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Monolithic three-dimensional integration of
RRAM-based hybrid memory architecture
for one-shot learning

Yijun Li1, Jianshi Tang 1,2 , Bin Gao 1,2, Jian Yao3, Anjunyi Fan4,5,
Bonan Yan 4,5, Yuchao Yang 4,5,6,7, Yue Xi1, Yuankun Li1, Jiaming Li1, Wen Sun1,
Yiwei Du1, Zhengwu Liu 1, Qingtian Zhang 1,2, Song Qiu 3, Qingwen Li3,
He Qian1,2 & Huaqiang Wu 1,2

In this work, we report the monolithic three-dimensional integration (M3D) of
hybrid memory architecture based on resistive random-access memory
(RRAM), named M3D-LIME. The chip featured three key functional layers: the
first was Si complementary metal-oxide-semiconductor (CMOS) for control
logic; the second was computing-in-memory (CIM) layer with HfAlOx-based
analog RRAM array to implement neural networks for feature extractions; the
third was on-chip buffer and ternary content-addressable memory (TCAM)
array for template storing and matching, based on Ta2O5-based binary RRAM
and carbon nanotube field-effect transistor (CNTFET). Extensive structural
analysis along with array-level electrical measurements and functional
demonstrations on the CIM and TCAM arrays was performed. The M3D-LIME
chip was further used to implement one-shot learning, where ~96% accuracy
was achieved on the Omniglot dataset while exhibiting 18.3× higher energy
efficiency than graphics processing unit (GPU). This work demonstrates the
tremendous potential of M3D-LIME with RRAM-based hybrid memory archi-
tecture for future data-centric applications.

Artificial intelligence (AI) has made tremendous success during the
past decade, driven by explosively big data and deep learning algo-
rithms as well as rapidly evolving GPU and application-specific inte-
grated circuit (ASIC) chips. However, a huge gap still exists between
state-of-the-artAI hardware and thehumanbrain, especially in termsof
energy efficiency1. There are several key bottlenecks faced by the
conventional computing hardware based on Si CMOS and von Neu-
mann architecture with separated memory and computing units. For
example, the slowing down of Moore’s law scaling hinders the con-
tinuous improvement of integration density and performance of
individual two-dimensional (2D) chips2. Moreover, the long latency of

memory access and limited data bandwidth between memory and
computing units has become a key limiting factor of system perfor-
mance, known as the von Neumann bottleneck3. To address these
challenges, various technologies have been proposed from materials
and devices to chip integrations and architectures, such as low-
dimensional material transistors4–6, emerging computational
memory7–9, heterogeneous and 3D integration10–12, and memory-
centric computing architecture13–15, etc.

Among them, M3D emerges as an appealing technology that can
potentially combine all these advances together to continuously
increase the integration density, enrich the functionality and boost the
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performance of a single chip16. Using back-end-of-line (BEOL)-compa-
tible fabrication processes, M3D monolithically integrates multiple
layers of different functions which are connected through fine-grain
and dense vertical inter-layer vias (ILVs) to enable high-bandwidth data
transfer between different layers12. System-level benchmarks suggest
that M3D chips could exhibit 1000 times advantage in the energy-
delay product over 2D counterparts for data-abundant applications
like AI17. Recently, several prototype M3D chips have been reported
with appealing performance. For example, M3D has been used to
implement near-memory computing architecture12 and computing-in-
memory (CIM) architecture18,19, exhibiting low latency, low power and
enhanced integration density. To build a fully functional 3D system-on-
chip (3DSoC) that can handle complex AI computing tasks, a mono-
lithically integrated hybrid memory architecture is required, where
different types of memories, such as high-efficiency CIM array, high-
speed on-chip data buffer, and massively parallel TCAM, need to be
vertically stacked andwork synergistically. For example, one-shot/few-
shot learning, which is a bio-plausiblemachine learning algorithmwith
minimum training cost20–22, can be efficiently implemented by a
memory-augmented neural network (MANN) with such hybrid mem-
ory architecture. Key features can be extracted using CIM-based con-
volutional neural network (CNN), then stored and retrieved from
TCAM for classification23–25.

