional
scRNA-seq (only WTA, no MULTI-seq library preparation). For each
sample, a BD Rhapsody cartridge was loaded with approximately

10,000 cells. Single-cell capture and cDNA synthesis using the Single
Cell Capture and cDNA Synthesis kit (#633731, #633733, #633773) was
done following the manufacturer’s protocol (BD Biosciences). Librar-
ies were then prepared using the BD Rhapsody WTA Amplification Kit
(#633801) following instructions of the mRNA WTA Library Prepara-
tion Protocol (BD Biosciences). For the MULTI-seq library, first, the BD
protocol of Sample Tag Library Preparation was followed until pur-
ification of Sample Tag PCR1 productwith the difference of adding the
MULTI-seq primer (sequence according to McGinnis and Patterson
et al. 25) in a concentration of 10 µM instead of Sample Tag PCR1 Primer
(kit component number 91-1088, BDBiosciences) for Sample Tag PCR1
reaction. After purifying the Sample Tag PCR1 product, an indexing
PCRwas done following instructions of theMULTI-seq protocol where
small RNA TrueSeq indexing primers (Illumina #15004197) were used
for i7 and the Forward Primer (kit component number 91-1085) from
the BD WTA kit was used for i5.

Single-cell RNAseq library preparation of fragment-seq experi-
ments using Chromium 10X and MULTI-seq. Fragment-seq library
construction for murine spleen samples was performed with Chro-
mium 10X. Libraries were generated following the manufacturer’s
instructions from ChromiumNext GEM Single Cell V(D)J Reagent Kits
v1.1 protocol (kit component number PN-1000165). In short: cells
were resuspended in 0.04% BSA and mixed with a Master mix con-
taining reagents for reverse transcription. The cell suspension was
then loaded in GemCode Single-cell Instrument (10X Genomics)
together with GemCode Single-Cell 5’ Gel Beads. Cells and beads
were fused to generate single-cell Gel Bead-in-Emulsions (GEMs).
Within GEMs, cells were lysed and RNA was reverse transcribed. After
GEMs were broken and cDNA was cleaned up, using DynaBeads
MyOne Silane Beads (Thermo Fisher #37002D) and SPRIselect beads
(Beckman Coulter #B23318), cDNA was amplified and cleaned up
using SPRIselect beads. Then amplified cDNA was enzymatically
fragmented and indexed sequencing libraries were generated by the
following steps: end repair, A-tailing, adapter ligation, post-ligation
SPRIselect cleanup, and sample index PCR. For MULTI-seq library
preparation instructions were followed fromMcGinnis and Patterson
et al. 25. In short: The MULTI-seq primer (according to MULTI-seq
protocol instructions) was added in a concentration of 10 µm to the
cDNA amplification mix. After cDNA amplification during SPRIselect
clean up the non-bound fraction (containing small cDNA fragments)
was saved and cleaned up with SPRIselect beads in a higher ratio to
enrich for small MULTIseq barcodes. These products were then used
for index PCR using the SI-PCR Primer from the 10X kit for the i5 and
one of the small RNA TrueSeq index primers for the i7 (Illumina
#15004197).

