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Training large-scale optoelectronic neural
networks with dual-neuron optical-artificial
learning

Xiaoyun Yuan 1,2,3, Yong Wang1, Zhihao Xu1,4, Tiankuang Zhou 1,2,3 &
Lu Fang 1,2,3

Optoelectronic neural networks (ONN) are a promising avenue in AI com-
puting due to their potential for parallelization, power efficiency, and speed.
Diffractive neural networks, which process information by propagating
encoded light through trained optical elements, have garnered interest.
However, training large-scale diffractive networks faces challenges due to the
computational and memory costs of optical diffraction modeling. Here, we
present DANTE, a dual-neuron optical-artificial learning architecture. Optical
neuronsmodel the optical diffraction, while artificial neurons approximate the
intensive optical-diffraction computations with lightweight functions. DANTE
also improves convergence by employing iterative global artificial-learning
steps and local optical-learning steps. In simulation experiments, DANTE
successfully trains large-scale ONNs with 150 million neurons on ImageNet,
previously unattainable, and accelerates training speeds significantly on the
CIFAR-10 benchmark compared to single-neuron learning. In physical experi-
ments, we develop a two-layer ONN system based on DANTE, which can
effectively extract features to improve the classification of natural images.

The artificial neural network (ANN) is undoubtedly the most repre-
sentative technology in the recentmachine intelligence research field1.
Over the past decade, with the growth of network scales2, model
parameters3,4, and dataset sizes5–7, ANNs have witnessed remarkable
advancements in various fields, e.g., visual computing, natural lan-
guage processing, robotics, etc. However, large-scale neural networks
also placed tremendous pressure on existing electronic computing
hardware. As the performance and energy efficiency of silicon-based
computing devices are restricted by the plateauing of Moore’s law8,
researchers started to turn their attention back to the optical/optoe-
lectronic networks9–12.

Optical and optoelectronic neural networks (ONN) have inherent
high speed and high energy efficiency characteristics13,14. Among them,
diffractive neural networks, which compute by just propagating
encoded light through trained optical modulation elements, can

naturally process optical images and realize the optical computing of
various machine vision tasks9,12,15–21. In 2018, Lin et al. proposed the
diffractive deep neural network (D2NN) for MNIST classification with
5 sequential 3D-printedmasks and a Terahertz laser source. This idea is
further extended for single-pixel imaging22, optical linear
transform19,23, optical logic operation24, phase imaging25, saliency
detection16, etc. Liu et al. further propose a programmable D2NNbased
on a digital-coding metasurface array with adjustable network
parameters26. Later, in order to realize stronger neural network pro-
cessing capability, optoelectronic neural networks are proposed: the
optical computing units are used to perform massively parallel linear
operations, and the electronic computing units are used to multiplex
the optical computing units and implement non-linear activation9,27.

However, existing diffractive neural networks studies mainly
focus on exploring novel optical computing hardware23,26,28,29 or new
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network structures16,18,20,30,31, but pay less attention to themodeling and
optimization of the ONNs. Most of them accurately model the optical
modulation elements as optical neurons with differentiable forward-
pass functions. Then, they model the entire physical system to a large
differentiable function by connecting all the optical neurons, and
optimize all the parameters directly using backpropagation, called as
single-neuron learning approach. However, the complex nature of
optical diffraction modeling makes the differentiable functions of
ONNs significantly more intricate and computationally demanding
than those of ANNs. Consequently, this leads to a substantial optimi-
zation space and excessively long training times, posing significant
challenges to the modeling and optimization of large-scale ONNs.
Hence, most existing ONNs studies are still struggling with funda-
mental tasks and small datasets, e.g., MNIST and Fashion-MNIST
classification.

In this article, we propose DANTE: dual-neuron optical-arti-
ficial learning for large-scale optoelectronic machine learning. In
detail, the hardware network is modeled by both optical-neuron
layers and artificial-neuron layers (Fig. 1). The optical-neuron
layers accurately simulate the diffraction and modulation process

of the optical field, and the artificial-neuron layers approximate
the computationally heavy optical-diffraction modeling of the
optical-neuron layers using lightweight functions. Unlike the
single-neuron learning approach, DANTE decouples all the optical
neurons by employing iterative global artificial-learning steps and
local optical-learning steps. By introducing the artificial-neuron in
the global artificial-learning step, the optimization space and
computing memory requirement are significantly reduced, rea-
lizing faster and better convergence of the end-to-end network
learning. While in the local optical-learning, the parameters in
optical-neuron layers are learned independently and efficiently
from the optimized artificial neurons, rather than from the mas-
sive datasets, which can further accelerate the network training.
In simulation experiments, compared to the single-neuron
learning approach, DANTE achieves a training acceleration of
approximately 200 times and elevates accuracy by approximately
10% on the CIFAR-10 benchmark (Fig. 2). What is more, DANTE
empowers the training of large-scale ONNs with 150-M neurons,
achieving performance on par with the representative VGG
network4 on the modern ImageNet benchmark (Fig. 3). The
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Fig. 1 | Principle of dual-neuron optical-artificial learning (DANTE).
a, b Schematic of an artificial neural network (ANN) and an optoelectronic neural
network (ONN). These networks exhibit a similar architecture, comprising alter-
nating layers of linear computing and non-linear activation. In the ONN, the optical
modulation layer conducts linear transformation on the input, akin to the linear
computing layer in the ANN, such as the convolutional layer. The electronic relay
layer in the ONN corresponds to the activation layer in the ANN, introducing
nonlinearity into the network. TheONN incorporates an additional readout layer to
generate the final results. c our proposed dual-neuron network. Each optical
modulation layer comprises parallel optical-neuron layer and artificial-neuron
layer. The optical-neuron layer accurately models the optical diffraction based on
Fourier optics. Meanwhile, the artificial-neuron layer aims to approximate the
computationally intensive optical-neuron layer using easily-optimized computing