To build such an M3D chip with hybrid memory architecture,
RRAM and CNTFET are promising candidates thanks to their excellent
BEOL compatibility and outstanding electrical performance. As a
promising emerging memory, RRAM was first developed as digital
memory for data storage with merits of simple structure, high inte-
gration density, fast speed, and low energy consumption26–28. It can
achieve a high on/off ratio between the high-resistance state (HRS) and
low-resistance state (LRS), which has also been used to efficiently
implement TCAM29–31.TCAM can not only store data, but also compare
them with a given input vector in parallel, which can be used for
hardware search lookups and further realizing Hamming distance
calculation30,32,33. Furthermore, analog RRAM with gradual resistive
switching characteristics has also been developed for CIM to accel-
erate matrix-vector multiplication (MVM), which is the core and most
computation-extensive operation in artificial neural networks
(ANNs)31,34–37. By doing analog computing in situ via fundamental
physics laws and eliminating data transfer, analog RRAM array could

achieve extremely high energy efficiency37. In addition, for the access
transistors of RRAM and BEOL logic in M3D, CNTFET is a superior
candidate with high mobility and low-temperature substrate-agnostic
fabrication process38–41. It has been demonstrated that high-speed
CMOS digital circuits andmicroprocessors can be built with CNTFETs,
which can potentially provide nearly ten times performance
improvement over Si counterparts42,43. With these memory and logic
device elements, it remains challenging todesign and fabricate anM3D
chip of the desired hybrid memory architecture under the restrictions
of thermal budget and process compatibility.

In this work, we report an M3D chip of RRAM-based hybrid
memory architecture for efficient implementation of one-shot learn-
ing, where the RRAM-based CIM, TCAM and buffer arrays serve dif-
ferent functions as illustrated in Fig. 1a. The analog RRAM-based CIM
arrays with the help of digital RRAM buffer were employed to imple-
ment CNN for feature extraction, while the digital RRAM-based TCAM
arrays were used for template storage and matching. The fabricated
M3D chip, named M3D-LIME, consisted of three key functional layers
heterogeneously integrated. The first layer of Si CMOS was fabricated
using a standard 130 nm CMOS process in the foundry, acting as
control logic and data interface. The second layer of CIM array in the
form of one-transistor-one-resistor (1T1R) was fabricated with HfAlOx-
based analogRRAMandSi access transistors underneath to implement
MVMcalculations of CNN for feature extraction. The third layer of 1T1R
buffer and two-transistor-two-resistor (2T2R) TCAM arrays was fabri-
cated with Ta2O5-based digital RRAM and CNTFET to implement
template storing and matching. The on-chip buffer is critical to facil-
itate the data flow for the computations in the CIM layer underneath,
which requires buffer to store intermediate results. The materials and
devices were carefully optimized for each functional layer, and the last
two layers were fabricated using a BEOL-compatible process at a low
temperature (≤300 oC). Figure 1b shows the cross-sectional transmis-
sion electron microscope (TEM) image of the fabricated M3D chip to
confirm its structural integrity. Here the ILVs between the 2nd and 3rd

layers are not shown, and they canbe fabricated using a standardBEOL
interconnect process. As to be shown in the following sections, array-
level electrical measurements and functional demonstrations on the
CIM and TCAM arrays were carried out to verify the proper function of
each layer. Furthermore, one-shot/few-shot learning was successfully
implemented on the M3D-LIME chip to evaluate the performance

Fig. 1 | M3D-LIME chip with hybrid memory architecture. a Architecture of the
M3D-LIME chip, which consists of three sequentially integrated layers. The 1st layer
of Si CMOS logic is fabricated using a standard 130nm CMOS process for control
logic anddata interface. The 2nd layer ofCIM is fabricatedwithHfAlOx-basedanalog
RRAM 1T1R arrays to performMVMcalculations of CNN for feature extraction. The
3rd layer of TCAM is fabricated with CNTFET and Ta2O5-based digital RRAM in the
form of 2T2R arrays to implement template storing and matching as well as in the
form of 1T1R on-chip buffer for the CIM layer. Both the 2nd and 3rd layers are

fabricated using a carefully optimized BEOL-compatible process at a low tem-
perature (≤300 oC) without affecting the pre-fabricated layers underneath. The left
panels illustrate the implementation of one-shot/few-shot learning on the M3D-
LIME chip. With the help of CMOS logic, feature extraction is implemented by the
CIM and buffer arrays while template matching is performed on the TCAM array.
b Cross-sectional TEM image of the fabricated M3D-LIME chip in this work, con-
firming the structural integrity of all three functional layers. Scale bar: 1μm.
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improvement brought by the M3D hybrid memory architecture.
System-level simulations indicated that theM3D-LIME achieved aGPU-
equivalent accuracy of up to 96% on the Omniglot dataset22, while
exhibiting 18.3×higher energy efficiency than GPU and 2.73× faster
speed than its 2D counterpart.

