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Speos: an ensemble graph representation
learning framework to predict core gene
candidates for complex diseases

Florin Ratajczak1, Mitchell Joblin2, Marcel Hildebrandt3, Martin Ringsquandl3,
Pascal Falter-Braun 1,4 & Matthias Heinig 5,6,7

Understanding phenotype-to-genotype relationships is a grand challenge of
21st century biology with translational implications. The recently proposed
“omnigenic” model postulates that effects of genetic variation on traits are
mediatedby core-genes and -proteinswhose activitiesmechanistically influence
the phenotype, whereas peripheral genes encode a regulatory network that
indirectly affects phenotypes via core gene products. Here, we develop a
positive-unlabeled graph representation-learning ensemble-approach based on
a nested cross-validation to predict core-like genes for diverse diseases using
Mendelian disorder genes for training. Employingmouse knockout phenotypes
for external validations, we demonstrate that core-like genes display several key
properties of core genes:Mouse knockouts of genes corresponding toourmost
confident predictions give rise to relevant mouse phenotypes at rates on par
with the Mendelian disorder genes, and all candidates exhibit core gene prop-
erties like transcriptional deregulation in disease and loss-of-function intoler-
ance. Moreover, as predicted for core genes, our candidates are enriched for
drug targets and druggable proteins. In contrast to Mendelian disorder genes
the new core-like genes are enriched for druggable yet untargeted gene pro-
ducts, which are therefore attractive targets for drug development. Inter-
pretation of the underlying deep learning model suggests plausible
explanations for our core gene predictions in form of molecular mechanisms
and physical interactions. Our results demonstrate the potential of graph
representation learning for the interpretationof biological complexity andpave
the way for studying core gene properties and future drug development.

Understanding phenotype-to-genotype relationships is one of the
most fundamental problems of current biological research with pro-
found translational implications for questions ranging from human
healthcare to biotechnological crop improvement. Genome-wide

association studies (GWAS) statistically associate phenotypes with
specific variants in genomic loci. This approach has been immensely
successful and led to the identification of thousands of variants
affecting diverse physiological, molecular, and even psychological
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phenotypes. The problem of identifying likely causal variants within
haplotype blocks is increasingly solved by advanced modeling
approaches that integrate GWAS and functional genomic data to
identify the genetic variants and genes that are likely causal for the
observed phenotypicmanifestation1,2. However, after solving this issue
recent analyses still indicate that even simple traits canhave thousands
of causal variants3 distributed uniformly across the genome, andmany
without obvious connection to the known molecular mechanisms
regulating the respective trait4–9. This insight raises the conceptual
question whichmolecular mechanisms could give rise to such a highly
polygenic architecture and the practical question about how to
prioritize proteins as interventional and diagnostic targets. The
recently proposed omnigenic model postulates that the effects of
genetic variation on a trait are mediated by core genes, encoding core
proteins (hereafter used interchangeably depending on context),
whose expression, and ultimately function, directly and mechan-
istically influence the phenotype, whereas peripheral genes and pro-
teins constitute a regulatory network that propagates the effects of
genetic variants on the phenotype by modulating core gene expres-
sion and function10,11. The model postulates that the effects of per-
ipheral proteins converge on relatively few core proteins that have a
major influence on the trait;12 consequentlymany functionalmutations
in core genes remain at low frequency in the adult population8,making
their detection in GWAS challenging. While the original authors pro-
pose trans-eQTLs to infer the underlying genetic network for all
diseases12,13, they admit that the required cohort sizes make this
approach impractical11. Rare variant sequencing, alternatively sug-
gested to associate core genes to diseases10, similarly requires very
large cohorts and has been criticized as a suboptimal strategy14.

Conceptually, the impact of peripheral genes and proteins is
transmitted to core proteins via ‘regulatory networks’ that encompass
all layers of biological regulation10, and which we more generically
refer to as molecular networks to include biochemical modes of reg-
ulation. Thus, to identify core disease genes, here we propose an
advanced machine learning (ML) approach that utilizes physical and
regulatorymolecular network information to identify core genes using
Mendelian disorder genes as a positive training set. Mendelian dis-
order genes not only “clearly fulfill the core gene definition”14, but are
examples towards the extreme endof the distribution of coregenes, as
a single Mendelian disorder gene can cause the disease14. Moreover,
for nearly all modes of biological regulation increasingly complete
reference networks are available that describe biochemical interac-
tions and regulatory effects, e.g. protein-DNA contacts and transcrip-
tional regulation15–17, protein-protein interactions18,19 and signaling
pathways20, and humanmetabolism21. While similar information is also
available from aggregated small-scale studies and predictions20,22–24,
these are affected by a heavy inspection bias of hypothesis driven
approaches and therefore not ideal for reliable identification of
hitherto unknown core genes18,25,26 (Supplementary Figure 1, Supple-
mentary Note 1).

With the uptake of graph representation learning in
biomedicine27, novel options exist to process networks alongside the
input features in a joint ML model, thus approaching an in silico
representation of biological regulation. First implementations based
on random-walks28–37or graph neural networks (GNN)38–44 show pro-
mise in predicting ‘disease genes’, but are often disease specific,
depend on hard-coded and partially biased input data, and do not
further explore the properties of predicted (core) genes (Supple-
mentary Fig. 2). Moreover, in many machine learning applications
ensemble approaches outperform individual models45,46.

Here we present Speos, an extensible and generalizable positive-
unlabeled (PU) ML framework that integrates information from bio-
logical networks and multiple biological modalities including gene
expression and GWAS data to predict candidate core genes for five
groups of common complex diseases. In contrast to previous research,

our framework natively integrates pure PU learning with the power of
machine learning ensembles to arrive at an unbiased, data driven
prediction of candidate genes. Systematic evaluation of the predicted
candidate genes using six external datasets demonstrates that these
exhibit key core gene characteristics, impact phenotypic manifesta-
tions to a similar extent as Mendelian genes and are enriched for
potential new drug targets.

As Mendelian genes display all characteristics of ‘strong’ core
genes14 we use these as positive labels for a positive unlabeled graph
representation learning27 ensemble (Supplementary Fig. 3). To specify
the Mendelian genes corresponding to specific complex diseases, we
make use of the mapping established by Freund et al.47. It uses stan-
dardized clinical phenotype terms that characterize the specific
symptoms of complex traits to identify sets of Mendelian genes and
groups closely related diseases into Mendelian disorders clusters that
aremapped to closely related complexdiseases. Thus, predicted genes
are specific for these groups of highly related diseases, as the models
are trained using labels defined by disease specific standardized phe-
notype terms. Tissue-specific gene expression and gene-level GWAS
summary statistics will be used as input features3,10. Proving a gene to
be a core gene for complex traits either requires unethical human
genetic intervention studies or epidemiological human data from
extremely large sample sizes14. Therefore, we refer to the predicted
genes,whichexhibit several expectedproperties of core genes, suchas
causality inmice, negative selection anddifferential disease expression
in humans, as “core-like”. To identify suitable base classifiers, we first
conducted a hyperparameter optimization on the full data set
assuming negative labels for unlabeled genes.

Results
Performance of base classifiers
Although Speos uses an ensemble-approach to achieve a consensus,
the performance of the base classifier is expected to be indicative for
the performance of the ensemble. We therefore explored the perfor-
mance of different commonly used base classifiers in our method
selection step (Fig. 1a, Supplementary Figs. 3c, 4). Since it is unknown
by which regulatory modalities the effects of peripheral genes are
transmitted to core proteins and if these differ among diseases, we
tested 35 biological networks (Fig. 1b) selected for their unbiased,
systematic construction or strict curation approach. The nodes always
represent the full set of protein coding human genes while the edges
are sourced from the selected network. In case multiple networks are
used simultaneously, edges are typed by source network. Among
several GNN base classifiers, the widely used GCN48 layer, which is
limited to one network at a time, convolutes the features of each gene
with a nonlinear projection of its immediate (1-step) neighborhood in a
given network. The TAG49 layer is similar to GCN but considers higher-
order neighborhoods (3-steps) of any node and can block out
unhelpful information. RGCN50, is the relational equivalent of GCN and
can considermultiple networks simultaneously. Lastly, FiLM51 is similar
to RGCN, but uses feature-wise linear modulation52 to exclude and
even override unhelpful neighborhood features based on the center
node and the connecting edge. Additional GNN layers performed
worse during hyperparameter optimization and were not further
included (Supplementary Figs. 5–7, Supplementary Note 2). Lastly, we
included Node2Vec53 (N2V), which uses random walks on the network
and techniques developed for natural language processing to embed
the network topology into vector space in an unsupervised setting.
These N2V-generated vectors can then be used as input features by
methods that cannot ingest networks directly like multilayer percep-
trons (MLP), logistic regression (LR) and random forests (RF).

