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Covariance patterns between sleep health
domains and distributed intrinsic functional
connectivity

Yulin Wang 1,2, Sarah Genon 3,4, Debo Dong 2,3, Feng Zhou2, Chenyu Li5,
Dahua Yu6, Kai Yuan7, Qinghua He 2, Jiang Qiu2, Tingyong Feng 2,
Hong Chen2 & Xu Lei 1,2

Sleep health is both conceptually and operationally a composite concept
containing multiple domains of sleep. In line with this, high dependence and
interaction across different domains of sleep health encourage a transition in
sleep health research from categorical to dimensional approaches that inte-
grate neuroscience and sleep health. Here, we seek to identify the covariance
patterns between multiple sleep health domains and distributed intrinsic
functional connectivity by applying a multivariate approach (partial least
squares). This multivariate analysis reveals a composite sleep health dimen-
sion co-varying with connectivity patterns involving the attentional and tha-
lamic networks and which appear relevant at the neuromolecular level. These
findings are further replicated and generalized to several unseen independent
datasets. Critically, the identified sleep-health related connectome shows
diagnostic potential for insomnia disorder. These results together delineate a
potential brain connectome biomarker for sleep health with high potential for
clinical translation.

It is increasingly recognized that sleep health (SH) is a multi-
dimensional construct1,2. Sleep health has been defined as “a multi-
dimensional pattern of sleep-wakefulness, adapted to individual,
social, and environmental demands, that promotes physical and
mental well-being”3. Resting on this theoretical consideration and
previous researches examining associations between different sleep
measures and health outcomes3–5, sleep health mainly consists of six
domains of sleep and circadian functioning: Regularity in sleep,
Satisfaction with sleep/sleep quality, Alertness during waking hours,
Timing of sleep, Sleep Efficiency/Continuity, and Sleep Duration (Ru-
SATED). Emerging studies also pointed out that there exist other
domains that can be considered as relevant to the construction of

sleep health, such as sleep quality6, insomnia symptoms7, and sleep
medication use7.

Recent studies have begun to construct a sleep health composite
towards studying multiple domains of sleep1,8–10. Indeed, previous
research has mostly focused on single indicators of sleep health,
making it difficult to provide a consistent guideline for research
and practical settings6. A composite measure not only would
provide a more comprehensive indicator of sleep health than any
single standard measure11–13 but also would be less prone to noise and
hence could present a greater neurobiological validity14. For instance,
Dalmases and colleagues reported that the Ru-SATED score was
more strongly linked with self-rated health status than sleep duration
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alone15. Nonetheless, considerations of constructing a sleep health
composite with multi-domains of sleep health rather than individual
sleep metrics is still an emerging research area with many remaining
gaps in the literature14. In particular, the neurobiological validity
of a composite score could be importantly increased by capitalizing
on its association with intrinsic functional connectivity in the
population.

Resting-state networks are typically derived from the connectivity
profile of spontaneous fluctuations in functional MRI (fMRI) signals
and are thought to reflect the intrinsic brain functional connectivity16,17.
Converging research evidence across datasets, methods, and labora-
tories has agreed upon the principle resting-state networks such as the
somatomotor, visual, default mode, and fronto-parietal control
networks18,19. In that context, resting-state functional connectivity
(RSFC), such as the anti-correlations between the default mode net-
work (DMN) and the task-positive network (TPN) was found to be a
reliablebiomarker to classify different sleep stages [for a review, see20].
Also, RSFCwas found to be influenced by sleep deprivation evidenced
by the reduced connectivity within the DMN21, the dorsal attention
network (DAN), and the auditory, visual, and motor networks [for a
tabular overview, see ref. 16]. Moreover, abnormalities in functional
network modules subserving hyperarousal, salience, sensory-motor,
cognitive, and self-referential processes, including the limbic, thala-
mus, sensory-motor, fronto-parietal control, and default mode net-
works have been shown in insomnia disorder [for a review, see
refs. 22,23]. These lines of research together suggest RSFC contains
crucial information underlying the neurobiological mechanisms of
different aspects of sleep health.

Actually, RSFC has been shown to be associated with some
domains of sleep health such as sleep duration24, sleep quality25 and
timing of sleep (or chronotype)26. Despite this increasing interest in
revealing the interplay between intrinsic brain functional connectivity
and domains of sleep health, existing studies have been limited in

several respects. First, most have adopted a categorical approach, or
only examined a single domain of sleep health, and are therefore
unable to capture the heterogeneity across different sleep health
domains. Second, constructions of sleep health composite were
mainly driven by the conceptual Ru-SATED model, rather than being
guided by the intrinsic structure of the brain and behavior features.
Third, existingwork in sleep health composite has often used relatively
small samples (e.g., dozens of participants)27. While multivariate
techniques allow the examination of both multiple brain systems and
sleep health domains simultaneously, such techniques usually require
large samples28,29. Also in line with these considerations, the high
dependence and interaction across different domains of sleep health
(e.g., short sleep duration is usually accompanied by lower efficiency
and regularity, lower sleep satisfaction/quality) encourages a transi-
tion in sleep health research14 from categorical to dimensional
approaches that integrate intrinsic brain functional connectivity and
sleep health.

In this study, we addressed this research gap by relating RSFC to a
large set of sleep health measures in a single integrated analysis to
identify a brain connectome biomarker for sleep health. More speci-
fically, we addressed the following four research questions (Fig. 1): (1)
Can we identify a composite sleep health dimension that relates to
RSFC patterns? (2) Can the obtained dimension be replicated and
generalized to unseen independent datasets? (3) A growing number of
studies highlights the relationships between alterations of some neu-
rotransmitter systems including the serotonin receptors, glutamate,
and γ-aminobutyric acid (GABA) and sleep disturbances or “‘unheal-
thy” sleep30–32. Accordingly, we here examined whether the brain
connectomeunderlying interindividual differences in sleepphenotype
may be related to specific neurotransmitter systems (based on neu-
rotransmitter receptormaps33). (4) Does the sleep-health-related brain
connectome have predictive utility for both the health population and
insomnia disorder?

Q1: Can we identify a composite sleep health dimension 
that relates to RSFC patterns ?

Q2: Can the obtained dimension be replicated and 
generalized to unseen independent datasets? 

Q3: What is the neuromolecular relevance of the brain 
connectome underlying interindividual differences in
sleep phenotype? 

Q4: Does the sleep-health related brain connectome 
have predictive utility in health population and insomnia? 
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Dataset 4: n=101

Across multiple sleep health domains

PSQI-T
Insomnia severity index
Control and predictability
Hyperarousal
DBAS-sleep belief
Physical fatigue
Not get enough sleep
….

Connectome 

multivariate
Covariance

Connectome signature for latent dimension of sleep health

Dataset 1: n=687

Cross-dataset generalizability

Fig. 1 | Overview of research questions and main analyses. This study aims to
answer four research questions (Q1–4) to identify a brain connectome biomarker
for sleep health. To do so, this study used the multivariate and machine-learning

approach (i.e., partial least square, predictive modeling, classification) with four
independent datasets.
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To answer these questions, we first have capitalized on a large
sample of young adults from the Behavioral Brain Research Project to
Chinese Personality (BBP) by applying a machine-learning technique
called partial least squares (PLS)34–36. As a multivariate data-driven
statistical technique, PLS is capable of discovering the latent dimen-
sions that link interindividual variability in intrinsic functional organi-
zation to interindividual variability in behavioral measures spanning
multiple domains of sleep health. To comprehensively assess this lat-
ter, we included measures suggested by the Ru-SATED model, but we
also incorporated several additional metrics associated with sleep
health defined broadly6, that are: (1) beliefs, attitudes, and habits about
sleep, considering that individuals with more-positive beliefs and
attitudes about sleep or who adopt sleep-protective behaviors are
more likely to experience better sleep health37; (2) sleep deficiency
which also incorporates insomnia symptoms, sleep disorders and
sleep medication use, considering both sleep health and sleep defi-
ciency can be regarded as the anchors at either end of a continuum3;
(3) have one slept enough, whether one felt refreshed upon waking38,
the necessity of nap and the needed nap time were also incorporated
to evaluate the satisfaction with sleep/sleep quality6; (4) tendency to
engage in spontaneous waking thought39, attention-related
deficiency40 and fatigue41 as supplements to assess the alertness dur-
ing waking hours. To ensure that the latent dimensions linking sleep
phenotype to RSFC uncovered by PLS were robust, multiple control
analyses were performed. Furthermore, as multivariate approaches in
high-dimensional data such as PLS are prone to overfitting, a 10-fold
cross-validation was performed here to assess the generalization per-
formance of the latent dimensions to unseen test data.

