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Exploiting redundancy in large materials
datasets for efficient machine learning with
less data

Kangming Li 1, Daniel Persaud 1, Kamal Choudhary 2, Brian DeCost 2,
Michael Greenwood3 & Jason Hattrick-Simpers 1,4,5,6

Extensive efforts to gather materials data have largely overlooked potential
data redundancy. In this study, we present evidence of a significant degree of
redundancy across multiple large datasets for various material properties, by
revealing that up to 95% of data can be safely removed frommachine learning
training with little impact on in-distribution prediction performance. The
redundant data is related to over-represented material types and does not
mitigate the severe performance degradation on out-of-distribution samples.
In addition, we show that uncertainty-based active learning algorithms can
construct much smaller but equally informative datasets. We discuss the
effectiveness of informative data in improving prediction performance and
robustness and provide insights into efficient data acquisition and machine
learning training. This work challenges the “bigger is better” mentality and
calls for attention to the information richness of materials data rather than a
narrow emphasis on data volume.

Data is essential to the development and application of machine
learning (ML), which has now become a widely adopted tool in mate-
rials science1–11. While data is generally considered to be scarce in
various subfields ofmaterials science, there are indications that the era
of big data is emerging for certain crucial material properties. For
instance, a substantial amount of material data has been produced
through high-throughput density functional theory (DFT)
calculations12, leading to the curation of several large databases with
energy and band gap data for millions of crystal structures13–17. The
recently released Open Catalyst datasets contain over 260million DFT
data points for catalyst modeling18,19. The quantity of available mate-
rials data is expected to grow at an accelerated rate, driven by the
community’s growing interest in data collection and sharing.

In contrast to the extensive effort to gather ever larger volume of
data, information richness of data has so far attracted little attention.
Such a discussion is important as it can provide critical feedback to

data acquisition strategies adopted in the community. For instance,
DFT databases were typically constructed either from exhaustive
enumerations over possible chemical combinations and known
structural prototypes or from random sub-sampling of such
enumerations14–20, but the effectiveness of these strategies in exploring
the materials space remains unclear. Furthermore, existing datasets
are often used as the starting point for the data acquisition in the next
stage. For example, slab structures in Open Catalyst datasets were
created based on the bulk materials from Materials Project18,19.
Redundancy in the existing datasets, left unrecognized, may thus be
passed on to future datasets, making subsequent data acquisition less
efficient.

In addition, examining and eliminating redundancy in existing
datasets can improve training efficiency of ML models. Indeed, the
large volume of data already presents significant challenges in devel-
oping MLmodels due to the increasingly strong demand for compute
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power and long training time. For example, over 16,000GPUdayswere
recently used for analyzing and developing models on the Open Cat-
alyst datasets21. Such training budgets are not available to most
researchers, hence often limiting model development to smaller
datasets or a portion of the available data22. On the other hand, recent
work on image classification has shown that a small subset of data can
be sufficient to train a model with performance comparable to that
obtained using the entire dataset23,24. It has been reported that
aggressively filtering training data can even lead to modest perfor-
mance improvements on natural language tasks, in contrast to the
prevailing wisdom of “bigger is better” in this field25. To the best of our
knowledge, however, there has been no investigation of the presence
and degree of data redundancy in materials science. Revealing data
redundancy can inform andmotivate the community to create smaller
benchmark datasets, hence significantly scaling down the training
costs and facilitating model development and selection. This may be
important in the future if data volume grows much faster than the
available training budget, which is a likely scenario, as data volume is
proportional to resources available to the entire community, while
training budgets are confined to individual research groups.

The examination of data redundancy is also important in other
scenarios in materials science. Methods developed for selecting the
most informative data can be used as the strong baselines for active
learning algorithms, which are increasingly common in ML-driven
materials discovery workflows26–34. Analysis of information richness
can also improve our understanding of the material representation
and guide the design of active learning algorithms. In themulti-fidelity
data acquisition setting35, one can perform high-fidelity measurement
only on the informative materials down-selected from the larger but
low-fidelity datasets.

In this work, we present a systematic investigation of data
redundancy across multiple large material datasets by examining the
performance degradation as a function of training set size for tradi-
tional descriptor-based models and state-of-the-art neural networks.
To identify informative training data, we propose a pruning algorithm
and demonstrate that smaller training sets can be used without sub-
stantially compromising the ML model performance, highlighting the
issue of data redundancy.We also find that selected sets of informative
materials transfer well between different ML architectures, but may
transfer poorly between substantially different material properties.
Finally, we compare uncertainty-based active learning strategies with
our pruning algorithm, and discuss the effectiveness of active learning
for more efficient high throughput materials discovery and design.