Results
CIM layer with analog HfAlOx-based RRAM array
On top of the Si CMOS logic layer, 1T1R analog RRAM array with a
material stack of TiN/HfAlOx/TaOx/TiN was fabricated in the CIM layer

to implement CNN for feature extraction. Here 8 nm-thick HfAlOx

served as the resistive switching layer (RSL) and 45 nm-thick TaOx

served as the thermal enhanced layer (TEL) to enhance the analog
switching characteristics44–46. The detailed fabrication process is ela-
borated in theMethods section. Figure 2a shows anopticalmicroscope
image of the 1T1R analog RRAM array in the 2nd layer of CIMbefore the
fabrication of the 3rd layer of TCAM. In this image, the 1st layer of Si
CMOS logic is also partially visible and acts as peripheral circuitry for
data interface and control logic, including the access transistors for the
analog 1T1R cells. The array is 1k-bit in size, with 8 bit lines (BLs) for

Fig. 2 | Characterizations of analog RRAM-based CIM layer with M3D stacked
RRAMbuffer. aOptical image of the 2nd layer of CIM array before the fabrication of
the 3rd layer. Scale bar: 60 μm. Inset: zoom-in view of the CIM array, scale bar:
10μm. b Optical image (left) and SEM image (right) of the 2nd layer after the fab-
rication of the 3rd layer. Scale bar: 5μm. Inset: zoom-in view of the fabricated RRAM
buffer array, scale bar: 1μm. c and d Cross-sectional TEM images of the HfAlOx-
based analog RRAM and Ta2O5-based digital RRAM, respectively, scale bar: 20 nm.
e DC I-V measurements of HfAlOx-based RRAM with analog resistive switching
characteristics and Ta2O5-based digital RRAM with a large HRS/LRS ratio. f Analog

resistive switching characteristics of 20 1T1R cells in the CIM array under a series of
set and reset pulses. Gray lines are the raw data, and blue line plots the average
conductance of 20 devices measured. g Cumulative probability distribution of the
CIM array with 32 equally distributed conductance states, showing the program-
ming capability of 5 bits per cell.h Illustration of performingMVMoperationon the
CIM array. (i) Mapped conductance Gmapped and (j) corresponding error Gerror after
mapping a matrix on the 1k-bit CIM array. k Calculation result of MVM using the
mapped array shown in (i) versus the theoretically expected result. The blue line
plots the linear fitting with a small R-square of 0.96.
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inputs and 128 source lines (SLs) for output. The BLs are visible in the
optical image, as shown in the zoom-in view in the inset of Fig. 2a. On
top of this analog RRAM array, a Ta2O5-based 512-bit digital 1T1R array
was fabricated along with the 3rd layer of TCAM (2T2R array) using
CNTFETs as the access transistors. Here the Ta2O5-based 1T1R array
acts as an on-chip buffer for the CIM array and was optimized in the
same way as the TCAM to be presented in the next section. An optical
imageof the 2nd layer of CIMarray after the fabrication of the 3rd layer is
shown on the left panel of Fig. 2b, and the corresponding scanning
electronmicroscopy (SEM) image is shown in the right panel. The inset
further displays the zoom-in SEM image of the Ta2O5-based 1T1R cells.

The two different types of RRAMs on the 2nd and 3rd layers were
intentionally chosen to fulfill their functions as analog CIM and digital
memory, respectively. To further verify the structural integrity, cross-
sectional TEM analyses on the RRAMs in the last two layers were car-
ried out after the fabrication of M3D-LIME chip. Figure 2c shows the
TEM image of the analog RRAM in the CIM layer, in which the material
stack of TiN/HfAlOx/TaOx/TiN is clearly resolved. Figure 2d shows the
cross-sectional TEM image of the digital RRAM in the TCAM layer,
which has a different material stack of Pd/TaOx/Ta2O5/Pt to achieve a
large on/off ratio of HRS/LRS. To reveal the different resistive switch-
ing characteristics of these two RRAMs, direct current (DC) I-V tests
were carried out. Both RRAMswere tested in the formof 1T1R cell, and
the results are shown in Fig. 2e. The Ta2O5-based RRAM exhibited an
abrupt resistive switching in the set and reset processes with a large
on/off ratio of HRS/LRS > 300, which is favorable for memory appli-
cations such as TCAM and buffer. Meanwhile, the HfAlOx-based RRAM
exhibited a more gradual resistive switching that enables excellent
multi-level programming capability, which is considered favorable for
CIM applications44.