As described below, we uncovered one latent dimension of the
RSFC that was highly correlated with one latent dimension of sleep
health in a discovery dataset (n = 687). This dimension was character-
ized by a specific spectrum of sleep health-related measures and by
specific RSFC features. This latter appeared as a neurobiologically
relevant connectome since theRSFC loadingswere spatially correlated
with the distribution of several neurotransmitter systems relevant to
sleep health, including serotonin receptors, as well as metabotropic
glutamate receptor 5 (mGluR5) and the γ-Aminobutyric acid type A
(GABAA) receptor30,31. Furthermore, the associative pattern was suc-
cessfully replicated, and the model showed generalizability in an
internal validation dataset (n = 628). Importantly, the identified con-
nectome pattern shows predictive utility for sleep quality in an inde-
pendent sample consisting of unrelated individuals from the Human
Connectome Project (HCP) dataset (n = 435). Finally, this connectome
pattern critically shows diagnostic potential to distinguish insomnia
patients (n = 52) from sleep-healthy subjects (n = 49) with an accuracy
of 79.12%. These results hence delineated a sleep health dimension
whose associated functional connectome could serve as an objective
neuroimaging biomarker in clinical translations, such as to assess
sleep-based interventions for improving brain health.

Results
PLS model reveals one robust dimension linking sleep health
and resting-state function connectivity
We sought to delineate multivariate relationships between resting-
state functional connectivity and sleep health in a large discovery
dataset (n = 687). To this end, we applied PLS, an unsupervised
machine-learning technique that seeks to find covariance between two
high-dimensional matrices, namely whole-brain RSFC and 36 beha-
vioral measures spanning multiple domains of sleep health. Following
preprocessing using a validated pipeline that minimizes the impact of
in-scanner motion (see “Methods” section), we constructed subject-
level RSFC using a 246-node parcellation system42 that includes 210
cortical regions and 36 subcortical regions. Prior to analysis with PLS,
we regressed age, sex, handedness, and head motion out of both the
RSFC andbehavior data to ensure that thesepotential confounders did

not drive results. The input data thus consisted of 30,135 unique
functional connections and 36 sleep health-related variables. The
selection of the sleep health measures was based on the consideration
of selecting available variables in the BBP that (1) represent central
domains of SH described in the Ru SATED3 as well as in the National
Sleep Foundation (NSF)’s Sleep Health Index6; (2) provide high con-
sistencywithprevious SH studies5,7,11; (3) drawamultifacetedpictureof
SH to abigger extendbasedon its broader definition.On thatbasis, the
chosen 36 variables were grouped into seven domains including (1)
Satisfaction with sleep/ Sleep quality; (2) Alertness during waking
hours; (3) Timing of sleep; (4) Sleep efficiency/ continuity;5) Sleep
duration; (6) Sleep deficiency; (7) Sleep beliefs, attitudes, and habits
(see “Methods” and Table S1 for the details).

Figure 2a shows the amount of covariance explained by each
latent variable (LV). Notably, only one LV (LV1) survived after permu-
tation testing with FDR correction (q <0.05) (Fig. 2b). Importantly,
several control analyses were performed to ensure the robustness of
theobtained LV1. See Table S2 for details. First, 10-fold cross-validation
was successful; PLS components estimated from 90% of the partici-
pants successfully generalized to the remaining 10% of participants, as
indicated by the significant correlation between RSFC and behavioral
composite scores in the test folds (LV1, mean r =0.17, permuted
p < 3.0 × 10−3). It should be noted that to avoid data leakage issues, the
adjustment for confounds and data standardization were performed
within the cross-validation loop (i.e., at first, we estimated parameters
of data standardization and confounds regression in the nine training
folds and then applied the obtained parameters to the test fold).
Second, PLS components were robust to global signal regression, total
intracranial volume regression, time (hour) of acquisition regression,
the pre-scanning positive and negative affect regression, body mass
index (BMI) regression, and family income regression, as indicated by
the high correlation (r >0.93, Table S2) between saliences of original
PLS and PLS with corresponding variable regression. Third, instead of
regressing age, sex, handedness, and headmotion from thedata, these
variables were added to the phenotypic data for the PLS analysis. The
results were largely unchanged as indicated by the high correlation
(r >0.92, Table S2) between the saliences of original PLS and PLS with
adding age, sex, handedness, and motion into the phenotypic data.
Fourth, PLS components were not driven by the non-Gaussian dis-
tributions of the behavioral data and skewed behavioral distributions,
as indicated by the high correlation (r > 0.98, Table S2) between sal-
iences of original PLS and PLS with quantile normalization to improve
the Gaussian distributions of the behavioral data. Fifth, the results
remained largely unchanged when using a different Seitzman et al.’
Atlas43 containing 300 regions for the RSFC construction, as indicated
by the high correlation (r = 0.99 for behavior data; r = 0.78 for RSFC
data) between loading scores of Brainconnectome Atlas and Seitzman
et al.’ Atlas, see details in Supplementary results, Figs. S1 and S2. Sixth,
to demonstrate the sleep health component was independent of both
the circadian timing of acquisitions and the state of alertness of indi-
viduals during the resting-state fMRI acquisition, we extracted the
dimension score of “Sleepiness” from the Amsterdam Resting-State
questionnaire (ARSQ)2.044 and time (hour) of acquisition, then corre-
lated them with both the RSFC and behavior composite scores for the
discovery dataset. The results revealed no significant correlation
between participants’ sleepiness and either their RSFC composite
score (r = -0.0349, p = 0.3605) or their behavior composite score
(r = –0.0223, p = 0.5603). Additionally, no significant relationship
between the acquisition time and either the RSFC composite score
(r =0.0395, p =0.3013) or the behavior composite score (r = –0.0393,
p =0.3941) was observed. Seventh, the first latent component was
robust across analytical approaches, which was evidenced by the high
correlation between the first principal component of the sleep health
behavioral measures (obtained by principal component analysis) and
the behavioral saliences of LV1(r = 0.91, p = 1.22 × 10-14).
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This survived dimension (LV1) accounted for 28.6% of RSFC-
behavior covariance (Fig. 2a), with significant association (r =0.50,
permuted p = 6.0 × 10-4) between RSFC and behavioral composite
scores (Fig. 2b). Figure 2c shows the top correlations between LV1’s
behavioral composite/loading score and the 27 significant sleep health
measures on the group level. A greater behavioral composite scorewas
associated with poorer sleep health (e.g., poor sleep quality, insomnia,
hyperarousal, dysfunctional beliefs and attitudes about sleep, physical
fatigue, not getting enough sleep). Correlations between LV1’s
RSFC composite/loading scores and the RSFCdata are shown in Fig. 2d
(unthresholded correlations) and Fig. 2e (significant correlations).
The significant edges were widely distributed throughout the brain,
contained a small portion of the total edges in the connectome
(5956 edges total out of 30135 or 19.76%). A total of 2666 common
edges (8.85% of the 30135 total edges) positively correlated with RSFC
composite score and a total of 3290 common edges (10.92% of the
30315 total edges) negatively correlated with RSFC composite score.

Figure 2f shows the significant RSFC correlations averaged within
and between networks defined by Yeo et al’s seven network19. Greater
RSFC composite score was associated with increased RSFC within the
subcortical network (SubC) mainly the thalamus (Fig. 3a and Fig. S3h),
and increased RSFC between DMN and the dorsal attention network

(DAN), between DMN and the ventral attention network (VAN),
between the fronto-parietal network (FPN) and DAN, between FPN and
VAN (Fig. 2d, e, f and Fig. S3c, S3d, S3f, S3g). Greater RSFC composite
score was associated with decreased RSFC within the Somatomotor
network (SMN) and the VAN (Figs. 2d, e, f and 3a; Fig. S3b, S3d), and
between the DAN and VAN, between the DAN and SMN, between the
SubC and DMN, between the SubC and FPN (Figs. 2d, 2e, 2f, and 3a;
Fig. S3c, S3c, S3b, S3h).

Figure 3b further demonstrates the relative importance of the
regions in the obtained significant RSFC pattern by showing the top
five nodes with highest weighted degree in both the positive and
negative networks (Table S3). Specifically, for the positive network, the
top five nodes with the greatest number of edges were primarily
located in the VAN, i.e., the dorsal insular cortex and precentral gyrus
(Fig. 3b). For the negative network, the top five nodeswith the greatest
number of edges were primarily located in the Subcortical regions, i.e.,
the thalamus, and somatomotor cortex (e.g., postcentral gyrus and
paracentral lobule) (Fig. 3b).