Results
Redundancy evaluation tasks
We investigate data redundancy by examining the performance of ML
models. To do so, we use the standard hold-out method for evaluating
ML model performance: We create the training set and the hold-out
test set from a random split of the given dataset. The training set is
used formodel training, while the test set is reserved for evaluating the
model performance. In the following, we refer to the performance
evaluated on this test set as the in-distribution (ID) performance, and
this training set as the pool. To reveal data redundancy, we train a ML
model on a portion of the pool and check whether its ID performance
is comparable to the one resulting from using the entire pool. Since ID
performance alone may not be sufficient to prove the redundancy of
the remaining unused pool data, we further evaluate the prediction
performance on the unused pool data and out-of-distribution (OOD)
test data.

Figure 1 illustrates the redundancy evaluation discussed above.
We first perform a (90, 10)% random split of the given dataset S0 to
create the pool and the ID test set. To create an OOD test set, we
consider new materials included in a more recent version of the
database S1. Such OOD sets enable the examination of model perfor-
mance robustness against distribution shifts that may occur when
mission-driven research programs focus on new areas of material
space36. We progressively reduce the training set size from 100% to 5%
of the pool via a pruning algorithm (see “Methods”). ML models are
trained for each training set size, and their performance is tested on
the hold-out ID test data, the unused pool data, and the OOD data,
respectively.

To ensure a comprehensive and robust assessment of data
redundancy, we examine the formation energy, band gap, and bulk
modulus data in three widely-used DFT databases, namely JARVIS15,
Materials Project (MP)16, and OQMD17. For each database, we consider
two release versions to study the OOD performance and to compare
thedata redundancybetweendifferent database versions. The number
of entries for these datasets is given in Table 1.

To ascertain whether data redundancy is model-agnostic, we
consider two conventional ML models, namely XGBoost (XGB)37 and
random forests (RF)38, and a graph neural network called the Atomistic
LIne Graph Neural Network (ALIGNN)39. The RF and XGB models are
chosen since they are among the most powerful descriptor-based
algorithms40, whereas ALIGNN is chosen as the representative neural
network because of its state-of-the-art performance in the Matbench
test suite41 at the time of writing.

Training data

Pool

Unused data

A given database version S0 New data in S1

Performance on ID test set: Training data Train & test ID data

Train & test
Unused

a

b

OOD data

Unused data

Train & test

Performance on unused set:

Performance on OOD test set:

Training data

Training data

In-distribution 
(ID) test data

Out-of-distribution 
(OOD) test data

An updated database version S1

Fig. 1 | Schematic of redundancy evaluation. a The dataset splits. b Three Prediction tasks to evaluate model performance and data redundancy.
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In-distribution performance
We begin by presenting an overview of the ID performance for all the
model-property-dataset combinations in Table 2, where the rootmean
square errors (RMSE) of the models trained on the entire pool are
compared to thoseobtainedwith 20%of the pool. For brevity, we refer
to themodels trained on the entire pool and on the subsets of the pool
as the full and reduced models, respectively, but we note that the
model specification is the same for both full and reduced models and
the terms “reduced” and “full” pertain only to the amount of train-
ing data.

For the formation energy prediction, the RMSE of the reduced RF
models increase by less than 6% compared to those of the full RF
models in all cases. Similarly, the RMSE of the reduced XGB models
increase only by 10 to 15% compared to the RMSE of the full XGB
models inmost datasets, except inOQMD21where a 3%decrease in the
RMSE is observed. The RMSE of the reduced ALIGNN models increase
by 15 to 45%, a larger increment than observed for the RF and XGB
models. Similar trend is observed for the band gap and bulk modulus
prediction, where the RMSE of the reduced models typically increase
by no more than 30% compared to those of the full models.

Next, we conduct a detailed analysis for formation energy and
band gap properties because of their fundamental importance for a
wide range of materials design problems. Figure 2 shows the ID per-
formance as a function of training set size (in percentage of the pool)
for the formation energy and band gap prediction in the JARVIS18,
MP18, and OQMD14 datasets. Results for other datasets can be found
in Supplementary Figs. 1–6.