Furthermore, array-level electrical measurements were con-
ducted on the fabricated 1k-bit analog RRAM array for CIM, and the
detailed schematic of the array is shown in Supplementary Fig. 1. Fig-
ure 2f shows the analog resistive switching characteristics with good
linearity and symmetry, where 20 1T1R cells were measured under a
series of set and reset pulses with a width of 50 ns. The set, reset and
read voltages are 1.6 V, 2.6 V and 0.2 V, respectively. Figure 2g shows
the cumulative probability distributionof theCIMarraywith 32 equally
distributed conductance states, equivalent to 5-bit programming
precision. Here 128 1T1R cells in each statewereprogrammedusing the
standard write-verify scheme, as shown in Supplementary Fig. 2. In
addition, the results of array-level retention and endurance tests are
shown in Supplementary Fig. 3, where excellent endurance over 106

cycles and data retention exceeding 104s were achieved. These results
confirm the superior analog switching characteristics of the HfAlOx-
based RRAM array for CIM.

Figure 2h illustrates the implementation of MVM on the array,
where the weight matrix is first mapped onto the CIM array as the
RRAM conductance and the vector is applied as the voltage pulse
inputs to the BLs. By virtue of Ohm’s law and Kirchhoff’s current law,
the current outputs on the SLs represent the MVM results36. To
demonstrate this process on the fabricated 1k-bit CIM array, an 8×128
weight matrix used in the feature extraction later was first mapped on
theCIMarray as shown in Fig. 2i, and the correspondingmapping error
is shown in Fig. 2j. The conductance values of RRAM cells were pro-
portional to themagnitude of the elements in theweightmatrix, which
were quantized into 4 bits. After the weight mapping, a series of 8-bit
vectors, whose elements followed Gaussian distributions, were input
into the RRAM array for performing MVM operations. By applying the
Kirchhoff’s current law and Ohm’s law, the RRAM array completed the
MVM calculations and output a series of 128-bit vectors. All the ele-
ments of these vectors represented the inner products were normal-
ized and plotted against their theoretically expected results in Fig. 2k.
The linear fitting suggests a good consistency between them with a
small R-square of 0.96. This result confirms the feasibility of

performing MVM operations efficiently on the analog RRAM array for
CIM. The detailed experimental method is shown in Supplementary
Note 1 and the characterizations on the CIM array in Fig. 2 were per-
formed using on-chip control circuits (including WL address decoder
and switch) with the assistance of an off-chip test system.

TCAM array with digital Ta2O5-based RRAM and CNTFET
In the 3rd layer of M3D-LIME chip, CNTFET and Ta2O5-based digital
RRAM were used to fabricate the 2T2R TCAM array, which performs
template storage and matching for the one-shot/few-shot learning
task. The fabrication process is well-optimized and elaborated in the
Methods section, where one of the key challenges is to achieve high
device performance within the thermal budget. The TEM structural
analysis of the Ta2O5-based RRAM was already presented in Fig. 2.
Figure 3a further shows a false-color SEM image of a 1× 5 2T2R TCAM
array for electrical measurements. To build this array, the fabrication
process of back-gated CNTFETs followed by Ta2O5-based RRAMs was
carefully optimized under the highest temperature of 250 oC as ela-
borated in the Methods section. The fabricated CNTFET achieved an
on-state current density Ion/W up to 60 μA/μm, and the electrical data
are shown in Supplementary Fig. 4. The high current density is favor-
able to drive the Ta2O5-based RRAM and achieve a high on/off ratio of
HRS/LRS for memory applications. Before the fabrication of Ta2O5-
based RRAM, the CNTFETs need to be carefully passivated to preserve
their high performance. Here 10 nm-thick yttrium (Y) was first
deposited on the CNTFETs and then naturally oxidized into Y2O3 to
yield an excellent interface with CNT47. A bilayer oxide of 35 nm Al2O3/
10 nm HfO2 was then deposited by ALD at 250 oC to fully passivate the
devices. The statistical results of 500 passivated CNTFETs were shown
in Supplementary Fig. 5, showing an average Ion/W of 28 μA/μm at
VDS = −1 V and a high Ion/Ioff ratio close to 105.

