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Gut microbial structural variation associates
with immune checkpoint inhibitor response

Rong Liu 1,2,3,4 , You Zou5, Wei-Quan Wang1,2,3,4, Jun-Hong Chen1,2,3,4,
Lei Zhang1,2,3,4, Jia Feng1,2,3,4, Ji-Ye Yin 1,2,3,4, Xiao-Yuan Mao1,2,3,4,
Qing Li 1,2,3,4, Zhi-Ying Luo6,7, Wei Zhang 1,2,3,4 & Dao-Ming Wang 8,9

The gut microbiota may have an effect on the therapeutic resistance and
toxicity of immune checkpoint inhibitors (ICIs). However, the associations
between the highly variable genomes of gut bacteria and the effectiveness of
ICIs remain unclear, despite the fact thatmerely a fewgenemutations between
similar bacterial strains may cause significant phenotypic variations. Here,
using datasets from the gut microbiome of 996 patients from seven clinical
trials, we systematically identify microbial genomic structural variants (SVs)
using SGV-Finder. The associations between SVs and response, progression-
free survival, overall survival, and immune-related adverse events are sys-
tematically explored bymetagenome-wide association analysis and replicated
in different cohorts. Associated SVs are located in multiple species, including
Akkermansia muciniphila, Dorea formicigenerans, and Bacteroides caccae. We
find genes that encode enzymes that participate in glucose metabolism be
harbored in these associated regions. This work uncovers a nascent layer of
gut microbiome heterogeneity that is correlated with hosts’ prognosis fol-
lowing ICI treatment and represents an advance in our knowledge of the
intricate relationships between microbiota and tumor immunotherapy.

Immune checkpoint inhibitor (ICI) immunotherapy has revolutionized
the area of tumor therapy and resulted in remarkable advancements in
the therapy of malignancies. Programmed cell death 1 (PD-1), pro-
grammed cell death 1 ligand 1 (PD-L1), cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) and other targets are specifically tar-
geted by ICIs in order to effectively release immunological brake
reactions and suppress tumor immune escape. Antibodies such as
ipilimumab, pembrolizumab, and nivolumab are used as initial thera-
pies for a range of malignancies, including melanoma1, and gastric
cancer2, demonstrating an exceptional increase in patient survival.

However, it is noteworthy that responses to ICI therapy exhibit het-
erogeneity, with response rates ranging from 13 to 69%3. Several fac-
tors have been identified to affect the effectiveness of ICIs, including
the tumor surface’s PD-L1 expression level4, the tumor mutational
burden5,6, and the activity of interferon-γ pathway7. Given this, altering
the gut microbiota offers a potentially useful method of augmenting
the antitumor immune response and broadening the effectiveness
of ICIs.

The functions of themicrobiota and its metabolites in influencing
immune reactions locally or systematicallyhave garnered considerable
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attention in the context of cancer-immune system interplay and
therapeutic response to ICIs8–10. The gut microbiota has been shown
through a growing body of preclinical and clinical evidence to have the
ability to influence antitumor immunity and impact the effectiveness
of ICIs in managing melanoma, renal cell carcinoma (RCC), and non-
small cell lung cancer (NSCLC)11–19. In mouse models, gut microbiota
composition was found to affect responses to anti-PD-L1 inhibitors,
with differences in responses eliminated through fecal microbial
transplantation (FMT) or cohousing. Dendritic cell maturation was
enhanced and CD8+ T cell priming was increased by the oral admin-
istration of Bifidobacterium, restoring the PD-L1 blockade’s anticancer
effectiveness14. In mice with melanoma, gavage with Bacteroides fra-
gilis improved anti-CTLA-4 therapy effectiveness19. Patients with more
diverse bacterial populations in NSCLC and RCC were found to be
more responsive to PD-1-based immunotherapy. Oral supplementation
of mice with Akkermansia muciniphila (A.muciniphila) after FMT
improved the anticancer effects of PD-1-based immunotherapy in ICI
non-responders18. The predictive effectiveness of A.muciniphila was
validated in a prospective clinical study of NSCLC subjects following
PD-1 inhibitor treatment in 202220. Patients with melanoma who
responded to PD-1-based immunotherapy showed higher levels of
relative Faecalibacterium prausnitzii abundance as compared to those
who did not react to the immunotherapy21. Another indicator of
responsiveness to anti-PD-1 blockade was a higher abundance of a
collection of eight species driven by Bifidobacterium longum17, and a
high proportion of Bacteroides caccaewas typical in patients whowere
sensitive to ICI immunotherapy22. Bifidobacterium pseudocatenulatum,
Roseburia spp., and A. muciniphila, were discovered to be a panel of
species thatwere correlatedwith the therapeutic sensitivity of ICIs23. In
clinical studies, FMT treatment resulted in beneficial modifications to
immune cell infiltrates in the intestinal lamina propria and tumor
microenvironment13. Metabolites identified as one of the primary
mechanisms, which are small molecules that can disseminate from the
gut to influence both local and systemic anticancer immune reactions,
enhancing the efficiency of ICI.