Cross-dataset replicability and generalizability
The robustness of the obtained LV1 was further ensured with a large
replication sample (N = 628) from the BBP (see “Methods” for the
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Fig. 2 | PLS reveals one robust dimension linking sleep health and resting-state
function connectivity in the discovery dataset. a The amount of covariance
explained by each latent variable (LV). Each orange dot represents a LV, only the
first LV (LV1) survived after permutation testingwith FDR correction (q <0.05). This
survived dimension (LV1) accounted for 28.6% of resting-state functional con-
nectivity (RSFC)-behavior covariance. b scatter plots to illustrate the significant
association between individual-specific RSFC and behavioral composite scores of
participants in LV1 (r =0.50, two-sided, permuted p = 6.0 × 10-4) using Pearson
correlational analysis. c significant 27 strongest correlations between participants’
behavioral measures and their behavioral composite scores on the group level.
Greater loading on LV1 was associated with poorer sleep health. Error bars indicate
bootstrapped standard deviation with 1000 bootstrap estimations (n = 1000).
Behavioral measures for which higher values indicate better sleep health are
colored blue. For example, sleep efficiency is colored blue because higher values
indicate better sleep health. d unthresholded correlations between participants’
RSFC data and their RSFC composite scores. Red (or blue) color indicates that

greater RSFC is positively (or negatively) associated with LV1. e thresholded cor-
relations between participants’ RSFC data and their RSFC composite scores (false
discovery rate q <0.05). The significant edges were widely distributed throughout
the brain, contained a small portion of the total edges in the connectome (5956
edges total out of 30135 or 19.76%). A total of 2666 common edges (8.85% of the
30135 total edges) positively correlated with RSFC composite score and a total of
3290 common edges (10.92% of the 30315 total edges) negatively correlated with
RSFC composite score. f correlations between participants’ RSFC data and their
RSFC composite scores, averaged within and between networks defined by Yeo
et al’s seven networks with significant bootstrapped Z-scores. The pink line repre-
sents a positive correlation while the blue line represents a negative correlation.
DMN, Default mode network; PSQI-T, total score of Pittsburgh Sleep Quality Index.
DBAS, Dysfunctional beliefs, and attitudes about sleep scale. FPN Fronto-parietal
network, VN Visual network, SMN Somatomotor network, DAN dorsal attention
network, VAN ventral attention network, LN limbic network. Source data are pro-
vided as a Source Data file.
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details). To do this, we replicated the PLS procedure conducted in the
discovery dataset with the replication dataset (see “Methods” for the
details). The LV1 accounted for 26.3% variance and still survived after
permutation testing with FDR correction (q < 0.05) in the replication
dataset with significant association (r =0.44, permuted p =0.006)
between RSFC and behavioral composite scores (Fig. S4). Importantly,
the obtained LV1 was largely replicated, evidenced by the high corre-
lation between the behavioral salience scores in the discovery and
replication dataset (r = 0.95, p ~ = 0, Fig. 4a), between the behavioral
loading scores in the discovery and replication dataset (r =0.99,
p ~ = 0, Fig. 4c), between the RSFC salience scores in the discovery and
replication dataset (r =0.71, p ~ = . 0, Fig. 4b), between the RSFC load-
ing scores in the discovery and replication dataset (r ~ = 0.95,
p ~ = 0, Fig. 4d).

We further tested the cross-dataset generalizability by projecting
dataset 2 onto the salience parameters learned by PLS in dataset 1.
Then, we examined the correlation between the behavioral and RSFC
composite scores indataset 2.We found the obtained LV1 fromdataset
1 successfully generalized to dataset 2, as evidenced by a significant
correlation between the obtained behavioral and RSFC composite
score (r =0.25, permuted p = 2.66 × 10–6, Fig. 4e).

Spatial correlation with neurotransmitter densities
Furthermore, we answered question3 (Fig. 1) by testing whether the
sleep-health-related connectome (Fig. 2e) was spatially correlatedwith
the distribution of several neurotransmitter systems involved in the
domains of sleep health, including serotonin receptors (5-HT1a, 5-
HT1b, and 5-HT2a) and transporters (5-HTT), together with metabo-
tropic glutamate receptor 5 (mGluR5) and the γ-Aminobutyric acid
type A (GABAA) receptor. First, density values were derived from
average group maps of healthy volunteers obtained in prior

multitracermolecular imaging studies. Thesemaps were resampled to
an isotropic 2-mm spatial resolution as we did in the fMRI data. Then,
we obtained the average value for each region of the Brainconnectome
atlas for each Neurotransmitter density map. Next, we summed the
positive and negative FC loadings (weighted) separately for each
region of the Brainconnectome atlas to represent the region impor-
tance scores in positive (Fig. 5a) and negative network (Fig. 5b). Finally,
spearman correlation analysis between the region importance score
and receptor/transporter densities were conducted45. Please refer to
the “Methods” and Supplementary Materials for the details. After
permutation testing with FDR correction (q <0.05), significant asso-
ciations were found between on the one hand, the summed positive
network and the 5HT1a map (Fig. 6a), the 5HT2a map (Fig. 6b), the
GABAAmap (Fig. 6c) and the mGluR5 (Fig. 6d) and on the other hand,
the summed negative network and the 5HT1a (Fig. 6e) map, and the
mGluR5 (Fig. 6f) map. These results suggested the PLS pattern esti-
mated from RSFC may be relevant at the neuromolecular level in line
with sleep health.

Predictive utility of the sleep-health-related connectome: for
sleep quality in a healthy population
Next, considering that the most contributing measure in the LV/
dimension found in the discovery (r =0.79, Fig. 2c) and replication
(r =0.78, Fig. S4c) BBP samples were the PSQI total score, we further
examine the predictive utility of the sleep-health-related connectome
features for individual PSQI scores in a completely independent
dataset. We here used support vector regression (SVR) to predict the
sleep quality measured by the PSQI total score (see Fig. 7a) in the
unrelated individuals of the HCP dataset (n = 435), see “Methods” for
the details. It turned out that the significant edges of the sleep-health-
related connectome found in the discovery sample can predict the

Top five strongest positive weighted degree Top five strongest negative weighted degree
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Fig. 3 | Correlations between LV1’s RSFC composite/loading scores and the
RSFC data. a circular plot representation of the correlations between LV1’s RSFC
composite/loading scores and the RSFC data. From outermost to innermost, the
first layer of the circle represents different resting-state networks, and the second
and third layers each represent the sum of positive and negative predictive weights

coming from each brain region. b The top five nodes with the highest degree in
both the positive (left side) and negative networks (right side). The abbreviations of
the brain regions within each resting-state network can be found on the website:
https://atlas.brainnetome.org/download.html. LV, latent variable; RSFC, resting-
state functional connectivity. Source data are provided as a Source Data file.
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total score of PSQI in the HCP dataset as evidenced by a significant
Pearson correlation between the predicted and original PSQI (r aver-
age = 0.18, r range =0.13–0.23 permuted p <0.0006) after a 100
repeated 10-fold cross-validation (Fig. 7b, c). The Mean Absolute Error

(MAE) of the PSQI prediction using the connections identified in the
PLS is 2.39. Notably, the predicted PSQI score did not show significant
associations with demographic variables and head motion (Table S4),
suggesting that the demographic variables and head motion did not
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4833208-6-18-16-3214

33

43

INS INS PrG

Tha
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Weighted degree

Fig. 5 |Maps of region importance scores that are covariancedwith sleepheath
dimension. The positive and negative RSFC loadings were summed separately for
each region of the Brainconnectome atlas to represent the region importance

scores in positive (a) and negative networks (b). RSFC, resting-state functional
connectivity. INS, Insular Gyrus; PrG, Precentral Gyrus; PoG, Postcentral Gyrus; Tha,
Thalamus. Source data are provided as a Source Data file.

Fig. 4 | The robustness of the obtained LV1 was further ensured with a large
replication dataset. a High correlation between the behavioral salience scores in
the discovery and replication dataset (r =0.95, p ~ = 0). bHigh correlation between
the RSFC salience scores in the discovery and replication dataset (r =0.71, p ~ = 0).
c High correlation between the behavioral loading scores in the discovery and
replication dataset (r =0.99, p ~ =0). d High correlation between the RSFC loading

scores in the discovery and replication dataset (r ~ = 0.95, p ~ = 0). e The Pearson
correlation between the obtained behavioral and RSFC composite score (r =0.25,
two-sided, permuted p = 2.66 × 10-6) by projecting dataset 2 onto the salience
parameters learned by PLS in dataset 1. LV latent variable, RSFC resting-state
functional connectivity, PLS partial least squares. Source data are provided as a
Source Data file.
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significantly affect the prediction. Importantly, we also examined the
prediction performance ofmodels using thewhole-brain connectome.
Our results here showed that models using the specific sleep-health-
related connectome yield similar prediction performance with whole-
brain connectome models (after a 100 repeated 10-fold cross-valida-
tion, r average =0.16, r range = 0.10–0.22, permuted p =0.002,
MAE = 2.33 (the blue correlational graph in Fig. 7c)) hence demon-
strating that the identified sleep-health-related connectome captures

sufficient and relevant information for individual prediction of sleep
phenotype in the adult population.