For the formation energy prediction, the prediction error
obtained with the pruned data drops much faster with increasing data
size than the one obtained using the randomly selected data. When
accounting for more than 5% of the training pool, the pruned datasets
lead to better ID performance than the ones from random sampling. In
particular, the RF, XGB, and ALIGNN models trained with 20% of the
pool selected by the pruning algorithm have the same ID performance
as the ones trained with a random selection of around 90%, 70%, and
50%, respectively, of the pool.

A large portion of training data can be removed without sig-
nificantly hurting the model performance. To demonstrate this, we
define a quantitative threshold for the “significance” of the perfor-
mance degradation as a 10% relative increase in RMSE; data that can be
pruned without exceeding this performance degradation threshold
are considered redundant. With this definition, only 13% of the JAR-
VIS18data, and 17%of theMP18 andOQMDdata are informative for the
RFmodels. For the XGBmodels, between 20% and 30% of the data are
needed depending on the datasets. For the ALIGNNmodels, 55%, 40%,
and 30% of the JARVIS18, MP18, and OQMD14 data are informative,
respectively. While the JARVIS18 dataset may seem to be less redun-
dant for the ALIGNN models, the 10% increase in the RMSE (60 meV
atom−1) corresponds to an RMSE increase of only 6 meV atom−1, much
smaller than the DFT accuracy of around 100meV atom−1 with respect
to experiments42. In fact, training the ALIGNN model on 30% of the
JARVIS18 data only leads to a drop of 0.002 in the R2 test score.

While this work is focused on redundancy which is model and
dataset specific, it is still worth commenting on the model

performance scaling across models and datasets. When using the
random sampling for data selection, we observe a power law scaling
for all the models and datasets. For formation energy datasets,
switching the models mainly shifts the scaling curve without much
change to the slopes. For band gap datasets, switching fromRF to XGB
models shifts the scaling curve down without changing the slope,
whereas switching from tree-based models to ALIGNN leads to a
steeper slope and hence better scaling. Compared to training on ran-
domly sampled data, training on informative data as selected by the
pruning algorithm can lead to better scaling until reaching saturation
when there is no more informative data in the pool. Different datasets
exhibit similar scaling behaviors with the slope and saturation point
dependent on target property and material space covered by the
datasets.

The performance response to the size of band gap data is similar
to that observed in the formation energy data. The redundancy issue is
also evident in band gap data: a 10% RMSE increase corresponds to
training with 25 to 40% of the data in the JARVIS18 and MP18 datasets.
Even more strikingly, only 5% (or 10%) of the OQMD14 band gap data
are sufficiently informative for the RF and XGB (or ALIGNN) models.

These results demonstrate the feasibility of training on only a
small portion of the available data without much performance degra-
dation. We find that this is achieved by skewing the data distribution
towards the underrepresented materials. For instance, the distribu-
tions of the pruned data are skewed towards materials with large for-
mation energies and band gaps (Fig. 3), which are both
underrepresented and less accurately predicted materials. These
results not only confirm the importance of the data diversity40 but also
highlight the redundancy associated with overrepresented materials.

ID performance is not sufficient to prove that the unused data are
truly redundant. The effects related tomodel capability and the test set
distribution should also be considered. Indeed, onemay argue that the
current ML models (in particular, the band gap models) are not
advanced enough to learn from the unused data leading to a false

Table 1 | Number of entries of formation energy (Ef), band gap
(Eg), and bulk modulus (K) data in JARVIS18, JARVIS22, MP18,
MP21, OQMD14, and OQMD21 datasets

JARVIS18 JARVIS22 MP18 MP21 OQMD14 OQMD21

Ef 53k 76k 68k 146k 290k 1M

Eg 53k 76k 68k 146k 290k 1M

K 19k 24k 7k 7k 0 0

The last two digits in the dataset name indicate the year of release (e.g., MP18 for the 2018
version).