Visium library preparation
Two mouse liver samples with visible micro-metastasis were pro-
cessed. A 10X Visium Spatial Gene expression slide was put into the
cryostat (Leica CM3050S) to calibrate its temperature to −20 °C. Then
10 µm sections of metastatic mouse liver samples were cut and placed
within the capture area. The capture slide was then stored in a slide
container at −80 °C until the next day for further processing. cDNA
libraries were generated following the manufacturer’s instructions. In
short: Tissues were fixed with methanol and hematoxylin and eosin
(H&E) stainingwas done to check tissue quality andmorphology. Then
tissue lysis, reverse transcription, second strand synthesis, and cDNA
denaturation were performed on the slides. Permeabilization time of
10min was assessed beforehand with the Tissue Optimization Proto-
col. Reactions were transferred into PCR tubes and qPCR was done to
measure cDNA concentration. cDNA was then amplified by PCR using
cycle numbers defined by qPCR. Final library preparation steps (End
repair, A-tailing, adapter ligation, and sample index PCR) were done to
generate indexed sequencing libraries.
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Quality assessment of libraries and sequencing
Quality and quantity of all libraries were assessed using the dsDNA
high-sensitivity (HS) kit (Life Technologies #Q32854) on a Qubit 4
fluorometer (Thermo Fisher) and high-sensitivity D1000 reagents and
tapes (Agilent #5067-5585, #5067-5584) or high sensitivity D5000
reagents and tapes (Agilent #5067-5593, #5067-5592) on aTapeStation
4200 system (Agilent Technologies). Paired-cell sequencing was per-
formed for all libraries (WTA BD libraries: read 1: 60 bp, index read:
8 bp, read2: 62–100bp; WTA 10X libraries: read 1:26 bp, index read:
8 bp, read2: 88–96bp; MULTI-seq libraries: read 1:26 bp (10X), 60 bp
(BD Rhapsody), index read: 6 bp, read2: 62-100bp)) on a NovaSeq
6000 system (Illumina) using NovaSeq SP Reagent Kits (100 cycles)
v1.5 and S4 Reagent kits (200 cycles) v1.5 with XP workflow. WTA
libraries of BD Rhapsody and 10X were sequenced at 50,000 reads/
cell, MULTI-seq libraries of both 5000 reads/cell, and Visium libraries
at 50,000 reads/spot.

Single-cell RNAseq and Visium data preprocessing
Demultiplexing. BCL files were demultiplexed using Bcl2fastq
v2.20.0.422 from Illumina to convert them to FASTQ files.

BD Rhapsody data was preprocessed using zUMIs. FASTQ files from
WTA libraries of BD Rhapsody data from fragment-seq and conven-
tional scRNA-seq were processed using the zUMIs52 (v2.9.4) platform
to convert reads to countmatrices per cell. For gene alignment STAR53

(v2.5.2b) was used with the following gene codes: for human Crohn’s
disease biopsy samples GRCh38 v2020-A; for mouse liver samples
GRCm38 vM25 fused with GFP 3’ UTR sequence and for the colon
cancer organoidsmixing species experiment a fused index of GRCm38
v2020-A, GRCh38 v2020-A, and GFP 3’ UTR sequence. Three liver
samples (S1–3) were sequenced twice to acquire deeper sequencing,
fastq files for read1 and read2 were merged and the merged files were
used as zUMI input.

10X data was pre-processed using Cell Ranger. Mouse spleen data
single cell count matrices were generated using Cell Ranger (v5.0.0)
(10X Genomics) with GRCm38 v2020-A gene code.

Visium data was pre-processed using Space Ranger. Mouse liver
Visium data was pre-processed using Space Ranger (v1.2.0) (10X
Genomics) with GRCm38 v2020-A gene code.

Fragment-sequencing downstream analysis
Downstream analysis of UMI count matrices was done in R version
4.1.0 and most analysis was done using the following packages:
Seurat54 (v4.0.3), scran55 (v1.22.1), and SingleCellExperiment56 (v1.16.0).
Dplyr57 (v1.0.7) and tidyverse58 (v1.3.1) were used for data wrangling.
Plotting was mostly done with ggplot259 (v3.3.5).

Conversion of gene code numbers from zUMI outputs to
gene names. Genecode numbers were converted using the
biomaRt60,61 Bioconductor package (v2.50.3) with musmusculus_gen-
e_ensemble version 95 for mouse data and hsapiens_gene_ensembl
version 95 for human data. For the organoid species mixing experi-
ment both gene codes were used. GFP gene name was included.

Fragment barcode classification and integration with whole tran-
scriptome analysis (WTA). For allocation of MULTI-seq barcodes to
single cells the deMULTIplex25 (v1.0.2) workflow on the GitHub repo-
sitory https://github.com/chris-mcginnis-ucsf/MULTI-seq was fol-
lowed. Briefly, a sample barcode UMI matrix per cell was generated.
Then cells were assigned to specific barcodes following the classifica-
tion workflow. Cell barcodes of classified cells were thenmatchedwith
cell barcodes of WTA. This resulted in positive, negative, or doublet-
classified cells.