Highly variable sections of bacterial genomes, termed microbial
structural variants (SVs), can be discovered from metagenomic
sequencing data24. SVs consist of deletion SVs (dSVs), which are
deleted from certain species, and variable SVs (vSVs), which differ in
the number of copies among species. Microbial SV regions may
include genes that are involved in interactions between the host and
the microbe; as a result, they may be able to provide details on the
resolution of bacterial functioning at the sub-genome level. A number
of correlations have been observed between microbial SVs and the
blood biochemical parameters of the host, including HbA1c, glucose,
and total cholesterol24. Additionally, recent research has also dis-
covered connections betweengutmicrobial SVs andmetabolites levels
in host’s blood, linking genetically encoded functions of bacteria with
metabolites, and supplying possible molecular insights for the func-
tional output of themicrobiome25. Specifically, associations have been
reported between bile acids and microbial SVs, and bacterial genes
linked to host bile acid metabolism or indirectly involved in the
alteration of primary bile acids have been identified26,27. Furthermore,
it was discovered that SVs of Bifidobacterium and Enterococcus coor-
dinate the metabolomic perturbations in essential congenital heart
disease28. Despite these findings, whether SVs in the gut microbiome
contribute to ICI responses through metabolomics still lack of
investigations.

This study aimed to assess the relationships between the SV of the
gut microbiome and the response to ICI therapies in a systematic
manner. With the usage of a total of 996 patients from seven inde-
pendent cohorts (Fig. 1), systematic microbial SV association analysis
between response, progression-free survival (PFS) at 12 months,
overall survival (OS), and immune-related adverse events (irAEs) of
patients following ICIs treatment and SVs was conducted. We find
associated SVs be located in multiple species, such as Akkermansia
muciniphila, Dorea formicigenerans, Bacteroides caccae and Alistipes
shahii. Moreover, some genes that encode enzymes that participate in
glucose metabolism be harbored in the genome region of these
associated SVs. The analysis led to the identification of putative

FrankelAE_2017
Melanoma

anti-PD-1 or anti-CTLA-4

Obtain raw metagenome sequencing data (.fastq) 

McCullochJA_2022
Melanoma
anti-PD-1

RoutyB_2018
RCC, NSCLC

anti-PD-1

SpencerCN_2021
Melanoma
anti-PD-1

DerosaL_2022
NSCLC

anti-PD-1

LeeKA_2022
Melanoma

anti-PD-1 or anti-CTLA-4 or both

Obtain RECIST response, PFS, OS, irAEs data

Reprocess with custom designed bioinformatics 
pipeline

Harmonised definition of outcomes: responder 
(CR/PR) vs non-responder (SD/PD)

ICIs metagenome database 
Total n=996 patients (melanoma, NSCLC and RCC)

Structural variations in the gut 
microbiome

Relative abundance of the gut 
microbiome

Association analysis between structural variations in the gut 
microbiome with  hosts’ response to immune checkpoint inhibitors

Aggregation of publically available immune checkpoint inhibitor studies with metagenome data:

PetersBA_2019
Melanoma

anti-PD-1 or anti-CTLA-4

Fig. 1 | The layout of this study.Design of this study. NSCLC non-small cell lung cancer, RCC renal cell carcinoma, OS overall survival, PFS progression-free survival, irAEs
immune-related adverse events. RECIST response evaluation criteria in solid tumors.
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microbial SV that affect ICIs medication efficacy, thus indicating the
potential for manipulating the gut microbiome to enhance the effec-
tiveness of ICIs treatment.

Results
Response to ICIs of cohorts
In this study, we collected classical clinicopathologic factors, including
age, gender, response, PFS12, and OS, from seven cohorts (Fig. 2,
Supplementary Data 1B). We calculated and compared the ratios of
response to ICI therapies across cancer subtypes (Fig. 2d) and found
that melanoma had the highest response ratio to ICI therapy (51%),
whereas RCC had the lowest response ratio (16%). The average PFS12
rate is 48.8% in melanoma. We observed that melanoma patients
demonstrate a higher OS rate than those with NSCLC (Fig. 2e, log rank
P =0.001) treated with ICIs. We also visualized the relationships
between irAEs, responses to ICIs, and PFS12 using Sankey diagrams
(Fig. 2f). Patients who responded to ICIs had considerably greater OS
rates compared with non-responders (Fig. 2g, HR =0.09, 95% CI =
0.05 ~ 0.14, log rank P < 2 × 10−16).

Bacterial SVs identification
After filtering the SVs with abundance unavailable, 6715 SVs in 54
microbial species genomes, consisting of 1948 vSVs and 4767 dSVs,
with 23–317 SVs per species, were detected in the UK cohort (Fig. 3a, b;
Supplementary Data 2A). These 54 species, which ranged in microbial
composition from2.45 to 83.60%,made up an average of 46.54%of the
total microbial composition (Fig. S2a). The 54 species had an average
of about 51 patients with sufficient coverage to be calledmicrobial SVs
(Fig. S2b; Supplementary Data 2A), with B.wexlerae, Collinsella sp,
B.longum, andB.wexleraebeing themost commonly detectedbacterial
species. Meanwhile, 6,499 SVs in 49 microbial species genomes, con-
sisting of 2,118 vSVs and 4,381 dSVs, with 38 to 354 SVs per species,
were detected in the France cohort (Fig. 3e, f; SupplementaryData 2B).

These 49 species, which ranged in microbial composition from 5.56 to
85.17%, made up an average of 46.75% of the total microbial compo-
sition (Fig. S3a). The 49 species had an average of 98 patients with
sufficient coverage to be calledmicrobial SVs (Fig. S3b; Supplementary
Data 2A),with B. uniforms, P.distasonis, and F.prausnitzibeing themost
commonly detected bacterial species.