Table 2 | RMSE scores obtained with the full and reduced
models on the ID test set in JARVIS18, JARVIS22, MP18, MP21,
OQMD14, and OQMD21 datasets

Dataset STD RF XGB ALIGNN

Full 20% Full 20% Full 20%

Formation energy (eV atom−1)

JARVIS18 1.08 0.187 0.190 0.136 0.159 0.064 0.093

JARVIS22 1.08 0.191 0.196 0.149 0.165 0.074 0.102

MP18 1.06 0.159 0.168 0.120 0.140 0.065 0.085

MP21 1.21 0.190 0.196 0.161 0.175 0.081 0.093

OQMD14 0.85 0.117 0.124 0.096 0.105 0.058 0.068

OQMD21 1.00 0.117 0.123 0.109 0.104 / /

Band gap (eV)

JARVIS18 1.41 0.433 0.506 0.404 0.439 0.395 0.497

JARVIS22 1.33 0.406 0.465 0.385 0.411 0.365 0.441

MP18 1.62 0.613 0.738 0.587 0.658 0.613 0.743

MP21 1.51 0.555 0.683 0.535 0.616 0.529 0.682

OQMD14 0.72 0.211 0.212 0.196 0.198 0.185 0.189

OQMD21 0.87 0.308 0.314 0.314 0.323 / /

Bulk modulus (GPa)

JARVIS18 66.6 24.6 26.8 23.7 27.1 22.9 29.6

MP18 75.8 22.0 23.0 18.7 24.2 16.0 31.2

The standard deviation (STD) of labels is also given in the second column. The reduced models
are trained on the subset (20% of the pool) selected via the pruning algorithm. The ALIGNN
results for the formation energy and band gap data in OQMD21 are not available because of the
high training cost associated with the large data volume. Source data are provided as a Source
data file.
RF random forest, XGB XGBoost, ALIGNN atomistic line graph neural network.
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sense of the data redundancy. Furthermore, the similar performance
of the full and reduced models does not imply a similar performance
on a test set following a different distribution. These questions are
addressed in the following two sections by discussing the performance
on the unused data and on the OOD data.

Performance on unused data
Here we further examine the model performance on the unused pool
data. Figure4 shows three representative cases: the JARVIS18 andMP18
formation energy datasets, and theOQMD14 band gap dataset. For the
formation energy prediction, the RMSE on the unused data become

Fig. 2 | Root mean square error (RMSE) on the ID test sets. a–c JARVIS18, MP18,
andOQMD14 formation energy prediction. d–f JARVIS18,MP18, andOQMD14 band
gap prediction. RF random forest, XGB XGBoost, ALIGNN atomistic line graph
neural network. The random baseline results to for the XGB and RF (or ALIGNN)

models are obtained by averaging over the results of 10 (or 5) random data selec-
tions for each training set size, with the errorbars denoting the standarddeviations.
The X axis is in the log scale. Data points are connected by straight lines. Source
data are provided as a Source data file.

Fig. 3 | Label distributions of the training sets pruned by the XGBoost
(XGB) model. a Formation energy data from the MP18 dataset. b Band gap data
from the OQMD14 dataset. The legend indicates the training set size in percentage

of the pool. Results for other datasets can be found in Supplementary Figs. 15 and
16. Source data are provided as a Source data file.
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lower than on the ID RMSE when the training set size is above 5 to 12%
of the pool, and is half of the ID RMSE when the training set size is
above 30 to 40%of the pool. Similar trend is observed for the band gap
prediction with varying thresholds of the performance improvement
saturation depending the datasets (Supplementary Figs. 10–12). In
particular, the OQMD14 results in Fig. 4 show that the models trained
on 10% of the pool can well predict the unused data that account for
90% of the pool, with the associated RMSEmuch lower than the RMSE
on the ID test set. The good prediction on the unused data signifies a
lack of new information in these data, confirming that the improve-
ment saturation in the ID performance is caused by the information
redundancy in the unused data rather than the incapability of models
to learn new information.

While the scaling curve for the unused data has a shape similar to
the one for the ID test data, the former shows amuch steeper slope for
the training set sizes below 15% of the pool, and reaches saturation at a
slower rate. In addition, it is noted that the ranking of different ML
models for their performanceon the unused data is not necessarily the
same as for the ID test data. For instance, for the JARVIS18 and MP18
formation energy data, the XGB model outperforms the RF model on
the ID test set whereas their performance is practically the same on the
unused data. Among the models trained on the OQMD14 band gap

data, the RF model has the largest RMSE on the ID test set but the
lowest error on the unused data.

Out-of-distribution performance
To check whether redundancy in training data also manifests under a
distribution shift in test data, we examine the model performance on
theOOD test data consisting of the newmaterials in the latest database
versions (JARVIS22, MP21, and OQMD21) using the models trained on
the older versions (JARVIS18, MP18, and OQMD14).