Pseudobulk clustering with spatially defined marker genes to
locate fragment position. Differential gene expression analysis on
Molecular Cartography data between proximal and distal areas was
done using the Seurat function ‘FindAllMarker’ genes with default
parameters. Only the following cell types were considered because
they were also sufficiently present in fragment-seq data: B cells,
Kupffer cells, LECs, metastatic cells, macrophages/monocytes, and
T cells). Pseudobulks of fragments from one metastatic murine liver
sample using the ‘AverageExpression’ function from the Seurat pack-
age. The top 10 differentially expressed genes per group (distal or
proximal) were then used to cluster fragments using 10 principal
components (PCs) and a resolution of 0.4. Proportions of broad cell
types were then assessed between cluster 1 and cluster 2.

Mouse liver-specific fragment-seq downstream analysis
Normalization and batch effect correction. All 10 liver samples were
merged after the generation of Seurat objects and UMI (unique
molecular identifier) counts underwent SCT normalization (Seurat
function, ‘SCTransform’) which normalizes and scales data using
Pearson residuals and finds variable features. Then the merged Seurat
object was transformed into a SingleCellExperiment object and batch
effect correction was done using MNN (mutual nearest neighbors)
correction within the batchelor62 Bioconductor package (v1.10.0).

Quality control and clustering. After batch effect correction low-
quality cells (lower than 200 features and higher than 20% of reads
mapped to mitochondrial genes) and doublets (higher than 7500
features) were removed and 10 MNN corrected principal components
(PCs) were used for clustering of cells in uniform matrix approxima-
tion and projection (UMAP) two-dimensional space.

Cell typeannotation. Initial clusteringwith 10MNNcorrected PCs and
a resolution of 1 was first broadly annotated using cell type markers
from the liver cell atlas22. Then each broadly annotated cell cluster was
further investigated for subtypes using the Seurat sub clustering
function ‘FindSubCluster’. Subclusters were then annotated with the
help of the liver cell atlas and investigation of differentially expressed
genes (DGE) using the Seurat function ‘FindAllMarkers’ with a non-
parametric Wilcoxon Rank Sum test with default parameters (min.pct
0.25 and logfc.threshold 0.25).

Integration of fragment size from biosorter data. A standard curve
was generated with TOF measurements of standard-sized beads. TOF
measurements of sorted fragments were then fitted into the linear
model to calculate the size in diameter.

Cells per fragment cutoff. For further analysis, only fragments with at
least five cells were used.

Lobule layer classification. For each fragment, a zonation coordinate
(ZC) based on zonated landmark genes in LECs was calculated fol-
lowing a previously developed approach63. In detail, we first generated
pseudo bulks from the LECs of each fragment. Next, we compared this
to central and portal landmark genes from Halpern et al. 15, which
detailed mean gene expression in the 9 different lobule layers of
hepatocytes. The expression of genes in Halpern et al. was normalized
above 10−5 across all layers and had a fold change between L1 and L10
of at least 10%with an average ratio between standard arrow andmean
over all layers of <0.2 (which was implemented to discard highly
varying genes)63. Next, genes expressed in fragment-pseudo-bulks
were normalized by dividing their expression by themaximum level of
expression across fragments to ensure equal contribution of all genes.
GThen the sum of central and portal landmark genes (cLM and pLM)
was calculated for each fragment and used to calculate ZCs by the
following calculation: ZC = pLM/(pLM+ cLM). In the end, ZCs were
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rescaled so that 0 is the most central and 1 is the most portal coordi-
nate: ZC = (ZC−min(ZC))/(max(ZC)−min(ZC)). Fragmentswithout LECs
were removed from further analysis at this point. ZCs of fragments
were then grouped into lobule layers L1-L10 (L1: ZC <0.1, L2: ZC < 0.2,
L3: ZC <0.3,…, L10: 0.9 < ZC ≤ 1.0) There were not many fragments
from themost central andmost portal areas so theywere grouped into
L1–L3 and L8–L10. To control the zonation algorithm in our data,
landmark genes in hepatocytes were analyzed from fragments
grouped into central (L1–L5) and portal (L6–L10) veins.