Predictive utility of the sleep-health-related connectome: for
sleep disorders
Furthermore, we investigated the possibility of distinguishing insom-
nia patients from sleep-healthy controls based on the sleep-health-
related connectome. To accomplish this, we utilized a Gaussian radial

Fig. 7 | Predictive utility of the sleep-health connectome. a The distribution of
the total score of the Pittsburgh Sleep Quality Index (PSQI) in the Human Con-
nectomeProject (HCP)dataset (n = 435). For the boxplot,minima=0,maxima = 14,
center = 4.68,median= 4, 25th percentile = 3, 75thpercentile = 6.bThedistribution
of the correlation value between the predicted (by the RSFC spatial pattern of LV1)
andoriginal PSQI after a 100repeated 10-fold cross-validation (n = 100). For thebox
plot, minima =0.13, maxima =0.23, center = 0.18, median = 0.18, 25th percentile =
0.17, 75th percentile = 0.20. c The prediction of PSQI total score in the HCP dataset
using the significant edges of the RSFC spatial pattern obtained by PLS analysis in

dataset 1 as shown in the yellow correlational graph with a Pearson correlation
between the original PSQI and the averaged predicted PSQI after a 100 repeated 10-
fold cross-validation (r =0.18, two-sided, permutedp = 3.17 × 10-5); the prediction of
PSQI total score in the HCP dataset using the whole-brain connectome as depicted
in the blue correlational graphwith a Pearson correlation between the original PSQI
and the averaged predicted PSQI after a 100 repeated 10-fold cross-validation
(r =0.16, two-sided, permuted p =0.002). PLS partial least squares, RSFC resting-
state functional connectivity, LV latent variable. Source data are provided as a
Source Data file.

Fig. 6 | Spatial correlation with neurotransmitter densities. The RSFC loadings
(weighted) were spatially correlated with the distribution of several neuro-
transmitter systems potentially involved in domains of sleep health with Pearson
correlational analysis, specifically, the density value of 5HT1a (a, r =0.54, two-sided,
p = 1.36×10-11), 5HT2a (b, r =0.48, two-sided, p = 2.13 × 10-12), GABAA(c, r =0.38, two-
sided, p = 4.77 × 10-3), mGluR5(d, r =0.45, two-sided, p = 8.41 × 10-4) were found to

be significantly correlated with the summed positive network; the density value of
5HT1a (e, r =0.32, two-sided, p =1.0 × 10-2), mGluR5 (f, r =0.28, two-sided,
p = 2.2 × 10-2) were found to be also significantly correlated with the summed
negative network. RSFC, resting-state functional connectivity. Source data are
provided as a Source Data file.
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basis function (RBF) kernel support vector machine (SVM) classifier
which was implemented using the LIBSVM toolbox46 on our classifi-
cationdataset (dataset4) containing 52 insomniapatients and49 sleep-
healthy subjects (see “Methods” and Table S6 for the sample details).
The classifier performance was validated using a 100-repeated 10-fold
cross-validation strategy (see “Methods” for details). Classification
performance that had an accuracy higher than 70% was considered to
bemeaningful. It turned out that the sleep-health-related connectome
also has diagnostic potential to distinguish insomnia patients from
sleep-healthy subjects in dataset4 with an average accuracy across 100
CV of 79.73% (permuted p = 2.39 × 10-3) with 78.85% sensitivity, 83.67%
specificity and area under the curve (AUC) = 0.81 (Fig. 8a, green
receiver operating characteristic (ROC) curve in Fig. 8b). Importantly,
we tested to which extend the sleep-health-related connectome does
as well or better than using the whole-brain connectome for the clas-
sification performance. It turned out the whole-brain connectome-
based classification performance was lower as indicated by an average
accuracy across 100 CV of 72.62% (permuted p = 7.53 × 10-3) with
78.85% sensitivity, 67.35% specificity and AUC=0.73 (red ROC curve
in Fig. 8b).

Moreover, the classification performance based on the sleep-
health-related connectome can also be generalized to an external
classification dataset containing 35 insomnia patients and sleep-
healthy subjects with an average accuracy across 100 CV of 78.29%
(permuted p = 3.89 × 10-3) with 80.00% sensitivity, 77.14% specificity
and area under the curve (AUC) = 0.79 (Supplementary Fig. S5a, green
receiver operating characteristic (ROC) curve in Fig. S5b). Sample
details about this external classification dataset can be found in Sup-
plementary Methods. We also tested to which extent the sleep-health-
related connectome does as well or better than using the whole-brain
connectome for the classification performance in the external classi-
fication dataset. It turned out the whole-brain connectome-based
classification performance was lower as indicated by an average
accuracy across 100 CV of 74.27% (permuted p = 6.27 × 10-3) with
74.29% sensitivity, 77.14% specificity and AUC=0.75 (red ROC curve in
Fig. S5b). These results together suggest that the sleep-health-related
connectome feature sets have specific classification power for sleep

health phenotype at the individual level and could therefore be seen as
useful biomarkers.

Discussion
There is growing interest toward using a conceptual framework that
articulates sleep health as multi-facet21,47. Although the importance of
RSFC in multi-facets of sleep health is increasingly recognized, the
degree to which RSFC is associated with sleep health as a multivariate
dimension remains largely unknown. Leveraging a unique dataset
including resting-state fMRI and behavioral assessments spanning
multiple domains of sleep health, we found robust correlated patterns
of RSFC and sleep health measures that could be represented in one
dimension. The derived pattern estimated from RSFC shows neuro-
biological relevance and predictive utility for sleep phenotype in
healthy populations. Critically, the RSFC spatial pattern of this
dimension additionally shows diagnostic potential to distinguish
insomnia patients from sleep-healthy subjects. Together these results
delineate the RSFC-guided dimension of sleep health, which could
serve as a foundation to develop a reliable brain connectome bio-
marker for sleep health with high potential for clinical translation-and
ultimately for the diagnosis, prognosis, treatment, and prevention of
sleep health-related problems.

In the present study, the measurement of sleep health composite
was guided by both behavior and brain functional connectivity. The
obtained dimension of sleep health was associated with a unique
cluster of 27 out of the 36 selected SH measures mainly including
sleep quality, the severity of insomnia, degree of hyperarousal, degree
of dysfunctional beliefs and attitudes about sleep, degree of physical
fatigue, and degree of subjective sleep lack/deprivation, etc. (Fig. 2c).
This significant cluster of SH variables were still fallen within the pro-
posed seven domains and largely overlapped with the domains of sleep
health examined in previous studies17,36 but draw a multifaceted picture
of SH to a bigger extend based on its broader definition2. The present
study thus can be regarded as a step forward in measuring and quan-
tifying sleep health composite by incorporating whole-brain resting-
state functional connectivity3. To this end, the present study validated
the theory that sleep health can be operated and constructed as a

a

Whole connectome AUC=0.73

PLS informed connectome AUC=0.81

b

Fig. 8 | the sleep-health-related connectome also has diagnostic potential for
insomnia disorder. a The mean estimated label values to index the classification
performance for insomnia patients (n = 52) and health controls (n = 49) group
across a 100 repeated 10-fold cross-validation strategy. For the box plot of the
patients group: minima= –0.56, maxima = 1.82, center = 0.46, median = 0.41, 25th
percentile = 0.06; for the box plot of the health controls: minima= –1.91, max-
ima = 1.18, center = –0.48, median = –0.49, 25th percentile = –0.89, 75th
percentile = –0.11. b the green receiver operating characteristic (ROC) curve

depicts the classification performance using the significant edges of the RSFC
spatial pattern obtained by PLS analysis in dataset4, suggesting the sleep-health-
related connectome also has diagnostic potential to distinguish insomnia patients
from sleep-healthy subjects with an average accuracy across 100 CV of 79.73%,
permuted p = 2.39 × 10-3; the red ROC curve depicts the classification performance
using whole-brain connectome with an average accuracy of 72.62%, permuted
p = 7.53 × 10-3. LV latent variable, RSFC resting-state functional connectivity. Source
data are provided as a Source Data file.
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composite dimension and that sleep health domains do not exist in
isolation9,12.

Notably, four out of six measures in the domain of beliefs, atti-
tudes, and habits about sleep48 were found to be important measure-
ments in the significant latent dimension, with the measure of
diminished control and predictability contributing the most. Existing
evidence suggests that individuals with more positive beliefs and
attitudes about sleep are more likely to experience better sleep
health37,49. On the other hand, previous studies have proposed that the
dysfunctional beliefs about sleep (e.g., diminished control and pre-
dictability of sleep) can result in the misperception of sleep duration
(e.g., underestimate of sleep duration)50, especially in people who are
suffering from insomnia23,51. One possible explanation is that dys-
functional beliefs may alter the constructive process involved in
remembering the amount of sleep obtained, thereby contributing to
misperception51. Also recent theories claimed that people tend to
gather evidence that confirms our beliefs rather than evidence that
challenges them52, so it is crucial to disprove the dysfunctional beliefs
to improve sleep health. In correspondence, Cognitive Behavioral
Therapy for Insomnia (CBT-I) emphasized the importance of cognitive
restructuring and sleep hygiene to alter the dysfunctional beliefs,
attitudes, and habits about sleep as its twomain components53. Taken
together, future studies investigating sleep health should pay more
attention to the domain of beliefs, attitudes, and habits about sleep.