We calculated the distance of bacterial SV profiles as described
in the method between all samples within the USA or UK cohorts for
melanoma (Fig. 3c). Microbial abundance (the top five PCs) can
explain about 7.55% of the variance in the metagenome-wide SV
profile (PPERMANOVA = 0.001; Fig. S2c). After correcting for microbial
abundance, the cohort contributed to SV differences (explaining
5.17% of the SV variance, PPERMANOVA = 0.001; Fig. S2c). Further, after
correcting for microbial abundance, the SV principal coordinates
(PCo) 1 and PCo2 demonstrated differences between these five
cohorts (ANOVA test, P = 1.35 × 10−9 for PCo1 and P = 1.34 × 10−7 for
PCo2), demonstrating a divergence of microbial SVs between these
five cohorts that was independent of differences in their microbial
abundances. It’s interesting to note that age bins and sex, combined
could only account for 0.67% of the SV profile variance in the USA
and UK cohorts (Fig. S1c).

As for France cohorts for NSCLC or RCC, microbial abundance
(the top five PCs) can explain about 6.11% of the variance in the
metagenome-wide SV profile (PPERMANOVA=0.001; Fig. S3C). The
cohort explains 0.61% of the SV profile differences. After correcting for
species abundance, there are differences between two cohorts from
France of the PCo1 (ANOVA test, P =0.03), and no differences was
found of the PCo2 (ANOVA test, P =0.42).

Microbial SV associations to ICIs response are independent from
taxonomic abundance
The correlations between the clinical outcomes of patients following
ICI treatment and the relative abundance of bacterial species were
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Fig. 2 | Clinical characteristics of ICI related datasets. a Age distribution in these
seven studies. b Gender proportions of these seven studies. c Body mass index
distribution in four studies with this information available. d Spine plots for
response “CR/PR” versus no response “SD/PD”. e Survival curves for OS by cancer
types. f Sankey plot for irAEs, response, and whether progression-free survival

longer than 12 months. g Survival curves for OS of response “CR/PR” and no
response “SD/PD” groups. P values from log-rank tests are shown in survival plots.
irAEs immune-related adverse events, PFS progression-free survival, OS overall
survival.
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evaluated (Fig. 4). 48 significant associations, including 31 bacterial
species based on our investigation of species abundance, were iden-
tified (Pmeta <0.05; Fig 4a, b; Supplementary Data 3). Among the
associations, the most significant association was observed between
the abundance of B. wexlerae and response to ICIs in NSCLC (ORmeta =
1.11, Pmeta = 4.86 × 10−5; Supplementary Data 3D). Our findings con-
firmed previous research, including the positive association of the
abundance of D. formicigenerans with the response to ICIs (ORmeta =
1.08, Pmeta = 3.06 × 10−2; Supplementary Data 3A), PFS12 (ORmeta = 1.14,
Pmeta = 5.17 × 10−4; Supplementary Data 3B), and irAEs (OR = 1.31,
P = 1.77 × 10−3, Supplementary Data 3C) of melanoma, which were
consistent with the results of Frankel et al. 22. Furthermore,
positive associations between R. bromii and response to ICIs of NSCLC
(ORmeta = 1.06, Pmeta = 1.87 × 10−2, Supplementary Data 3D) were
observed, which is also consistent with the previous findings20.

In addition to the relative abundance of species, the SV of spe-
cies is associated with therapeutic resistance and toxicity in patients
treated with ICIs as well. A SV-based populational structure of the SV
makeup for each species was constructed, and 47 significant asso-
ciations between response/PFS12/irAEs and the SV makeup of 33
bacterial species were identified (meta PPERMANOVA < 0.05; Fig. 4a, b;
Supplementary Data 3), after accounting for confounding factors
including age, and gender. It’s interesting to note that just 9 of the 47
associations with species-specific SVs were found at the relative
abundance level of species as well (Fig. S4, 7 of the 27 associations for
the UK/USA cohort and 2 of the 20 associations for the France

cohort), underscoring the potential of microbial SV to provide
additional information about bacterial functionality beyond species
abundance. Our findings emphasize the significance of considering
the SV of bacterial species as an important factor in contributing
patient outcomes with ICIs.

Not only correlations at the species relative abundance level, but
also the SV differences and relative abundance of D. formicigenerans
were significantly correlated with response (Fig. 4c) and PFS12 of
melanoma; meanwhile, the SV differences and abundance of R.gnavus
(Fig. 4d), A.shahii, and Ruminococcus spwere associated with PFS12 of
melanoma (Fig. 4a). Both the SV differences and abundance of
R.gnavus and B.wexlerae were significantly associated with irAEs of
melanoma (Fig. 4a). As for NSCLC, the abundance and SV differences
of D.invisus, and R.lactaris (Fig. 4b) were significantly associated with
response to ICIs. In addition, the SV difference of the other 12 species
such as B.adolescentis (Fig. 4e) were associated with the responses to
ICIs of NSCLC (Fig. 4f). The SV difference in A.muciniphila was asso-
ciated with the responses to ICIs of melanoma and RCC (Fig. 4f). Fur-
thermore, R.bromii was associated with the response of melanoma
(Supplementary Data 3). We also found the SV of species be correlated
with the prognosis after ICIs therapy, but not at the relative abundance
scale. For example, SV profiles in P.distasonis associated with irAEs in
melanoma (P = 4.30 × 10−2, Fig. 4a, Supplementary Data 3C), and
response to ICIs in NSCLC (Pmeta = 1.69 × 10−2, Fig.4b, Supplementary
Data 3D), but their abundance was not correlated with prognosis after
ICI therapy. Our results suggest that species-specific SV makeup is

a b c
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4767, 70.9%

variable SV
1948, 29.1%

d fe
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4381, 67.41%
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Fig. 3 | Overview of structural variation profiles in the seven cohorts. a The
number of structural variations (SVs) present in each species within the UK cohorts
from studies onmelanoma.b The proportion of dSV and vSVs and total SV number
of the UK cohort from studies onmelanoma. c Principal component 1 and principal
component 2 of SV makeup within five cohorts from USA or UK. d The number of

SVs present in each species within the France cohorts from studies on NSCLC or
RCC. e The proportion of dSV and vSVs and total SV number of the France cohorts
from studies onNSCLCor RCC. f Principal component 1 and principal component 2
of SV makeup within two cohorts from France.
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associated with ICIs drug responses independently of their taxonomic
abundances.