First, we find that training on the pruneddata can lead to better or
similar OODperformance than the randomly sampleddata of the same
size. We therefore focus here on the OOD performance based on the
pruned data shown in Fig. 5. Overall, the scaling curves for the OOD
performance show are similar to those for the ID performance with
slightly different slopes and saturation data size, confirming the exis-
tence of the data redundancy measured by the OOD performance.
Specifically, using 20%, 30%, or 5% to 10% of the JARVIS18, MP18, or
OQMD14data, respectively, can lead to anOODperformance similar to
that of the full models, with around 10% RMSE increase.

TheperformanceonOODdata can be severely degraded. Even for
the models trained on the entire pool, the increase in the OOD RMSE
with respect to the ID RMSE often goes above 200% for the considered

Fig. 5 | Rootmean square error (RMSE) on theOOD test sets. a JARVIS formation
energy prediction. b MP formation energy prediction. c OQMD band gap predic-
tion. RF random forest, XGBXGBoost, ALIGNN atomistic line graphneural network.
Performance on the ID test set is shown for comparison. Data points are connected

by straight lines. The reader interested in the statistical overlaps between the ID and
OODdata in the feature space is referred to Supplementary Fig. 24. Source data are
provided as a Source data file.

Fig. 4 | Root mean square error (RMSE) on the unused data in the pool.
a JARVIS18 formation energy prediction. b MP18 formation energy prediction.
c OQMD14 band gap prediction. RF random forest, XGB XGBoost, ALIGNN

atomistic line graph neural network. Performance on the ID test set is shown for
comparison. Data points are connected by straight lines. Source data are provided
as a Source data file.
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databases and can rise up to 640% in the case of the ALIGNN-MP
formation energy prediction (Supplementary Table 1). Therefore, the
excellent ID performance obtained with state-of-the-art models and
large datasets might be a catastrophically optimistic estimation of the
true generalization performance in a realistic materials discovery
setting36,40.

Different databases exhibit a varying degree of performance
degradation, which should be correlated with the degree of statistical
overlaps between the database versions rather than the quality of the
databases. In fact, database updates that induce such performance
degradation are desirable because they are indications of new
“unknown” observations and can lead to more robust generalization
performance. One interesting line of research would be therefore to
develop methods to deliberately search for materials where the pre-
vious models would fail catastrophically as a path to expand a
database.

The strong OOD performance degradation highlights the impor-
tance of information richness over data volume. It also raises an
interesting question: given a training set A1, is it possible to find a
smaller training setA2 such that theA2-trainedmodel performsimilarly
to the A1-trained model on an A1-favorable test set B1 (i.e., same dis-
tribution asA1) but significantly outperformtheA1-trainedmodel on an
A1-unfavorable test set B* (i.e., distribution different from A1)? Indeed,
we find that training on the heavily pruned MP21 pool (A2) gives dra-
matically better prediction performance on the MP21 test data (B*)
than training on 10 ×more data from the MP18 pool (A1) whereas their
performance is similar on the MP18 test set (B1). The result confirms
the idea of finding a training set whose distribution can not only well
cover but also significantly extend beyond the original one while still
being much smaller in size. The result highlights that information
richness and data volume are not necessarily correlated, and the for-
mer is much more important for the prediction robustness. By cov-
ering more materials within the data distribution, we may better
ensure unknown materials are from known distributions (“known
unknown”) and avoid unexpected performance degradation
(“unknown unknown”), which is particularly important in scenarios
such as materials discovery or building universal interatomic
potentials22,43,44.

Transferability of pruned material sets
The ID performance results demonstrate that our pruning algorithm
effectively identifies informative material sets for a given ML model
andmaterial property. Anatural follow-up inquiry is theuniversality, or
more specifically, the transferability of these sets between ML archi-
tectures and material properties.

We find a reasonable level of transferability of the prunedmaterial
set acrossMLarchitectures, confirming that data pruned by a givenML
architecture remains informative to other ones (Supplementary
Figs. 17–20). For example, XGB models trained on RF-pruned data
outperform those trained on twice asmuch randomly selecteddata for
formation energy prediction. Moreover, the XGB model still outper-
forms an RF model trained on the same pruned data, consistent with
our observed performance ranking (XGB >RF). This ensures robust-
ness against information loss with respect to future architecture
change:more capablemodels developed in the future can be expected
to extract no less information from the pruned dataset than the cur-
rent state-of-the-art one, even if the dataset is pruned by the latter. It
would therefore be desirable to propose benchmark datasets pruned
from existing large databases using current models, which can help
accelerate the development of ML models due to the smaller
training cost.

