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Interface-type tunable oxygen ion dynamics
for physical reservoir computing

Zhuohui Liu1,2,9, Qinghua Zhang1,3,9, Donggang Xie1,8,9, Mingzhen Zhang1,4,
Xinyan Li 1,2, Hai Zhong1,5, Ge Li1,4, MengHe1, Dashan Shang 6, CanWang 1,4,
Lin Gu7, Guozhen Yang1, Kuijuan Jin 1,4 & Chen Ge 1,4

Reservoir computing can more efficiently be used to solve time-dependent
tasks than conventional feedforward network owing to various advantages,
such as easy training and low hardware overhead. Physical reservoirs that
contain intrinsic nonlinear dynamic processes could serve as next-generation
dynamic computing systems. High-efficiency reservoir systems require non-
linear and dynamic responses to distinguish time-series input data. Herein, an
interface-type dynamic transistor gated by an Hf0.5Zr0.5O2 (HZO) film was
introduced toperform reservoir computing. The channel conductanceofMott
material La0.67Sr0.33MnO3 (LSMO) can effectively be modulated by taking
advantage of the unique coupled property of the polarization process and
oxygen migration in hafnium-based ferroelectrics. The large positive value of
the oxygen vacancy formation energy andnegative value of the oxygen affinity
energy resulted in the spontaneous migration of accumulated oxygen ions in
the HZO films to the channel, leading to the dynamic relaxation process. The
modulation of the channel conductance was found to be closely related to the
current state, identified as the origin of the nonlinear response. In the time
series recognition andprediction tasks, the proposed reservoir systemshowed
an extremely low decision-making error. This work provides a promising
pathway for exploiting dynamic ion systems for high-performance neural
network devices.

Brain-inspired neuromorphic computing architectures have attrac-
ted increasing research and development interest in highly efficient
computing with increasingly complex data processing tasks1–4.
Among these, a series of recent novel electronic devices imitating
many functions of synapses or neurons have been developed. Var-
ious tasks, such as pattern recognition2,5,6, signature confirmation7,

and auto-drive8 can be achieved through the construction of neural
networks. The formerly mentioned applications are mainly based on
the feedforward network of an artificial neural network (ANN), which
is suitable for executing static tasks such as pattern recognition or
object detection9. However, the analysis and prediction of temporal
tasks are still difficult in this framework. By contrast, the recurrent
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neural network (RNN)10 can be used as a promising candidate for
dynamic data processing, such as voice, video, and chaotic systems11.
As a variation of RNN, reservoir computing can avoid training the
weight of the reservoir and settles based on a few global parameters
related to input information. Hence, the complexity can dramatically
be decreased without tracking each particle of the system. In addi-
tion, less computing costs and time may be obtained since only the
output network is trained. Reservoir computing is a dynamic system
that is able to map the input into a high-dimensional space through
the short-termmemory property12. In particular, a nonlinearmapping
procedure can transform complex input into linear discernible states
of the reservoir system13. The resulting output will then be trained
through a single-layer network. Initially, software-level reservoir
computing based on existing CMOS platforms was used to perform
relevant dynamic tasks14. However, CMOS devices do not have
intrinsic characteristics of dynamic response, so the processing of
nonlinear dynamic tasks requires the combination of complex algo-
rithms and large-scale integrateddevices, which leads tounnecessary
hardware consumption15. Fortunately, this problem can be resolved
through the implementation of physical reservoir computing (PRC)
with spontaneous nonlinear processes15. Due to the highly adaptive
and flexible dynamic characteristics in the physical systems, more
reliable PRC hardware with smaller size is expected to further
enhance the performance of dynamic processing16. In summary, the
implementation of PRC requires some particular features13. First, the
states of reservoirs depend not only on the current input but also on
recent inputs, thereby requiring short-term memory for efficient
reservoir computing. Second, the system needs to generate distin-
guishable states responding to different inputs, thereby requiring
highly nonlinear response devices17. In recent decades, many studies
have demonstrated the implementation of PRC systems with appli-
cations in speech recognition18, chaotic prediction19,20, electric con-
sumption prediction21, and fingerprint identification16 based on two-
terminal memristors18,22,23, spintronic oscillators24, programmable
logic gate arrays25, photonic module devices26–28, and quantum
devices29.