operations. They are further connected via a dual-neuron switch, which dynami-
cally adjusts the network structure during network training. d our proposed dual-
neuron optical-artificial learning approach, composed of a global artificial-learning
step and a local optical-learning step. In the global artificial-learning step, the dual-
neuron switch connects all the artificial-neuron layers to form a complex-valued
ANN, and backpropagation is employed to optimize the parameters of the con-
nected artificial-neuron layers for fitting the training dataset. In the local optical-
learning step, the dual-neuron switch decomposes the network into independent
layer pairs, and the parameters in the optical-neuron layer is optimized by aligning
its impulse response to closely match that of the corresponding artificial-neuron
layer. i denotes the index of the layer, δ is the Dirac delta function, PSF, point
spread function, which represents the impulse responses.
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Fig. 2 | Improving ONN training using DANTE. a An optical-neuron layer, using a
4-f system as an example. b The artificial-neuron layer, which approximates the
optical-neuron layer using a multi-channel complex-valued convolutional opera-
tion. c The training process of the optical-neuron layer. A 2D Dirac delta function
(impulse) serves as the input, generating the 2D impulse response. The trained
kernels in the artificial-neuron layer are then tiled in a plane, acting as the ground-
truth label. ADAM-basedbackpropagation is employed tooptimize thephasemask.

d Two representative 3-layer ONNs for evaluating DANTE. e Detailed overview of
operations conducted within the electronic relay layer (ER). f Classification accu-
racy and training time (log scale) comparison in simulation experiments. DANTE
achieves over 100 times acceleration and a 10%accuracy improvement onCIFAR-10
dataset. g The trained phase masks, impulse response, and output optical field of
the second optical modulation layer in ONN-3-3. The impulse response and output
opticalfield are converted to intensity for visualization purposes. GT, ground truth.
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network scale is approximately 10 times larger than existing
large-scale ONNs9,16,18,20,32. In physical experiments, we develop a
two-layer physical ONN system capable of effectively extracting
features to enhance the classification of natural images (CIFAR-10
and ImageNet), serving as a validation of DANTE’s physical fea-
sibility (Fig. 4). In summary, DANTE shows the potential to
advance the researches of optical computing from the early stage
of prototype verification in MNIST-like benchmark into a new era
of solving large-scale practical problems.

Results
Principle of dual-neuron optical-artificial learning (DANTE)
Figure 1a, b illustrates the schematics of an artificial neural network
(ANN) and adiffractive optoelectronicneuralnetwork (ONN). TheANN
is composed of alternating linear computing layers and non-linear
activation layers. The forward pass of an ANN layer is usually for-
mulated as follows:

Xl + 1 =Al WlXl +Bl
� �

ð1Þ

Where Xl denotes the input of the l-th layer,Wl and Bl represent the
trainable weights and biases of the l-th linear computing layer,
and Alð�Þ is the activation function of the l-th nonlinear activa-
tion layer.

Similarly, the diffractive neural networks also consist of alternat-
ing linear optical modulation layers (OM layer) and non-linear elec-
tronic relay layers (ER layer), as demonstrated in Fig. 1b. The input
information is first encoded to either the amplitude or phase of a

coherent optical field. The optical field then propagates through the
layers until it reaches the final readout layer to generate the output.
Mathematically, the forward pass of an ONN layer can be formulated
as:

Xl + 1 = ERl OMl�Xl�� �
=ERl P

�
Wl ,Xl�� �

ð2Þ

where OMlð�Þ represent the l-th OM layer with trainable optical
modulation parameters Wl , and Pð�Þ is the optical wave propagation
function. ERlð�Þ denotes the non-linear activation function of the
ER layer.

More specifically, theOM layer is composedofmultiple 2Doptical
modulation surfaces, and each pixel on the optical modulation sur-
faces functions as an optical neuron, enabling the manipulation of the
optical field’s amplitude18 or phase9,17. In physical systems, the optical
modulation surface can be realized using various approaches, includ-
ing pre-fabricated devices like lenses or metasurfaces, as well as pro-
grammable devices like LCOS-Spatial light modulators (for phase and
amplitude) and Digital micromirror devices (for amplitude). The pri-
mary purposeof the electronic relay layer is to introducenon-linearity.
Among existing optoelectronic neural networks9,18,27, the widely
employed device for this layer is the photodiode array, which achieves
nonlinearity by converting the complex optical field into a real-valued
electrical voltage field. The voltage field can then be re-encoded back
into a complex optical field, serving as the input of the
subsequent layer.

In network learning, existing ONN approaches just follow the
principles of ANNs, i.e., cascading all the layers to a large differentiable

a

Inter-mask shuffle operation

Previous 
layer

Inter-mask 
shuffle

Next 
layer

OMk

ERk

12 3

Omk+1

OMk

ERk

1 2 3

Omk+1

OMk

ERk

1 23

Omk+1

1 1 1 2 2 2 3 3 3

b

Optical modulation
layer output

Remap

Next-layer 
input

Crop

Intensity (norm.)
0 1

3 4 5 6 7 10
Number of layers

)
%(

ycaruccA

CIFAR-10 Acc.

ONN w/o bs w/o shuffle  
ONN w/ bs w/o shuffle 

ONN w/ bs w/ shuffle
ANN VGG11

c ImageNet-32 Acc.

Ac
cu

ra
cy

 (%
)

6 7 10
Number of layers

w/ shuf. Top-5
w/o shuf. Top-5
VGG16 Top-5 

w/ shuf. Top-1
w/o shuf. Top-1
VGG16 Top-1 

d

DANTE
artificial

DANTE
optical

Single 
neuron

e

G
PU

 M
em

. (
G

B)

Number of phase masks

24 G

3 layer
4 layer

5 layer
6 layer

7 layer

CIFAR-10 Mem. Cost

batch 
size = 8

batch 
size = 512

Electronic relay layer

Average pooling

Intensity activation
Y = |X|2

Bias-and-scale
Y = aX + b

Inter-mask shuffle

Fig. 3 | Large-scale ONNs enabled by DANTE. a The inter-mask shuffle operation.
The outputs of previous layer are divided into multiple parts and shuffled to serve
as the inputs for the next layer, similar to channel shuffle operation in ANN. b The
electronic relay layer (ER) with two new operations: bias-and-scale and intermask
shuffle, which are proposed to facilitate the training of larger and wider ONNs.
c The classification accuracies of large-scale ONNs trained by DANTE on the CIFAR-

10 dataset (in simulation). The VGG11 network is presented for comparison. d The
Top-5 and Top-1 classification accuracies of large-scale ONNs trained by DANTE on
the ImageNet-32 dataset (in simulation). The VGG16 network is presented for
comparison. eGPUMemorycost for training large-scaleONNsonCIFAR-10dataset.
bs, bias and scale. Shuf., shuffle. Acc., accuracy. w/, with. w/o, without. Mem.,
memory.