Metagenome-wide SV-based associations point to melanoma
prognosis after ICIs treatment
In order to find SVs that contain genes potentially relevant to the
response to ICIs, we conducted a microbial SV-based metagenomic
analysis. To account for the potential heterogeneity within the cohort,
we tested their associations with SVs separately in each of the studies
used in this study, with age, and gender as covariates in the models,
and then conducted meta-analysis to combine results when at least
two cohorts exist for the same clinical outcomes. Since associations
seen trending in the samedirection or achieving significance in several
individual studies are more compelling, given the evidence for
reproducibility. Anywhere, to provide resources for reference, asso-
ciations of clinical outcomes with more than one cohort available
(Pmeta < 0.05), and clinical outcomes with just one cohort available
(Pnormal < 0.05) were listed in Supplementary Data 4.

We have identified a total of 44 candidate SVs that are associated
with clinical outcomes of melanoma within five cohorts across
23 species (Fig. 5; Supplementary Data 4A–4H). Among the species,
A.muciniphila (Fig. 5b) demonstrated the highest number of associa-
tions, followed by A.shahii, D.formicigenerans, Collinsella sp, A.putre-
dinis, C.catus and P.distasonis (Fig. 5c). We have depicted examples of
significantly associated SVs in Fig. 5d–j. We found an YD repeat protein

encoded gene located in a dSV ofA.muciniphila (863–865 kbp, Fig. 5d)
was associated with both response to ICIs (ORmeta= 0.24; 95%
CI = 0.0–0.61; Pmeta = 2.72 × 10−3, Fig. 5e) and PFS12 (ORmeta= 0.22, 95%
CI = 0.08 ~ 0.58, Pmeta = 2.30 × 10−3; Fig. 5f) of melanoma. Additionally,
association was observed between response and the variable genomic
segment (2,546-2,547 kbp, Fig.5g; ORmeta = 1.65, 95% CI = 1.15 ~ 2.37,
Pmeta = 7.01 × 10−3, Fig.5h) of A.muciniphila, with gene Amuc_2094
encodes glycosyl transferase family 2 and Amuc_2095 encodes con-
served hypothetical protein found to be within this region (Fig. 5g).
Meanwhile, association was observed between response and the vari-
able genomic segment (2547–2548; 2549–2550 kbp, Fig. 5g;
ORmeta = 1.72, 95% CI = 1.15–2.57, Pmeta = 8.75 × 10−3, Fig. 5h) of A.muci-
niphila, with Amuc_2096 encodes conserved polysaccharide bio-
synthesis and gene Amuc_2097 encodes nitroreductase found to be
within this region. We also found that a vSV with in R.intestinalis was
associated with PFS12 (2891–2892 kbp: ORmeta = 0.45, 95%
CI = 0.26–0.80, Pmeta = 6.93 × 10−3, Fig. 5j), with gene RO1_28760 which
encodes Relaxase/Mobilisation nuclease domain, and RO1_28770
which encodes Bacterial mobilisation protein (MobC) found to be
within this SV region. Associations between irAEs and 13 vSVs in
B.wexlerae were identified (Supplementary Data 4F, fdr P ≤0.1).
Nevertheless, due to the relatively small sample size (n = 62), these
findings still need further validation. However, none of the SVs were
found to be associated with OS of melanoma (fdr P ≤0.1, n = 62, Sup-
plementary Data 3G, H).

Fig. 4 | Associations of gutmicrobiomewith hosts’ response to ICIs at the level
of species.Heatmap of associations between species and hosts’ response to ICIs of
melanoma (a), NSCLC and RCC (b). Yellow denotes purely relative abundance
associations, blue indicates purely SV-based associations, and purple denotes
associations based on both SV and relative abundance. Gray denotes relative
abundance-based relationships, in which SV associations for the relevant species

were not examined due to the small sample size (n < 10). White denotes a lack of
association. c SV association of D.formicigenerans with response of melanoma
patients treated with ICIs. d SV association of R.gnavus with PFS12 of melanoma
patients. e SV associations of B.adolescentis with response to ICIs of NSCLC. f SV
association of A.muciniphila with response of RCC patients treated with ICIs. Two-
sided statistical tests were utilized. Please also refer to Supplementary Data 3.
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Metagenome-wide SV-based associations point toNSCLCorRCC
prognosis after ICIs treatment
Microbial SV-based metagenomic analyses were conducted for
cohorts mainly from France, with cancer types of NSCLC or RCC. We

test associations between SVs separately in each of the 2 cohorts and
then combine results with meta-analysis.