Three-terminal PRC reservoir systems have attracted much
attention since larger design freedom can be provided through the
multiterminal structure of transistors30. Besides, the separated read
and write terminals help stabilize the electrical processes, thereby
avoiding huge read currents and effects caused by Joule heating31.
Currently, the dynamic processes of lithium ions32, hydrogen ions33,
organic ions34, and ferroelectric polarization30,35 are used for reservoir
computing. Among all ion-gating transistors, considerable potential
has been paid to oxygen ion dynamic-based reservoirs since these can
also be feasible for conventional lithography techniques and stable
under various temperatures. Furthermore, oxygen ion dynamic-based
reservoirs can be fully compatible with complementary metal-oxide-
semiconductor (CMOS) technology and are environmentally friendly
compared with lithium and hydrogen ions36. Nevertheless, transistors
induced by interface oxygen ion dynamics have not yet been intro-
duced to reservoir systems.

The discovery of hafnium-based fluorite ferroelectrics broke the
bottleneck constraints for realizing ultrathin ferroelectric films highly
compatible with existing CMOS processes37,38. Hafnium-based fluorite
ferroelectric materials are advantageous in terms of high-speed, low-
power neuromorphic computing, attracting interest from materials
science to engineering fields39. In particular, it has been reported that
the polarization process of Hf0.5Zr0.5O2 (HZO) is strongly coupled with
the oxygen migration at the heterojunction40. As a result, the oxygen
ions in the La0.67Sr0.33MnO3 (LSMO3) buffer layer canbeextracted, and
even phase transition from perovskite (LSMO3) to brownmillerite
(LSMO2.5) will be observed40. In other words, HZO can act as a good
conductor of oxygen ions41,42. Meanwhile, the extraction and insertion
of oxygen ions affect the transport properties in LSMO films by

changing the oxygen stoichiometry and valence state of metal cations
in films43. Although LSMO can hardly be modulated as a Mott
oxide44–46, obvious changes in conductance can be realized via the
coupled property of polarization switching and ion migration in HZO.
The stability for offsets of oxygen stoichiometry depends on energy
preference, leading to dynamic relaxation when oxygen vacancies
cause unfavorable energy states47.

Herein, an interface-type tunable dynamic system with a ferro-
electric HZO gate and LSMO as the channel layer was developed and
tested. The interaction between ferroelectric polarization and migra-
tion of oxygen was employed tomanipulate the channel conductance.
The capture and release of oxygen ions can effectively modify the
conductance in the LSMO channel film, and the transfer curve shows a
500% current variation. The existence of oxygen vacancies was con-
firmed through transmission electron microscopy (TEM) equipped
with electron energy loss spectrometry (EELS). Under an applied
positive pulse to diminish the conductance, obvious nonlinear
and volatile relaxation appeared, which can be described by a double
exponential function. Taking advantage of such nonlinear and volatile
processes, reservoir computing applications were conducted for tasks
such as static pattern recognition, voice recognition, waveform clas-
sification, and chaotic prediction. Overall, novel insights into the
development of physical high-precision reservoir computing were
provided which are useful for future applications.

Results
PRC system with an ion dynamic transistor
Reservoir computing is an extended framework of neural network. A
conceptual illustrationof thedynamic system is provided in Fig. 1a. The
reservoir system was based on a typical ferroelectric transistor device
with a Mott oxide channel. A schematic structure of the ferroelectric
transistor is displayed in Fig. 1b. Here, the conductance of the LSMO
channel layer was measured between the source and drain electrodes.
The reversible structural transformation between the pristine and
oxygen-deficient phases in the channel layer is schematically depicted
in Fig. 1c. The HZO film was then deposited as the ferroelectric gate.
Both the source-drain and gate electrodesweremade of platinum films
with thicknesses of 40 nm and 20nm, respectively. More details about
device fabrication can be found in the “Methods” section.

X-ray diffraction (XRD) of the HZO film showed a mainly orthor-
hombic phase with <111>-oriented plane37,48–51, which is useful for
ensuring good ferroelectricity of films (Supplementary Fig. 1a). To
confirm the polarization properties, an HZO/LSMO heterostructure
was prepared on a (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) substrate. The
polarization-voltage (P-V) hysteresis and piezo-response force micro-
scopy (PFM) measurements were then conducted. As shown in Sup-
plementary Fig. 1b, partial polarizationcanbeobtainedunder different
voltages with a remanent polarization (Pr) value of approximately
26μC/cm2.Moreover, 180° phase reversal in the phase image and local
hysteresis loop also indicated ferroelectric switching in the film52