The latent dimension of sleep health was associated with a unique
spatial pattern of resting-state functional connectivity, namely a positive
and negative network pattern. For the positive network pattern, poorer
sleep health was associated with hyper-connectivity between the net-
work involved in internally oriented attention (DMN) and the network
responsible for modulation of the goal-directed attention (DAN),
betweenDMNand the network involved in processing of salience (VAN),
between the network involved in external goal-directed regulation (FPN)
andDAN, between FPN and VAN aswell as hyper-connectivity within the
subcortical network (SubC) mainly the thalamus. The heightened cou-
pling between the higher-order and attentional networks may suggest a
decreasing dedifferentiation of the high-order system to the middle
attentional system19,54 while the increased FCmainly within the thalamus
(a brain system responsible for gating information) further indicates
sustained ascending arousal input from the thalamus16 in poor sleep
health individual phenotype. Notably, the positive network consisted of
the highest-degree nodes in the left dorsal insular cortex and precentral
gyrus. As key hubs of the salience network, these brain regions play a
crucial role in cognitive and emotional processes23,55. Impaired con-
nectivity patterns between these areas and other regions could underlie
cognitive, vigilance, and perception dysfunctions, as well as subjective
distress and sleep complaints56.

For the negative network pattern, poorer sleep health was also
associated with hypo-connectivity between the two attentional net-
works, betweenDMNand SubCmainly the thalamus, between FPN and
SubC mainly the thalamus, between DAN and the network involved in
sensory and motor perception (SMN), as well as hypo-connectivity
within the VAN and SMN. The reduced coupling between and within
the attentional networks and the SMNmaymainly suggest the collapse
of top-down orienting of attention, bottom-up salience processing57,58

and sensory and motor perception22 while the reduced connectivity
between the high-order networks and thalamus further reflects the
reduction in the upward transmission of information to the higher-
order networks by the thalamus as a relay station59 in the condition of
poor sleep health. Moreover, the negative network consisted of the
highest-degree nodes in the thalamus and somatomotor cortex. Both
the thalamus59 and the somatomotor cortex22 play a crucial role in
sleep physiology. Impaired connectivity patterns between these areas
and other regions could suggest the dysfunction of relaying sensory
and motor signals to the cerebral cortex and regulating sleep, alert-
ness, and consciousness.

Both the positive and negative network patterns were spatially
correlated with the distribution of several neurotransmitter systems
involved in sleep health, including the serotonin receptors, the gluta-
mate receptor (mGluR5), and the GABAA receptor. Previous studies
have proven that: (1) serotonin functions predominantly to promote
wakefulness and to inhibit REM (rapid eye movement) sleep (REMS)31;
(2) γ-aminobutyric acid (GABA) is increasingly recognized as an
important inhibitory neurotransmitter for the initiation and main-
tenance of sleep30,60; (3) glutamate is the primary excitatory neuro-
transmitter in the central nervous system, its altered levels were found
in people who suffered from insomnia disorders23,32,61. Taken together,
the linked distribution of these neurotransmitter systems and the
RSFC spatial pattern found in the present study further suggest that
the derived pattern estimated from RSFC is neurobiologically relevant
with regard to neuromolecular systems engaged in sleep health.

Critically, the RSFC spatial pattern of this dimension also has
diagnostic potential to distinguish insomnia patients from sleep-
healthy subjectswith an accuracyof 79.73% and 78.29% in dataset4 and
the external classification dataset respectively. While a previous study
utilized a “resting-state” fMRI support vector machine (SVM) classifier
that achieved higher classification accuracy between IDs and HCs, it
included 5min ofwakefulness, aswell as data from sleep stages 1 (S1), 2
(S2), and 3 (S3) for each subject62. However, this approach could not
exclude the possibility of shared individualized characteristics across
multiple sessions from the same subject, which could inflate the clas-
sification performance. Importantly, our classification results demon-
strated that the obtained brain connectome pattern also contained
pathophysiological relevance for insomnia disorder. Insomnia is a
common, distressing, and clinically complex symptom, that causes
difficulty initiating sleep; frequent awakening; or early-morning awa-
kening with daytime dysfunction23,32. Despite its high prevalence,
insomnia often goes under-diagnosed and untreated, resulting in
general fatigue and decreased productivity63. Based on the RSFC spa-
tial pattern-based SVM classifier derived from the obtained sleep
health dimension, we will be able to aid in the diagnosis of insomnia
disorder. To this end, these findings may suggest that insomnia is a
condition with a multifaceted pathophysiology spanning over deficits
in multiple domains of sleep health. Ultimately, the present study can
serve as a foundation to identify targets that may enable sleep-based
interventions for improving both brain health and clinical outcomes.

The strength of the present study includes the utilization of a
large sample, advanced multivariate methods, and replication of
results in an independent sample. The component we identified with
RSFC not only showed macromolecular relevance but also had diag-
nostic potential, generalized well to unrelated individuals in the HCP
dataset, and was robust across alternative methodological strategies.
Nonetheless, our work has several limitations. First, here we sought to
delineate linked dimensions of sleep health and intrinsic brain func-
tional connectivity, uncovering dimensions of sleep health that are
guided by and linked to underlying brain connectome properties.
Although we included the largest sleep health domains in the neuroi-
maging studies of sleep health, to the best of our knowledge, this
approach necessarily is limited by the available variables measuring
sleep health in the BBP, which did not represent the full domains of
sleep health. Future studies can incorporate more sleep-related vari-
ables (i.e., sleep regularity) to depict the sleep health dimension. Sec-
ond, our current analysis only considered functional connectivity and
behavioral measures of sleep health. Future research could incorpo-
rate rich multi-modal imaging data, objective sleep measurements
with actigraphy and polysomnography, biochemics, and genomics.
Third, the present study only used subjective measures to control for
the state of alertness of individuals during the resting-state fMRI
acquisition. Future research could use more objective measurements
such as EEG, camera, or eye-tracking to monitor alertness/drowsiness
states during resting-state fMRI scanning. Fourth, the sample mainly
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consisted of young adults in pattern recognition and middle-aged
adults in the prediction and classification test, leaving theRSFC-guided
sleep health dimension in other age groups such as children, adoles-
cents, and the elderly unknown. Recently, the definition of what con-
stitutes good sleep health was adapted to pediatrics64 as well as the
elderly65. Hence, it is of great importance for future studies to also
examine the RSFC-informed sleep health dimension in both younger
and older populations. Fifth, it should be noted that causality between
sleep health and its associated RSFC component cannot be established
in this cross-sectional study. Future studies can use a longitudinal
design to test whether worse sleep health leads to alterations of this
sleep-health-related connectome.

In summary, in this study, we discovered and replicated multi-
variate patterns of intrinsic functional connectivity that are highly
correlated with a dimension of sleep health in a large sample of young
adults. This dimension was composed of a unique cluster of sleep
health and unique features of resting-state functional connectivity,
namely a positive and negative network pattern. Both the positive and
negative network patterns were spatially correlated with the distribu-
tion of several neurotransmitter systems involved in sleep health.
Moreover, the obtained positive and negative network patterns also
contained pathophysiological relevance for insomnia disorder. These
results thus delineate the connectivity-guided dimension of sleep
health, which could serve as a foundation for developing brain
connectome-based biomarkers in sleep symptomatology.

Methods
Participants
Discovery and replication datasets (dataset 1 and 2). The main
dataset comprises individuals from the Behavioral Brain Research
Project of Chinese Personality (BBP)66, which was launched in Sep-
tember 2019 (still in progress) to recruit participants from that year’s
freshmen at Southwest University, Chongqing, China. In total,
1369 participants completed the cross-sectional neuroimaging proto-
col as well as the behavioral measures of sleep health. To create
two independent samples for discovery and replication analyses, we
split the participants according to their data collection periods
(September–December 2019 [discovery dataset], namely freshman
enrolled in the year 2019; September–December 2020 [replication
dataset] and freshman enrolled in the year 2020). Specifically, a dis-
covery dataset (n = 712) and a replication dataset (n = 657) were cre-
ated. Of the discovery dataset, 25 participants were excluded due to
excessive head motion during scanning (e.g., with a mean framewise
displacement [FD] larger than 0.3mm), resulting in a final sample of
687 participants (mean age 18.96, SD =0.95; 233 males and 454
females). Applying the same exclusion criteria to the replication
dataset produced 628 participants (mean age 19.16, SD = 1.03; 208
males and 420 females). See Table 1 for detailed demographics of each
dataset. The two datasets were confirmed to also have similar basic
demographic variables, i.e., age, sex, and race (Table 1), as well as head
motion (Table 1). Participants were compensated for 50 Chinese Yuan
for their participation. Full informed consent from each participant
was obtained by BBPConsortium, and researchprocedures and ethical
guidelines were followed in compliance with Southwest University
(SWU) institutional review board approval.