Splitting of the dataset for different analyses. After pre-processing
analysis data was split into three datasets. The healthy liver sample
(n = 1), the liver samples of mice that were injected with colon cancer
organoids (n = 9) for analyzing liver zonation during metastasis for-
mation, and liver samples with a high amount of metastatic cells (at
least 20 within all cells) (n = 3, samples S3, S6 and S7) for analysis of
different metastatic niches (Supplementary Fig. 6a).

Metastatic distance classification. Fragments with metastatic cells
were grouped into ‘proximal’ and fragments without metastatic cells
into ‘distal’ categories

Analysis of zonation-specific genes. Differential gene expression
analysis was performed using edgeR64–66 (v3.36.0). For this single-cell
countswere summedacross fragmentswith at least 5 cells of a cell type
of interest to derive a single expression vector per fragment. After
removing lowly expressed genes using the ‘filterByExpr’ function in
edgeR, a negative binomial generalized log-linear model was fitted to
the remaining genes with the lobule layer as an ordered factor cov-
ariate (L1–L3 < L4 < L5 < L6 < L7 < L8–L10). The linear coefficients were
then used for fitting and the sample names were used as a blocking
factor to account for batch effects. The ‘glmQLFTest’ function was
used to identify genes with coefficients for the linearly encoded factor
significantly different from 0 at a Benjamini–Hochberg adjusted p-
value of 0.05. Degrees of freedom and other statistical properties can
be obtained from source code67. This analysis was done for LECs and
KCs. In LECs only genes that were not in the landmark gene panel to
calculate ZCs were further investigated.

Differential gene expression (DGE) analysis between two groups.
DGE analysis was done as described above with two differences. First,
single-cell counts were summed across fragments with at least two
cells of a cell type of interest, and second, insteadof using lobule layers
as an ordered factor covariate, two groups were used as factor
covariates.

Analysis of differences in cell type abundance between
two groups. To identify changes in cell-type-specific abundance
between twogroups, normalized log counts of cluster abundancewere
computed using the ‘cpm’ function in edgeR64–66 (v3.36.0) accounting
for the total number of cells per sample68. After specifying a design
matrix with group labels (veins ‘central’ and ‘portal’ or distances to
metastasis ‘proximal’ and ‘distal’) as covariates and sample names as
blocking factors, the dispersion parameter of the negative binomial
model was estimated using the ‘estimateDisp’ function in edgeR with
trend = ’none’. a negative binomial generalized log-linear model was
fitted with ‘glmQLFit’ function (robust = TRUE, abundance.trend =
FALSE) for each cell type. The ‘glmQLFTest’ function was then used to
identify cell types with coefficients significantly different from 0 at a
Benjamini–Hochberg adjusted p-value of 0.05.

Ligand–receptor (L–R) interaction between different groups using
CellPhoneDB. L–R interaction analysis was done using the Python
Package CellPhoneDB30 (v4.0.0) following instructions on the GitHub
repository https://github.com/ventolab/CellphoneDB. In short, gene

expression of annotated clusters was used as input to match with
known L–R interaction pairs from the CellPhoneDB public repository
using default parameters. The average ligand and receptor expression
between two cell types were represented by the mean values which
were calculated using the percentage of cells within a cluster expres-
sing the ligand or receptor and their gene expression mean. A null
distribution of means for randomly permuted annotated cluster labels
was then used to determine p-values. Analysis was done for separate
groups of veins (central and portal) and distances to metastasis
(proximal and distal). Differences in L–R interaction scores between
the two groups were then visualized in a barplot with L–R pairs
ordereddecreasing by the difference in interaction scores between the
two groups.