We compared the ability of these base classifiers to identify
Mendelian disorder genes using a 4-fold cross-validation analysis, and
quantified performance on the holdout set using area under the
receiver operator curve (AUROC) (Fig. 1a). AUROC is suitable formodel
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comparison in PU learning as known positives receive higher predic-
tions than the average unlabeled gene, even though the unlabeled
(actual) positives reduce the optimal AUROC score. While many clas-
sifiers perform similarly, most methods strongly depend on the input
features and the network used. In line with the omnigenic model10,11,
removing tissue-specific gene expression from the input features
reduces the performance. The “direct” annotated interaction network
from IntAct22 works well with single-network layers, while the FiLM
layer performs well using the union of all networks (Fig. 1b). However,
not all networks improve the performance compared to an MLP that
does not use any network, likely reflecting the different importance of
biological modalities and tissues for different diseases. With GCN,
many networks have a detrimental effect on the performance; using
TAG, this effect is less pronounced. Equivalently, the FiLM layer
improves the performance compared to the RGCN layer when all
networks are used simultaneously and tends to predict geneswith very
high GWAS Z-scores as core genes of cardiovascular disease, con-
sistent with the omnigenic model (Supplementary Fig. 8). However,

overall performance appears to be mostly driven by patterns in gene
expression, as ablation experiments suggest (Supplementary Fig. 9).
As TAG and FiLM, but not GCN or RGCN, can ignore unhelpful neigh-
borhood information, their increased performance could reflect the
fact that not the complete reference network is relevant for disease
manifestation and prediction. Intriguingly, in this benchmarking the
best performing method (Fig. 1a), N2V +MLP, does not use graph
convolutions but embeds all networks simultaneously into vector
space using Node2Vec53 and then feeds these vectors alongside the
GWAS and gene expression features into an MLP (Supplemen-
tary Note 3).

Ensemble training and external validation of candidate genes
The next question in PU learning is how to decide on a suitable
threshold for the prediction of a novel previously unknown core-like
gene. To address this question, we propose a statistical approach to
select thresholds based on nested cross-validation. For this ensemble
method, we selected five methods as base classifiers, based on their

a b

Fig. 1 | Performance AUROC. a The mean area under the receiver operator char-
acteristic curve (AUROC) metric (higher is better) over n = 16 models for different
base classifiers, dataset variants and phenotypes. For AUPRC and mean rank and
see Supplementary Fig. 4. Combinations of methods and input data are indicated
along the y-axis. The blocks group models using common input data as indicated:
Only Network: adjacency matrix/matrices; Only Features: gene expression and
GWAS input features but no adjacency matrices; No Expression: GWAS input fea-
tures and adjacency of individual (single) or multiple (multi) networks; Network +

Features: adjacency of individual (single) or multiple (multi) networks, GWAS and
gene expression. b AUROC of 4 repetitions of a 4-fold cross validation for the
indicated individual networks, all networks simultaneously (multi) using the clas-
sifier methods indicated by color. The vertical gray area indicates the interquartile
range of the MLP, which does not use any network information (uppermost box-
plot). Each boxplot is based on n = 16 values. Boxes represent the interquartile
range, colored bars aremedians, whiskers extend atmost 1.5 times the interquartile
range, and outliers are shown individually.
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performance during method selection: N2V +MLP, which had the best
overall performance, FiLM trained on all networks, and TAG trained on
IntAct Direct Interaction as best performing GNN-based methods.
Despite the lower performance we decided to also include MLP as a
baseline classifier that does not use relational network information,
and GCN48, which is regularly used in graph-based problems to ensure
comparability with other studies.

Weused the selectedbaseclassifiers to train the ensembles, which
takes the formof a nested cross validationwithm = 11outer folds, each
comprised of n = 10 (inner fold) models (Fig. 2a, Supplementary
Fig. 3d). Within each outer foldwe statistically assess the agreement of
the 10 inner models by selecting an inner threshold at which the
agreement among the 10 inner models on held out Mendelian genes
surpasses random expectation (FDR <0.05; Student’s t test, Fig. 2b,
SupplementaryData 1). All geneswith higher agreement than this inner
threshold are considered candidate genes of this outer fold. Mendelian
genes cannot be predicted as candidates, and hence receive no CS, as
they are already known positives and predictions are only computed
for unlabeled genes. Since each outer fold predicts one set of candi-
date genes, the overlap among these sets can be used to assign con-
fidence to each candidate gene using a consensus score (CS) (Fig. 2c),
which indicates the number of outer folds predicting a given unlabeled
gene to be a candidate. Genes receiving a CS of 0 are non-candidates,

while genes with the highest CS of 11 are the most confident predic-
tions. We aimed to validate the model and our predictions using sys-
tematic, orthogonal functional data (Supplementary Fig. 3e).

Mouse knockout data. Since core genes are defined as directly con-
tributing to a disease phenotype10–12, genetic deletion of core genes in
mice should cause mouse phenotypes related to the human disease.
We therefore investigated if genetic deletion of mouse orthologs of
predicted core-like genes across the different CS led to relevant phe-
notypes more often than expected by chance (Fig. 3a, Supplementary
Data 2). Mendelian genes of all five disorders show a significant
enrichment, serving as a positive control and benchmark for this
validation. From the least conservative (CS ≥ 1) to the most stringent
bin (CS = 11) the odds ratio (OR) of mouse knockout genes among the
candidate genes increases for all five disease groups. This indicates
that, indeed, Speos’ CS identifies gene sets of increasing biological
relevance and thus can serve as ameasure of the quality of predictions.
Core-like genes are still significantly enriched when genes with sig-
nificant GWAS signal are removed (Supplementary Figure 10, Supple-
mentary Data 3), which generally show lower enrichment than the
candidate genes (Fig. 3a), indicating that Speos identifies core-like
genes outside of significant GWAS genes. Overall, FiLM and TAG pre-
dicted gene sets show the highest enrichment and only when all
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Fig. 2 | Cross validation ensemble. a The 11 folds of the outer cross-validation,
each with 10 inner cross-validation folds. Each inner cross validation fold corre-
sponds to one ML model. The positives correspond to the Mendelian disorder
genes for the given phenotype. Every model within one outer fold has the same
positive test set (red square, 9%), but different positive validation sets (green
squares, 9%) used for early stopping. All unlabeled genes and 82% of positive genes
are used for training for every model of every fold. b For each outer fold, the
overlap of candidate-predicted unknowns (dark blue bars, n = 1 each) and correct
predictions of the positive test set (red bars, n = 1 each) of the 10 models are
compared to random sets of the same size. Mean and standard deviation of the

randomsets are showncolored according to the legend (light blue andorangebars,
error bars denote one standard deviation based on n = 1000 independent draw-
ings). If the observed overlap of correctly classified held out positives is sig-
nificantly higher than expected by chance (FDR <0.05, one-sided t tests,
Supplementary Data 1, marked with black asterisk), the predicted unlabeled genes
of these overlap bins (inner threshold) are considered candidate core genes for this
outer fold. c the candidate genes of each outer fold are aggregated. The Consensus
Score (CS) of candidate genes ranges from 1 to 11 and indicates by howmany outer
folds a given gene is selected as candidate core gene. Genes with CS of 0 are
considered non-candidate genes.
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methods showa lowperformance, as for diabetes, the gapbetween the
methods narrows. For other diseases, represented by cardiovascular
disease and body mass disorders, FiLM and/or TAG perform con-
sistently better while GCN, N2V +MLP and MLP remain at the tail end
of the distribution. This contrasts with the initial benchmark (Fig. 1a),
where N2V +MLP performed best. This discrepancy is likely due to a
distribution shift referred to as probabilistic gap54, which here is the
consequence of differences between strongMendelian genes used for
training and the additional core-like genes we aim to predict, for which
only genetic variants with weaker effects are commonly observed in
the population. Because of these differences, (Fig. 3b), the decision
boundary that is best suited to recover the ‘extreme’ Mendelian core
genes, i.e., our labeled positives (Fig. 3c), is ill-suited to discover the
‘normal’ core genes, i.e., unlabeled positives, we aim to discover
(Fig. 3d). Importantly, we noticed that the inspection bias of

hypothesis-driven small-scale studies present in the body of literature,
and reflected in curated interaction datasets, is amplified in predic-
tions relying on these (Supplementary Fig. 11). Removing the affected
networks resolves the bias in the results, yet especially FiLM predic-
tions still validate at similar rates even after removal of the IntAct
datasets (Supplementary Fig. 12a, Supplementary Note 4, Supple-
mentary Data 4). Ablation experiments indicate disease-specificity of
the mouse knockout gene sets (Supplementary Figure 13, Supple-
mentary Data 5). Furthermore, gene set enrichment analysis for gene
ontology (GO) biological processes highlights relevant terms, such as
muscle contraction for cardiovascular disease and immune response
for immune dysregulation (Supplementary Data 6).

The strong performance in predicting genes with relevant mouse
phenotypes clearly demonstrates that Speos identifies disease relevant
(core-like) genes. Importantly, at high CS scores, the orthogonal KO

D
en

si
ty

0.3

Fig. 3 | Mouse knockout validation. a Odds ratio (OR) (right y-axis) for observing
disease relevant phenotypes in mice with knock-outs of orthologs of candidate
core genes in the indicated consensus score bins (x-axis) of the five classifier
methods (colored lines). Gray lines indicate strength of candidate gene sets (left y-
axis) in the corresponding bin for the phenotypes as indicated in the panel. Only
ORswith an FDR<0.05 (Fisher’s exact test) are shown. Bars to the right (M) and left
(G) of each plot indicate set strength (gray) and OR (colored) of Mendelian and
GWASgenes for eachphenotype. Bars denoting significantORs are filled, otherwise
bars are hollow. Precise P-values, FDR, and n for each test are shown in Supple-
mentary Data 2. b Illustration of the probabilistic gap according to the “sampled at
random with probabilistic gap positive unlabeled” (SAR-PGPU) case from ref. 54.