After that, Pd/TaOx/Ta2O5/Pt digital RRAMs were fabricated on
top of the drain terminals of CNTFETs to fulfill the 2T2R TCAM array.
Here the sputtered 10 nmTa2O5 and 20nmTaOx served as the RSL and
the oxygen reservoir layer, respectively, to achieve a large HRS/LRS
ratio. After the etching of RRAM stack, 45 nm-thick Al2O3 was depos-
ited byALD at 150 oC to further passivate and protect the RRAMduring
operation. The fabricated 5× 1 2T2RTCAMarray consists of 5-unit cells
of 2T2R andapre-charge transistor. Figure 3b shows its circuit diagram
which employs CNTFETs to build the pre-charge circuitry, along with
the illustration of using it for the calculation of Hamming distance.
Here the sense amplifiers are not integrated on-chip in this study. The
TEs of all the RRAMs are wired together as the match line (ML) which
periodically charges and discharges controlled by the pre-charge
transistor. Meanwhile, the drain electrodes of all the CNTFETs are
wired together as the SL, while the gate electrodes of CNTFETs in a
2T2R pair are connected to the search lines (SEL and SEL). Theworking
principle for data storing and searching is illustrated in Supplementary
Table 1. The template vector is stored in the TCAMwhile the extracted
feature vector is input via SEL andSEL to calculate their Hamming
distance. Thedischarging resistanceofML is decided by the number of
mismatched bits (Nmis), giving rise to a time constant of discharging (τ)
inversely proportional to Nmis (τ

-1/Nmis). When calculating, the ML is
first charged by the pre-charge transistor, and the extracted feature
vector is then input. After turning off the pre-charge transistor and
discharging the ML for a given time, the Nmis that indicates the Ham-
ming distance can be calculated by measuring the voltage of the ML.

The cross-sectional TEM image of a 1T1R half-cell in the TCAM
layer is shown in Supplementary Fig. 6. Excellent endurance > 5× 105

cycles and retention exceeding 104s at 120 oC were also verified. Fur-
thermore, the characterization of 2T2R TCAM cells in the TCAM layer
shown in Supplementary Fig. 8 reveals a large resistance ratio >300×
between the matched and mismatched cells, which is stable over a
large number of search cycles (>105). To further demonstrate the
proper function of the TCAM array, electrical measurement was
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carried out to complete the search operation. As an example, a binary
vector of “00000”was stored in the TCAMarraybyprogramming each
2T2R cell according to Supplementary Table 1. The source of the pre-
charge transistor was fixed at a voltage of 1 V to initially charge the ML
to 1 V by applying a voltage of -3 V to the gate. When calculating, 5 SEL
and 5 SEL were applied with a voltage of 1 V or -3 V according to the
input vector. After that, the pre-charge transistor was turned off by
applying a gate voltage of 1 V, and then the ML started to discharge
with a time constant depending on the Nmis (τ/Nmis

-1). Figure 3c plots
the discharging waveform measured by an oscilloscope. To measure
the discharging waveform for different Nmis, the input vector was
varied from “00000” to “11111”, whose corresponding Nmis increased
from0 to 5. Thanks to the optimized 2T2R arraywith a large resistance
ratio between the matched and mismatched cells, the discharging

waveforms of different Nmis were well-spaced, leading to an accurate
calculation of the Hamming distance. The plot in Supplementary Fig. 9
confirms the inversely proportional relationship between τ and Nmis,
which also verifies the proper search function of the RRAM-based
TCAM. The detailed experimental method is described in Supple-
mentary Note 2.

To further validate the proper function of template matching,
multiple TCAM arrays were measured for statistical analysis. Figure 3d
plots thehistogramof τ for 100 2T2RTCAMarrayswith 1-bitmismatch.
For this measurement, the 2T2R cells in the arrays were mapped to
store the vector “00000”. After that, a randomly selected vector from
“10000” to “00001”withNmis = 1was input to each array. Bymeasuring
the discharging resistance (Rdischarge) of each array with a read voltage
of 0.15 V, τ can be quickly calculated by τ=R×Cp, where Cp is the

Fig. 3 | Characterizations of digital RRAM-based TCAM array. a False-color SEM
image of a 1× 5 2T2R TCAM array fabricated with CNTFET and Ta2O5-based digital
RRAM. Scale bar: 50μm. b Illustration of Hamming distance calculation using 2T2R
TCAM. c The discharging waveform of ML as a function of the number of mis-
matched bits Nmis (from 0 to 5). d Ηistogram of τmeasured from 100 2T2R TCAM
arrays with 1-bit mismatch (Nmis=1). e Fitting of the measured τ versus Nmis. The

purple dots are the experimental data measured from 5 TCAM arrays. Inset: τ−1

exhibits a linear dependenceonNmis. fHammingdistance (predicted) calculated by
TCAMas a function of the actual Hamming distance (expected). The blue line plots
the linear fitting with a small R-square of 0.9996, demonstrating proper function of
Hamming distance calculation.
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parasitic capacitance. The statistical results indicate that themeasured
τ values exhibit a relatively narrow distribution, with an average of 8.2
μs and a standard deviation of 0.48 μs by Gaussian fitting. Further-
more, the discharging waveforms of TCAM arrays with an increasing
Nmis from 0 to 5 were also measured in the same way as in Fig. 3c to
obtain a statistical result of τ. Figure 3e plots the extracted τ and τ-1