Assessment of bias between different fragment sizes and cell
number cutoffs. The differences between fragment size and cell
counts of fragments between two groups (pericentral and periportal,
distal and proximal) were assessed with a non-parametric Wilcoxon
signed-rank test using the ‘ggsignif ‘function fromggplot259 R package.
Fragments were then grouped into two different size ranges (211–325
and 326–457 µm) to test for different fragment sizes. For testing the
influence of different cell numbers an object with fragments having at
least 5 cells/fragment was compared to an object with fragments with
at least 20 cells. Differences in cell type proportions were assessed by
umap plotting split by different scenarios. DEGs of KCs and LECs were
assessed between two groups as described previously with batch and
lobule layers as blocking factors. Zonated genes were assessed in LECs
from different scenarios described previously and plotted in Volcano
plots (for size ranges or cellular cutoff). L–R interaction analysis of
datasets with different cutoffs was performed as described in the
section Ligand–receptor (L–R) interaction between different groups
using CellPhoneDB.

Ligand–receptor (L–R) interaction between different groups using
CellPhoneDB. Interaction scores of datasets with different sizes and
cell number cutoffs were then plotted in bar plots for comparison. To
assess the influence of fragment size or sample size on L–R interac-
tion analysis, cells from the pericentral and periportal datasets which
included the whole size range (211–457 µm) were randomly down-
sampled to the same amounts of cells as present in the pericentral
and periportal areas of the small fragment-size data sets
(211–325 µm).

Conventional scRNA-seq downstream analysis
Cell count matrix generation, gene name conversion, clustering, and
annotation were performed as described in previous sections for
fragment-seq downstream analysis. The normalized, log-transformed
counts were then used to map the data onto the fragment-seq dataset
using the ‘fastMNN’ functionusing the top6000HVGs as implemented
in thebatchelor package (v1.10.0)62. Thefirst ten principal components
from the batch-corrected PCA space were then used to compute the
UMAP in Fig. 1. Quality features (median UMI counts, gene features,
and ratio of mitochondrial to cytoplasmic genes) were assessed after
accounting for different read depths by downsampling and only con-
sidering cells with 30,000 reads. Therefore we re-run zUMIs52 (v2.9.4)
for all samples using ‘30000’ as a counting_opts downsampling
parameter.

Colon cancer organoids mixing species-specific downstream
analysis
Integration of GFPfluorescent signal frombiosorter data. Fragment
size was calculated with the help of a standard curve from standard-
sized beads. The GFP signal was then normalized by dividing it by the
fragment size to account for autofluorescence that is higher in larger
fragments.
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Quality control, normalization, clustering, and annotation. Low-
quality cells were removed with lower than 200 features and larger
than 30% of reads mapped to mitochondrial genes. UMI counts were
then normalized and scaled using the ‘SCTransform’ Seurat function
and 10 PCs were used for clustering in UMAP space. Cell clusters were
then annotated as human ormouse depending on the species of genes
being expressed. Based on the knowledge of sorting, cells could also
be annotated by their species as well.

DecontX to remove cell-free RNA. During data exploration of human
and mouse UMI reads per cell we found a lot of cell-free RNA in
fragment-seq data even after the removal of low-quality cells. This was
probably due to the low quality of colon cancer organoids (~20–30%
dead cells before single-cell capture). Therefore decontamination of
data was done using the decontX function (default parameters) within
the celda69 R package (v1.12.0).

Analyzing the fraction of correctly and wrongly assigned cells.
There are two annotations, the cell species annotation and the well
annotation that are established by sorting a human or mouse
organoid. By matching these two pieces of information the propor-
tion of wrongly and correctly assigned cells for each fragment could
be analyzed, wrong if there were mouse cells in human wells and
human cells in mouse wells, correct if the species was matching.
Three fragments were found to be 100% made out of wrongly
assigned cells and were therefore allocated to the opposite species
well because these are most probably due to a fluorescence
sorting error.

Mouse spleen-specific downstream analysis
Quality control, normalization, clustering, and annotation. Two
samples were merged after fragment barcode integration; no batch
effect correction was needed. Low-quality cells were removed, with
lower than 200 features and larger than 10% of reads mapped to
mitochondrial genes, and doublets were removed with larger than
6000 features. UMI counts were then normalized and scaled using the
‘SCTransform’ Seurat function and 10 PCs were used for clustering in
UMAP space. Cell clusterswere annotated using cell typemarker genes
from Medaglia et al. 10. Only fragments with at least 5 cells were con-
sidered for plotting.