Labeled and unlabeled positives are drawn from the same underlying distribution,
however the label frequency increases towards the more extreme end of the
positive distribution, e.g. due to detection bias. We assume this scenario to be true
forMendelian genes as “extreme” coregenes14. c For the internal cross validationon
a holdout set (as in Fig. 1a) all unlabeled genes are considered negatives. Conse-
quently, models with the indicated decision boundary (gray dashed line) will per-
form well. d For prediction and subsequent validation of less ‘extreme’ true, but
unknown, core genes indicated by blue labels (Fig. 3a), a model with a decision
boundary near the dark gray dashed line is expected to perform well, while the
decision boundary from (b) (light gray dashed line) is not optimal anymore.
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validation rates for sets from all methods except MLP are statistically
indistinguishable from the positive control benchmarks for the
majority of disease groups (FDR >0.05, z-test, Supplementary Data 7)
and higher than validation rates of GWAS genes (FDR <0.05, z-test,
Supplementary Data 7). Thus, biologically, our predictions are on par
with Mendelian genes, which are considered strong core genes.
However, even in the lowest bin (CS ≥ 1) genes with disease-relevant
mouse phenotypes are enriched for every disorder and every method
(FDR <0.05, Fisher’s exact test, Supplementary Data 2), indicating that
these sets aremeaningful anddisease-specific.We therefore include all
genes with CS ≥ 1 as candidate genes for the remainder of this work.

Differential gene expression. Variation in gene expression can trans-
late into altered enzyme activities and network dynamics and is

therefore an important mechanism by which core genes contribute to
disease10,55. Thus, in disease conditions both Mendelian and predicted
core-like genes are expected to be enriched among differentially
expressed genes. Indeed, for all disease groupsMendelian genes showa
strong enrichment among differentially expressed genes and, again,
serve as the reference. The predicted core-like genes are similarly
enriched among differentially expressed genes, although the enrich-
ment is weaker for many diseases (Fig. 4a, Supplementary Data 8). This
difference is consistent with the notion of ‘extreme’ and ‘normal’ core
genes and reinforces the idea thatbothMendeliangenes andcoregenes
underlying the genetic architecture of complex traits can cause phe-
notypes by loss of function or expressionmediated change of activities.

FiLM and TAG predict gene sets with the strongest enrichment in
differentially expressed genes with average odds ratios (ORAV) of 5.4

a

b

c

Fig. 4 | External validation. aOdds ratios (ORs) ofMendelian genes (first row) and
of candidate genes of the five selected methods (rows) for common complex
subtypes of the five Mendelian disorder groups. ORs with FDR >0.05 (Fisher’s
exact test) in gray.b, c LoF intoleranceandmissensemutation intoleranceZ-scores
ofMendelian genes, and the indicated candidate andnon-candidate sets generated

by the five methods. Shown are group means and 95% confidence intervals of
Tukey’s HSD test. Colored symbols and error bars indicate P <0.05 in comparison
with respective non-candidate sets; not significant sets in gray. Dashed line indi-
cates the mean across all genes. Precise P values, FDR, and n for each test in each
panel are shown in Supplementary Data 8, 14, and 15, respectively.
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and 5.0, respectively. Although TAG shows a stronger enrichment of
cardiovascular disease subtypes and predicted differential expression-
enriched gene sets for 21 out of 22 disease subtypes, FiLM shows the
highest ORAV of all methods with especially strong performance in
immune dysregulation. The candidate genes produced by GCN show a
lower enrichment (ORAV of 4.0), reflecting its initial inclusion as the
weakest of the selected GNNs. As before, the performance of N2V +
MLP in predicting unknown core-like genes is worse compared to TAG
and FiLM.While showing highORs for some subtypes (ORAV of 3.6), for
5 of 22 disease subtypes the predicted candidate sets show no
enrichment for differential expression in disease conditions (FDR >
0.05). The MLP without the Node2Vec node embeddings shows a
substantially weaker performance (ORAV = 2.1), indicating the impor-
tance of network information. Using hypothesis-driven curated inter-
action datasets differentially impacts the enrichmentof predictions for
differentially expressed genes for different diseases (Supplementary
Fig. 12b, Supplementary Data 9, Supplementary Note 4). Again, GWAS
genes among candidates are not the main drivers of enrichment
(Supplementary Fig. 14, Supplementary Data 10–13).

Overall, these results indicate that theMendelian genes tend to be
differentially expressed in disease, likely contributing to disease
etiology, and that optimized graph convolutional methods such as
FiLM andTAG arebest suited to generalize this pattern to identify non-
Mendelian candidates for core-like genes.

Loss of function and missense intolerance. Because core genes
directly influence disease phenotypes, these are expected to accu-
mulate protein-function impairingmutations at a lower frequency than
regulatory peripheral genes8,10. Using ExAc cohort Z-scores56, we
examined this conjecture for two types of functional mutations: loss-
of-function (LoF) and missense (Fig. 4b, c, Supplementary Data 14,
Supplementary Data 15). Consistent with the omnigenic model, Men-
delian genes are enriched for LoF intolerant genes in four out of five
disorders. Similarly, candidate core-like genes identified by FiLM and
TAG are significantly different from the non-candidates in four out of
five disorders. All significant candidate sets are enriched for LoF
intolerance, except FiLM predictions for cardiovascular disease genes.
For missense mutation intolerant genes we observed overall similar
trends (Fig. 4c). Interestingly, the signal from the Mendelian genes is
less pronounced and does not reach significance in three of the five
diseases. Correspondingly, for four disease groups the signal of the
FiLM and TAG predicted core-like genes exceed that of the Mendelian
genes and thus presenting the inverse picture than loss-of-function
intolerance. Different biological and clinical properties of LoF andnon-
LoF mutations are well recognized57 and the observed differences
between Mendelian and predicted core-like genes demonstrate that
Speos identifies genes with different biological properties than the
training set. For cardiovascular diseases, the FiLM predictions again
show a significant depletion indicating a potential heterogeneity in the
definition of the cardiovascular disease phenotype (Supplementary
Note 5, Supplementary Fig. 15, Supplementary Data 16–21).

Taken together, all our analyses strengthen the view ofMendelian
genes as ‘extreme’ core genes, and demonstrate that Speos reliably
identifies phenotypically relevant genes with core gene properties.

Examples and model interpretation
After demonstrating that Speos predicts bona fide core-like genes, we
were interested in exploring specific predicted examples to assess
plausibility and to understand which aspects of the known biology
reflected in the model were most relevant for their prediction as core-
like genes (Supplementary Note 6). We selected genes with high CS,
which are differentially expressed in at least one disease subtype
(Fig. 4a). To explore translational potential, we filtered for genes
encoding yet untargeted but druggable58 proteins and applied model
interpretation techniques to investigate gene- and network-level

patterns underlying their prediction as candidates. Both TNFSF15 and
IL18RAP are predicted as candidate genes for immune dysregulation
by FiLM (CS 11 & 9); the former also by TAG (CS 5) (Fig. 5).

TNFSF15 is differentially expressed in Crohn’s disease and
ulcerative colitis and its protein product TL1A is part of the tumor
necrosis factor superfamily and a ligand for two receptors: DR3
encoded by TNFRSF25, which activates pro-inflammatory signaling,
and soluble TR6 encoded by TNFRSF6B, which acts as a non-functional
decoy-receptor59,60. Increased binding of TL1A to DR3 results in gut
inflammation61,62 and endothelial dysfunction63,64, while neutralization
of TL1A by TR6 down-regulates apoptosis62. This ability of TL1A/
TNFSF15 to tip the balance of inflammation is mirrored in findings that
different genetic variants in- or decrease the risk for Crohn’s
disease65–67, ulcerative colitis66 and inflammatory bowel disease68. We
investigated influential network-level patterns by assigning impor-
tance values to edges using integrated gradients69. Model interpreta-
tion for TNFSF15 shows that the receptor-ligand relationships with the
protein products ofTNFRSF25 andTNFRSF6B are among the strongest
influences (Fig. 5a) illustrating that Speos’ predictions point towards
biologically relevant and actionable mechanisms. The model inter-
pretation further suggests that drugs mimicking TR6 can alleviate
inflammation by competitively sequestering TL1A and thereby redu-
cing binding of TL1A to DR3. Indeed, monoclonal antibody treatments
leveraging this mechanism are in clinical testing and initial results
demonstrate a reduction of free TL1A and normalization of patholo-
gically dysregulated gut mucosa70.

IL−18RAcP encoded by IL18RAP is an accessory protein for the
receptor of the proinflammatory interleukin 18 (IL−18) and greatly
increases its affinity to its ligand71. As such, it can increase the pro-
inflammatory effect of IL–18, exacerbating inflammation via the
Interferon-γ pathway. IL18RAP is differentially expressed in ulcerative
colitis, its expression modulates treatment response in rheumatoid
arthritis72 and it is considered a risk factor for celiac disease73 and
autoimmune thyroid diseases74. FiLM’s prediction of IL18RAP is highly
influenced by its connection to PIGH (Fig. 5b), which is crucial for the
first step of the glycosylphosphatidylinositol (GPI) biosynthesis75. The
GPI glycan supports complex formation between IL−18RAcP and IL-18
receptor which increases proinflammatory signaling76. Thus, model
interpretation suggests that interfering with the IL-18RAcP—IL-18
receptor interaction reduces dysregulated inflammatory signaling.
Indeed, it has recently been demonstrated that cleaving IL−18RAcP
using specific antibodies effectively reduces inflammation in human
blood cell cultures77.