A total of 31 candidate SVs that are associated with clinical out-
come across 15 species (Fig. 6a; Supplementary Data 4I–4N). B.caccae

Fig. 5 | Associations between structural variants and prognosis after ICIs
treatment of melanoma patients. a Candidate associations between prognosis
after ICIs treatment and SVs of melanoma patients. Heatmap of correlations
between prognosis after ICIs treatment and SVs of A.muciniphila (b) and P.dis-
tasonis (c). d Deletion rate across the cohort (y axis) along a genomic region of
A.muciniphila (x axis). Spine plots depict the association between response (e),
PFS12 (f), and dSVs within each cohort. g Standardized variability (y axis, plotted
lines, percentiles 1, 25, 50, 75 and 99) along a genomic region of A.muciniphila (x
axis).h Line plots depict the associationbetweenPFS12, and vSVwithin each cohort

(h). i Standardized variability (y axis, plotted lines, percentiles 1, 25, 50, 75 and 99)
along a genomic region of R.intestinalis (x axis). j Line plots depict the association
between response and vSV within each cohort, Q1 to Q4 are defined based on the
quantiles of vSV (25%, 50% and 75%). Logistic regressionmodels were performed to
calculate beta value (b), ORs and 95% CIs (e, f, h, j) for response and PFS12. Meta-
analysis with a random-effect model was performed to integrate the results of
different cohorts. Two-sided statistical tests were utilized. No adjustments were
made for multiple comparisons. Please also refer to Supplementary Data 4.
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demonstrated the highest number of associations, followed by
A.muciniphila (Fig. 6b) and R.bromii. Examples of significantly asso-
ciated SVs were shown in Fig. 6c–j. Replicated association was
observed between response and a dSV of A.muciniphila (731-734 kbp,
Fig. 6c: ORmeta = 4.50, 95% CI = 1.71–11.85, Pmeta = 2.30 × 10−3, Fig. 6d),
with genes Amuc_0622, Amuc_0623 encode glycosyl hydrolase BNR

repeat-containingprotein,Amuc_0624 encodes egulatory proteinGntR
HTH and Amuc_0625 encodes Exo-alpha-sialidase found to be within
this SV region. Further, a dSV at the genomic segments (4655–4656
kbp) of P.distasonis encoding a conserved hypothetical protein and
putative nucleotide-sugar dehydrogenase that was significantly asso-
ciated with response (ORmeta = 0.39, 95% CI = 0.22–0.68,

Fig. 6 | Associations between structural variants and prognosis after ICIs
treatment of NSCLC or RCC. a Candidate associations between prognosis after
ICIs treatment of NSCLC or RCC and SVs. b Heatmap of correlations between
prognosis after ICIs treatment and SVs of A.muciniphila. c Deletion rate across the
cohort (y axis) alongagenomic regionofA.muciniphila (x axis).dSpineplotsdepict
the association between response, and dSVs. e Standardized variability (y axis,
plotted lines, percentiles 1, 25, 50, 75 and 99) along a genomic region of B.caccae.
f Line plots depict the association between response, and vSV within each cohort,
Q1 to Q4 are defined based on the quantiles of vSV (25%, 50% and 75%). g Deletion
rate across the cohort (y axis) along a genomic region of A.muciniphila (x axis).

h Survival curves of dSV and quartiles of vSV. i Standardized variability (y axis,
plotted lines, percentiles 1, 25, 50, 75 and 99) along a genomic region of R.bromii.
j Survival curves of vSV, Q1 to Q4 are defined based on the quantiles of vSV (25%,
50% and 75%). Illustrated p values are from log-rank tests. Logistic regression
models were performed to calculate beta value (b), ORs and 95% CIs (d, f) for
response. Cox regression models were performed to calculate beta value (b), ORs
and 95% CIs (h, j) for response. Meta-analysis with a random-effect model was
performed to integrate the results of different cohorts. Two-sided statistical tests
were utilized. No adjustments were made for multiple comparisons. HR hazard
ratio. Please also refer to Supplementary Data 4.
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Pmeta = 8.94 × 10−4). Candidate-associated vSVs were also identified; for
example, a vSV located in B.caccae (148-150 and 8 segments kbp,
Fig. 6e) which includes 20 genes that encode enzymes like glycosyl
hydrolase family 3 C-terminal domain protein, glycosyl hydrolase
family 49, glycosyl hydrolase family 20, was associated with a better
response (ORmeta = 1.49, 95% CI = 1.11 ~ 2.01, Pmeta = 8.63 × 10−3, Fig. 6f).
An association was found between the OS and a dSV of A.muciniphila
(2528–2529; 2532–2550 kpb, Fig. 6g: HR =0.39, 95% CI = 0.22 ~ 0.71,
Pfdr = 4.84 × 10−2, Fig. 6h), with 18 genes found to be within this SV
region that encode enzymes like glycosyl transferase families 1 and 2,
polysaccharide biosynthesis protein, and nitroreductase. Four candi-
date vSVs in R.bromii were associated with OS, for example, a vSV
(40 ~ 45 and 8 segments kbp, Fig. 6i) contains genes encoding ATPases
involved in chromosome partitioning was associated with poor OS
(HR = 1.38, 95% CI = 1.13 ~ 1.68, Pfdr = 3.72 × 10−2, Fig. 6j), and a vSV in
B.clarus was associated with better OS (Fig. 6k). Three dSVs of
A.putredinis were found to be associated with response to ICIs of RCC
(Supplementary Data 4M), for example, detection of 107-109 kbp.

Notably, therewere differences between cancer types in the effect
sizes (OR or HR values) and directions of the associated relationships
(Fig. S5).