Article https://doi.org/10.1038/s41467-023-42984-y

Nature Communications |         (2023) 14:7110 4



function ONNð�Þ, and optimize all the trainable parameters using
backpropagation:9,12,16

min
W

Loss ONN X0
� �

,Ygt

� �

ONN X0
� �

=Readout ERn OMn . . . ER1 OM1 X0
� �� �� �� �� � ð3Þ

where n is the total number of layers, Ygt is the ground-truth labels,
Readoutð�Þ the final readout layer. Unfortunately, this method faces
two challenges in optimizing large-scale ONNs: convergence difficulty
and slow optimization speed. For instance, the 3-layer ONN (D-NIN-1)

proposed by DPU9 achieves comparable performance in MNIST
classification compared to LeNet-533, but at a cost of 35 times more
parameters (2.2M vs. 62 K) and 700 times longer training time (8.4 h
vs. 40 s). The challenges arise from the high computational cost
associatedwith themodeling of optical diffraction propagation. Based
on the angular spectrum (AS) method34, the computation of wave
diffraction between two surfaces requires two 2D Fast Fourier
Transformations (FFTs) and one element-wise multiplication. Typi-
cally, an optical modulation layer may consist of multiple surfaces,
necessitating multiple rounds of computations. In contrast, conven-
tional ANN layers only require a single straightforward multiplication
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operation. Consequently, the computational cost and convergence
difficulty of an optical modulation layer is significantly higher than an
ANN layer. For a more comprehensive analysis, please refer to the
Supplementary Note S6 and Table S2.

Here, we innovate the dual-neuron optical-artificial learning
(DANTE), which aims to address the computing challenge associated
with the learning of large-scale ONNs and enable their applications to
complex machine learning tasks. Figure 1c illustrates our dual-neuron
ONN, where the optical modulation layer is modeled by a parallel dual-
neuron structure, including an optical-neuron layer (represented as
Opti), an artificial-neuron layer (represented as Arti), and a dual-neuron
switch. The optical-neuron layer accurately models the optical diffrac-
tion using the AS method. The artificial-neuron layer approximates the
optical-neuron layer as an easily-optimized complex-valued linear com-
puting function, aiming to reduce the computational cost. The optical-
neuron layer and artificial-neuron layer are connected through the dual-
neuron switch, responsible for changing the connectivity during the
training process. In particular, Fig. 1d illustrates our dual-neuron optical-
artificial learning approach, comprising two steps: global artificial
learning and local optical learning. During the global artificial-learning
step, the dual-neuron switch connects all the artificial-neuron layers to
form a complex-valued ANN. Global backpropagation is then utilized to
optimize the ANN to fit the training dataset. During the local optical-
learning step, the dual-neuron switch divides the network into inde-
pendent layer pairs, where each pair consists of an artificial-neuron layer
and an optical-neuron layer. A loss function is applied to each pair to
optimize theoptical-neuronparametersusingguidance fromthe trained
artificial-neuron layer. Here, an impulse function acts as the input, where
the output of the artificial-neuron layer serves as the training label. The
objective is to optimize the impulse response of the optical-neuron layer
to closelymatch thatof theartificial-neuron layer. Theobjective function
of global artificial learning is:

min Loss ANN X0
� �

,Ygt

� �

ANN X0
� �

=Readout ERn Artn . . . ER1 Art1 X0
� �� �� �� �� � ð4Þ

The objective function of local optical learning:

min jjArti δð Þ �Opti δð Þjj22 ð5Þ

where ANNð�Þ is the forward function of the complex ANN, δ denotes
the Dirac delta function (impulse), Artið�Þ and Optið�Þ denote the for-
ward functions of the i-th artificial-neuron layer and optical-neuron
layer, respectively. In contrast to existing approaches that directly
optimize the optical-neuron layer to fit the training dataset, our
approach simplifies the process by fitting the clean Dirac delta
functions. This optimization strategy leads to a remarkable reduction
in the computational complexity during network training. For a
comprehensive understanding, please refer to Supplementary Note S2
and Fig. S2.

Improving ONN training using DANTE
Figure 2a–c demonstrate the training process of the optical-neuron
layer, using a 4-f system as an example. Initially, the input is encoded
into a coherent optical field, which propagates through two lenses and
a trainable phasemask, producing outputs on the output plane. Based
on Fourier optics, the 4-f based optical-neuron layer can be approxi-
mated as a complex-valued convolution operation with a large-size
input plane and kernel. To further reduce the computational cost, it is
decomposed into a multi-channel complex-valued convolutional
operation with small-size inputs and kernels, serving as the forward
function for the corresponding artificial-neuron layer. As the con-
volution operation is linear shift-invariant (LSI), the optical-neuron
layer can be fully characterized by its 2D impulse response. The

optimization process is demonstrated in Fig. 2c. A 2D Dirac delta
function (impulse) is used as the input, and the resulting output is
compared to the ground-truth label, which is obtained by arranging
themulti-channel complex-valued kernels into a tiled large-size single-
channel complex-valued plane. ADAM-based backpropagation is
employed to learn the optical modulation parameters. For more
details on how the kernels and inputs are tiled, as well as the specifics
of optimizing the optical modulation parameters, please refer to
Supplementary Note 1 and Fig. S1.