Crohn’s disease biopsy-specific downstream analysis
Quality control, normalization, clustering, and annotation. Two
samples were merged without the need for batch effect correction.
After low-quality cells anddoublets (cells with lower than 200 features,
larger than 25% ofmitochondrial reads, and larger than 5000 features)
were removed, UMI counts were normalized and scaled (‘SCTrans-
form’) and 10 PCs were used for clustering. Cells were annotated using
marker genes from Martin et al. 70. At least 5 cells per fragment were
required for plotting.

Visium data downstream analysis
Normalization, clustering, and spatial area annotation. Samples
were processed separately, normalization and scaling were done using
the ‘SCTransform’ Seurat function and clustering was done using 10
PCs in UMAP space. Clusters were then annotated into the following
areas: portal and central veins (also considered as ‘distal’ to metastatic
sites), and metastasis (considered as ‘proximal’ to metastatic sites)
based on landmark genes.

Comparison of the number of gene features. Mean values of the
number of gene features between proximal and distal metastatic areas
of Visium data were compared with mean gene feature values of both
areas from fragment-seq data. The same two metastatic liver samples
were used.

Batch effect correction. The two Visium samples were merged and
batch effect correction was done using MNN (mutual nearest neigh-
bors) correction within the batchelor62 Bioconductor pack-
age (v1.10.0).

Deconvolution. For the deconvolution of spots, annotated fragment-
seq datawas used as a reference. The top 20 genes per cell type cluster
were selected thatwere also expressed inVisiumdatasets. These genes
were used for deconvolution using the SCDC71 package (v0.0.0.9000).
Spotswere allocated to a specific cell type if at least 75% of genes could
be assigned to one cell type. Spots with <75% are annotated as mixed.

Public Visium data analysis. Public Visium data from Guilliams et al.22

was used from wild-type mouse and NAFLD (non-alcoholic fatty liver
disease) mouse models. Spots annotated for different liver zones
(central, mid, periportal, and portal) were grouped and tested for gene
expression of zonation-specific genes.

Highly multiplexed FISH (Molecular Cartography™)
Sample preparation, probe design, Imaging, and pre-processing.
These steps were done as previously described22. In brief, for sample
preparation, liver samples (4 mouse liver metastasis samples of which
two samples had visible micro-metastasis) were frozen and sectioned
into 10 µm slices as described for Visium; sections were placed within
capture areas on Resolve BioScience slides. Afterward, slides were sent
to Resolve BioSciences on dry ice, where they were processed further.
Samples were fixed and underwent 100-plex combinatorial single-
molecule fluorescence in-situ hybridization. During multiple cycles of
color development, imaging, and decolorization a unique combina-
torial code for each target genewas generated. 100 genes were chosen
from fragment-seq analysis (20 genes were chosen to define cell types
and 80 genes were hits to validate) and their probes were designed
using Resolve’s proprietary design algorithm that makes sure that
probes are specific with little off-target binding. Fluorescent signals
were imaged on a Zeiss Celldiscoverer 7 microscope with a final
magnification of ×25. Each region underwent 9 imaging rounds and 16
z-stacks were acquired. Java and C++ scripts were then used for spot
segmentation and images were pre-processed to remove background
fluorescence. Raw data images from different imaging rounds were
aligned during which images had to be corrected using an iterative
closest point cloud algorithm. Then aprofile for eachpixel was created
using the information of 16 values (16 images from two color channels
in 8 imaging rounds).

Downstream analysis. Image analysis was performed in ImageJ using
genexyz Polylux tool plugin from Resolve BioSciences.

Cell segmentation using Cellpose. Cellpose72 (v.2.0.4) was used to
segment nuclei from the DAPI images with the pre-trained nuclei
model and flow_treshold 0.5, cellprob_threshold −0.2. The nuclear
segments were then expanded by 10 pixels (1.38 µm) using the
‘expand_labels’ function implemented in scikit-image and transcripts
were subsequently assigned to the expanded segments. Segments
larger than 4 median absolute deviations (MAD) plus the median
segment area were removed from the analysis. During clustering and
cell type annotation, low-quality clusters of cells were removed which
could not be properly annotated.