Discussion
A comprehensive analysis of the gut microbial SV in 996 individuals
across seven independent cohorts globally was conducted. Our inves-
tigation involved a systematic evaluation of the associations between
gutmicrobial species SVs and the host’s reaction to ICIs.We discovered
that the species SV profile correlates with the clinical outcomes after ICI
treatment, independent of the species’ abundances. To assess the
association between microbial SV and response to ICIs, we carried out
metagenome-wide microbial SV association analyses and identified
candidate associations. Notably, this is the first investigation into the
microbial SV determinants of response to ICIs in humans. We provide
some clues for further mechanistic studies to explore how gut micro-
biota modulate antitumor immunity and affect the efficacy of ICIs.

Our investigation illustrates the effectiveness of the SV-based
metagenome-wide association as a potent technique for under-
standing microbial associations at a functional and mechanistic level.
Our study highlights that metagenomic SVs offer valuable data that
explains the functionality of the human gut microbiome. Specifically,
our research demonstrates that the associations between clinical
outcomes after ICIs treatment and microbial SVs can remain inde-
pendent of species relative abundances. We did not include the PCs of
population SV structure in models when considering the influence of
lineage effect on the metagenome-wide association study at the single
SV level25, as Wang et al. found that a model accounting for lineage
effect reduces the statistical power for detecting some associations
that involve SVs contributing to both clinical outcomes and bacterial
genetic lineage27. Despite the fact that techniques developed for bac-
terial GWAS analysis were provided that take lineage effects and
populational structure into consideration29,30, these were designed for
binary genetic variation data. Thus, the development of algorithms
that adequately adjust for lineage effects for the metagenome-wide
association study at the single SV level is still required.

Furthermore, our analysis revealed that the identified SVs were
inclined towards extensively abundant and prevalent species, thereby
emphasizing the challenges of investigating rare or low-prevalence
species. This limitation calls for larger sample sizes and
deeper sequencing to achieve adequate statistical power. Nonetheless,
our sub-genomic investigation successfully identified the genomic
regions thatmay associatedwith host response to ICIs, emphasizing the
importance of linking microbial SVs from the entire metagenome with
the diversity of phenotypes of human beings in locating microbial
genetic elements or genes that contribute to host-microbe interactions.
The gene Amuc_0625, which encodes an outer α-sialidase, is located on

the genome fragment (731 to 734 kbp) of A.muciniphila. Heinz Läubli
et al. have previously reported that macrophages polarize towards an
M2 phenotype and produce an immunosuppressive response by
recognizing sialic acid on the surface of tumor cells. They have also
demonstrated that designing targeted drugs with bacterial sialidases
can significantly enhance the efficacy of immunotherapy31,32. Effector
T cells have been found to trigger IgG sialylation, which inhibits mac-
rophage STING pathways, thereby weakening the efficacy of PD-L1
immunotherapy. The dSV of A. muciniphila contains α-sialidase, and
may decrease its activity, thereby decreasing immune efficacy. Our
investigation also identified genes encoding glucose metabolism-
related enzymes on bacterial SV fragments, such as genes encoding
glycosyl transferase families 1 and2 locatedongenome fragments (2528
to 2529 kbp; 2532 to 2550 kbp; 2546 to 2547 kbp) of A. muciniphila,
genes that encode enzymes like glycosyl hydrolase family 3 C-terminal
domain protein, glycosyl hydrolase family 49, glycosyl hydrolase family
20 located in B.caccae, gene PARMER_00338 encoding putative alpha-
1,2-mannosidase on P.merdae, gene PREVCOP_05967 encoding nucleo-
tide sugar dehydrogenase on Prevotella copri, gene BDI_3822 encoding
putative nucleotide-sugar dehydrogenase on P.distasonis, gene
RBR_10280 encoding predicted ATPase on R. bromii, they roles in ICIs
efficacy needs to be further explored. The gene HMPREF1032_00306,
which encodes phage/plasmid primase, P4 family domain-containing
protein, is located on the genome fragment (dSV: 2121 to 2122 kbp) of
Subdoligranulum, deletion of this region is associated with lower
response and PFS12 rates. Our comprehensive approach to association
analysis establishes a framework for microbial SV studies.

Experimental validation of the causal relationship between
microbial SV and ICI efficacy remains a daunting task, as it requires the
development of a robust approach to prioritize genes within the SV
regions. Moreover, it entails the isolation and cultivation of micro-
organisms from human feces samples, followed by sequencing to
validate the existence or absence of SVs. Subsequently, oral adminis-
tration of confirmed bacterial isolates with candidate SVs in mouse
models was used to verify their impacts on the host’s drug response to
ICIs. However, each step encounters significant technical difficulties,
particularly in isolating and culturing gut microbes, which remain
elusive. Despite these challenges, our team is actively working to
develop experimental platforms that can validate ICI-related SVs, and
these efforts may eventually be helpful for better comprehension of
the microbiome’s function in ICI therapy.

We admit that our current study has a number of limitations. The
samples utilized in this retrospective study were gathered from dif-
ferent countries worldwide, and the diversity of ICIs trials included in
the analysis, whichused various checkpoint blocking agents and varied
combinations, increased the generalizability but constrained the spe-
cificity of our results. The sample size for association tests of clinical
outcomes, such as OS and irAEs, per cancer type is small, which results
in a lack of statistical power. The correlations between prognosis after
ICIs therapy and microbial SVs call for validation in additional popu-
lations with a larger sample size. This study is a cross-sectional design
that tests regulatory associations between responses to ICIs and
microbial SVs. However, as we explained in the discussion, more
confirmation in a longitudinal study cohort and through experi-
mentation is still necessary to determine whether the changes in
microbial genetic elements are causally related to the host’s response
to ICI medication treatment.