(Supplementary Fig. 2b–d).
Figure 1d shows the current variation under different positive gate

voltages. Here, the amplitude values of 2, 2.5, and 3V with a width of
20 s and an interval of 100 s were used. Obviously, the application of
positive voltages decreased the channel conductance. As the voltage
rose, the modulation range was expanded simultaneously. Under an
applied 3 V pulse, the dynamic range of the drain current was
approximately 30 nA. In addition, the transfer curve test revealed a
dynamic range of approximately 500% (Supplementary Fig. 3a).
However, the channel current relaxes toward the initial state after the
removal of the pulse. By contrast, the application of negative pulses
enhanced the channel current, and the final state was maintained
steadily for a long time (Supplementary Fig. 4). Thus, the modulation
of channel conductance by the HZO gate layer was asymmetric. Under
an applied positive gate voltage, obvious volatile variation was
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obtained. The decay in current was analyzed and the results fit a
double-exponential function well (Fig. 1e), as shown by Eq. (1):

I =A1e
�t
τ1 + A2e

�t
τ2 + I1 ð1Þ

where τ1 and τ2 represent two characteristic time constants with values
of 26.9 s and 275.9 s, corresponding to the fast and slow decay pro-
cesses, respectively. A1 and A2 are constants. I1 is a current constant of
the relaxation process.

Various pulses with different durations and numbers of pulses
were also applied for both positive and negative stimulations (Supple-
mentary Fig. 5). The variation in the current range expanded as a
function of the number and width of pulses. ForMott transistors, many
efforts have previously been made to enlarge the regulation range
through the use ofmaterials with lower carrier density53,54, modification
through thickness55,56, and strain engineering57. However, expanding the
regulation range in Mott transistors is still challenging58. The proposed
device provided an effective way to manipulate the conductance state
in a strongly correlated material. As depicted in Supplementary Fig. 5,
similar asymmetry modulation was observed in the opposite direction,
indicating different dynamic processes between the two procedures.

Mechanism of dynamic transistors for reservoir computing
To explore the physical mechanism of the asymmetric conductance
change, we carried out high-resolution transmission electron

microscopy (TEM) measurements in HZO/LSMO epitaxial hetero-
structures on LSAT substrates. The characterization results revealed a
high crystallinity and an atomically sharp interface between HZO and
LSMO. Ex situ observations of the atomic lattice in the hetero-
structures before and after the application of pulses are depicted in
Fig. 2a–c, respectively. The amplitudeof the voltagepulse is ±3 V.Here,
the defined “Negatively Pulsed” sample is first pulsed by a positive
voltage and then pulsed by the negative voltage. The amplified images
of enclosed regions with a square in Fig. 2a–c are provided in Fig. 2d–f,
respectively. The atomic observations illustrated that LSMO main-
tained the perovskite structure after the application of positive pulses.
However, the average out-of-plane lattice parameter of pulsed LSMO
was slightly enhanced compared to that of the pristine film (Supple-
mentary Fig. 6), indicating a trend of phase transition from perovskite
to the oxygen-deficient structure. However, the structural transition
from perovskite to brownmillerite structures was absent, possibly
ascribed to the relaxation process during the ex situ measurements.
The lattice parameters of the negatively pulsed sample were also cal-
culated, and the decreased value of the out-of-plane lattice parameters
suggests that the lattice expansion causedby oxygen vacancyhas been
restored. The phase transition should not only change the lattice
parameters but also the valence ofmetal ions and bonding connection
with oxygen ions.

To confirm the formation of oxygen vacancies and related effects,
electron energy loss spectroscopy (EELS) was used to compare the
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Fig. 1 | Ferroelectric Hf0.5Zr0.5O2-based FET with asymmetry modulation pro-
cess for reservoir computing. a Schematic representation of the dynamic reser-
voir system. The input is fed into a reservoir composed of a series of virtual nodes
with a fixed time step. The output vector is a linear combination of the values
generated by the reservoir, and weights are trained through linear regression.

bDevice structure. c Schematic representation of the structural transitionbetween
the pristine and oxygen-deficient phases. d Evolution of the drain current as a
function of time during different positive voltage stimulations. e The nonlinear
fitting (green curve) of the relaxation process after removal of the positive voltage
pulse in comparison with the experimental results (hollow circle).
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near-edge fine structure of the Mn-L2/L3 edge and O-K edge in LSMO
films on the LSAT substrate. Figure 2g compares the peaks of theMn-L
edgebefore and after the application of electrical pulses. The as-grown
LSMOwas composed ofMn3+ andMn4+. Additionally, the shift in the L3
peak toward lower energy losses and the increased L3/L2 ratio
indicate a reduction in the Mn oxidation state via the formation of
oxygen vacancies59–61. Meanwhile, the comparison of the EELS spectra
of the O-K edge of the initial and pulsed LSMO films revealed a pre-
peak at ~530 eV, caused by the hybridization between the O 2p andMn
3d orbitals. The disappearance of pre-peak near 530 eV proved the
existence of oxygen vacancies (Fig. 2h)62. Supplementary Fig. 7 shows
the depth analysis of STEM-EELS spectra in pristine and pulsed LSMO
films. The same spectral characteristics at different depths reveal that
the modulation by oxygen ions can be effective throughout the film.
Supplementary Fig. 8a, b summarizes the peak positions of the Mn-L3
edge and the area ratio of the L3/L2 edge peaks for the pristine and
pulsed films. The shift of the peak toward higher energy after negative
voltage stimulation confirms the oxidation of Mn3+. In addition, the
transport properties of pristine and pulsed LSMO films in Supple-
mentary Fig. 9 show obviously enhanced resistivity of LSMO after the
application of positive gate voltages. Besides, the pulsed LSMO
exhibited lower metal-insulator transition temperature (Tp) due to the
suppression of the double exchange interaction through the creation
of oxygen vacancies61.