We conducted DANTE analysis on two representative ONN
structures, ONN-3-3 and ONN-3-7, as depicted in Fig. 2d. ONN-3-3 is a
3-layer network comprising three optical modulation layers, three
electronic relay layers, and one readout layer. ONN-3-7 draws inspira-
tion from DPU9, which is also a 3-layer network but with the first two
layers having three parallel optical modulation layers. The 3 optical
modulation layers in the second layer aremultiplexed for the 3outputs
of the first layer. Figure 2e demonstrates the details of an electronic
relay layer, encompassing sequential operations of cropping, intensity
activation, averagepooling, and remapping (Fig. 2d). The readout layer
consists of a small fully connected (FC) layer for inferencing the final
output. Please refer to Supplementary Fig. S1 for the detailed network
structures of ONN-3-3 and ONN-3-7. CIFAR-1035 dataset is utilized for
evaluation. Existing implementations17,18 have not achieved acceptable
performances on CIFAR-10 yet either in physical or in simulation. In
addition to the accuracy, the extremely long training time is another
non-negligible issue. Figure 2f demonstrate that DANTE makes dra-
matic advances in accuracy (in simulation) and training speed. Com-
pared to the existing approach single-neuron learning approach, both
the accuracies of ONN-3-3 and ONN-3-7 are improved by approxi-
mately 10% (ONN-3-3: 82.53% vs. 73.61, ONN-3-7: 84.91% vs. 74.67%),
and the training speed is acceleratedbymore than 100 times (ONN-3-3:
0.3 h vs. 60 h, ONN-3-7: 0.7 h vs. 194 h). Compared to the existing ONN
implementation18, DANTE achieves ~20% improvement in simulation
experiments (84.86% vs. 63%). Figure 2g illustrates the trained phase
masks, impulse response, andoutput opticalfieldof the secondoptical
modulation layer in ONN-3-3, providing an explanation for the per-
formance enhancement achieved by DANTE. As the phase masks are
randomly initializedbefore training, the initial impulse responsewould
be a bright point positioned at the center of the plane. In the single-
neuron approach, optimization is primarily concentrated in the
central-region pixels of the phasemask, leaving the remaining regions
close to noise. Consequently, the impulse response remains similar to
its initial value (a bright point). In contrast, DANTE can effectively
optimize the whole phase mask, leading to the emergence of clear
kernel patterns in its impulse response. The right column of Fig. 2g
displays the output optical field when a CIFAR-10 image is used as the
input. In the single-neuron approach, only the central region contains
meaningful information, while the rest of the field approaches zero
intensity. Conversely, in the results obtained by DANTE, meaningful
image patterns fill thewhole output plane, indicating a comprehensive
and robust optimization process.

Collectively, compared to existing training approaches, ONNs
trained by DANTE generates more effective information on the output
plane, leading to a remarkable accuracy gain of approximately 10% on
the CIFAR-10 classification task. Moreover, DANTE significantly accel-
erates the training speed ofONNs, outperforming existingmethods by
more than 100 times.

Large-scale ONNs enabled by DANTE
In this section, we demonstrate that DANTE has the potential to facil-
itate the training of large-scale ONNs that were previously impossible
to train. Research in the field of ANNhas established the significance of
network width and depth for improving performance36,37. However,
diffractive neural networks face difficulties in expanding network
width due to the physical size constraints of phase masks. In order to
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solve this, we first employ multiple parallel optical modulation layers
(OM) within the same layer to increase the number of trainable para-
meters. Then, we add the intermask shuffle operation in the sub-
sequent electronic relay layer (ER) to establish connections among
these parallel OM layers (Fig. 3a). Drawing inspiration from the batch
normalization technique in ANN, we incorporate the Bias and scale
operation in ER to facilitate the training of much deeper
ONNs (Fig. 3b).

To evaluate the performance of DANTE, we utilize the CIFAR-10
dataset and train ONNs with increased depth and width. We train six
ONNswith 3, 4, 5, 6, 7, and 10opticalmodulation layers, corresponding
to 3, 4, 12, 20, 30, and 63 trainable phase masks, respectively (Sup-
plementary Fig. S4). The accuracies obtained through Fourier optics-
based simulation are presented in Fig. 3c. The red curve with square
markers represents ONNs without bias-and-scale and shuffle, which
exhibit a plateau in accuracy after 5 layers. Conversely, the red curve
with trianglemarkers represents ONNswith bias-and-scale but without
shuffle, showcasing continued accuracy improvement beyond 5 layers.
The 7-layer ONN experiences an approximately 4% increase in accu-
racy. Furthermore, the introduction of the shuffle operation further
enhances accuracy (red curve with diamond markers). We also con-
struct a larger ONN with 10 optical modulation layers and 1 readout
layer in simulation experiments, which is comparable to the repre-
sentative VGG11 network (89.53% vs. 89.33%).

To further push the boundaries of ONN performance, we con-
ducted experiments on the more challenging ImageNet-32 dataset
(Fig. 3d). Similarly, we train 3 ONNs with 6, 7, and 10 optical modula-
tion layers, corresponding to 48, 64 and 104 trainable phase masks,
respectively (Supplementary Fig. S5). For comparison, VGG164 network
with 13 convolutional layers and 3 fully-connected layers is selected.
The impact of shuffle operation on the CIFAR-10 dataset is relatively
minor (around0.6%), since theONNsused for theCIFAR-10dataset are
not exceptionally wide. While in the ImageNet-32 classification, the
shuffle operation led to a notable 2% improvement in accuracy.
Remarkably, our 10-layer ONN in simulation achieves a top-1 accuracy
of 44.26% and a top-5 accuracy of 68.61%, comparable to the VGG16
network (41.85% top-1 accuracy, 64.42% top-5 accuracy).

Figure 3e provides a clear illustration of the spatial complexity
involved in training these ONNs on the CIFAR-10 dataset. The single-
neuron approach models the entire network within the memory and
optimizes all the phase masks simultaneously. As depicted by the blue
curve, the memory cost rises in proportion to the number of trainable
phasemasks. As a result, training a 5-layer ONNwith 12 phasemasks at
a batch size of 8would exceed thememory capacity (24 GB) of a single
GPU. In contrast, the artificial-neuron layer dramatically reduces spa-
tial complexity, allowing the network to be trained with little memory
usage (<6GB) even at a large batch size of 512. In the case of local
optical learning, where only one phase mask needs to be trained at a
time, the memory cost keeps constant at approximately 2.5 GB. Fur-
thermore, the significant spatial complexity also implies a substantial
temporal complexity. For instance, on the CIFAR dataset, training a
phase mask for one epoch takes approximately 900 seconds for the
single-neuron approach. Consequently, training the 7-layer ONN with
63 phase masks would require an average of 16 hours per epoch, and
completing the entire network training would require several weeks.
However,withDANTE, we can remarkably shorten the training process
to a mere several hours. For more details, please refer to Supplemen-
tary Note S4 and Supplementary Table S1.