In contrast, we find that there is a limited transferability of pruned
datasets across different material properties. For instance, the band
gap models trained on the pruned formation energy data outperform
those trained on randomly sampled data by only by a slight margin

(Supplementary Fig. 21), suggesting little overlap between informative
material sets for predicting these two properties. This limited task
transferabilitymay be a result of the lack of strong correlation between
the formation energy and band gap data, for which the Spearman
correlation coefficient is −0.5 in the considered databases. Addition-
ally, theOOD results show that formation energy and band gapmodels
do not necessarily suffer the samedegree of performancedegradation
when tested on newmaterials despite being trained on the same set of
materials (Supplementary Table 1), indicating learned feature-property
relations could differ significantly. These considerations suggest that a
fruitful line of future researchmight explore dataset pruning based on
multitask regression models focusing on a diverse set of material
properties controlled by different underlying physical phenomena.

Uncertainty-based active learning
In the previous sections we have revealed the data redundancy in the
existing largematerial databases through dataset pruning. Howmuch,
then, can we avoid such data redundancy in the first place when con-
structing the databases? To this end, we consider active learning
algorithms that select samples with largest prediction uncertainty (see
“Methods”). The first and the second algorithms use the width of the
90% prediction intervals of the RF and XGB models as the uncertainty
measure, respectively, whereas the third one is based on the query by
committee (QBC), where the uncertainty is taken as the disagreement
between the RF and XGB predictions.

Figure 6 shows a comparison of the ID performance of the XGB
models trained on the data selected using the active learning algo-
rithm, the pruning algorithm, and the random sampling. The QBC
algorithm is found to be the best performing active learning algorithm.
For the formation energy prediction across the three databases, 30 to
35% of the pool data selected by the QBC algorithm is enough to
achieve the same model performance obtained with 20% of the pool
data using the pruning algorithm. Furthermore, the resulting model
performance is equivalent to that obtained with 70 to 90% of the pool
using the random sampling. As for the band gap prediction, the
models trained on the QBC-selected data perform similarly to those
trained on the pruned data, or even sometimes outperform the latter
when the data volume is below 20% (Supplementary Fig. 23). In par-
ticular, the QBC algorithm can effectively identify 10% of the OQMD14
band gap data as the training data without hurting the model perfor-
mance (Fig. 6c). Similar trends are also found for theRFmodels and for
other datasets (Supplementary Fig. 23).

Overall, our results across multiple datasets suggest that it is
possible to leverage active learning algorithms to query only 30% of
the existing data with a relatively small accuracy loss in the ID pre-
diction. The remaining 70%of the computemay thenbe used to obtain
a larger and more representative material space. Considering the
potentially severe performance degradation on OOD samples which
are likely to be encountered in material discovery, the gain in the
robustness of ML models may be preferred over the incremental gain
in the ID performance.

Discussion
It is worth emphasizing that this work is by no means critical of the
curation efforts or significance of these materials datasets. Indeed,
many datasets were not originally generated for training ML models;
they are the results of long-term project-driven computational cam-
paigns. Some of themwere even curated before the widespread use of
ML and have played a significant role in fueling the rapid adoption of
ML inmaterials science. On the other hand, the presence anddegree of
redundancy in a dataset is worth discussing irrespective of the original
purpose. Furthermore, ML should be considered not only as a pur-
pose, though it has become a primary use case of these datasets,
but also as a statistical means of examining and improving these
datasets.
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Thiswork is alsonot tooppose the useof big data, but to advocate
a critical assessment of the information richness in data, which has
been largely overlooked due to a narrow emphasis on data volume. As
materials science transitions towards a big data-driven approach, such
evaluations and reflections on current practices and data can offer
insights into more efficient data acquisition and sensible resource
usage. For instance, conventional high-throughput DFT often relies on
enumerations over structural prototypes and chemical combinations.
The substantial redundancy revealed in this work suggests these
strategies are suboptimal in querying new informative data, whereas
uncertainty based active learning can enable a 3× to 10× boost in
sampling efficiency. Our scaling results for OOD performance degra-
dation further highlight the importance of information richness over
sheer volume for robust predictive models. In this regard, it is pre-
ferable to allocatemore resources to explore a diversematerials space
rather than seeking incremental improvements in prediction accuracy
within limited or well-studied regions. This may represent a paradigm
shift fromsystematic high-throughput studies, wherewe can startwith
uncertainty based active learning in a much larger design space, and
then reconsider the design space by interrogating the model and
switching to a property optimization or local interpretable prediction
objective.