(inset), and the fitting curve confirms the linear dependence of τ−1 on
the Nmis. Based on these experimental results, we can further simulate
the calculation of Hamming distance for an even larger TCAM array
with 128-bit vector inputs, as shown in Fig. 3f. The calculatedHamming
distances by the TCAM array achieve excellent consistency with the
theoretical values, as confirmed by the linear fitting with a small
R-square of 0.9996. These results demonstrate that the fabricated
Ta2O5-based digital RRAM arrays can successfully fulfill the desired
TCAM operations.

Implementation of One-Shot Learning
Based on the abovemeasurement results of each functional layer, one-
shot/few-shot learning was further implemented on the M3D-LIME
chip to evaluate its system-level performance. Here a widely used
MANN with the hybrid memory architecture is adopted, whose struc-
ture and key parameters are shown in Supplementary Fig. 10 and
Supplementary Table 2. Using M3D-LIME, the CNN for feature extrac-
tion is implemented by the 2nd layer of CIM arrays with the help of
buffer arrays in the 3rd TCAM layer and data interface in the 1st CMOS
layer. Meanwhile, the templates are stored in the 3rd layer of TCAM
arrays while template matching is performed by the massively parallel
search operations. Figure 4a illustrates the data flow for implementing
one-shot/few-shot learning by this MANN. In this task, massive data
need to be frequently transferred among the three functional layers,
which can take the advantage of high on-chip bandwidth enabled by
the ultra-dense ILVs of M3D.

Figure 4b shows the detailed implementations of feature extrac-
tion and template matching using M3D-LIME. For the feature extrac-
tion, input data are first stored in the input buffer of the CIM array and
then fed into the array via data interface, such as digital-to-analog
converter (DAC). After that, the key operation ofMVM is performed by
the CIM array, and the output is read out by the data interface, such as
analog-to-digital converter (ADC). Other operations such as max
pooling and activation functions of ReLU can be implemented by the
CMOS logic in the 1st layer using standard Si circuit design, as pre-
viously demonstrated48–50. The results are stored in the output buffer
to complete the calculation of one layer in the CNN. This process can
be repeated until the entire CNN is completed to extract features from
a given image, which are then binary-quantized into binary feature
vectors. For the template matching, binary feature vectors extracted
from training are stored in the RRAM-based TCAM arrays, and then
compared with a given input feature vector for inference. Here the
Hamming distance is calculated via a large-scale parallel search
operation on the TCAM as experimentally illustrated in Fig. 3. To
classify a new query, the category with the minimum Hamming dis-
tance (i.e., the slowest discharging ML) is the final classification result.

Following the above workflow, the network is used to implement
one-shot/few-shot learning on the Omniglot dataset and benchmark
the system performance of M3D-LIME. As shown in Fig. 4c, accuracies
of 89% and 96% can be achieved in the 5-way 1-shot and 5-shot learning,
respectively. Both values are close to those obtained by GPU (93% and
98%). Furthermore, the execution time and energy consumption were
also evaluated to manifest the advantages of M3D-LIME compared to
GPU and 2D chip architecturewhich is illustrated in the Supplementary
Fig. 11. The benchmark results in Figs. 4d and 4e show that M3D-LIME
could achieve 18.3× higher energy efficiency than GPU (Nvidia Tesla
V100 as a commonly used reference for benchmark37, 51), as well as a
2.73× speedup than its 2D counterpart. The detailed execution time
and energy efficiency benchmarks are shown in Supplementary

Tables 3 and4, respectively. The reported energy efficiency valueof the
Nvidia Tesla V100 GPU, which has been extensively utilized as a stan-
dard reference in numerous prior studies is included for comparison in
the energy efficiency benchmark against GPUs. The pipeline imple-
mentation ofMANN is also illustrated in Supplementary Fig. 12. For the
2D chip, the buffer is realized by a global cache nearby the CIM array,
and data are transferred between the cache and theCIM array via a bus,
where thebusbandwidth limits thenumberofCIMarrays computing in
parallel and brings additional data transfer latency. By contrast, in the
M3D-LIME chip, thebuffer of eachCIMarray is realized by a local RRAM
array located directly above it. As a result, data can be transferredmore
efficiently between the CIM array and the buffer directly via the high-
density ILVs, which helps significantly reduce the latency.