To summarize, DANTE significantly reduces the spatial and tem-
poral computational complexity associated with training ONNs. This
breakthrough allows for the training of deeper and wider ONNs using
existing GPUs within a feasible amount of time. Through our demon-
strations, we demonstrate that, with proper optimization, the large-
scale ONNs have the potential to achieve comparable performance to
existing ANNs on modern large-scale datasets.

DANTE on a physical ONN system
We develop a custom ONN system using off-the-shelf optical mod-
ulation devices to verify the physical feasibility of DANTE (Fig. 4a, b).
The system implements the optical computing function of an optical
modulation layer. The input is modulated to the SLM-1, the network
parameters are modulated to the SLM-2, and the CMOS sensor is
used to receive the computing results. See Methods for the detailed
specifications of the ONN system. Similarly, the MNIST, CIFAR-10,
and ImageNet benchmarks are used to evaluate the ONNs’ perfor-
mance. Please refer to the Methods and Supplementary Note S5 for
the preparation of the datasets and the detailed experimental steps.
The implemented two-layer ONN structure is presented in Fig. 4c.
The first layer only has one optical modulation layer, and the second
layer has several parallel optical modulation layers. The outputs of
the second layer are input to the readout layer to predict the final
results. See Supplementary Fig. S10 for detailed network structures,
and refer to the Methods section for the more details of the physical
system, the implementation of data preprocessing and the baseline
approach.

Figure 4d demonstrates the outputs of an MNIST sample 7. The
optical intensity maps captured by the sensor (opt.) show a similar
distribution to the simulation results (sim.). The center zero-order
diffraction can be removed using an intensity correction mask (Sup-
plementary Fig. S9). The difference between the simulation results and
optical results (output of the ONN system) mainly comes from the
imperfect coherent wavefront and the millimeter-level assembly error
of theopticalmodulationdevices.Hence,we re-tune the FC layer in the
readout layer to compensate the errors. Figure4e presents the outputs
of the ImageNet-32 dataset (a leopard image as an example). Com-
pared to the MNIST results, the differences between the simulation
and optical results become larger due to the more complex image
contents, but we can still see similar optical intensity distributions. The
optical results are blurrier than the simulation results, which is also
caused by assembly errors and system noise. Please refer to Supple-
mentary Movie 1 and Supplementary Movie 2 for more results gener-
ated by our physical ONN system.

Figure 4f shows the quantitative analysis results. For simple
binary-like MNIST dataset with a clean background, DANTE achieves
~96% accuracy, 2%below the full simulation results. In termsof training
time, the global artificial-learning step achieves convergence in 60
epochs, requiring approximately 135 seconds, while the local optical-
learning step demands approximately 280 seconds for optimizing
two-phase masks. The re-tuning of the FC layer costs about 30 sec-
onds. Taken together, the entire training process is completed within
approximately 445 seconds. Notably, when comparing to existing
single-neuron learning approaches like DPU9, which takes over 5 hours
to trainon theMNISTbenchmark, ourmethod significantly accelerates
the training process. For natural images with a complex background,
the gap between the simulation and optical results become larger,
about 8% for the CIFAR-10 dataset (59% vs. 51%) and 5% for the 5-class
ImageNet dataset (60% vs. 55%). Although there is still a gap between
the simulated ONNs and the physical ONNs due to the intrinsic error
and noise in the physical system, the optical results still significantly
outperform the baseline method (linear classifier), which proves that
our physical ONNs can effectively extract features from the input
images. The experimental results on the ONN system validate that the
physical feasibility of DANTE. Looking ahead, there exists the exciting
potential to integrate the physical ONN system with high-precision
nanofabrication techniques, which could significantly elevate its
computational capabilities.

Discussion
This study introduces DANTE, a dual-neuron optical-artificial learning
approach, and showcases its remarkable advancements in training
large-scale ONNs. Importantly, we provide evidence for the first time

Article https://doi.org/10.1038/s41467-023-42984-y

Nature Communications |         (2023) 14:7110 7



that wave-based ONNs can achieve comparable performance to
modern ANNs in simulation, such as VGG, on modern large-scale
datasets like ImageNet. We also provide evidence that DANTE can be
successfully implemented on physical ONNs, as depicted in Fig. 4. The
optical modulation layers can be constructed using readily available
off-the-shelf optical modulation devices or customized devices
developed using lithography technology17. Currently, the computa-
tions of the electronic relay layer (ER) are performed on a PC. In the
future, these computations can be efficiently implemented by custo-
mizing photodetector arrays. Specifically, the intensity activation
operation (complex to real conversion) can be automatically com-
pleted by the photodiode, while the crop and average pooling opera-
tions can be achieved by designing the photodiode pixels with
appropriate size and position, and the bias-and-scale operation can be
accomplished by configuring specific readout circuits.

The issue of optical-artificial fitting error is also worth discussing.
In our setup based on 4-f system, the phasemask plane corresponds to
the frequency spectrum, where a larger trainable phase mask size
indicates a higher modulation frequency and finer impulse response.
Through careful design of the size andnumber of impulse responses in
the artificial-neuron layer, the fitting error would be within acceptable
limits. Please refer to Supplementary Fig. S7 for more details.