A schematicmodel of the proposed oxygen ion dynamic system is
illustrated in Fig. 3. The migrations of oxygen ions and ferroelectric
polarization during and after the electrical pulses were visible. Under
applied positive pulses to the device, the oxygen ions interrelatedwith
polarization were extracted from the LSMO layer, leading to the
creationof oxygen vacancies in thefilm. Thedouble exchange effect of
charges in LSMO decreased, resulting in higher resistivity channels61.
After the removal of pulses, the LSMO layer captured several oxygen
ions from HZO, demonstrating good conduction of oxygen ions.

Meanwhile, oxygen ion filling resulted in the recovery of the resistivity
of LSMO toward lower levels. Consistent with our measurement
results, the obvious relaxing procedure was observed in Fig. 1d, e. In
contrast, applying negative pulses drives oxygen ions tomigrate to the
LSMO layer. After the removal of negative pulses, the oxygen ionswere
still relatively stable since LSMO preferred an oxygen-rich state. As a
result, the conductance state was identified as nonvolatile (Fig. 3e).
According to computations based on the density function theory, the
formation energy of oxygen vacancies in LSMO was identified as a
relatively high positive value, meaning a stable ground state. In other
words, LSMO was inclined to form an energy-favorable perovskite
structure with fewer oxygen vacancies47. Besides, the affinity energy of
LSMO was relatively low, benefiting the oxygen-rich structure. In par-
ticular, the LSAT substrate provided proper epitaxial conditions
helpful for the reversibility of LSMO films47. Moreover, themodulation
range of the channel through the HZO gate depended on the current
structure of the LSMO layer. The pristine conductance state can be
seen as a reflection of the LSMO lattice structure. As Fig. 1d shows,with
degrading conductance, the relaxing procedure appeared more
obvious because the degree of oxygen vacancies was initially high. It
should be noted that the modulation of the channel conductance
through ferroelectric polarization is typically nonvolatile due to its
spontaneous polarization property53,63. However, our device shows an
obvious volatile response under electrical gating, which indicates that
the observed response characteristics are dominated by themigration
of oxygen ions. In other words, the HZO film plays a more important
role in this work as an oxygen ion conductor than as a ferro-
electric gate.

The relation between the drain current and pulse voltage can be
described by a piecewise function. When positive voltage pulses are
applied to the gate, the degradation of the drain current is divided into
two steps. In the beginning, only the extraction of oxygen ions exists,
resulting in a sharp decreasing trend (Stage I, Eq. (2)). Afterward, the
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spontaneous oxidization process would lead to competition between
the separation and capture of oxygen ions due to the large negative
value of the oxygen affinity of LSMO3-x. As a result, the decreasing rate
became slower. (Stage II, Eq. (3)). After the removal of the gating vol-
tage, the relaxation of the drain current can also be considered as a two-
stage process. At themoment of voltage removal (Stage III, Eq. (4)), fast
relaxation was observed due to the relatively severe lack of oxygen ions
in the LSMO channel. After capturing back an adequate number of ions
into the channel, the relaxation process was slowed down (Stage IV,
Eq. (5)). The dynamic process can be summarized as Eqs. (2)–(5), where
I1, I2, I3, and I4 represent the current values under different states, V is
the applied gate voltage, and I0 refers to the initial drain current. The
coefficientsA, k, b, and c are all constants. Among them, variable tmodu is
the duration of applying voltage, i.e., modulation time, and trelax is the
relaxation time after removing the gate voltage. The detailed values of
the parameters are provided in Supplementary Table 1. As depicted by
the following functions, the evolution of the drain current depended on
both the applied voltage and the former current state. More details
about thefitting curve canbe seen in Supplementary Fig. 10. Thismodel
can well describe the dynamic evolution of the device state, paving the
way for later applications.