Both gene’s predictions are strongly influenced by the GWAS
input features for the complex forms of the phenotype (Fig. 5c, d). For
IL18RAP, high gene expression in whole blood, plasmacytoid dendritic
cells (DC) and the spleen are among the strongest influences, which is
expected for a factor contributing to autoimmunity78,79. This combi-
nation of GWAS and disease-specific gene expression are gene-level
patterns expected for core genes by the omnigenic model10–12. Beyond
this, further analyses and examples indicate that Speos finds core-like
gene patterns along the entire continuum of evidence combinations,
from relying mostly on GWAS features (Fig. 5c), a combination of
GWAS and gene expression features (Fig. 5d) to almost exclusively
utilizing gene expression features as for obscurin and ITGA7 (Supple-
mentary Figure 16, Supplementary Note 7).

These examples showcase that Speos candidate genes constitute
strong core gene hypotheses that are consistent with the omnigenic
model. Moreover, model interpretations suggest biochemically and
pharmaceutically plausible mechanisms for their impact on disease.

Speos-candidates are potential drug targets
Since core proteins are defined to directly and causally influence dis-
ease phenotypes, countering the respective perturbations with phar-
maceutical interventions should improve disease severity and
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symptoms. To test this prediction systematically, we gathered drug-
target-gene interactions from the drug repurposing knowledge graph
(DRKG)80 and assessed the proportion of drug-target encoding genes
among the Mendelian and predicted core-like gene sets. Mendelian
genes for all five disorders are significantly enriched for genes
encoding drug targets (DT), druggable proteins (Dr), and average
number of drugs targeting their products (xDC) (Fig. 6, FDR <0.05, DT
and Dr: Fisher’s exact test, xDC: U-test, Supplementary Data 22). The
enrichments of drug targets (DT) and of the average number of drugs

targeting the encoded proteins (xDC) both suggest that Mendelian
genes have been in the focus of drug development. The enrichment of
druggable gene products (Dr) among Mendelian genes and predicted
candidates could be due to selection biases in the drug discovery
process, or may indicate that proteins with binding pockets for sub-
strates or ligands are more likely to be core disease genes that can
directly cause disease phenotypes (Fig. 6). Crucially, Speos’ predicted
core-like genes are similarly enriched in all categories. In contrast to
the analyses of biological properties above, the observed enrichments
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Fig. 5 | Model interpretation. a Most important edges for FiLM’s prediction of
TNFSF15 as candidate gene for immune dysregulation. Shown are HGNC gene
symbols, protein symbols are added in parenthesis where necessary. The query
gene node is shown in the center, with adjacent relevant nodes in the periphery.
Candidate genes are signedwith their Consensus Score (CS). The color of the edges
denotes the networkand the strengthof the edge shows the relative importance for
the prediction of the query gene which is also written at the edge. Arrowheads
indicate direction of edges, undirected edges have no arrowheads. A value of 1
means that it is the most important edge for all models of the ensemble, while a
value of 0 indicates that it is the least important edge for everymodel. Shown are 11
out of 4.3 million edges, 301 of which are in the direct neighborhood of the query
gene. b Most important edges for FiLM’s prediction of IL18RAP as candidate gene
for immune dysregulation. Shown are 7 out of 4.3million edges, 431 of which are in

the direct neighborhood of the query gene. c, d: Input feature importance for
TNFSF15 and IL18RAP alongside the respective feature’s input value, compared to
the input values of other genes by the quantile borders in the background. Shown
are the 10 features with the strongest positive influence and the 5 features with the
strongest negative influence. Negative input values are normalized to the interval
[−1; 0] and positive input values to [0; 1] for visualization. Gray bars exceeding the
colored areas are either below the 1% quantile or above the 99% quantile of that
input feature. Importance values are obtained by integrated gradients and nor-
malized to the interval [−1; 1]. Positive importance values are in favor of the pre-
diction as candidate genes, negative importance values are attributed to features
that contradict the prediction. For the input feature importance of surrounding
nodes see Supplementary Note 6.
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are more varied among the methods with each method predicting
highly enriched subsets in one or two diseases, except for the network-
independent MLP.

In light of the retrospective confirmation of core-like gene pro-
ducts as suitable drug targets, core-like gene-encoded proteins that
are not drug-targets yet are attractive candidates for future drug
development. However, proteins encoded byMendelian genes are not
enriched for druggable proteins once the established drug targets
have been removed (Fig. 6, Dr-), which indicates that the innovative
potential of Mendelian gene-products as drug targets has been largely
exhausted. In contrast, candidate genes produced by TAGand FiLM, as
well as N2V +MLP jointly show a significant enrichment for druggable
proteins among the non-drug-targets in all five diseases (Fig. 6,
FDR <0.05, Fisher’s exact test, Supplementary Data 18) highlighting
potential targets for development of therapeutics for these epidemic
disease groups. Removing the IntAct networks results in prediction of
significantly more not-targeted druggable (Dr-) genes for immune
dysregulation (Supplementary Figure 12c, Supplementary Data 23,
Supplementary Note 4b).

Discussion
Speos is a graph-representation learning framework that predicts
novel core-like geneswith high external validation rates andproperties
expected for core disease genes. In developing this framework, we
show that all investigated modalities of molecular networks carry
relevant information to identify core genes (Fig. 5a, b). At the same
time, despite the strong GNN performance in the external biological
validation (Fig. 3), we were surprised by the moderate gain from
including network information in the initial prediction of held out
Mendelian genes (Fig. 1a). This is mirrored by the finding that a sub-
stantial part of the information that Speos extracts from molecular
networks is encoded in the topology and less so in features of neigh-
boring genes (Supplementary Note 3). This is unexpected as both the
omnigenic model as well as the underlying biological thinking predict
that the regulatory and biochemical network surrounding a node
modulates and impacts its function and activation. The fact that the
extensive network information we use does not result in an even
greater gain in performancemayhave a variety of possible reasons that
could point to future improvements. Obvious shortfalls are imperfect
SNP to genemappings, residual false-positives and the incompleteness
of all networkmaps18,81,82. Similarly, models built on any single network
are limited by only accessing a small part and single modality of reg-
ulatory links explaining their weak performance. Noteworthy, how-
ever, is the observation that learning methods that can selectively
ignore link information performbetter than those that always consider
the complete network neighborhood.We alsonoticed that the average

shortestpathbetween all genes in theunionof all networks is close to 2
and many nodes have degrees exceeding 300 (Supplementary Fig-
ure 7c) indicating a very high network density. Likely, in any specific
(patho-) physiological setting only a few of these interactions are
responsible for dysregulated core protein activity, whereas others
matter in other conditions, other tissues, or for processes that do not
influencedisease etiology.We therefore think that, in addition to a lack
of relevant interactions, especially the abundance of disease-context-
irrelevant interactions constitute a challenge for learning algorithms
and, in fact, for our understanding of network function. For future
implementations itmaybe helpful to includedirectionality of signaling
links for example based on systematic perturbation screens83–86 and
include tissue specificity of edges as explicit features. Therefore, even
in the absence of new systematic experimental data, future iterations
of this type of work are expected to jointly learn the network and gene
representations, thereby improving our understanding of network
functioning.

In summary, we show that Speos is able to produce candidate
core-like gene sets for different common and complex diseases using
Mendelian disorder genes as training examples (Supplementary
Data 24). We used a systematic mapping of complex traits to Men-
delian genes47 as input to demonstrate the general power of the
method on several diseases. More fine-grained analyses are sup-
ported by the framework and can easily be implemented for specific
traits of interest by specifying the Mendelian gene sets. This will also
allow for determining whether the predicted genes are only relevant
for individual traits or show substantial pleiotropy within disease
groups. By building on properties predicted by the omnigenicmodel,
we have further shown that these candidate genes are enriched for
mouse KO genes, differentially expressed genes, genes intolerant of
functional mutations and drug targets, all characteristics that are
expected of core genes. The validation results are robust, even when
known GWAS genes are removed from the candidates, highlighting
the added value of integrating multiple data modalities (Supple-
mentary Figs. 10 and 14, Supplementary Data 3, Supplementary
Data 10–13). Furthermore, we showexamples of candidate genes that
have already been selected for drug development and demonstrate
that the model relies on similar data as domain experts. As such,
Speos is the first attempt at translating the omnigenic model into an
ML framework for predicting and prioritizing core-like genes across
several disease areas. Finally, the core-like gene sets predicted by
Speos can be used to prioritize genes for experimental validation to
provide more definitive evidence of being core genes. We anticipate
that our results open the door for a better understanding of core
gene attributes and network functioning, and open possibilities for
future drug development.