In conclusion, our study represents a significant advancement in
the field of improvements to the host’s responsiveness to ICIs by
microbiome-targeted therapies. Through the analysis of relatively
large datasets from seven ICI trials, we have contributed to a deeper
understanding of the gutmicrobial SVs that are crucial for effective ICI
therapy. This understanding will enhance our capacity to forecast and
direct immunotherapeutic responsiveness and provide a route for
more effective medication.
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Methods
ICIs metagenomic sequencing datasets
This bioinformatics analysis utilized publicly accessiblemetagenomics
sequencing data from ICI trials. All these studies have been previously
approved by their respective institutional review boards. Raw gut
metagenomic data was gathered from a range of research and cancer
types, comprising a total of 996 ICI-treated patients from seven
cohorts (Fig. 1, Fig.S1, Table 1, and SupplementaryData 1). No statistical
method was used to predetermine sample size. Fig. S1 illustrates the
sample filter process, samples didn’t receive ICI treatment or collected
aftermore than 4months of from the start of ICI treatment, or without
matched clinical and metagenomics data available were filtered from
following analysis. To identify datasets, the initial author and year of
publication were used. The gut metagenomics sequencing data from
the FrankelAE_201722, McCullochJA_202233, RoutyB_201818,
SpencerCN_202134, PetersBA_201935, DerosaL_202220, and
LeeKA_202223 datasets were obtained from the ENA data portal
(https://www.ebi.ac.uk/ena/browser/home). Clinical information was
collected by searching the supplementary tables of the original arti-
cles. Tomaximize comparability across cohorts, we reprocessed these
sequence data using a standardized bioinformatics pipeline.

Definition of clinical outcomes
The study collected clinical information such as age, gender, ICI tar-
gets, PFS, and OS. While recognizing that the current definition of
response is conservative and that patients who have stable disease
(SD) and have extended survival can be thought of as experiencing
clinical benefit from ICI treatment, we employed the following defi-
nition to ensure consistency with recent literature and clear response
interpretation5,36, which was determined using Response Evaluation
Criteria in Solid Tumors (RECIST) criteria for radiological response as
represented in the original articles. Responders were determined as
patients who demonstrated a complete response (CR) or partial
response (PR), while non-responders had SD or progressing disease
(PD). The definition of progression-free survival at 12 months (PFS12)
was that there was no disease progress as evaluated by RECIST
12months after ICI treatment initiation. Response, PFS12,OS, and irAEs
were utilized as clinical outcomes to ensure strict consistency in out-
come measurement across the six studies (Table 1).

The abbreviations for clinical outcomes are listed as follows: PFS:
progression-free survival; OS: overall survival; SD: stable disease; CR:
complete response; PR: partial response; PD: progressing disease;
PFS12: progression-free survival at 12 months; irAEs: immune-related
adverse events.

Metagenomic sequencing data preprocessing
The raw metagenomic sequencing data underwent a data cleaning
procedure to remove low-quality reads and host genome-
contaminated reads with the usage of KneadData (version 0.6.1),
Trimmomatic (version 0.39)37 and Bowtie2 (version 2.3.5.1)38. Briefly,
the data preprocessing process involved two primary steps. Firstly,
adaptor sequences and poor-quality reads were discarded using
Trimmomatic (parameter settings: LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:20 MINLEN:50). Secondly, by mapping sequence
data to the human reference genome (version GRCh37), human
genome-contaminated reads were removed. The described data-
cleaning procedure ensured the removal of low-quality and host
genome-contaminated reads, thus enabling high-quality downstream
analyses.

Structural variations detection
Zeevi et al. 24. have described SGV-Finder, a tool for detecting two
kinds of SVs, namely dSVs and vSVs, from metagenomic sequence
data. The SV-calling procedure can be mainly divided into two major
steps: The first step involves running the iterative coverage-based read Ta
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assignment (ICRA) algorithm, resolves ambiguous read with multiple
alignments to regions that are comparable acrossdifferent bacteria for
the most likely reference in complex metagenomics settings based on
the data of mapping quality, bacterial abundance, and genomic cov-
erage. The second step involves running SGV-Finder, which splits the
concatenated scaffolds from each microbial genome into 1 kbp bins
and then analyzes the coverage in each metagenomic bins across all
subjects to find highly variable genomic regions and identify SVs.
Species with SV calls were absent in more than 95% of the whole
samples filtered. If a SV were detected as both vSV and dSV, the dSV
was kept. The proGenomes database (http://progenomes1.embl.de/)
serves as the foundation for the reference database used by SGV-
Finder.

SVs were detected based on the high-quality metagenomic
sequence reads. Overall, we detected SVs across 164 samples
(LeeKA_2022) from the UK using ICRA and SGV-Finder with default
parameters (except --min_samp_cutoff 17). To analyze replication of
associations between cohorts for melanoma, we calculated for each
SV region in the UK cohort, its dSV or vSV in the FrankelAE_2017,
McCullochJA_2022, PetersBA_2019, and SpencerCN_2021 cohorts
from the USA. We run SGV-Finder with the --by-orig parameter by
using the orig_dsgv.df, orig_vsgv.df and average coverage files (.df)
file for each species generated from the UK cohort. Moreover, SVs
detected across 338 samples (DerosaL_2022) from France were
identified using SGV-Finder with default parameters (except --min_-
samp_cutoff 34). To analyze replication of associations between
cohorts, we calculated for each SV region in the DerosaL_2022, its
dSV or vSV in the RoutyB_2018 cohort, which is also from France, and
ran SGV-Finder with the --by-orig parameter by using the
orig_dsgv.df, orig_vsgv.df and average coverage file (.df) for each
species generated from the DerosaL_2022 cohort. The min_-
samp_cutoff parameter was determined to be about 10% of the total
sample size. The described approach enabled the detection of SVs,
which may have implications for understanding the microbial com-
munity’s structure and function.