I1 = k1V + k2V I0 + I0 ð2Þ

I2 = I1 + ðy1 + A1e
V
b1 Þ tmodu

ð3Þ

I3 = k3V + ðy2 + A2e
� V

b2 ÞI2 + I2 ð4Þ

I4 = I3 +
A3

1 + e
I3�c1
b3

× 1� e�
trelax

c2 + k4 I3

� �
ð5Þ

Transistor-based reservoir system for pattern recognition
The recognition process was tested starting with a simple task of
recognizing letters from an input image. For example, the image letter
“S” in Fig. 4a is composed of 20 pixels either black (“1”) or white (“0”).
This was then divided into 5 parallel rows, each containing 4

consecutive pixels, fed into a transistor reservoir as a 4-timestream
input stream. For the letter “S”, the time-series inputs [0111], [1000],
[0110], [0001], and [1110] were obtained. More patterns of the letter
are depicted in Supplementary Fig. 11, and the experimental evolution
of the above input transformation process is shown in Fig. 4a. A
timeframe containing a single write pulse (amplitude of 3.3 V and the
pulse duration of 6 s) as “1” and no pulse representing “0” was pre-
sented. During all measurements, the read voltage applied to the
source-drain was 0.1 V. After the application of all 4-timestream inputs
to the reservoir, the information of an entire image was nonlinearly
projected into the reservoir system. The volatile and nonlinear prop-
erties of the system induced different timeframe input-independent
current changes. In Fig. 4b, the overall width and amplitude of the
voltage were the same for inputs [0111] and [1110]. Additionally, the
final outputs collected after the removal of all pulses for 10 s (shaded
region in Fig. 4b) looked distinct, which represent the states of the
reservoir.

During the classification, a single-layer fully connected neural
network with a size of 5×20 was used to perform the letter recognition
task. The Softmax function was selected as the activation function of
the network, and the weights were updated based on the back-
propagation algorithm. With 4-timestream pulses, a total of 16 differ-
ent states were obtained, as shown in Fig. 4c, with each line
representing an independent evolution of the reservoir state. The
variation in drain current in Fig. 4d revealed separable outputs of the
reservoir proving thenonlinearity and volatileproperties of thedevice.
After training the readout, the system can correctly classify digital
letterswith 100% accuracywithin less than 50 training epochs. In order
to verify theperformanceof the classification tasks is indeeddue to the
reservoir properties of the transistor, we performed the same tasks
using a linear model without reservoir computing processing. The
classification accuracy decreased to 80% (Supplementary Fig. 12). The
above results verified the feasibility of static pattern recognition using
our reservoir system.

Transistor-based reservoir system for speech recognition
Theperformanceof thedynamic FET systemon temporal classification
tasks was further evaluated by spoken information recognition. The
inputdata consistedof audiowaveforms fromour colleges. Thegoalof
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spoken recognition is to distinguish each independentword. As shown
in Fig. 5a, b, we inferred amethod to convert vocal signals into acoustic
patterns which were later used as training and inference datasets64.
First, the pristine sound wave was saved as a function of time and then
transformed into a function frequency. For example, after recording
the sound wave of the spoken word “lychee”, we transform vocal
information into a function of frequency via the fast Fourier transform
(FFT), as recorded in the left panel of Fig. 5b.

The next step consisted of sampling the information by collecting
250 points from time and frequency signals. A total of 500 discrete
signal data points were next transformed into an acoustic image
(20×25), where each pixel contained a scale value within the range of
0–255. Five words, namely “lychee”, “blueberry”, “mango”, “pome-
granate”, and “shaddock” spokenby four peoplewereprocessed in our
database. Finally, each data point was converted to binary data by
setting a threshold value. For each acoustic pattern, 500 data points
were recordedwith either 1 or 0 values.When feeding the data into the
reservoir, the inputs were divided into 125 groups, each composed of
4-timestream pulses, similar to our former application. Figure 5c
demonstrates the results of everyword spoken by four people, and the
data from different people are separated by solid blue lines. In a real
situation, we cannot guarantee absolute silence during the collection
of information; therefore, noise would be inevitable. Thus, salt and
pepper noise (δ =0.05) was added to simulate more authentic situa-
tions. The weight distribution before and after the training process in
the readout layer is provided in Fig. 5d. After the training process, a
more dispersive distribution of the weights was observed, and 100%
accuracy was achieved in this acoustic pattern recognition task. The
results further proved the good properties of our PRC system.