Fig. 6 | Drug target analysis. Enrichment of drug targets and druggability in
Mendelian disorder genes and indicated candidate gene sets. DT: OR of known
drug targets. xDC: Ratio ofmediannumber of drug-gene interactionsper candidate
gene to the median of non-candidates, only genes with drug-gene interactions are

considered. Ratios with FDR>0.05 (U-test) are grayed out. Dr: OR of druggable
genes. Dr-: OR of druggable genes, after all drug targets have been removed. Odds
Ratios with FDR>0.05 (Fisher’s exact test) are grayed out. For all panels, precise P
values, FDR, and n for each test are shown in Supplementary Data 22.
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Methods
Speos: an ensemble-based PU learning framework
Speos is a fully equipped Python framework which manages the
modeling of networks and input modalities as well as the training,
evaluation and validation of several machine learning (ML) methods
for the prediction of novel core gene candidates. It is available at
https://github.com/fratajcz/speos and allows the configuration of
experiments, including those reported in this article, without the
necessity to write or read any code, facilitating the uptake of compu-
tational methods. For our experiments we used the Python version
3.7.12. Furthermore, it is fully extensible, as input data, networks, label
and validation sets as well asMLmethods can be chosen and added by
the user. The following sections describe the modeling, training and
validation approaches of Speos as they are used in the experiments
shown in the manuscript.

To fully exploit all available data for training and to avoid over-
estimating the performance of the model, we first conduct a hyper-
parameter optimization on the full data set assuming negative labels
for unlabeled genes to find promising base classifiers and then pro-
ceed with an ensemble approach, which we evaluate on independent
data sources.

Selection of base classifiers by cross validation. We first optimize
hyperparameters of base classifiers to identify the best setting of the
model architecture based on the performance on immune dysregula-
tion and cardiovascular disease (see Hyperparameter Optimization
and Supplementary Note 2). Next, we apply these optimal hyperpara-
meters to all diseases and select themost promising base classifiers for
the ensemble approach.Weperformed a fourfold cross validationwith
four repeats per fold, each holding out 25% of positive and unlabeled
genes. We assume negative labels for unlabeled genes and compare
performance by mean AUROC on the holdout set.

The ensemble approach. PU learning describes a subdomain of ML
approaches for problems where a small set of data points (in our case
genes) is labeled positive and the rest of the data points are unlabeled.
An intrinsic challenge for this class of problems is that the number of
true positives, i.e. the prior class distribution87–92, is unknown andmost
classifiers require labels for training. Motivated by the robustness and
the performance of ensemble approaches such as bagging in PU
learning39,87,88, we develop a statistical approach to separate candidate
genes from non-candidate genes using an ensemble approach87,88,92

which eliminates the need to predefine39 or estimate89 a prior class
distribution or to choose an arbitrary cut-off40,42 on predicted rank
distributions. At the heart of Speos is the cross validation ensemble
consistingofmouter folds, each containingnmodels. It is an approach
tomaximize the utilization of scarce, strong labels and simultaneously
exploit the constraints of the genetic domain while satisfying the
assumptions of the positive-unlabeled training regimen. In addition to
the two-step approach and the ensemble learning, we introduce the
followingmeasures to improve PU learning: we designed a specific loss
function that upweights positives and we employed a variant of the
stochastic gradient descent algorithm that downsamples negatives
inspired by refs. 87,93,94.

Nested cross-validation. In each outer fold j 2 f1,2,:::,mg the positive
labels are split up into the training set trainj and the hold-out test set
testj . All positives in testj are treated as unknown and consequently
labeled as negatives (class y = 0) during training. The remaining posi-
tives are labeled as class y = 1 during the training. There are twooptions
to define the hold out sets: (1) define hold out sets containing positives
and negatives (i.e. unlabeled examples) or (2) define the hold out sets
to only contain positives. In option (1) the held out negatives do not
contribute to the loss functionduring training,whereas inoption (2) all

negatives contribute to the loss function during training. Therefore, in
option (2) the additional negatives increase the loss if they are
unknown positives while they would not contribute to the loss in
option (1). In general, the model will only produce supposed false-
positive predictions if alternative parameters increase false negative
predictions, i.e. decrease sensitivity. Thus, by design of the loss func-
tion, such a change of parameters results in a greater loss than
“admitting” the “false-positive” predictions of the unlabeled. However,
only in option 2 this trade-off is reflected in the overall loss across all
negatives used for training. In option 1, the prediction of the held out
negativeswould have no implicationonmodel parameters, thus failing
to induce a loss-guided trade-off between false positives and false
negatives. The penalty of making these errors is stronger in option 2
because it was applied to the positively predicted candidate genes that
are selected from the training set. Therefore, this leads to even fewer
positive predictions overall, i.e. more stringent predictions and thus a
more conservative choice than option 1.

Eachmodel i 2 f1,2,:::,ng of the inner cross validation is trained on
the entirety of unlabeled genes treated as negatives (y=0) and the
subset trainj of positives (Fig. 3a). The set of positives trainj is used for
all models in cross validation run j, but each inner model modelj,i
divides it further into trainj,i and valj,i. Since our holdout valj,i set
contains only positives, we quantify overfitting bymeasuring precision
pr on the training data and recall rec on the holdout set for the per-
formance measure f 1 = 2ðpr � recÞ We train for a maximum of 1000
epochs and always retain model parameters corresponding to the
maximum f 1, but we stop training if f 1 did not improve during 100
epochs from the maximum. Within each outer fold j, each model i
produces a prediction ŷgi,j = 1 for every gene g if themodel prediction is
greater than 0.7 and 0 otherwise. The global holdout set of testj is not
accessible for any model in outer fold j. We compute the number of
concordant predictions for each gene cg

j =
Pn

i = 1ðŷ g
i, jÞ for this given

cross validation run j. Each gene is considered a candidate gene if
cg
j ≥ c* and forwarded to the outer cross validation. The inner thresh-
old c* is introduced in the next section.

Calculation of the inner threshold. To assess if predictions at any
threshold have higher concordance than expected by chance, and
hence are potentially meaningful, we set aside a global holdout set
testj for every outer fold j (Fig. 2b).We then quantify the overlapof the
held-out positive genes g in testj with concordant predictions of c*
models as Cj = jfgjcgj = c* ^ g 2 testjgj. To obtain a background model
for the distribution ofmodel overlaps cgj we setup n random classifiers
î that produce the same number of positive predictions ŷî,j = 1 as the
original models and analogously count the overlaps of their ‘predic-
tions’ as �cgj . We quantify the overlap of the held-out positive genesg in
testj with concordant predictions of c* randommodels as �Cj = . This is
repeated B = 1000 times to obtain an empirical background distribu-
tion. Finally, we compare Cj against �Cj using a one sample t-test for
each value of c* 2 f1,2,:::,ng and apply FDR across the n tests. We
choose the inner threshold as the minimal c* where Cj is significantly
greater than the random expectation �Cj (FDR <0.05, Student’s t-test,
Supplementary Data 1) or if �Cj is smaller than 0.1. All positively pre-
dicted unlabeled genes which reach at least the inner threshold are
considered candidate genes for this outer fold j.

Ensemble prediction. Them candidate gene sets, one from every fold
of the outer cross validation, are assessed for overlapping genes to
arrive at a Consensus Score (CS) for every gene. The CS reflects the
number of outer folds, which has predicted the gene as a candidate
gene. Thus, the CS ranges from 0 tom, with 0 indicating that the gene
has never been chosen as a candidate and thus is termed a non-
candidate gene. Candidate genes have a CS of 1 tom, where 1 indicates
the least and m the most stringent cutoff.
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Input data
Labels. Freund et al.47 have recently defined 20 classes of Mendelian
disorders which resemble common complex diseases. First, they
defined lists of standardized clinical phenotype terms for 62 complex
traits and used these lists to query the OnlineMendelian Inheritance in
Men (OMIM)95 database to retrieve lists of Mendelian disorder genes
for every complex trait. Subsequent hierarchical clustering of the
retrieved gene lists reveals 20 disease group clusters among the 62
complex traits. Next, Freund et al. gathered GWAS genes for the same
62 traits and compared theGWASgeneswith the 20Mendelian disease
clusters. They oberseved that the (common complex) GWAS genes
have a significant overlap with phenotypically related Mendelian dis-
ease clusters and used this significant association to map GWAS traits
to the Mendelian disease clusters. Effectively this establishes a genetic
and a symptom based connection between the Mendelian and the
common complex forms of diseases. Importantly, Mendelian genes
“clearly fulfill the core gene definition”14. Thus, we have chosen the
Mendelian gene sets proposed by Freund et al. as reliable “known
positives” for each disease group. In total we use 598 Mendelian dis-
order genes for cardiovascular disease, 550 for immune dysregulation,
128 for body mass disorders, 182 for diabetes, and 623 for insulin
disorders.

Disease gene prediction is inherently a positive unlabeled (PU)
learning problem. Despite this, it is a common approach to compose a
supposedly “reliable” negative training set to transform the problem
from a PU learning task into semi-supervised classification39,40. Precise
negative training sets are inherently difficult, if not impossible, to
obtain as this requires a positive demonstration that a given gene has
no function in a specific, or even a panel of diverse diseases. In light of
the modification of genetic risk by genetic variation and environ-
mental factors it requires immense resources to demonstrate the lack
of involvement, which renders this approach essentially impossible, if
a statistically meaningful negative training set is required. Alternative
approaches make assumptions about the nature of disease genes and
then define negatives that contrast these assumptions. In different
contexts this has shown to lead to very strong biases96,97, since even
inconspicuous household genes host a higher-than-average rate of
disease genes98. Moreover, using negatives that are most dissimilar to
the positives in the input space encourages ML algorithms to find
trivial solutions, artificially inflating performancemetrics while leading
to suboptimal results. In light of these substantial challenges, we
decided to use a PU learning approach for core disease gene identifi-
cation and rely on an internal threshold and external validation to
assess precision of the results.