While the pruning algorithm is proposed here to illustrate data
redundancy, such data selection algorithms can have other use cases,
e.g., inform the design of active learning algorithms. Indeed, the
observation that data redundancy predominantly involves over-
represented materials implies that information entropy might also
serve as a promising criterion for data acquisition40,45. A detailed ana-
lysis of pruned material sets may also offer insights into material
prototypes and improve understanding of feature-property relation-
ships, including identifying specific groups of redundant materials as
well as identifying patterns that explain the poor task transferability of
pruned datasets. Finally, the pruning algorithm offers a new funneling
strategy for prioritizing materials for high-fidelity measurements. For
instance, pruning the existing DFT data obtained with generalized
gradient approximation (GGA) functionals can point to the materials
to be recomputed with high-fidelity meta-GGA functionals35.

We demonstrate that transferability of compact datasets is rea-
sonable across models but is limited across tasks (materials proper-
ties). It is discussed in the context of data pruning, but the idea and
implication hold for active learning. The limited task transferability
indicates that themaximally compact set ofmaterials for property A is
not ensured to be themaximally compact set for property B.While this

is an interesting observation and invites further investigation, it is not a
practical issue for active learning when the measurements of two
properties are independent. For example, DFT calculations of band
gap and elastic modulus are unrelated, therefore the maximally com-
pact sets of materials can be constructed independently via active
learning and need not be the same. For correlated property mea-
surements, however, more careful planning is required. For instance,
the calculations of more “expensive” properties such as band gap and
elastic modulus would also give the formation energy of the same
material since energy is a basic output of any DFT calculations. While
the compact datasets for band gap and elastic modulus can still be
searched independently without considering formation energy data,
the construction of the compact dataset for formation energy should
consider the data that can be obtained as by-products from the band
gap and elastic modulus calculations.

In conclusion, we investigate data redundancy across multiple
material datasets using both conventionalMLmodels and state-of-the-
art neural networks. We propose a pruning algorithm to remove
uninformative data from the training set, resulting in models that
outperform those trained on randomly selected data of the same size.
Depending on the dataset and ML architecture, up to 95% of data can
be pruned with little degradation in in-distribution performance
(defined as <10% increase in RMSE) compared to training on all avail-
able data. The removed data, mainly associated with overrepresented
material types, are shown to be well predicted by the reduced models
trained without them, confirming again the information redundancy.
Using new materials in newer database versions as the out-of-
distribution test set, we find that 70 to 95% of data can be removed
from the training set without exceeding a 10% performance degrada-
tion threshold on out-of-distribution data, confirming again that the
removed data are redundant and do not lead to improved perfor-
mance robustness against distribution shift. Transferability analysis
shows that the information content of pruned datasets transfers well
to different ML architectures but less so between material properties.
Finally, we show that the QBC active learning algorithm can achieve an
efficiency comparable to the pruning algorithm in terms of finding
informative data, hence demonstrating the feasibility of constructing
much smaller material databases while still maintaining a high level of
information richness. While active learning algorithm may still induce
bias in the datasets they generate, we believe that there is an exciting
opportunity to optimize high throughput material simulation studies
for generalization on a broad array of material property
prediction tasks.

Fig. 6 | RMSEon the ID test sets by the XGBmodels trainedon the data selected
using the active learning algorithms. a MP21 formation energy prediction.
b JARVIS22 formation energy prediction. c OQMD14 band gap prediction. QBC
query by committee, RF-U random forest uncertainty, XGB-U XGBoost uncertainty.

The performance obtained using the random sampling and the pruning algorithm
is shown for comparison. Data points are connected by straight lines. Source data
are provided as a Source data file.
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Methods
Materials datasets
The 2018.06.01 version of Materials Project (MP18), and the
2018.07.07 and 2022.12.12 versions of JARVIS (JARVIS18 and JARVIS22)
were retrieved by using JARVIS-tools15. The 2021.11.10 version of
Materials Project (MP21) was retrieved using the Materials Project
API16. The OQMD14 and OQMD21 data were retrieved from https://
oqmd.org/download.