Transistor-based reservoir system fordynamic classificationand
chaotic prediction
The computational capability of the proposed PRC system was basi-
cally verified by the static and temporal classification tasks. To further
investigate the potential of the reservoir system in processing time

series data, we performed two benchmark tasks to demonstrate the
prediction of time series data by taking advantage of the aforemen-
tioned suitability. It is worth noting that for complex sequence infor-
mation processing tasks, a large number of randomly interconnected
nonlinear neuron nodes are required to build a reservoir capable of
handling such tasks, which poses a significant challenge in terms of
hardware implementation. Therefore, in order to overcome such dif-
ficulties, a mask technique has been employed to expand the input
information and generate a large number of virtual nodes in the time
domain18. A detailed description of the mask process can be found in
the method section.

A task of waveform classification was used to test the temporal
signal processing capability of the FET reservoir system65. As shown
in Fig. 6a, the input sequence consisted of a random combination of
sine and square waveforms. The target outputs were 0 and 1,
representing the sine wave and square wave, respectively. After
feeding the processed data into the reservoirs, different output
current states representing the output of virtual nodes were sam-
pled as the reservoir states. The time interval τ is defined as the total
length of the voltage pulse sequence corresponding to each input
data, i.e., the total duration of the sequence containing M voltage
pulses. During each time interval τ, the output of the reservoir sys-
tem consisted of a linear combination of all reservoir states. The
schematic of the input signals and all reservoir states is shown in
Supplementary Fig. 13. The amplitudes of the current states were
distinguished after processing in the reservoir. Finally, the synaptic
weights were trained through a simple linear regression algorithm
and the classification results are summarized in Fig. 6b. Overall, the
proposed reservoir system can correctly classify sine and square
waves after training. In addition, the normalized root mean square
error (NRMSE) was extremely low (4.044 × 10−8).

Chaotic system prediction can also be used as a benchmark to
measure the performance of reservoir devices. The Hénon map was
affirmed as a typical dynamic chaotic system and the task aimed to
predict a newpoint (x(n + 1), y(n + 1)) based on the point (x(n), y(n)) in a

111
1

111
0

110
1

110
0

101
1

101
0

100
1

100
0

011
1

011
0

010
1

010
0

001
1

001
0

000
1

000
0

0

10

20

30

Δ
 C

ur
re

nt
 (n

A
)

Sequence

0 15 30 45 60
200

210

220

230

D
ra

in
I (

nA
)

Time (s)

0001

1000

0110

1110

0111

0 50 100 150 200

0

30

60

100

A
cc

ur
ac

y 
(%

)

Epoch
0 1 2 3 4

200

210

220

230

D
ra

in
I(

nA
)

Pulse number

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

(a) 0 1 1 1 FET Reservoir (b)

)e()d()c(

Fig. 4 | Digital letter classification demonstration. a Illustration showing the
input process of the letters as pulse sequences into the reservoir. Each line of the
letter pattern is divided into 4 pixels and then independently fed into the FET
reservoir. The letter “S” is used as an example. b The evolution of drain current
during the application of pulse sequences representing the letter “S”. c All 16 kinds

of sequence types and corresponding current outputs used for the letter classifi-
cation. d The variation in drain current under different pulse sequences. e The
evolution of classification precision during the training procedure, with 100%
accuracy obtained in less than 100 epochs.

Article https://doi.org/10.1038/s41467-023-42993-x

Nature Communications |         (2023) 14:7176 6



nonlinear 2-D mapping on the plane66,67. The mapping can be defined
as follows:

x n+ 1ð Þ= y nð Þ � 1:4x nð Þ2 ð6Þ

y n+ 1ð Þ=0:3x nð Þ ð7Þ

Through the combination of Eq. (6) and Eq. (7), the Hénon map
could be deconstructed into a one-dimensional map, which could be
described as xðn + 1Þ=0:3xðn� 1Þ � 1:4xðnÞ2. Therefore, a reservoir
system capable of predicting x(n + 1) based on x(n) was designed for
the prediction of 2-D Hénon map. We created a dataset of 2000 data
points, in which the first 1000 data points were used for training while
the last 1000 data points were employed as inputs for testing. The
input x(n) sequence consisted of a linear mapping of the electrical
pulses at amplitudes from0 to 2 V. Amaskprocesswas also introduced
as previously mentioned. During the input procedure, the input was
multiplied by a mask with a length of 50. By applying different mask
sequences, a reservoir system ofN parallel devices (hereN = 25) can be
simulated. The training process also adopted a linear regression
algorithm. Figure 6c shows experimentally obtained outputs from the
reservoir systemafter training and the solid linewas taken as the target
value obtained through theoretical computing. The results indicated
that our reservoir system can solve the dynamic nonlinear problem
with an NRMSE value of 5.85 × 10−4. The prediction results demon-
strated through a two-dimensional map in Fig. 6d revealed great
consistency between the theoretical and simulation output based on
the test data, proving the excellent performance of our device.