Discussion
In sum, we have designed and fabricated a M3D-LIME chip with a
hybrid memory architecture of RRAM-based CIM, buffer, and TCAM
for efficiently implementing one-shot learning. The chip consisted of
three key functional layers, including a Si-based CMOS logic layer, a
CIM layer with HfAlOx-based analog RRAM array, and a TCAM layer
with Ta2O5-based digital RRAM and CNTFET. RRAM-based on-chip
buffer for CIMwas also fabricated on the top layer to facilitate the data
flow of CIM. The core devices were carefully selected for each func-
tional layer and the fabrication processes were optimized to be com-
patible with BEOL integration. Extensive structural analysis and
electrical measurements, including array-level CIM and TCAM
demonstrations, were performed to verify the integrity and proper
function of each layer. Excellent analog resistive switching character-
istics with 5-bit precision and large on/off ratio >300× were achieved
on the analog and digital RRAM arrays, respectively. Furthermore, the
M3D-LIME chip was used to implement aMANN network for one-shot/
few-shot learning on the Omniglot dataset, where high accuracy up to
96% was achieved. System-level benchmark further revealed that the
M3D-LIME chip could achieve a 18.3× higher energy efficiency than
GPU as well as a 2.73× speedup than its 2D counterpart. As illustrated
in Supplementary Fig. 13, a scale-up M3D-LIME chip could mono-
lithically integrate multiple CIM arrays, the associated on-chip buffers,
and one or more TCAM arrays, on top of Si CMOS logic circuits to
efficiently implement large-scale MANNs. Our work demonstrates the
tremendous potential of M3D with hybrid memory architecture for
future data-intensive AI and high-performance computing (HPC).

Methods
Preparation of high-quality CNT film
Preparation of high-purity (>99.99%) s-SWCNT solution: 10mg of poly
[9-(1-octylonoy)-9H-carbazole-2,7-diyl] (PCz) and 10mg of arc-
discharged single-walled carbon nanotubes (SWCNTs) were added
into 20mL of toluene. Then, the mixture was sonicated with an ultra-
sonic machine for 30min. After that, the solution was centrifuged at
20,000g for 1 hour to remove impurities, especially metallic SWCNTs
(m-SWCNTs). Finally, the upper 95%of the supernatantswere collected
for further use.

Removal of dissociative PCz in solution: CNT solution was rinsed
with tetrahydrofuran (THF) by the suction filter and the procedurewas
repeated for three times. Then, the CNTs on the filter membrane were
re-dispersed into a chloroform dispersion. After that, the CNT/
chloroform dispersion was diluted by ten times using toluene for
subsequent wet transfer of s-SWCNT film onto the substrate.

Wet transfer and cleaning of the s-SWCNT film: A wafer substrate
was put into the diluent for 48hours, and a dense s-SWCNT film was
then deposited on the wafer with a large amount of PCz on its surface.
Then, excess PCz polymer was removed by rinsing the wafer in a
toluene solution and adding 1.0% of trifluoroacetate (TFA) dropwise to
the solution, leaving only amonolayer of PCz on the surface. For better
removal of PCz, the mixture solution was heated at 80 oC for 1 hour.
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Fabrication of the M3D-LIME Chip
The 1st layer of CMOS logic was designed and fabricated on an 8-inch
wafer, using a standard 130 nm Si CMOS process. The peripheral cir-
cuits of the CIM arrays were also fabricated in this layer, including the
decoder, control logic and access transistors for the 1T1R cells. The
wafer processing was stopped at the fourth metal layer (M4) with
exposedW top vias after chemical mechanical polishing (CMP) for the
fabrication of subsequent layers.

The 2nd layer of CIM was fabricated with HfAlOx-based RRAM
using a BEOL-compatible process. First, TiN with a thickness of 30 nm
was sputtered as the bottom electrode (BE) of RRAM. Then, an 8-nm-
thick HfAlOx was deposited as the RSL of RRAM using ALD at 300 oC.