HCP external validation dataset (dataset 3). The dataset 3 was
selected from the 1200 Subjects Release of the Human Connectome
Project (HCP). This dataset provides high-quality behavioral/demo-
graphic and imaging data from healthy young adults (https://www.
humanconnectome.org/)67. From the original HCP dataset, we first
included a group of participants (n = 1084) for which L-R resting-state
fMRI data as well as PSQI scores were available. From this group, we
further excluded data from 46 participants based on the exclusion
criteria indicated as follows: (1) participants with missing values on

demographic variables such as age, sex, education, BMI, and race or
family information; (2) participants with a history of hyper/hypothyr-
oidism or history of other endocrine problems; (3) women who had
recently given birth; and (4) participants having a mean FD more
than 0.3mm. Importantly, to exclude the influence of shared genetic
and environmental factors, we randomly kept one subject from
each family68, resulting in 435 final unrelated subjects. See Table S5
for detailed demographics of each sample. Full informed consent
from each participant was obtained by the Washington
University–University of Minnesota (WU–Minn) HCP Consortium, and
research procedures and ethical guidelines were followed in com-
pliance with WU institutional review board approval.

Classification dataset (dataset4). The classification dataset involved
109 participants, including 56patients with insomnia disorder (ID) and
53 healthy controls (HC). Part of the dataset was collected from the
Sleep Center, Department of Brain Disease of Chongqing Traditional
Chinese Medicine Hospital (CTCMH), which included 25 ID and 36 HC
participants (referred as the CTCMH dataset), and the remaining part
of the dataset is from the Sleep and Neuroimaging Center, Southwest
University (referred as SNIC dataset). All the participants received the
MRI scanning at the brain imaging center of Southwest University.
Patients with insomnia disorder were diagnosed by experienced hos-
pital psychiatrists (D.G. and CY.L.) according to the International
Classification of Sleep Disorders: Diagnostic and Coding Manual, 3rd
ed., and insomnia symptoms have lasted at least three nights a week
for more than 3 months. All the health controls met the following
criteria: a good sleep habit and a good sleep onset and/or main-
tenance; a regular dietary habit; no consumption of any stimulants,
medications, alcohol, and cocaine for at least 3 months before the
study; no history of neurological or psychological disorders; lower
scores of Pittsburg Sleep Quality Index (PSQI) than 769. Participants
with any findings of pathological brain MRI as well as ineligibility for
MRI scanning (any type of metal implant) were excluded from the

Table 1 | Demographic characteristics of participants in the
discovery and replication dataset

Discovery data-
set (N = 687)

Replication data-
set (N = 628)

Age, mean
(SD), years

18.96(0.95) 19.16(1.03)

Female 454(66.08) 420(66.88)

Handedness-Right 606(88.21) 575(91.56)

BMI, mean (SD) 21.23(2.87) 21.85(3.19)

Race

Han 569(82.82) 527(83.92)

Other 118(17.18) 101(16.08)

Framewise displace-
ment (FD), mean (SD)

0.10(0.05) 0.10(0.05)

Total brain volume,
mean (SD), mm3

1541331.47(138185.45) 1539323.87(158514.00)

Family income per year (yuan, RMB)

<5000 125(18.20%) 93(14.81%)

5001 – 25000 277(40.32%) 262(41.72%)

25001 – 45000 108(15.72%) 96(15.29%)

45001 – 65000 55(8.01%) 66(10.51%)

65001 – 85000 39(5.68%) 36(5.73%)

85001 – 105000 45(6.55%) 31(4.94%)

>105,000 38(5.53%) 44(7.01%)

PANAS-P, mean (SD) 28.96(6.12) 29.45(6.20)

PANAS-N, mean (SD) 17.66(5.97) 17.39(6.00)

PANAS Positive and negative affect schedule, SD standard deviation.
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study. Eight participants were excluded due to excessive headmotion
during the scanning (e.g., with a mean FD larger than 0.3mm),
resulting in a final sample of 52 ID patients (mean age = 44.00 years
old, SD = 12.39) and 49 HC (mean age = 42.10 years old, SD = 15.93).
Participants were compensated for 80 Chinese Yuan for their partici-
pation. The research projects were approved by the SWU and CTCMH
institutional review boards, and written informed consent was
obtained from each participant in accordance with the Declaration of
Helsinki. The two groups were matched for age, sex, and headmotion
(Table S6). The participants’ demographic characteristics are sum-
marized in Table S6.

Sleep health-related assessments in the discovery and replica-
tion dataset
A large set of sleep health measures (Table 2 and Table S1) were
included in the current study based on the consideration to select

available variables in the Behavioral Brain Research Project of Chinese
Personality (BBP) that 1) represent central domains of SH described in
theRu SATED3 aswell as in theNational Sleep Foundation (NSF)’s Sleep
Health Index6; 2) provide high consistency with previous SH
studies15,70; 3) draw a multifaceted picture of SH to a bigger extend
based on its broader definition by including variables that are sleep
deficiency related, nighttime- and daytime-related, quantitative and
qualitative informed. On that basis, the chosen 36 variables were
grouped into seven domains: (1) Satisfaction with sleep/sleep quality
(e.g., PSQI total score, Not get enough sleep, Feelings from wake-up,
Necessity of nap, Needed nap time, Subjective sleep quality); (2)
Alertness during waking hours (e.g., Epworth sleepiness scale, Mind-
wandering, Spontaneous mind wandering, Deliberate mind wander-
ing, Frequency of daydream, Fatigue severity, Physical fatigue, Mental
fatigue, Attention-related cognitive errors, Valid sleep cue reaction
time(RT), Invalid sleep cue RT, Valid sleep cue accuracy (ACC), Invalid

Table 2 | Mean and standard deviation (SD) of the sleep health measures in the discovery and replication dataset

Domains of sleep health Measures Discovery dataset (N = 687)
Mean (SD)

Replication dataset (N = 628)
Mean (SD)

Satisfaction with sleep/ Sleep
quality

Not get enough sleep 2.11 (0.74) 2.07 (0.75)

Feelings from wake-up 2.35 (0.82) 2.32 (0.76)

Necessity of nap 3.09 (0.89) 2.98 (0.91)

Needed nap time 4.22 (1.14) 4.19 (1.15)

PSQI-T (otal score) 4.97 (2.44) 5.33 (2.58)

Subjective sleep quality 1.16 (0.83) 1.10 (0.84)

Alertness during waking hours Epworth sleepiness scale 8.91 (3.38) 8.92 (3.47)

Mind-wandering 13.06 (3.67) 12.84 (3.77)

Spontaneous mind wandering 19.11 (4.88) 18.36 (4.80)

Deliberate mind wandering 18.11 (4.23) 17.85 (4.49)

Attention-related cognitive errors 30.32 (6.80) 30.60 (7.87)

Frequency of daydream 33.19 (9.07) 31.28 (8.78)

Fatigue severity 38.96 (8.53) 38.89 (8.88)

Physical fatigue 4.21 (2.41) 3.95 (2.53)

Mental fatigue 2.63 (1.17) 2.66 (1.22)

Valid sleep cue RT 515.85 (71.61) 521.43 (83.61)

Invalid sleep cue RT 538.14 (76.47) 553.40 (90.26)

Valid sleep cue ACC 0.95 (0.06) 0.95 (0.06)

Invalid sleep cue ACC 0.94 (0.07) 0.94 (0.07)

Timing of sleep Morningness-eveningness questionnaire 13.60 (2.84) 13.22 (2.84)

Sleep efficiency/ continuity Sleep efficiency 0.94 (0.06) 0.93 (0.07)

Sleep latency 0.68 (0.79) 0.73 (0.80)

Wake-up times 0.30 (0.69) 0.36 (0.80)

Sleep duration Total sleep time 6.74 (0.87) 6.86 (0.94)

Sleep deficiency Insomnia Severity Index 7.60 (4.25) 7.47 (4.31)

Hyperarousal 31.90 (9.50) 32.12 (9.72)

Ford insomnia response to stress test 20.42 (5.30) 20.78 (5.26)

Sleep disturbances 0.86 (0.50) 0.89 (0.49)

Use of sleep medications 0.03 (0.243) 0.06 (0.35)

Daytime dysfunction 1.38 (0.82) 1.75 (0.83)

Sleep beliefs, attitudes, and habits DBAS-total score 128.74 (33.44) 129.75 (32.84)

Misconceptions about causes 5.73 (1.72) 5.79 (1.66)

Diminished control and predictability 3.42 (1.43) 3.43 (1.47)

Unrealistic sleep expectations 4.67 (1.63) 4.68 (1.72)

Misattribution of the consequences 3.02 (1.59) 3.13 (1.68)

Faulty beliefs about sleep-promoting
practices

4.00 (1.26) 4.03 (1.28)

RT reaction time, ACC, accuracy, DBAS Dysfunctional Beliefs and Attitudes about Sleep Scale.
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sleep cue ACC); (3) Timing of sleep (e.g., Morningness-eveningness
questionnaire); (4) Sleep efficiency/ continuity (e.g., Sleep efficiency,
Sleep latency, Wake-up times); (5) Sleep duration (e.g., Total sleep
time); (6) Sleepdeficiency (e.g., Insomnia severity index,Hyperarousal,
Ford insomnia response to stress test, Sleep disturbances, Use of sleep
medications, Daytime dysfunction); (7) Sleep beliefs, attitudes, and
habits (e.g., Dysfunctional beliefs and attitudes about sleep scale
(DBAS)-total score, Misconceptions about causes, Diminished control
and predictability, Unrealistic sleep expectations,Misattribution of the
consequences, Faulty beliefs about sleep promoting practices). For the
specific descriptions about the chosen variables, see Table 2 and
Supplementary Table S1.