To explore the impact factors of prediction performance, we
changed the maximum amplitude of applied voltage (Vmax) and
lengths of masks. As displayed in Fig. 6e, the prediction error varied as
a functionofbothVmax andmask length. The variation of theNRMSE as
a function of the number of masks is shown in Supplementary Fig. 14.
Therefore, the proper length and number of masks as well as the
amplitude of the applied voltage were key parameters in obtaining
better performances. An inappropriate mask length would induce
weak feedback strength or insufficient states of the reservoir system,
leading to poor prediction performance. In addition, we also investi-
gated the effects of the pulsewidth and interval. Supplementary Fig. 15
shows the variation of the channel current with different pulse widths.
Themodulation range of the channel conductance becomes smaller as
the pulse width becomes shorter. At this time, there are not enough
oxygen vacancies in the LSMO films. To investigate the effect of the
pulse width on the relaxation behavior, the channel current has been
recorded at 100 s after the voltage pulse (Supplementary Fig. 15b). It
canbe seen thatwith a shorter pulsewidth, the variation of the channel
current is closer to a linear process. In other words, the shorter the
applied pulse widths, the worse the nonlinearity and volatility. For
sequence tasks, the prediction error would increase with a shorter
pulse width. We also performed a similar analysis on the pulse interval
(Supplementary Fig. 15c, d). The extracted result shows that the
modulation of the channel current becomesmore linearwith a shorter
pulse interval. When the pulse interval is short, there is not enough
time for the oxygen ions tomove, so the relaxationphenomenon is not
obvious.

For a more comprehensive analysis, we employed the nonlinear
physicalmodelmentioned in themanuscript (Eqs. (2)-(5)) based on the
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device characteristics. Supplementary Fig. 16 illustrates the depen-
dence of the Hénon map prediction error on variations in pulse width
and pulse interval. It is evident that if the pulse width exceeds 10 s and
the pulse interval exceeds 50 s, the errors consistently remain within a
relatively small range. In this study, a relaxation time of 100 s was
selected to comprehensively investigate the relaxation process after
each pulse and to construct a nonlinear physical model. It should be
noted that tasks with different time-scale may require different reser-
voir systems68–70. A physical system with long relaxation time like our
device, may be appropriate for addressing long-time series tasks68.
Furthermore, the intrinsic high performances of the proposed reser-
voir devices were also confirmed by conducting other chaotic pre-
diction tasks. The predicted results of the Mackey-Glass oscillator and
NARMA2 tasks are given in Supplementary Fig. 17. The NRMSE values
were 0.008 and 0.096, respectively. Therefore, our PRC device
showed extremely low prediction error compared to the former
results (Supplementary Table 2) under all conditions. We also per-
formed control experiments to prove the crucial role of reservoir
computing when dealing with such time series tasks. We trained the
input data directly with a linear model without reservoir processing,
and the prediction performance of both tasks is much worse (Sup-
plementary Figs. 18 and 19). The above results verified the feasibility of
our proposed reservoir system in use as an effective hardware for
reservoir computing.

Discussion
In summary, a PRC system with a Mott-transistor gated by hafnium-
based ferroelectricfilmswas proposed. Theunique coupledproperties
of polarization switching and ion migration in HZO thin films resulted
in effective modulation of the conductance of the LSMO channels. We
found intrinsic asymmetry dynamic process based on oxygen ions
during the regulation of LSMO. The reversible transition between the
PV and BM phases of LSMO induced nonlinear relaxation after the
removal of the stimulation from the gate. The nonlinear and volatile
properties of the device met the requirements for the high-
performance reservoir. Taking advantage of the above properties,
we have demonstrated a high-performance reservoir computing sys-
tem. Pattern classification and speech recognition were achieved with
100% accuracy. Furthermore, the normalized root mean square error
was extremely low for time-dependent tasks, such as wave classifica-
tion and chaotic prediction.

ThePRC systemcould potentially address the bottleneckproblem
of conventional computing systems as it operates as an in-memory
framework. In this work, experimental proof-of-concept has been
performed using a reservoir system based on oxygen ion dynamics. In
the future, similar oxide reservoirs could be developed following the
same principle as described in this study. The use of a three-terminal
transistor structure allows for greater design flexibility and more
effective reservoir tuning. Additionally, the design of specific
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stimulation parameters should enable the achievement of reconfi-
gurable functions that incorporate both volatile reservoirs and non-
volatile synapseswithin the samedevice. TheCMOS-compatibleoxide-
based PRC system paves the way for compact integration with stan-
dard computing platforms.