After that, 45-nm-thick TaOx and 30-nm-thick TiN were sputtered as
the TEL and TE of RRAM. The RRAM stack was then patterned by
lithography anddry etchwith Cl-based reactive ion etching (RIE). Next,
400 nm-thick SiO2 was deposited by plasma-enhanced chemical vapor
deposition (PECVD) at a temperature of 300 oC. The SiO2 acts as the
passivation layer to protect the fabricated RRAM stack, and it was
patterned by lithography and dry etch with F-based RIE to form con-
tact holes to the TE. Then, W vias were made to the TE, followed by
surface planarization using CMP. After that, Al with a thickness of
500 nm was sputtered and then patterned using lithography and Cl-
RIE to serve as BLs connected to the TE. Next, 100 nm-thick SiO2 and
900 nm-thick Si3N4 were deposited by PECVD as the inter-layer

Fig. 4 | Implementation of one-shot learning onM3D-LIME chip. a Illustration of
data flow on the M3D-LIME chip for implementing one-shot/few-shot learning.
b Schematic of the implementation of one-shot/few-shot learning. It consists of two
steps: For feature extraction, a CNN is implemented by the CIM arrays to perform
MVMcalculations with the help of the data interface in the 1st layer of Si CMOS logic
and the 1T1R memory arrays for buffer in the 3rd layer; For template storage and

matching, they are performed by the 3rd layer of TCAM. c The classification accu-
racy of one-shot/few-shot learning on the Omniglot dataset using GPU and the
M3D-LIME. The accuracy is the average of 5 randomly selected classes (5-way) in the
dataset. d Benchmark of the energy efficiency of the M3D-LIME chip and GPU.
e Benchmark of the execution time on the M3D-LIME and 2D chip baseline.
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dielectric (ILD), and the surface was planarized again using CMP. Last,
the ILD was patterned using lithography and Cl-RIE to form contact
holes to the 3rd layer of TCAM. The highest temperature during the
fabrication of the 2nd layer of CIMwas 300oC, causingnodamage to the
prefabricated 1st layer of CMOS.

The 3rd layer of TCAM was then fabricated with CNTFET and
Ta2O5-based digital RRAM, also using a BEOL-compatible process.
Firstly, a stack of 10 nm-thick Ti, 15 nm-thick Pd and 1 nm-thick Ti was
patterned as the gate metal of CNTFET by lithography and electron-
beam evaporation (EBE). The high-work-function Pd was employed to
ensure an appropriate threshold voltage of CNTFET, while the two Ti
layers were to improve the adhesion. Then, HfO2 with a thickness of
10 nm was deposited as the gate dielectric of CNTFET using ALD at
250 oC. After that, HfO2 was patterned using lithography and Cl-RIE to
form contact holes to the gate metal. Then, high-purity CNT film was
wet transferred and cleaned as the channel of CNTFET using the pro-
cess described above. Next, a stack of 1 nm-thick Ti and 45 nm-thick Pd
was patterned by lithography and EBE to serve as the source/drain
contacts. Then, CNT film was patterned to define the channel of
CNTFET by lithography and O2 plasma etching. After that, a thin layer
of Y2O3was formed tooptimize the interfacebetween theCNTchannel
of and the passivation oxide later. This was done by first depositing Y
with a thickness of 10 nm using EBE and baking the wafer in the air at a
temperature of 250 oC on a hot plane. Then, a passivation layer of 35
nm-thick Al2O3 and 10 nm-thick HfO2 was deposited by ALD at 250 oC.
After that, contact holes were defined by lithography and dry etching
using Cl-RIE. The Y2O3 layer, which was difficult to be dry etched, was
then wet etched using hydrochloric acid (HCl). Next, a stack of 20 nm-
thick TaOx, 10 nm-thick Ta2O5 and 10 nm-thick Ptwas sputtered for the
digital RRAM, where Ta2O5 served as the RSL while TaOx acted as the
reservoir of oxygen vacancy. Then the RRAM stack was dry etched
using a 60 nm-thick Pd hard mask. Next, Al2O3 with a thickness of
45 nmwasdeposited as the passivation layer of RRAMbyALD at 150oC,
followed by lithography and Cl-RIE to form contact holes. Last, 20 nm-
thick Ti and 120 nm-thick Pd were patterned as the interconnects by
lithography and EBE. The highest temperature during the fabrication
of the 3rd layer of TCAMwas 250 oC, also causing no damage to the pre-
fabricated two layers underneath.

Data availability
Preliminary results from this study have been reported in the con-
ference proceedings of the 2021 IEEE International Electron Devices
Meeting (IEDM)25. The source data for Figs. 2–4 are provided in the
Source Data file. Additional data supporting the findings of this study
are available from the corresponding authors upon reasonable
request. Source data are provided with this paper.

Code availability
The code that supports the one-shot learning simulations in this study
is available via GitHub at https://github.com/Tsinghua-LEMON-Lab/
M3D_few_shot_learning. Other codes that support the findings of this
study are available from the corresponding authors upon reasonable
request.
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