Evaluating the computational performance, energy efficiency, and
inference time of ONNs is a commonpractice in the literature. Existing
studies have also discussed these aspects9,18. Trillions of Operations
Per Second (TOPS) is a simplifying metric for measuring the comput-
ing performance of AI accelerators, which is also widely used for ONN
studies9,38. Based on Fourier optics, the 4-f system is equivalent to two
Fast Fourier Transformation (FFT) operations and one element-wise
multiplication operation. For an N ×N optical field, one FFT requires
5N2log2N

2 real-valued operations (OPs), and the complex-valued ele-
ment-wisemultiplication takes 6N2 real-valuedOPs. Hence, the optical
modulation layer involves 10N2log2N

2 + 6N2 = 9 × 108 real-valued
operations (N = 2000). The inference time of our system is primarily
limited by the speed of the SLM and the sensor, as the light propaga-
tion time is negligible. Currently, the SLM can achieve a framerate of
1.4 KHz39 and the super high-speed camera can capture images at
approximately 2000 FPSwith 1 K resolution40, resulting in an inference
time of ~0.7ms for one optical modulation (OM) layer. In our proto-
type system, the laser, SLMs, sensor and control computer require
about 65Watts in total. Therefore, the computing efficiency of our
prototype ONN system is 9 × 108 OPs × 1400 FPS=65W=0:02 TOPS/W
(analog real-valued operation). Note that there remains substantial
room for improvement by implementing ONNs on photonic chips. For
comparison, the computing performance of NVIDIA RTX 3090 GPU is
35.58 TOPS (32-bit float-point operation) with a thermal design power
(TDP) of 350 Watt, resulting in a computing efficiency of 0.1 TOPS/W
(32-bit float operation). Interestingly, the commonly used TOPSmetric
may not always accurately reflect the actual performance. For exam-
ple, completing two FFTs and one element-wise multiplication
operations on an RTX 3090 GPU costs approximately 0.9ms, slower
than our ONN prototype system (0.7ms). Moreover, different com-
puting techniques may employ different methods for counting the
number of operations (OPs). This variation can also significantly
impact performance evaluations. For more detailed discussions,
please refer to Supplementary Note S6.

While we currently focus on demonstrating the performance of
DANTEon4-f system-baseddiffractive neural networks, theunderlying
concept can be extended to other types of diffractive neural
networks12 as well. The implementation details and results regarding
this extension are presented in Supplementary Note S3 and Fig. S3. In
the future, we can further broaden the applicability of our method to
encompass other types of ONN architectures, such as on-chip dif-
fraction-basedONNs41 and integrated chipdiffractive neural network42.
Through the utilization of optical-artificial dual neurons in modeling

ONN chips, we have the potential to expedite network training and
increase the size of trainable networks.

In conclusion, our dual-neuron optical-artificial learning (DANTE)
framework effectively tackles the learning challenges faced by dif-
fractive optoelectronic neural networks (ONNs), which arise from the
intricate spatial and temporal complexities involved in optical dif-
fraction modeling. Consequently, we have achieved remarkable suc-
cess in training large-scale ONNs that were previously considered
impossible-to-train using existing approaches. The experimental
results demonstrate the enormous potential of ONNs in advanced
machine vision tasks. We firmly believe that our research will establish
a solid theoretical foundation for the training anddeployment of large-
scale ONNs, paving the way for a new era in which ONNs can solve
large-scale practical problems.

Methods
Optoelectronic neural networks (ONN) settings and
implementation
The spatial simulation size of the optical modulation layer is set to
16 × 16mm with a resolution of 2000× 2000 pixels (8-μm pixel pitch)
for the inputplane, lens plane, phasemaskplane, and theoutput plane.
In the phase mask plane, only the center 1200 × 1200 pixels are train-
able (trainable phasemask size), while the light outside this region will
be blocked. The wave propagation model is derived based on the
angular spectrum method34 (AS). The large spatial size (2000× 2000)
ensures the boundary conditions of the simulation. The pixel pitch
used in the simulation matches that of the commercial Liquid-crystal-
on-silicon (LCOS) SLMs. Both the simulation and physical experiments
employ a 532-nm laser. For simulationONN (Figs. 2, 3), the focal length
of the lenses is set to 14.5mm to strike a balance between the fre-
quencymodulation resolution and range. In the physical ONN system,
two 10-cm lenses are used to form a 4-f system.

In global artificial-learning step, an ADAM optimizer is used for
MNIST and CIFAR-10 dataset, and an SGD optimizer is used for Ima-
geNet32 dataset. Cross entropy loss is used to train all the connected
artificial-neuron layers. In local optical-learning step, an ADAM opti-
mizer is used for gradient calculation, and aMSE loss is applied on the
valid region of the output complex impulse response map to train the
phase modulation parameters. The network training is implemented
using the PyTorch framework version 1.11.0 (Meta AI) running on a
Linux server (Nvidia RTX 3090 GPU, Intel Xeon Gold 6248R CPU with
96 cores, 256 GB of RAM, and the Ubuntu 18.04.6 LTS operating
system).

Physical ONN system
A continuous 532-nm laser (MGL-FN-532, Changchun New Industries
Optoelectronics Technology Co., Ltd) and an 8X beam expander
(BEF08-A, 8X, Shenzhen LUBANG Technology Co., Ltd.) are used to
generate flat coherent wavefronts. Two Liquid-crystal-on-silicon SLMs
(E-Series 1920 × 1200, Meadowlark Optics Inc., USA) are used to
modulate the phase of the wavefronts. The SLMs are calibrated at
532nm, with an 8-μm pixel pitch size and 1920 × 1200 resolution, and
controlled by the HDMI port. A grayscale CMOS camera (Blackfly S
BFS-U3-51S5M-C, FLIR LLC, USA) is used to capture the output optical
intensity field. The camera resolution is 2448 × 2048 with a pixel pitch
size of 3.45 μm. Two 10-cm lenses are used to form a 4-f system. The
first SLMand the sensor are put at the input and output plane of the 4-f
system. The second SLM is put at the Fourier plane to modulate the
phase of the input optical wavefront. The SLMs are controlled using
the Meadowlark MATLAB SDK, and the camera is controlled using
python scripts.