Normalization, clustering, and annotation. Count matrices of seg-
mented cells were normalized and scaled using the ‘SCTransform’

function of Seurat and then 10 PCs were used for clustering in UMAP
space. Cell clusters were then annotated using marker genes from
fragment-seq analysis; cells that could not be properly annotated were
removed from the analysis. Annotation was then projected on cells as
an overlay on Molecular Cartography DAPI images in ImageJ.
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Feature area integration. Signals for landmark genes defining central
(Cyp2e1), portal (Cyp2f2), and metastatic areas (Gpx2) were used to
visualize different areas, then areas were manually drawn and their x
and y coordinates were exported. Coordinates from different areas of
the image were then matched with the x and y coordinates of cell
segmented count data to annotate single cells by their area of origin.

Differential gene expression (DGE) analysis between two groups.
DGE analysis was done as described for fragment-seq analysis. But
instead of using the sum of single cell counts across fragments, counts
were summed across spatial feature areas.

Analysis of differences in cell type abundance between
two groups. Cell-type proportions were analyzed as described for
fragment-seq analysis.

Colocalization analysis. A spatial neighborhood graph was con-
structed based on the Euclidean distance in 2D space of the centroids
of the segmented areas. In this graph, vertices represent the cells that
are connected by an edge if the distance is smaller than 10 µm. To
construct the graph, we utilized a kd-tree-based nearest neighbor
search in a pre-defined radius of 10 µm as implemented in the R
function ‘nn2’ (RANN v.2.6.1,searchtype = ’radius’) with a sufficiently
large k (k = 41). This approach runs in O(M logM) time and avoids the
computation of the distance matrix for thousands of objects. The
resulting adjacency matrix was then used to construct a graph using
the igraph73 package (v.1.3.4). From this graph the number of edges
between cell types was computed in each region of interest (ROI) and
divided by the sum of the number of cells for each cell type pair to
normalize for total cell numbers in the annotated regions. For each
slide, the difference in the normalized number of edges between the
two groups of ROIs, e.g. proximal versus distal, was subsequently
computed. This value was compared to an empirical null distribution
derived from randomly permuting the labels of the vertices (m = 1000)
per slide. This approach takes tissue composition and spatial structure
into account and allows the computation of p-values as p = (b + 1)/
(m + 1) where b is the number of times the permutation produced a
higher number of edges between two cell types than observed and m
the total number of permutations74. This was done for each slide and
possible cell–cell interactions to derive a score that represents the
fraction of images in which a specific interaction was significant, with
the sign representing co-localization or avoidance; visualization was
adopted from ref. 75.

Comparison of cell type abundances between fragment-seq and
Molecular Cartography. Only cell types that could be robustly
detected in Molecular Cartography, because of the presence of cell
type marker genes in the gene panel, were included in this analysis.
Cell-typeproportions frombothprotocolswerecalculated andplotted
in a barplot.

Immunofluorescence (IF) stainings
Mousemetastatic liver two weeks after intrasplenic injection with CRC
organoids were fixed with formaldehyde and embedded in paraffin.
Using amicrotome (Leica) 5 µmsectionswere cut and placed on slides.
Slides were then left to dry overnight. The next day tissues were
deparaffinized and rehydrated using consecutive incubations as fol-
lows: 15min xylene (SigmaAldrich) solution 1, 15min xylene solution 2,
15min xylene solution 3, 5min xylene/ethanol, 2min 100% ethanol
(Sigma Aldrich), 2min 100% ethanol, 2min 95% ethanol, 2min 95%
ethanol, 2min 70% ethanol, 2min 70% ethanol, 2min H2O, 2min H2O.
After, antigen retrieval was performed by incubating the slides for
30min in a low pH buffer (10mN sodium citrate solution, pH 6.0,
Sigma Aldrich). Then slides were washed with PBS two times for 5min
and incubated with 10% BSA/PBS 0.25% Triton X-100 solution (Sigma