The JARVIS22, MP21, OQMD21 data were preprocessed as follows.
First, entries of materials with a formation energy larger than 5 eV
atom−1 were removed. Then, the Voronoi tessellation scheme46 as
implemented in Matminer47 were used to extract 273 compositional
and structural features. The Voronoi tessellation did not work for a
very small number of materials and these materials were removed.

For the older versions (JARVIS18, MP18, OQMD14), we did not
directly use the structures and label values from the older database.
Instead, we use the materials identifiers from the older database to
search for the corresponding structures and label values in the newer
database. This is to avoid any potential inconsistency caused by the
database update.

ML models
We considered three ML models here: XGB37, RF38, and a graph neural
network called the Atomistic LIne Graph Neural Network (ALIGNN)39.
XGB is a gradient-boostedmethod that builds sequentially a number of
decision trees in a way such that each subsequent tree tries to reduce
the residuals of the previous one. RF is an ensemble learning method
that combines multiple independently built decision trees to improve
accuracy and minimize variance. ALIGNN constructs and utilizes
graphs of interatomic bonds and bond angles.

We used the RF model as implemented in the scikit-learn 1.2.0
package48, and the XGB model as implemented in the XGBoost 1.7.1
package37. For the RF model, we used 100 estimators, 30% of the fea-
tures for the best splitting, and default settings for other hyperpara-
meters.Weused a boosted random forest for theXGBmodel: 4 parallel
boosted trees were used; for each tree, we used 1000 estimators, a
learning rate of 0.1, an L1 (L2) regularization strength of 0.01 (0.1), and
the histogram tree grow method; we set the subsample ratio of
training instances to 0.85, the subsample ratio of columns to 0.3 when
constructing each tree, and the subsample ratio of columns to 0.5 for
each level. The hyperparameter set was kept to be the same in all the
model training for the following reasons: First, performing hyper-
parameter tuning every timewhen changing the size of the training set
would be very computationally expensive. Second, we verified that the
model performance using the optimal hyperparameters tuned from
the randomized cross-validation search was close to the one using the
chosen hyperparameters.

For the ALIGNN model, we used 2 ALIGNN layers, 2 GCN layers, a
batch size of 128, and the layer normalization, while keeping other
hyperparameters the same as in the original ALIGNN
implementation39. We trained the ALIGNN model for 50 epochs as we
foundmore epochs did not lead to further performance improvement.
We used the same OneCycle learning rate schedule, with 30% of the
training budget allocated to linear warmup and 70% to cosine
annealing.

Pruning algorithm
Weproposed a pruning algorithm that starts with the full training pool
and iteratively reduces the training set size. We denote the full training
pool as Dpool, the training set at the i-th iteration as Di

train, the unused
set as Di

unused ( =Dpool � Di
train), and the trained model as Mi. At the

initial iteration (i =0), D0
train =Dpool, and D0

unused is empty. At each
iteration i > 0,Di

train andDi
unused are updated as follows: First, a random

splitting of Di�1
train is performed to obtained two subsets Di

A (80% of
Di�1
train) andDi

B (20%ofDi�1
train). Then, amodelM0 is trainedonDi

A and then

tested on Di
B. The data inDi

B with lowest prediction errors (denoted as
Di
B,unused) are then removed from the training set. Namely,

Di
train =D

i�1
train � Di

B,unused, and Di
unused = Di�1

unused +D
i
B,unused. The model Mi

trained on Di
train is then used in the performance evaluation on the ID

test set, the unused set Di
unused and the OOD test set.

Active learning algorithm
During the active learning process, the training set is initially con-
structed by randomly sampling 1 to 2% of the pool, and is grownwith a
batch size of 1 to 2%of the pool by selecting thematerialswithmaximal
prediction uncertainty. Three uncertainty measures are used to rank
thematerials. The first one is based on the uncertainty of the RFmodel
and is calculated as the difference between the 95th and 5th percentile
of the tree predictions in the forest. The second one is based on the
uncertainty of the XGB model using an instance-based uncertainty
estimation for gradient-boosted regression trees developed in ref. 49.
The third one is based on the query by committee, where the uncer-
tainty is taken as the difference between the RF and XGB predictions.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data required and generated by our code are available on Zenodo
at https://zenodo.org/record/8200972. Source data are provided with
this paper.

Code availability
The code used in this work is available on GitHub at https://github.
com/mathsphy/paper-data-redundancy and a snapshot of the code is
provided on Zenodo50.
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