Dual-neuron layer modeling and optimization
Based on Fourier optics, a 2-f system consisting of two propagations
stages and one lens can be effectively modeled as a Fourier transform
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operation, and the 4-f system can be equivalently represented as a
complex-valued convolution operation. The input images and con-
volution kernels for this complex-valued convolution operation only
have a single channel, but their spatial dimensions are large, the same
as the spatial simulation size. 31 × 31 is considered a large-size con-
volutional kernel, while the complex-valued kernel here is tens of times
larger in size43. However, based on existing convolutional neural net-
work (CNN) studies, large-size kernel is difficult and computational
expensive to train, and its improvement is relatively small compared to
the costs. Representative CNNs prefer small-size kernels like 3 × 3 and
5 × 5. Therefore, we decompose the single-channel large-kernel
complex-valued convolutional operation into a multi-channel com-
plex-valued convolutional operation with small-size inputs and ker-
nels, which can further reduce the computational cost and memory
requirement. Specifically, the multi-channel input is tiled into a single-
channel complex-valued matrix, which serves as the input of the
optical-neuron layer. The multi-channel complex-valued kernel is first
zero-padded to the same size as themulti-channel input, and then tiled
into a single-channel large kernel to serve as the ground-truth label for
optimizing the phase mask. When convolution is done between the
tiled input and tiled kernel, the regions containing the output infor-
mation will be cropped from the output plane and used by the fol-
lowing electronic relay (ER) layer. Please refer to Supplementary
Note S1 and Fig. S1 for more detailed discussion.

Dataset preprocessing and baseline approach of physical
ONN system
The CIFAR-10, ImageNet-32 datasets are used for performance eva-
luation in simulation experiments. The MNIST, CIFAR-10, and
ImageNet-32 are used for evaluating the physical ONN system.
1. In all the simulation experiments, we use the original training and

testing samples of these datasets without modification. Data
augmentation including Normalize, RandomHorizontalFlip, Ran-
domErasing and RandomCrop is used to reduce the overfitting.

2. In physical experiment of MNIST dataset, we use the first 10000
images in the training set for training, and the whole test dataset
(10000 images) for testing. For better image quality, we resize the
original 28 × 28 image to 56 × 56 in experiments. As the MNIST
images are relatively simple, using only a part of the training set is
enough to achieve a very high accuracy.

3. In physical experiment of CIFAR-10 dataset, we use the whole
training dataset (50,000 images) for training, and the whole test
dataset (10,000 images) for testing. Compared with MNIST,
CIFAR-10 images aremorediverse, so all the images of the training
set are used.

4. In the physical experiment of the large-scale ImageNet-32 dataset
(over 1M images), we choose 5 classes from the original 1000
classes to form a small subset to evaluate our system. Each class
has 1300 images andwe use the first 1000 images for training and
the last 300 images for testing. In total, we have 5000 training
sample and 1500 testing samples. As the number of training
images for eachclass is small, weusedata augmentation to reduce
the overfitting.

In the physical experiments, we construct the baseline accuracy
using a linear classifier and cross-entropy loss: the original 2d images
are flattened into vectors and input to a fully connected (FC) layer to
output the classification results. The baseline accuracy of the MNIST,
CIFAR-10, and ImageNet-32datasets is 91%, 37%, and 45%. While the
accuracy of our physical ONN system is 96%, 51%, and 55%, which is
much higher than the baseline method.

Data availability
The datasets used in this study are publicly available and can be
accessed through the following sources. The MNIST dataset used in

this study can be obtained at https://www.kaggle.com/datasets/
hojjatk/mnist-dataset. The CIFAR-10 dataset used in this study is
available from the Canadian Institute for Advanced Research (CIFAR)
and can be accessed at https://www.cs.toronto.edu/~kriz/cifar.html.
The ImageNet dataset is available through the ImageNet project at
https://image-net.org/download-images.

Code availability
Code and instructions to reproduce the results are available at the
GitHub repository https://github.com/yuanxy92/DANTE.

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–444 (2015).
2. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image

recognition. in IEEE Conference on Computer Vision and Pattern
Recognition https://doi.org/10.1109/CVPR.2016.90 (2016).

3. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification
with Deep Convolutional Neural Networks. Adv. Neural Inf Process
Syst. 25, 1097–1105 (2012).

4. Simonyan, K. & Zisserman, A. Very deep convolutional networks for
large-scale image recognition. International Conference on Learn-
ing Representations, (2015).

5. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition
Challenge. Int J. Comput. Vis. 115, 211–252 (2015).

6. Kuznetsova, A. et al. The Open Images Dataset V4: Unified Image
Classification, Object Detection, and Visual Relationship Detection
at Scale. Int J. Comput Vis. 128, 1956–1981 (2020).

7. Lin, T.-Y. et al. Microsoft COCO: Common Objects in Context. in
European Conference on Computer Vision 740–755 (2014).

8. Waldrop, M. M. The chips are down for Moore’s law. Nature 530,
144–147 (2016).

9. Zhou, T. et al. Large-scale neuromorphic optoelectronic computing
with a reconfigurable diffractive processing unit.Nat. Photonics 15,
367–373 (2021).

10. Shen, Y. et al. Deep learning with coherent nanophotonic circuits.
Nat. Photo. 11, 441–446 (2017).

11. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Per-
nice, W. H. P. All-optical spiking neurosynaptic networks with self-
learning capabilities. Nature 569, 208–214 (2019).

12. Lin, X. et al. All-optical machine learning using diffractive deep
neural networks. Science 361, 1004–1008 (2018).

13. Zhang, Q., Yu, H., Barbiero, M., Wang, B. & Gu, M. Artificial neural
networks enabled by nanophotonics. Light Sci. Appl 8, 1–14 (2019).

14. Shastri, B. J. et al. Photonics for artificial intelligence and neuro-
morphic computing. Nat. Photonics 15, 102–114 (2021).

15. Luo, Y. et al. Computational imaging without a computer: seeing
through randomdiffusers at the speedof light. eLight2, 1–16 (2022).

16. Yan, T. et al. Fourier-space Diffractive Deep Neural Network. Phys.
Rev. Lett. 123, 023901 (2019).

17. Chang, J., Sitzmann, V., Dun, X., Heidrich,W. &Wetzstein, G. Hybrid
optical-electronic convolutional neural networks with optimized
diffractive optics for image classification. Sci. Rep. 8, 1–10 (2018).

18. Dalir, H. et al. Massively parallel amplitude-only Fourier neural
network. Optica 7, 1812–1819 (2020).

19. Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical synthesis
of an arbitrary linear transformation using diffractive surfaces. Light
Sci. Appl 10, 1–21 (2021).