Methods
Sample preparation
The LSMO channel layer (~3.2 nm) and HZO (~10 nm) gate films were
both deposited through pulsed laser deposition (PLD) method using a
XeCl laser (λ = 308 nm) and the deposition temperatures of LSMO and
HZO were 750 °C and 700 °C, respectively. The laser energy fluence
was 1.75 J/cm2, and the repetition rates used for both films were the
same (2Hz). The deposition rate of films was calibrated by X-ray
reflection.

Device fabrication
The channel layer was patterned through UV-lithography and Ar ion
etching with dimensions of 10 × 80 μm. The source-drain Pt electrode
was then deposited throughmagnetron sputtering with a thickness of
40 nm. Next, a 10 nm HZO film was prepared with a shadow mask.
Finally, a 20nm Pt gate electrode was patterned and deposited
through UV-lithography and magnetron sputtering methods,
respectively.

We also prepared electrodes with a smaller scale and the same
heterostructure. Round Pt electrodes with a diameter of 30 μm and
thickness of 50nm were prepared through the same technology.

Material characterization
X-ray diffraction (XRD) measurements were conducted using a high-
resolution X-ray diffractometer from Rigaku Smartlab. θ-2θ scanning
was performed with a step width of 0.05° to characterize the structure
and lattice parameters of the films. The wavelength of the X-ray is
1.5406Å generated by the Cu anode tube.

The atomic force microscope (AFM) and piezoelectric force
microscope (PFM) were both measured using the commercial Asylum
ResearchMFP-3Dprobemicroscope. Ir/Pt-coated conductive tipswere
used for PFM scanning. Dual A.C. resonance tracking (DART) mode
were used to record phase and amplitude signals during the mea-
surement. The drive amplitude was 1 V/1.5 V, and the switching voltage
used for domain writing was ±9.5 V.

The polarization properties of Pt/HZO/LSMO/LSAT capaci-
tors weremeasured by a precisionmultiferroic analyzer (RADIANT
Tec. Inc.). Triangular pulses with a frequency of 10 kHz were
applied.

Electron microscopy
STEM imaging was conducted by a Cs-corrected JEOL JEM-ARM200CF
NEOARM operated at 200 kV with a CEOS Cs corrector (CEOS GmbH,
Heidelberg, Germany). HAADF-STEM images were recorded with col-
lection semi-angles of 90-370 mrad. The EELS data were collected in
dual-EELSmode to obtain both zero-loss spectra and core-loss spectra
and recorded with a Gatan spectrometer, applying an energy disper-
sion of 0.1 eV per channel for Mn-L and O-K edges with a convergence
semi-angle of 24 mrad. Core-loss EELS spectra were calibrated by
corresponding zero-loss EELS before further analysis using Gatan
Microscopy Suite Software.

Electrical measurements
All electrical measurements of our FET devices were tested in a Lake-
shore probe station with the Keithley 4200 semiconductor parameter
analyzer. During electrical measurements, an amplitude of 0.1 V read
voltage was applied to read the channel current. The measurements
were conducted under ambient air at room temperature.

Masking process
In themask process, each data in the input sequencewasmultiplied by
anN×Mmaskmatrix, whereN is the number ofmasks (i.e., the number
of reservoirs in parallel) andM is the length of eachmask16. In this task,
N and M were set to 25 and 50 respectively, meaning that each input
data was expanded into 25 data streams of length 50 and then fed into
25 parallel reservoirs in the form of voltage pulse sequences. The time
interval τ is defined as the total length of the voltage pulse sequence
corresponding to each input data, i.e., the total duration of the
sequence containingM voltage pulses. During each time interval τ, the
output of the reservoir system consisted of a linear combination of all
reservoir states.

Error analysis
The error of the output results was calculated by the normalized root
mean squared error function, which can be defined as follows:

NRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

P
iðpi kð Þ � yiðkÞÞ2P
k

P
iyi2ðkÞ

s

where pi(k) is the experimentally predicted output and yi(k) is the
target output.

Data availability
Source data for the figures are provided as a Source data file. All
relevant data within the Supplementary Information are available from
the corresponding authors upon reasonable request. Source data are
provided with this paper.

Code availability
All codeused in simulations supporting this article is available from the
corresponding authors upon reasonable request.
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