Taxonomic abundance
The taxonomic relative abundance of all samples utilized in this study
was generated from high-quality metagenomic reads using Kraken2
(version 2.1.2)39 and Bracken (version 2.6.1)40. The reference genomes
were also developed based on the Progenome Database41.

Statistical analysis
Specific information regarding the statistical tests used canbe found in
the Results and the corresponding figure legends. Unless otherwise
noted, a P ≤0.05 was regarded as statistically significant. Two-sided
statistical tests were utilized unless otherwise specified. Using the
Kaplan-Meier method, survival curves were estimated, and the log-
rank test was utilized to compare them. Cox regression models were
conducted to calculate hazard ratios (HRs) and 95% confidence inter-
vals (CIs) for OS. Logistic regression models were performed to cal-
culate ORs and 95% CIs for response, PFS12, and irAEs. Meta-analysis
with a random-effect model was performed to integrate the results of
different cohorts.

All statistical tests were performed with R (version 4.0.5).

Distance matrix-based variance estimation and principal coor-
dinates analysis
In this study, we measured the variability of microbial vSVs between
samples using the Canberra distance metric, and calculate the varia-
bility of microbial dSVs between samples using the jaccard distance
metric42, then measure the variability of microbial SVs between sam-
ples using the average value of above two distance matrix. We
accomplished this by computing the distance of SVs utilizing the
vegdist() function from the R package vegan (version 2.5.6).

A principal coordinates analysis (PCoA) based on Canberra dis-
tance indices calculated with SVs were conducted utilizing the
cmscale() function in the vegan. After that, to determine the ratio of SV
profile variance that can be explained by factors such as microbial
composition, age bins, gender, and different cohort, a permutational
multivariate analysis of variance (PERMANOVA) with 999 permuta-
tions were performed using the Adonis() function from vegan.

Association analysis
We examined the differences in response, PFS12, and irAEs following
ICI treatment across the SV or abundance of species. The associations
between OS and SV, or abundance, for each species were also inves-
tigated. The assignment values of the clinical variables were listed in
Supplementary Data 1C.

Species-level associations of the gut microbiome with clinical
outcomes
The association between binary clinical outcomes and SV of each
species was evaluated using PERMANOVAwith 999 permutations with
the following formula:

Distancematrix of SV ∼ clinical outcome+Age bins +Gender ð1Þ

The association between binary clinical outcomes and species
relative abundance was evaluated using a logistic regression model
with the following formula:

Clinical outcome∼ Species relative abundance+Age bins +Gender

ð2Þ

For each clinical outcomes, association analysis were performed
within each cohort, andmeta-analysis with a random-effect model was
performed to integrate the results of different cohorts.

dSV or vSV site based associations of the gut microbiome with
clinical outcomes
Associations between SVs and binary clinical outcomes were assessed
using logistic models with the formula:

Clinical outcome∼ SV +Age bins +Gender ð3Þ

, demanding at least 10 subjects in each comparison and at least 3
responders.

Associations between SVs and OS were assessed using Cox
regression models with the formula:

OS∼ SV +Age bins +Gender ð4Þ

ensuring a minimum of 20 subjects in each comparison.
In order to derive more easily interpretable HRs or ORs, quartiles

(25%, 50%, and 75%) of the value of each vSV were computed for
association analysis and modeled as continuous variables.

The Benjamini-Hochberg (false discovery rate: FDR) P value cor-
rection method was applied with the p.adjust() function in R. Specifi-
cally, for vSVs, dSVs, and species relative abundance, we carried out
association analysis and P value correction independently. If there is
only one dataset for clinical outcome, we considered the SV-prognosis
candidate associations with an FDR p value ≤0.1. If there is more than
one dataset for clinical outcome, the replicated candidate associations
were confirmed with the following three criteria: (1) Pmeta ≤0.01; (2)
Pheterogeneity > 0.05; (3) Normal P ≤0.2 within at least two cohorts and
trending in the same direction (Supplementary Data 1D).

We calculated the Spearman’s correlation coefficient between
effect sizes within different cancer types for the analysis presented in
Figs. S5A–S5D.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Rawmetagenomics sequencing data of the seven datasets are publicly
available from the European Nucleotide Archive (https://www.ebi.ac.
uk/ena/browser/home) via accession numbers (PRJNA397906,
PRJNA762360, PRJEB22863, PRJNA770295, PRJNA751792, PRJNA541981
and PRJEB43119).

Code availability
R scripts demonstrating how to reproduce all findings shown in the
main figures are available via https://github.com/liuronghyw/ICIs_gut_
microbe_SVs . Rong Liu, You Zou, Wei-QuanWang, Jun-Hong Chen, Lei
Zhang, Jia Feng, Ji-Ye Yin,Xiao-Yuan Mao, Qing Li, Zhi-Ying Luo, Wei
Zhang, Dao-Ming Wang. Gut microbial structural variation associates
with immune checkpoint inhibitor response, “ICIs_gut_microbe_SVs”,
https://doi.org/10.5281/zenodo.10020240, 2023.
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