Data acquisition and image preprocessing
The discovery and replication sample
Data acquisition. All MR Images were acquired using a 3 T Siemens
Primsa-fit scanner with a standard 32-channel head coil located
at Southwest University. A high-resolution T1-weighted structural
image was obtained using a three-dimensional gradient sequence in
order to facilitate alignment of individual subject images into a com-
mon space (repetition time (TR) = 2530ms, time of echo (TE) = 2.98
ms, field of view (FOV) = 256× 256 mm2, thickness = 1mm, voxel
size = 0.5 × 0.5 × 1 mm3, flip angle = 7°, resolution matrix = 256× 256,
slices = 192, slice oversampling = 33.3%, phase-encoding direction =AC
» PC). Approximately 8min of rs-fMRI data containing 240 volumes
were acquired for each subject using a blood oxygen level-dependent
(BOLD-weighted) sequence (TR = 2000 ms; TE = 30ms; slices = 62;
slice thickness = 2mm; FOV = 224 × 224mm2; flip angle = 90°; resolu-
tion matrix = 112 × 112; voxel size = 2 × 2 × 2mm3; phase-encoding
direction = PC » AC). In order to minimize motion, prior to data
acquisition participants’ heads were stabilized in the head coil
using one foam pad over each ear and a third over the top of the
head. During the resting-state scanning, a fixation cross was displayed
as images were acquired. Participants were instructed to stay
awake, keep their eyes open, fixate on the displayed crosshair, and
remain still.

Image preprocessing. The preprocessing steps on all collected neu-
roimaging data were performed using the publicly available CONN
functional connectivity toolbox (version 20.b; https://www.nitrc.org/
projects/conn), together with SPM12 (Wellcome Department of Cog-
nitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm).
Functional images were (1) slice time corrected, (2) underwent motion
correction and susceptibility artifact correction based on fieldmap, (3)
warped into Montreal Neurological Institute(MNI) standard space
using the diffeomorphic Anatomical Registration Through expo-
nentiated Lie Algebra (Dartel) approach to realign the 3D anatomical
data into Montreal Neurological Institute space71, (4) smoothed spa-
tially with a Gaussian kernel of 6mm full width at half maximum
(FWHM). Next, functional images further underwent denoising
steps using the anatomical component-based correction (aCompCor)
method70. Specifically, noise signals, including signals from cere-
brospinal fluid and white matter (WM) (five principal components),
and movement parameters (six motion parameters, six temporal
derivatives, and their squares), and linear trend were removed
from the images as confounds72. Subsequently, data scrubbing was
implemented to address head motion concerns. The bad time points
were regarded as regressors defined as volumes with FD power > 0.5
mm as well as the two succeeding volumes and one preceding
volume to reduce the spillover effect of head motion72. Finally, func-
tional images were filtered using a bandpass filter (0.008–0.09Hz) to
reduce the effects of very low-frequency drifts and high-frequency
noises.

HCP sample
Data acquisition. Structural (T1 and T2 images, required for pre-
processing functional neuroimaging data) and functional MRI data
were collected at Washington University on the Siemens 3 T Con-
nectome Skyra scanner using a multi-band sequence. The structural
images were 0.7mm isotropic. The rs-fMRI data were 2mm isotropic
with TR =0.72 s. Full details of the acquisition parameters for the HCP
data can be found elsewhere73. Two sessions of rs-fMRI data were
collected on consecutive days for each subject, and each session
consisted of one or two runs. The length of each rs-fMRI scan was
14.4min (1200 frames). Here, the analyses were restricted to indivi-
duals for whom the left–right phase-encoding scans for the rs-fMRI
session were completed and available. For rs-fMRI data acquisition,
participants were asked to lie with eyes open, with a “relaxed” fixation
on awhite cross (on a dark background), think of nothing in particular,
and not fall asleep. Details of the data collection can be found
elsewhere74. Details about behavioral measures including PSQI can be
found in HCP S1200 Data Dictionary(https://db.humanconnectome.
org/data/projects/HCP_1200) and75.

Image preprocessing
We adopted the preprocessed data provided by the Human Con-
nectome Project (HCP S1200 release), for which also the spatial nor-
malization to theMNI152 template had already been performed before
download. Details of the structural and functional data preprocessing
can be found in the HCP S1200 manual76, and we used version 3.21 of
the HCP preprocessing pipeline. Consistent with the BBP dataset, the
HCP downloaded functional images were further smoothed, and
underwent regression of motion and non-relevant signals, including
linear trend, Friston 24 head motion parameters, white matter
(CompCor, 5 principal components), and CSF signal (CompCor, 5
principal components), scrubbed and filtered.

Classification sample
Data acquisition. All MR Images in the SNIC dataset were acquired
using a 3 T scanner (Magnetom TIM- Trio, Siemens, Erlangen, Ger-
many) with a standard head coil located at Southwest University. In
order tominimizemotion, prior to data acquisition participants’ heads
were stabilized in the head coil using one foampadover each ear and a
third over the top of the head. High- resolution T1- weighted anato-
mical images were collected using 3D spoiled gradient recalled
(3DSPGR) sequence (TR/TE = 8.5/3.4ms, flip angle = 12°, resolution
matrix = 512 × 512, FOV = 240 × 240mm2, with a voxel size of
1 ×1 × 1mm3, 176 slices, 1mm thickness). Approximately 5min of rs-
fMRI data containing 204 volumes were acquired for each subject
using an echo-planar imaging (EPI) sequence (TR/TE = 1500/29ms, flip
angle = 90°, resolution matrix = 64 × 64, voxel size = 3 × 3 × 3mm3,
FOV = 192 × 192mm2, axial slices = 25, thickness/ gap= 5/0.5mm). The
first four volumes were discarded to ensure steady-state longitudinal
magnetization. During the resting-state scanning, participants were
instructed to fix on a crosshair in the center of the black background
screen without thinking intentionally in the mind and keep as
motionless as possible77.

All MR Images in the CTCMH dataset were acquired by using the
same scanner as the discovery and replication dataset. The scanning
parameters are also the same. During the resting-state scanning, all
participants were instructed to fix on a crosshair in the center of black
background screen without thinking intentionally in the mind and
keep as motionless as possible.

Image preprocessing
The preprocessing steps on all collected neuroimaging data in the
classification sample were performed using fMRIPrep 21.0.178,79
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(RRID:SCR_016216), which is basedonNipype 1.6.180(RRID:SCR_002502).
Details of the structural and functional data preprocessing can be found
in the supplementary materials.

Resting-state functional connectivity construction
To construct RSFC, the preprocessed data in the discovery and repli-
cation dataset were first parcellated using the Brainnetome Atlas42,
which includes 210 cortical regions and 36 subcortical regions. For
each participant, the BOLD time course of each node was extracted by
taking the mean across voxels. Pearson correlation coefficient (r)
between the time courses of each pair of nodes was calculated. A
Fisher’s r-to-z transformationwas performed to improve the normality
of the correlation coefficients,which resulted in a 246 × 246 symmetric
functional connectivity matrix with 30,135 [(245 × 246)/2] edges for
each participant.

Partial least squares analysis
We used PLS analysis to examine the relationship between resting-state
functional connectivity (RSFC) and sleep health (SH)measures (Fig. 1) in
the discovery dataset. PLS analysis is a multivariate statistical technique
that derives latent variables (LVs), by finding weighted patterns of vari-
ables from two given datasets thatmaximally covarywith each other36,81.
In the present analysis, 1 variable set corresponded to RSFC and the
other tobehavioralmeasures spanningmultipledomainsof sleephealth.
The two variable sets were correlated with each other across partici-
pants, and the resulting covariance matrix was subjected to singular
value decomposition to identify the latent brain-behavior dimensions.
Specifically, each LV is comprised of an RSFC pattern at the node level
(“RSFC saliences”) and an SH profile (“SH saliences”). Individual-specific
RSFC and SH composite scores for each LV were obtained by linearly
projecting the RSFC and SH measures of each participant onto their
respective saliences. See the Supplementary Methods section “Partial
least squares analysis” for mathematical details. Before the PLS analysis,
we regressed out the confounding effects fromboth RSFC and behavior
data including mean FD, age, handedness, and sex.