Alrich) at room temperature for blocking. Then slides were incubated
with primary antibodies (rabbit anti-mouse SPP1: Catalog #MAB808,
Clone # 2139B, Lucerna-Chem AG, validated through western blotting
by manufacturer, working concentration 5 µg/ml; goat anti-mouse
VCAM1: Catalog #AF643, polyclonal, Lucerna-Chem AG, validated
through western blotting by manufacturer, working concentration
5 µg/ml) at 4 °C overnight. The next day, slides were washed 2 times
with PBS 0.25% Triton X-100 for 5min before incubation with the
secondary antibody (Cross-absorbed donkey anti-goat Alexa Fluor
647, #A21447, polyclonal, Invitrogen, working concentration 1:400;
cross-absorbed goat anti-rabbit AF647, polyclonal, #A21244, Invitro-
gen, working concentration 1:400) at room temperature for 1 hour.
After incubation slides were washed 2 items with PBS 0.25% Triton
X-100 following incubationwith DAPI (Thermo Fisher) in PBS (0.05 µg/
ml) for 10min at room temperature. Then slides were washed 2 times
with PBS before mounting them with ProLong Gold antifade reagent
(Invitrogen). Slides were then images with a Leica immunofluorescent
microscope.

Schematic drawings
Schematics for experimental procedures or overviews have been cre-
ated with BioRender.com.

Statistics and reproducibility
No statistical method was used to predetermine sample size, instead,
sample sizes were chosen based on comparable studies in the field (for
example paired cell sequencing15 n = 3, PIC-seq n = 4–716, Clump-seq
n = 317). In addition, biological interpretations were constrained by
statistical significance obtained through the given sample size. The
experiments or experimental animals were not randomized. The
investigators were not blinded to allocation during experiments and
outcome assessment. Fragments with <5 cells were filtered out during
analyses, as they are not sufficient to represent the cellular hetero-
geneity of a niche. In addition, for analyses centered around distal and
proximal fragments we focused on the 3 out of 9 metastases-bearing
animals with the highest tumor burden (at least 20metastatic cells per
sample). Likewise, to assess the differentially expressed genes (DEGs)
ofmacrophages/monocytes between distal and proximal regions from
MC we used only 2 of the 4 samples from mice with high metastatic
burden (visible macrometastases). Sex was not considered a factor in
study design, as the fragment-seq method has no gender-specific
components. Both male and female mice were used. The fragment-
sequencing method was reproducible across samples and indepen-
dent experiments. Where applicable, statistical tests are indicated in
the figure legends.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study (gene expression data for human
fragment-seq, RNA-sequencing data for murine scRNA-seq and frag-
ment-seq, and Visium data) have been deposited in the Gene Expres-
sion Omnibus (GEO) database with accession number GSE216189. The
Molecular Cartography data from Resolve are deposited at Zenodo
with the accession number 841357376. The raw RNA-sequencing data
for Crohns’ Disease biopsies are not available neither publicly nor by
request as consent for the publication or sharing of this type of data
was not obtained. The processed gene expression data from patients
are included in the GSE216189 dataset. For non-sensitive data types,
GSE216189 includes raw the sequencing data. Data generate in this
study on fragment sizes, UMI counts, GFP signal and cell counts of
species mixing experiments, cell type proportion in fragments, enri-
ched genes in different hepatic zones and/or cell types, L-R
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interactions, colocalization scores, fragments sorted per cell, TOF of
beads, UMI counts, gene counts and percentage of mitochondrial
genes in scRNA-seq and fragment-seq, analyzes with different frag-
ment size cutoffs, fragment size and cellularity, number of metastatic
cells per sample and fragment, cell type enrichment in fragment-seq,
MC, and Visium as well as Visium gene counts are provided in the
Source Data file. The previously published data used in this study from
the liver cell atlas22 are available in the GEO database under accession
number GSE192742. Source data are provided with this paper.

Code availability
The code generated in this study is available at: https://github.com/
Moors-Code/Fragment-sequencing and is citable with the following
https://doi.org/10.5281/zenodo.824695367.
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