Nodes and node features. In the following we define an input matrix
Xð0Þ 2 Rn ×p, which is used for all experiments where the number of
nodes n and the number of features per node p depend on the disease
and data availability. The full list of nodes contains nfull = 19220 protein
coding genes. We use tissue-wise median gene expression and GWAS
summary statistics as input features, which have to be available for
every gene. For the gene expression we use GTEx v7 data which has
been obtained via RNASeq across 44 human tissues encoded as med-
ian transcript permillion (TPM)99 across allGTEx samples of one tissue.
Additionally, we use normalized gene expression levels for 19 different
blood cells and total peripheralmononuclear blood cells (PBMC) from
the human protein atlas100. For each node (gene) this results in a gene
expression feature vector of length 63, which is used throughout all
analyses that make use of gene expression information, regardless of
the input graph. We gathered genome-wide summary statistics from a
collection of GWAS of 114 traits that were assembled by the GTEx
consortium101 and are available on zenodo102. We converted our pro-
tein names/gene symbols to Entrez gene ids and mapped them to the
corresponding annotations on the human genome assembly 38. Next
we aggregated the GWAS summary statistics on the gene-level using

MAGMA103 based on the positional overlap of SNPs and gene annota-
tions with an upstream/downstream window of 10 kb. GWAS traits
have been mapped to the relevant Mendelian disorder by ref. 47.
(SupplementaryData 25, see section “Labels” above). Finally, weused8
GWAS traits for cardiovascular disease (BW, CAD, HDL, HR, LDL, RBC,
PLT, TRIG), 7 for immune dysregulation (CD, CEL, IBD, MS, RA, SLE,
UC), 7 for bodymass disorders (BMI, BW, HDL, FAT, T2D, TRIG,WHR),
6 for (monogenic) diabetes (BW, HDL, FAT, T1D, T2D, TRIG) and 4 for
insulin disorders (BMI, CAD, FG, WHR). We integrate the different
sources (GWAS and gene expression) by concatenating the feature
vectors from both sources, i.e. number of SNPs per gene, gene-level p-
value, gene-level Z-value for every associated GWAS trait and tissue-
specific gene expression, for every gene. Genes for which at least one
of the mentioned input features could not be gathered are excluded
from the analysis. This leaves n = 17320 out of nfull= 19220 for cardio-
vascular disease, n = 17042 for immune dysregulation, n = 17398 for
body mass disorder, n = 17460 for diabetes and n = 17401 for insulin
disorders (see Supplementary Data 25).

Finally, all input features were scaled by quantiles using scikit-
learn’s (v1.0.2) RobustScaler104 to facilitate the processing in neural
networks. Unlike gaussian normalization, this method is more robust
to outliers and extreme skewness of input features.

It is important to point out that Speos is a fully extensible fra-
mework, which allows the user to add more features by adding a
minimal description and a preprocessing function as outlined here:
https://speos.readthedocs.io/en/latest/extension.html#additonal-
node-features.

Edges and types of networks. Networkmaps have been generated for
different modalities of biological regulation or tissue-specific mani-
festations. In total, we use 33 different networks in ourmodel. Protein-
protein interaction networks (PPI) have been widely used for the
analysis of the genetic background of diseases and can be obtained
using various methods105. Affinity-purification mass spectrometry-
based maps predominantly identify stable complexes and contain a
mix of direct and indirect associations105. For this, we use the system-
atically collected BioPlex 3.0 HEK293T and BioPlex 3.0 HCT11619

(accessed 17.3.22). Additionally, we use the Human Reference Inter-
actome (HuRI) (accessed 17.3.22), which has been obtained using a
binary multi-assay mapping pipeline, which identifies predominantly
directly contacting proteins18. Both BioPlex and HuRI were generated
in systematic experimental approaches. Additional PPI network data
are derived from the IntAct database22 (accessed 11.5.22), which is a
manually curated and annotated source of protein-protein interac-
tions. For our analysis, we use only human interactions and further
filter them into two subsets. Thefirst contains all interactions that have
been labeled as “Physical Association” including its subcategories, and
includes, analogous to AP-MS-based data, direct and indirect protein
associations e.g., in large complexes or mediated by rRNAs in the
ribosome. The second category “direct interactions” is a strict subset
of IntAct Physical Association and requires unambiguous evidence for
direct interactions using biochemically purified proteins. In contrast to
the systematically collectedHuRI and BioPlex datasets, IntAct contains
interactions sourced from hypothesis-driven small-scale studies and
thus represents the biases inherent to this research approach18,25,26.

The next type of network that is usually imposed on genes is gene
regulatory networks (GRN). Gene regulatory networks are usually
directed. Edges run from a transcriptional regulator (the transcription
factor—TF) to its target gene. We use 27 tissue-specific GRNs obtained
from GRNdb106 (accessed 29.3.22). These networks have been inferred
using enriched TF motifs and RNA-seq expression data of healthy
human tissues from GTEx100,106. Finally, we use two types of relations
from Hetionet (accessed 18.3.22) to define edges107,108. The relation
“Gene→regulates→Gene” is a non-tissue-specific GRN that has been
established fromRNA-seq data by the original authors of Hetionet. The
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relation “Gene–covaries–Gene” captures coevolutionary patterns of
two genes which has been shown to aid in disease gene
prioritization109.Wedonot include the third relation that runs between
genes, “Gene–interacts–Gene”, since we already include several prime
candidates for PPIs.

At this point we would like to emphasize that Speos is a fully
extensible framework, which allows users to add more adjacency
matrices by adding a minimal description as outlined in the doc-
umentation: https://speos.readthedocs.io/en/latest/extension.html#
adding-a-network.

Modeling networks for machine learning
All nodes in the used networks represent genes or their encoded
protein products, thus the networks represent homogeneous graphs.
For each disease, the set of nodes is independent of the network from
which the edges are sourced and represents all protein coding genes
for which the necessary data is available (see Nodes and node fea-
tures). For ourmachine learning approachwemodel each network as a
directed graph. In case of PPI networks, which are inherently undir-
ected, we introduce two edges between two connected genes genea
and geneb, each going in a different direction, so that the there exist
both edges genea ! geneb and geneb ! genea. In case of gene reg-
ulatory networks which are inherently directed, we only model the
edges running from the transcription factor (TF) to the modulated
genes geneTF ! geneb, but not vice versa. In the experiments where
multiple networks are used simultaneously, each edge is also given a
type rϵR, which indicates the network the edge is sourced from. This
means that two connected genes genea and geneb can, but don’t have
to be connected bymore than one edge of different edge types r1 and
r2 : genea!r1 geneb and genea!r2 geneb. In this case, the graph neural
networks used are aware of edge types and treat the edges e1 and e2

seperately. Isolated nodes, i.e., nodes with degree of zero, are included
in the experiments, and are convoluted with themselves during graph
neural network processing.

Model architecture
Ourgeneralmodel architecture formostof our base classifiers consists
of three consecutively arranged modules: pre message passing, mes-
sage passing and post message passing (Supplementary Fig. 5a). The
pre and post message passing consist of fully connected linear layers,
interspersed with exponential linear unit (ELU) activation functions110.
Their task is to transform the dimensionality from the input dimension
to the desired hidden or output layer’s dimension. Additionally, they
serve as feature extraction layers, where pre message passing extracts
and transforms the features so that the message passing can be most
efficient, and the post message passing transforms the result of the
message passing into a prediction for every gene. Based on hyper-
parameter optimization, we have chosen two hidden layers plus the
input/output layer for both pre and post message passing with a hid-
dendimensionof 50 (see SupplementaryNote 2). Themessagepassing
is where the actual graph convolutions take place using graph neural
network (GNN) layers. Based on hyperparameter optimization (Sup-
plementary Fig. 6) we have chosen two GNN layers, each followed by
ELU nonlinearity and instance normalization layers111.

GNN-basedmethods. GNNs have recently seen a rapid development
since Kipf and Welling have proposed their seminal GCN layer48.
Since then, numerous adaptations of the GCN layer have been pro-
posed, focusing on different weaknesses of the original formulation.
We have explored 11 different types of GNNs implemented in
PyTorch Geometric112 (v2.0.4) and assessed their suitability for our
task. Speos allows the user to choose any of these convolution layers,
as well as the number of hidden layers and hidden dimensions of the
network. For a detailed account of the graph convolutions we
examined alongside with the resulting change in performance, see

Supplementary Note 2. Here we introduce layers that are used
throughout our work.

Graph convolutional network layer (GCN). The GCN layer is defined
as follows:

Xðt + 1Þ =D�1=2ðA+ IÞD�1=2XðtÞWt ð1Þ

where t corresponds to the t-th layer of the network. Usually, self-loops
are added by adding the identity matrix I to the adjacency matrix A
which is then normalized by the node degree matrix D. The resulting
normalized adjacency matrix is then multiplied with the node feature
matrixXðtÞ and a trainable weight matrixWt . The node-specific update
rule following this layer definition, also called message passing, is
defined as follows

xðt + 1Þ
v =Wt

X
u2NðvÞ

av,uffiffiffiffiffiffiffiffiffiffiffi
dvdu

p xðtÞ
u : ð2Þ

wherexðt + 1Þ
v is the latent representation of node v at layer t + 1, which is

composed of a linear combination of the latent representations xðtÞ
u of

nodes at layer t in theneighborhoodof v,NðvÞ, weightedby anoptional
weightav,u of the edgebetweenu and v and thedegreeof thenodes,dv

and du. In our experiments, all edges are weighted identically
with av,u = 1.