Inference and validation of the statistical model were performed
using nonparametric methods including: (1) statistical significance of
overall patterns was assessed by permutation tests using 1000 permu-
tations for behavioral data; (2) the importance (measured as loading
scores) of feature (RSFC, sleep health measures) was evaluated by
bootstrap resampling; (3) the generalizability of each LV was assessed
by 10-fold cross-validationwith 200 repetitions.Mathematical details of
the analysis and inferential methods are described in the Supplemen-
tary Methods section “Partial least squares analysis” and results. False
discovery rate (FDR) correction (q<0.05) was applied to all analyses.

Control and reliability analyses
We further tested whether LVs obtained in the discovery dataset were
robust to (1) global signal regression, (2) total intracranial volume
(including gray matter, white matter, and cerebrospinal fluid) regres-
sion, (3) time (hour) of acquisition regression, (4) the pre-scanning
positive and negative affect regression, (5) BMI regression, (6) family
income regression, (7) adding confounding variables (age, sex, hand-
edness and headmotion) into the phenotypic data for the PLS analysis,
(8) non-Gaussian distributions of the behavioral data with quantile
normalization, as well as (9) using a different brain (Seitzman et al.’s)
Atlas43 containing 300 regions for theRSFC construction. Toassess the
robustness of each LV, we computed Pearson’s correlations between
RSFC (or SH) saliences obtained in each of the eight-control analysis
and RSFC (or SH) saliences from the original PLS analysis. Please refer
to (able S2 for the results.

Internal validation
As an internal validation of the obtained LVs or dimensions in the
discovery dataset, we first replicated the PLS analysis described in the

section “Partial least squares analysis”, and “Control and Reliability
Analyses” with the replication dataset. Then, Pearson’s correlation
coefficient between the behavioral salience scores in the discovery and
replication dataset, between the behavioral loading scores in the dis-
covery and replication dataset, between the RSFC salience scores in
the discovery and replication dataset, between the RSFC loading
scores in the discovery and replication dataset were computed
respectively.

We further tested the cross-dataset generalizability by projecting
the dataset 2 onto the salience parameters learned by the PLS analysis
in dataset 1. Then,weexamined the correlation between the behavioral
and RSFC composite scores in dataset 2. The significance of the cor-
relation value was further assessed by a permutation test (behavioral
data of dataset 2 shuffled 1000 times).

External prediction validation
Considering that the PSQI total score contributes the most in the LV/
dimension found in the discovery BBP sample (r =0.79), we further
tested whether the RSFC spatial pattern of this dimension observed in
the discovery dataset can predict the sleep quality of unrelated indi-
viduals in the HCP dataset as an external prediction validation (Fig. 1).
In particular, we adopted the support vector regression (SVR), the
most widely used algorithm in multivariate neuroimaging research, to
examine the predictive performance of the significant RSFC pattern in
the LV found in the discovery sample on sleep quality in the HCP
dataset. Specifically, we used all the edges of the significant RSFC
pattern as the features. The 10-fold cross-validation was used to
determine the optimal parameter C for SVR. Specifically, the optimal
parameter was finally selected according to the prediction perfor-
mance after the inner 10-fold cross-validation was performed for each
parameter ([0.1,1] with a step of 0.1) in turn and was further utilized in
the outer loop to accomplish the final prediction. All subjects were
divided into 10 subsets by 10-fold cross-validation (outer loop). Nine of
them were used as training sets and model fitting was performed. The
fitted model parameters and the remaining one subset were used as
the test set to generate predicted values. This process was repeated 10
times to generate predicted values for all subjects. In order to obtain
stable predictive performance, we repeated the above prediction
pipeline 100 times to generate 100 predicted scores for each partici-
pant and further averaged these predicted scores to obtain robust
estimates. Pearson’s correlation coefficient between the predicted
average and actual values was computed to provide final estimates of
predictive performance. The significance was evaluated by randomly
shuffling the PSQI values 1000 times and running the above prediction
pipeline for each time to obtain a null distribution of correlation
coefficients between the predicted and actual values.

Spatial correlation with neurotransmitter densities
We further test whether the FC loadings from the PLS analysis were
spatially correlated with the distribution of several neurotransmitter
systems potentially involved in domains of sleep health. Based on
the literature31,32,60,61,82, serotonin receptors (5-HT1A, 5-HT1B, and 5-
HT2A) and transporters (serotonin reuptake transporter [5-HTT]),
together with metabotropic glutamate receptor 5 (mGluR5) and the γ-
Aminobutyric acid typeA (GABAA) receptorwere investigated. Density
valueswere derived fromaverage groupmaps of healthy volunteers (5-
HT1a: n = 35; 5-HT1b: n = 36; 5-HT2a: n = 29; 5-HTT: n = 100; mGluR5:
n = 22; GABAA: n = 11) obtained in prior multitracer molecular imaging
studies33 (details were provided in the Table S7). These maps were
resampled to an isotropic 2-mmspatial resolution aswedid in the fMRI
data. Then, we obtained the average value of each region of the
Brainconnectome atlas for each Neurotransmitter density map, i.e., a
246x1 matrix. Further, we summed the positive and negative FC
loadings separately for each region of the Brainconnectome atlas to
represent the region importance scores in positive (Fig. 6a) and
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negative network (Fig. 6b). Finally, we conducted a Spearman corre-
lation analysis between the region importance score and receptor/
transporter densities calculated for these regions45. To establish
the statistical significance of a spatial correlation against chance, we
conducted spatial permutation tests to obtain a null distribution of
correlation coefficients for region importance scores and neuro-
transmitter densities extracted from 5000 permutations while
accounting for the spatial autocorrelation of brain regions83,84. The
p-value was determined by empirically observed spatial similarity
values compared to the null distribution. The significance level was set
at FDR corrected p <0.05.

Clinical diagnosis validation
We further evaluated the possibility of distinguishing the insomnia
patients (n = 52) from sleep-healthy controls (n = 49) in the classifica-
tion dataset based on the RSFC spatial pattern of the found LV/
dimension (details about the classification sample were given in the
section of participants). Specifically, we used all the edges of the sig-
nificant RSFC pattern as the features. To accomplish this, we utilized a
Gaussian radial basis function (RBF) kernel SVM classifier which was
implemented using the LIBSVM toolbox46. We used the recommended
exponentially growing sequences of parameters of C and γ by LIBSVM
group, i.e., C (2-5, 2-3,…,215) and γ (2-15,2-13,…,23) based on a practical
guide to SVM85. The classifier performance was validated using a 10-
fold cross-validation strategy. Specifically, all subjects were divided
into 10 subsets by 10-fold cross-validation. Nine of them were used as
training sets and model fitting was performed. The fitted model
parameters and the remaining one subset were used as the test set to
generate classified labels. This process was repeated 10 times in
sequence to generate classified labels for all subjects, and then calcu-
late the classification accuracy. Regarding the optimal values for the
RBF kernel parameters C and γ, they were tuned based on the training
set using a grid search strategy based on a 10-fold cross-validation
(inner loop). Then the SVM classifier was trained by applying the
optimized parameters to the training set, based on which the testing
set was finally classified. In order to obtain stable classification per-
formance, we repeated the above pipeline 100 times to generate 100
classification performance values and further averaged these values to
obtain robust estimates.

Statistical significance was evaluated by using 1000 permutation
tests with a threshold of p <0.05. In Brief, labels of participants were
randomly shuffled 1000 times and split into the training and testing
sets. Classification performance that had an accuracy of higher than
70% was considered to be meaningful. Moreover, we replicated the
classification procedure conducted in the classificationdatasetwith an
external classification dataset to distinguish insomnia patients (n = 35)
from sleep-healthy controls (n = 35), please refer to Supplementary
Methods for more details.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheHCP consortium database used in this studywas freely available at
the following accessible link: https://db.humanconnectome.org/. The
BBP sample data are available under restricted access for it is still an
ongoing project, access can be obtained by contacting a joint team
(PIs: Q.H.H., J.Q., T.Y.F., H.C., and X.L.). The significant FCweights from
the BBP discovery cohort are available at GitHub: https://github.com/
wangyulinatUGent/Sleep_Health_Dimension. The classification sample
used in this study is available upon request from the corresponding
author. The PET/SPECT data from the prior vivo molecular imaging
studies33 used in this study are available at the following accessible link:

https://github.com/netneurolab/hansen_receptors/tree/main. Source
data are provided in this paper.

Code availability
We used the Matlab code from https://github.com/danizoeller/
myPLS86, based on Krishnan and associates’ work35 to implement the
PLS calculation. The code for spatial permutation testing can be found
at https://github.com/frantisekvasa/rotate_parcellation. The codes for
SVR and SVManalysis are openly available at https://www.csie.ntu.edu.
tw/~cjlin/libsvm/46. The brain maps were presented using the MRI-
croGL toolbox (https://www.nitrc.org/projects/mricrogl). The con-
nectome maps were presented using code from (https://github.com/
cocoanlab/cocoanCORE/tree/master/Visualization)87.
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