20. Rahman, M. S. S., Li, J., Mengu, D., Rivenson, Y. & Ozcan, A.
Ensemble learning of diffractive optical networks. Light Sci. Appl
10, 1–13 (2021).

21. Luo, Y. et al. Design of task-specific optical systems using broad-
band diffractive neural networks. Light Sci. Appl 8, 1–14 (2019).

22. Li, J. et al. Spectrally encoded single-pixel machine vision using
diffractive networks. Sci. Adv. 7, eabd7690 (2021).

Article https://doi.org/10.1038/s41467-023-42984-y

Nature Communications |         (2023) 14:7110 9

https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.cs.toronto.edu/~kriz/cifar.html
https://image-net.org/download-images
https://github.com/yuanxy92/DANTE
https://doi.org/10.1109/CVPR.2016.90


23. Li, J., Hung, Y.-C., Kulce, O., Mengu, D. & Ozcan, A. Polarization
multiplexed diffractive computing: all-optical implementation of a
group of linear transformations through a polarization-encoded
diffractive network. Light Sci. Appl 11, 1–20 (2022).

24. Qian, C. et al. Performing optical logic operations by a diffractive
neural network. Light Sci. Appl 9, 1–7 (2020).

25. Mengu, D. & Ozcan, A. All-Optical Phase Recovery: Diffractive
Computing for Quantitative Phase Imaging. Adv. Opt. Mater. 10,
2200281 (2022).

26. Liu, C. et al. A programmable diffractive deepneural network based
on a digital-coding metasurface array. Nat. Electron 5,
113–122 (2022).

27. Antonik, P., Marsal, N., Brunner, D. & Rontani, D. Human action
recognition with a large-scale brain-inspired photonic computer.
Nat. Mach. Intell. 1, 530–537 (2019).

28. Khoram, E. et al. Nanophotonicmedia for artificial neural inference.
Photonics Res 7, 823 (2019).

29. Hughes, T. W., Williamson, I. A. D., Minkov, M. & Fan, S. Wave
physics as an analog recurrent neural network. Sci. Adv. 5,
eaay6946 (2019).

30. Yan, T. et al. All-optical graph representation learning using inte-
grated diffractive photonic computing units. Sci. Adv. 8,
7630 (2022).

31. Dou, H. et al. Residual D2NN: training diffractive deep neural net-
works via learnable light shortcuts.Opt. Lett.45, 2688–2691 (2020).

32. Chen, H. et al. Diffractive Deep Neural Networks at Visible Wave-
lengths. Engineering 7, 1483–1491 (2021).

33. LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based
learning applied to document recognition. Proc. IEEE 86,
2278–2323 (1998).

34. Joseph W. Goodman. Introduction to Fourier Optics. (Roberts and
Company Publishers, 2005).

35. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Ima-
ges. https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.
pdf (2009).

36. Lu, Z., Pu, H., Wang, F., Hu, Z. & Wang, L. The Expressive Power of
Neural Networks: A View from the Width. in International Con-
ference on Neural Information Processing Systems (2017). https://
doi.org/10.5555/3295222.

37. Nguyen, T., Raghu, M. & Kornblith, S. Do Wide and Deep Networks
Learn the Same Things? Uncovering How Neural Network Repre-
sentations Vary with Width and Depth. International Conference on
Learning Representations (2020).

38. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical
neural networks. Nature 589, 44–51 (2021).

39. 1024 x 1024 Spatial Light Modulator - Meadowlark Optics. https://
www.meadowlark.com/1k-x-1k-spatial-light-modulator/.

40. FASTCAM MINI AX – Photron. https://photron.com/fastcam-mini-
ax/.

41. Fu, T. et al. Photonic machine learning with on-chip diffractive
optics. Nat. Commun. 14, 1–10 (2023).

42. Zhu, H. H. et al. Space-efficient optical computing with an inte-
grated chip diffractive neural network. Nat. Commun. 13,
1–9 (2022).

43. Ding, X., Zhang, X., Han, J. & Ding, G. Scaling Up Your Kernels to
31×31: Revisiting Large Kernel Design in CNNs. in IEEE/CVF

Conference on Computer Vision and Pattern Recognition
11953–11965 (IEEE, 2022). https://doi.org/10.1109/CVPR52688.
2022.01166.

Acknowledgements
L.F. acknowledges support from Ministry of Science and Technology of
China under contract No. 2021ZD0109901, Natural Science Foundation
of China (NSFC) under contract No. 62125106, 61860206003,
62088102, and Tsinghua-Zhejiang joint research center. X.Y. acknowl-
edges support from Natural Science Foundation of China (NSFC) under
contract No. 62271283 and Young Elite Scientists Sponsorship Program
by CAST No. 2021QNRC001. T.Z. acknowledges support from Shuimu
Tsinghua scholar program.

Author contributions
L.F. initiated and supervised this study. X.Y. and Y.W. conceived the
research and method. X.Y. and Z.X. build the ONN system and perform
the experiments. X.Y., Z.X., and T.Z. wrote the manuscript. All authors
discussed the research.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-42984-y.

Correspondence and requests for materials should be addressed to Lu
Fang.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-42984-y

Nature Communications |         (2023) 14:7110 10

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://doi.org/10.5555/3295222
https://doi.org/10.5555/3295222
https://www.meadowlark.com/1k-x-1k-spatial-light-modulator/
https://www.meadowlark.com/1k-x-1k-spatial-light-modulator/
https://photron.com/fastcam-mini-ax/
https://photron.com/fastcam-mini-ax/
https://doi.org/10.1109/CVPR52688.2022.01166
https://doi.org/10.1109/CVPR52688.2022.01166
https://doi.org/10.1038/s41467-023-42984-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning
	Results
	Principle of dual-neuron optical-artificial learning (DANTE)
	Improving ONN training using�DANTE
	Large-scale ONNs enabled by�DANTE
	DANTE on a physical ONN�system

	Discussion
	Methods
	Optoelectronic neural networks (ONN) settings and implementation
	Physical ONN�system
	Dual-neuron layer modeling and optimization
	Dataset preprocessing and baseline approach of physical ONN�system

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