Topology adaptive graph convolution (TAG). TAG49 has been pro-
posed to address the limitation of GCN layers to the 1-hop neighbor-
hood of each node, which implies that the receptive field of GCNs in
the graph is directly dependent on the number of layers. TAG contains
a hyperparameter K which manages the depth (number of hops) that
each TAG layer can reach within the graph. It achieves this by using
powers of the adjacency matrix

Xðt + 1Þ =
XK

k =0

ðD�1=2ðA+ IÞD�1=2ÞkXðtÞWt,k : ð3Þ

We use two layers of TAG with a K of 3, which means that each
node’s representation canbe influencedbynodes 3 hops away for each
TAG layer used. It furthermore employs skip-connections between
layers so that unhelpful information can be blocked. These skip con-
nections are encoded in the weight matrix Wt,k for k =0, as
ðD�1=2ðA+ IÞD�1=2Þ0 = I. Like GCN, TAG is not aware of edge types, so it
is only applied on individual networks.

Relational graph convolution (RGCN). RGCN50 extends the idea of
GCN to be aware ofmultiple types R of edges between nodes, denoted
as r 2 f0,1,:::,jRj � 1g. Every layer t therefore learns separate weights
WðtÞ

r of node v’s neighborhood for each type of edge r and then sums
these up

xðt + 1Þ
v =WðtÞ

rootx
ðtÞ
v +

X
r2R

X
u2Nr vð Þ

1
Nr vð Þ
�� ��W

tð Þ
r x tð Þ

u

0
@

1
A: ð4Þ

It furthermore learns edge-independent weights W ðtÞ
root that are

multiplied with v’s node features and added to the neighborhood
representation.

Feature-wise linear modulation convolution (FiLM). The FiLM51 GNN
layer has been proposed as a generalization of several relational GCN
architectures such as relational graph convolution (RGCN) or rela-
tional graph attention (RGAT)113 and is based on the idea of feature-
wise linear modulation which has recently been proposed for visual
reasoning52. It introduces an offset beta and a linear coefficient gamma
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for every feature of an incomingmessage xðtÞ
u based on the edge type r

and the receiver node v

xðt + 1Þ
v =

X
r2R

X
u2Nr ðvÞ

σðγðtÞ
r,v �Wrx

ðtÞ
u +βðtÞ

r,vÞ: ð5Þ

Where σ is a nonlinearity function (Rectified Linear Unit: ReLU) and�
is the element-wise or Hadamard product. The coefficients γðtÞ

r,v and
offsets βðtÞ

r,v applied to every message xðtÞ
u from node u in the

neighborhood of v for each edge type r, Nr ðvÞ, are obtained by
training a hypernetwork g

βðtÞ
r,v,γ

ðtÞ
r,v = g x tð Þ

v ,W tð Þ
g,r

� �
: ð6Þ

so thatbothWg,r andWr contain trainableparameters.Hypernetworks
are neural networks that learn parameters of other neural networks to
increase weight-sharing and reduce model complexity and memory
requirements114,115. In FiLM, g is implemented as a single linear layer. In
other words, FiLM g the message that a node u passes to a node v
conditioned on the relation r and the latent representation of the
receiving node v.

Node2Vec. Methods like Node2Vec53 can bridge the gap between
graph-native and non-graphmethods by first preprocessing the graph,
embedding each node into vector space in an unsupervised setting
using random walks. These embeddings can then be used by MLPs or
regressions as regular input features. We used the fastnode2vec116

(v0.0.5) command line interface of gensim’s117 (v4.1.2) implementation
of Node2Vec with context 5, 100 dimensions, walk length 100 and 500
training epochs on all networks simultaneously. Because Node2Vec
does not use edge types, using all input networks is effectively
equivalent to using a single network.

Non-GNNmethods. LINKX118 is an MLP-based method that first trains
MLPs on the input features and adjacencymatrix separately and then a
third MLP that joins the information of the previous two. It has been
proposed to address the shortcomings of GNNs when the first order
neighborhood is heterophilous, i.e. the connected nodes do not tend
to have the same label. To do so, it trains multiple MLPs: MLPA is
trained directly on the adjacency matrix, using each row of the matrix
as feature vectors for the respective nodes. MLPX is trained on the
feature matrix Xð0Þ. Finally, MLPf uses the concatenated latent repre-
sentations produced byMLPA andMLPX as input and predicts the class
label ŷ:We implemented LINKX in PyTorch119 (v1.8.0) and found that it
is prone to overfitting due to the largeweightmatrixof thefirst layer of
MLPA. We have therefore placed an L1 regularization term on this
matrix which wemultiply with a factor α and add it to the task-specific
loss. We have searched α in powers of ten from 100 to 10−5 and found
the best performance with α = 10−2.

The MLP used as a base-classifier resembles the general model
architecture outlined above with the number of message passing lay-
ers set to 0, only leaving fully connected layers interspersed with ELU
nonlinearity. Logistic regression and random forests are implemented
using scikit-learn’s104 (v1.0.2) LogisticRegression and RandomFor-
estClassifier classes with balanced class weights and sample weights 2
for positives and 1 for unlabeled genes. As they are not able to directly
use graph-structured data, they either only use the feature matrix Xð0Þ

(Only Features) or use a concatenation of X ð0Þ and the latent node
features obtained via Node2Vec (Network + Features).

Hyperparameter optimization (HPO). A systematic HPO is crucial for
mostmachine learning purposes. We utilize a fourfold cross validation
for HPO and report the performance in recovering held out known
positives, considering all unlabeled genes as negatives. We assess the
area under the receiver operator characteristic curve (AUROC) as

performance metric since we expect an ideal classifier to rank the
known positives higher than the average unlabeled gene. To avoid a
bias towards a small holdout set given our already small set of reliable
positives, each fold trains on 75% of all genes and assesses holdout
performance on the remaining 25%. Using the same data for HPO and
the validation of the final ensembles would be considered an infor-
mation leak, resulting in overestimation ofmodel performance. This is
whywe evaluate the final performance of the ensembles exclusively on
additional independent label sets (external validation) which are not
present during the HPO. Therefore, the integrity of the training regi-
men is not compromised. For HPO, we train four models on each fold
and report the mean of all 16 resulting models. We first searched for
optimal hidden dimension (data not shown), number of hidden layers
and type of single-network GNN layer using a selection of networks
(Supplementary Fig. 6). Then we searched for the optimal network
using all 35 networks and for the optimal multi-network GNN layer
using the union of all networks (Supplementary Fig. 7a). See Supple-
mentary Note 2 for detailed results.

Loss function. The loss or risk function Lmeasures the goodness of fit
of the model and provides the error term from which the gradient is
calculated which directly influences the tuning of model parameters
via backpropagation. We use class-label 0 for unlabeled genes and
class-label 1 for labeled genes and use binary cross entropy, also called
logistic loss, as loss function. To reflect theuncertainty of the true label
of class 0 and the strength of evidence for our label class 1, we have
implemented two mechanisms for loss tuning which we refer to as
dilution and amplification, inspired by ref. 93,103,120. Dilution is a
downsampling process where, for each training epoch, we gather a
different random subsetUsampled sampled uniformly with replacement
from all unlabeled genes U so that jUsampled j= jPtrainj � d =u* where
Ptrain is the set of all positives in trainj,i and d is the dilution hyper-
parameter. This has the advantage that not every unlabeled gene
contributes to the loss term in every epoch, allowing unlabeled genes
that resemble positive genes to receive a higher prediction, and bal-
ancing the contribution of unlabeled and positives to the loss term,
eradicating the influence of class imbalance.

The final loss function is composed as follows:

L=
Xu*

u=0

BCEðyu,ŷuÞ
d

+a �
XjPtrain j

u=0

BCEðyp,ŷpÞ ð7Þ

Where BCE stands for binary cross entropy or logistic loss, a is our
amplification hyperparameter, yu =0 and yp = 1.We use d = 10 and a=2
in our experiments. For amplification, we sum the individual loss terms
of positives used for training and multiply it with the amplification
factor a. This has the effect that false-negative predictions become a
times more costly than false-positive predictions. If there exists an
unlabeled gene, which is indistinguishable froma knownpositive, both
dilution and amplification result in a loss that encourages themodel to
predict both genes as positive (class 1) rather than both as negative
(class 0). Although this might lead individualmodels to overfit to their
positive examples in training, ensembles are expected to thrive under
these circumstances121. We optimize L via gradient descent using an
Adam122 optimizer with learning rate 10−3.

Model interpretation
As candidate genes are predicted by an ensemble, we provide model
interpretations based on the average importance of an edge or input
feature across the whole ensemble. A related idea of model inter-
pretation has recently been formulated as model class reliance123. To
assess the relianceof the ensemble on certain edges andnode features,
we gather the respective edges’ and nodes’ importance using inte-
grated gradients69 from every model of the ensemble for a query gene
c. Broadly speaking, integrated gradients assign importance values
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based on the change in gradients when input features are substituted
with a contrast, usually a vector containing only zeros. For edge
importance, this means that we introduce edge weights of 1 for every
edge which are then substituted with edge weights of 0. An edge
weight of 1 does not alter themessage passing and an edgeweight of 0
means removing the edge, while gradients backprogated to the
respective edge weights can be used for inspection. As we predict the
importance based on the gradients backpropagated from gene c, the
obtained importance values are valid only for the interpretation of the
prediction for gene c. Each individual model’s absolute integrated
gradients are minmax scaled to the interval [0,1] across all nodes and
edges in the graph.Minmax scaling has the advantage of a comparable
output space, but has the tendency to over-emphasize negligible dif-
ferences in the input space. To alleviate this problematic tendency, we
use the mean value of all models’ minmax scaled importance values,
assuming that an important edge or input feature will repeatedly be
close to 1 and an unimportant edge or input feature close to 0, leaving
the intermediate values to edges and features that are of ambivalent
importance.

Edge Importance Iv,e 2 R of edges e 2 E for candidate gene v over
all models i 2 f1,2,:::,n �mg from all inner and outer folds against a
contrast edge weight of 0:

Iv,e =
1

n �m
X
i

minmax8e2E ðjIntegratedGradientsiðe,0ÞjÞ ð8Þ

Note that minmax operates across the set of all edges E (union of
all edges across networks in the case of FiLM). Node input feature
Importance Iv,n 2 Rp of for input features f 2 Rp nodes n’ 2 N for
candidate gene v over all models m from ensemble M against a con-
trast vector containing only zeros (0! 2 Rp):

Iv,n0 =
1

n �m
X
i

minmax8n02NðjIntegratedGradientsiðn0,0!ÞjÞ ð9Þ

To get a more detailed interpretation of node v’s own input fea-
tures, we also obtain the importance Iv,v without removing the sign of
the output of integrated gradients and minmax scale it across its own
dimensions:

Iv,v =
1

n �m
X
i

minmaxvðIntegratedGradientsiðv,0!ÞÞ ð10Þ

Thisway, themost important feature across allmodelswill receive
an importance score close to 1 or −1, depending on the direction of its
influence, and the least important feature will receive an importance
score close to 0.

For implementation of GNN interpretations we use the interface
of PyTorch Geometric112 (v2.0.4) with the PyTorch121-based model
interpretation library Captum124 (v0.4.1).

External validation and core gene properties
As outlined above, we use all available positive labels for training due
to their scarcity. To avoid an information leak between training and
validation, we base the validation of our candidate genes on labels
sourced from external datasets which are not present during training
and hyperparamter optimization but reflect several characteristics of
core genes.

MouseKOexperiments.We assume that if a geneplays a pivotal role in
a disease, severely disrupting the gene’s function will result in a phe-
notype that resembles the disease. To assess this hypothesis, we gath-
ered the samephenotypical queries that ref. 47. used toobtain the labels
for the Mendelian genes (Supplementary Data 26). We then used these
queries to retrieve a set of genes that, if deliberately knocked out in

mice, produce phenotypes that match the queries using the Mouse
Genome Database (MGD)125,126 (accessed 17.3.22). We used an empty
query to get a background set of all available mouse knockout genes.
We then translated themouse genes to their human orthologs using the
official MGD mouse-human homolog table (accessed 28.11.22), entries
without a human ortholog were discarded, resulting in 16370 genes. For
the assessment of candidates, we removed Mendelian genes from the
background sets and those genes that were excluded from the predic-
tions due to missing input features, such that the respective intersec-
tions of 14116; 13936; 14586; 14541; 14123 (Supplementary Data 25)
formed the background sets for the following analysis (Supplementary
Data 2 and 3). Nextwe tested theMendelian genes of each disease for an
enrichment in mouse KO genes against all non-Mendelian genes in the
background set, and the candidate genes against all non-Mendelian non-
candidate genes in the background set using Fisher’s exact test (Sup-
plementary Data 2 and 3). We further tested if restricting the candidate
genes to a higher consensus score increases their enrichment. To do so,
we tested each CS bin for enrichment against all protein coding non-
Mendelian genes with a lower CS. We adjusted the P-values of the
multiple Fisher’s exact tests by FDR correction.

Differential gene expression. We gathered differentially expressed
genes for subcategories of cardiovascular disease and immune dysre-
gulation by individually querying the following disease subtype in the
GEMMA database:127 coronary artery disease (DOID_3393), Atrial Fibril-
lation (HP_0005110), aortic aneurysm (DOID_3627), ischemia
(DOID_326), hypertension (DOID_10763), atherosclerosis (DOID_1936),
Crohn’s disease (DOID_8778), ulcerative colitis (DOID_8577), lupus ery-
thematosus (DOID_8857), rheumatoid arthritis (DOID_7148), multiple
sclerosis (DOID_2377), obesity (DOID_9970), Decreased body weight
(HP_0004325), Increased body weight (HP_0004324), Abdominal
symptom (HP_0011458), diabetes mellitus (DOID_9351), hyperglycemia
(DOID_4195). Non-human entries were removed. We applied Fisher’s
exact tests (Supplementary Data 8 & 9) to look for an enrichment of
differentially expressed genes in the respective gene sets.

Gene set enrichment analysis. We applied gene set enrichment ana-
lysis (GSEA) to our candidate gene sets using all using the respective
list of ‘considered genes’ as background. Gene Ontology (GO) Enrich-
ment Analysis performs GSEA based on the GO ontology biological
process128,129 (Supplementary Data 6). We obtained the GO annotations
through the tool GeneSCF130.

LoF and missense intolerance. We gathered gene-level LoF and Mis-
sense Intolerance Z-scores from the ExAc Cohort56 where a high value
indicates a high intolerance for LoF or missense mutations, respec-
tively. In total we obtained Z-scores for 16834 of our nfull of 19220
genes, which correspond to 15709 for cardiovascular disease, 15,450
for immune dysregulation, 15781 for body mass disorders, 15787 for
diabetes and 15,784 for insulin disorders. We conducted a Tukey’s
Honestly Significant Difference test (Supplementary Data 8, 9)
between Mendelian disorder genes, candidate genes and non-
candidate genes.

Drug targets and druggability. We obtained drug-gene interactions
from the Drug Repurposing Knowledge Graph80, which has been
gathered from a large compendium of databases relating genes, dis-
eases, drugs and several other biomedical domains. We extracted only
edges linking drugs and genes and removed edges that have been
automatically mined from preprint servers. We considered as drug
targets (DT) genes that have at least one edge to any compound and
applied Fisher’s exact tests (Supplementary Data 22) to look for
enrichment of drug targets in our gene sets. To analyze the drug-
targeting degree we counted for all drug targets the number of drug-
gene interactions. We then applied pairwise Wilcoxon rank sum tests
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between the counts of Mendelian disorder genes, candidates and non-
candidates and adjusted the P-values using FDR (Supplementary
Data 22). We report the fold increase of the median drug-targeting
degree compared to non-candidate genes (xDC). Genes encoding
druggable proteins were obtained from DGIdb131. Enrichment for
“druggable genes” (Dr) in any setwas assessed using Fisher’s exact test.
To evaluate not-targeted but druggable genes (Dr-), genes encoding
products that are already targeted by a drug from the respective gene
sets were removed and the remaining druggable proteins tested for
enrichment using a Fisher’s exact test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and its Supplementary Information files. All
datasets used in this study are already published and were obtained
from public data repositories. Edges and Networks: BioPlex 3.0 edge-
lists are available at https://bioplex.hms.harvard.edu/interactions.php.
HuRI edgelist is available at http://www.interactome-atlas.org/
download. Intact edgelist is available at ftp://ftp.ebi.ac.uk/pub/
databases/intact/current/psimitab/intact.txt. GRNdb edgelists are
available at http://grndb.com/download/. Hetionet edgelist is available
at https://github.com/hetio/hetionet/tree/master/hetnet/tsv. Nodes
and Features: Full list of human protein-coding genes is available at
https://www.genenames.org/download/statistics-and-files/, accessed
18.3.22. Positive labels are available at https://github.com/bogdanlab/
gene_sets/tree/master/mendelian_gene_sets, accessed 17.3.22. GWAS
summary statistics are available at https://doi.org/10.5281/zenodo.
3629742. Tissue-specific median gene expression values are available
at https://storage.googleapis.com/gtex_analysis_v7/rna_seq_data/
GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.
gz. Median gene expression in blood cells is available at https://v19.
proteinatlas.org/download/rna_blood_cell.tsv.zip, accessed 17.3.22.
External validation:Mouse knockout genes are available at http://www.
informatics.jax.org/allele, accessed 17.3.22. Lists of differentially
expressed genes were downloaded from https://gemma.msl.ubc.ca/
phenotypes.html, accessed 2.8.22. LoF and Missense Mutation intol-
erance Z-scores are available at ftp://ftp.broadinstitute.org/pub/ExAC_
release/release1/manuscript_data/forweb_cleaned_exac_r03_march16_
z_data_pLI.txt.gz. List of drug targets are available at https://dgl-data.
s3-us-west-2.amazonaws.com/dataset/DRKG/drkg.tar.gz. Lists of
druggable genes are available at https://www.dgidb.org/downloads,
accessed 24.3.22. For reproducibility, the data can be jointly obtained
via Speos’ repository: https://github.com/fratajcz/speos or in its pro-
cessed form from https://doi.org/10.5281/zenodo.7468127.

Code availability
Speos is open source, implemented in python and available at https://
github.com/fratajcz/speos. Config files to reproduce the benchmarks
andexperiments are also available in that repository. The code canalso
be obtained via zenodo132 at https://doi.org/10.5281/zenodo.8416439.
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