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Sequence-based prediction of the intrinsic
solubility of peptides containing non-natural
amino acids

Marc Oeller 1,6, Ryan J. D. Kang 1, Hannah L. Bolt 2,
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Pavol Zlatoidsky5, Wu Su 5, Werngard Czechtizky5, Leonardo De Maria 5,
Pietro Sormanni 1 & Michele Vendruscolo 1

Non-natural amino acids are increasingly used as building blocks in the
development of peptide-based drugs as they expand the available chemical
space to tailor function, half-life and other key properties. However, while the
chemical space of modified amino acids (mAAs) such as residues containing
post-translational modifications (PTMs) is potentially vast, experimental
methods for measuring the developability properties of mAA-containing
peptides are expensive and time consuming. To facilitate developability pro-
grams through computational methods, we present CamSol-PTM, a method
that enables the fast and reliable sequence-based prediction of the intrinsic
solubility of mAA-containing peptides in aqueous solution at room tempera-
ture. From a computational screening of 50,000 mAA-containing variants of
three peptides, we selectedfive different small-sizemAAs for a total number of
37 peptide variants for experimental validation. We demonstrate the accuracy
of the predictions by comparing the calculated and experimental solubility
values. Our results indicate that the computational screening of mAA-
containing peptides can extend by over four orders ofmagnitude the ability to
explore the solubility chemical space of peptides and confirm that ourmethod
can accurately assess the solubility of peptides containingmAAs. This method
is available as a web server at https://www-cohsoftware.ch.cam.ac.uk/index.
php/camsolptm.

Peptides are a growing drug market with over 100 approved drugs,
with insulin being the most prominent one1–3. Peptide drugs exhibit
several advantages over small molecules2. Since they often exhibit low
toxicity and may not accumulate in tissue, they can be safe while
having high efficacy2. They are also diverse, potent, easy to synthesise2

and have higher specificity, due to their larger size compared to small
molecules4. However, peptide drug candidates can suffer from several
problems. They tend to have low oral bioavailability and short half-
lives1,2,5 caused by high clearance rates and lowmetabolic stability due
to the presence of peptidases1,2,5. Moreover, peptides can have poor
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membrane permeability, tend to aggregate, can contain immunogenic
sequences2,6, and their conformational flexibility may generate pro-
blems during drug development as they can adopt more than one
structure5.

Taking example from nature, the properties of endogenous pep-
tides and proteins can be modified through post-translational mod-
ifications (PTM)7. Typical PTMs include phosphorylation for signal
transduction and energy metabolism8,9, and acetylation and glycosy-
lation for regulation10. Other common modifications are amidation,
carboxylation, hydroxylation, disulfide bond formation, sulfation and
proteolytic cleavage11,12. PTM dysregulation is often associated with
disease, including sleeping sickness13, amyloid-associated diseases14

andHIV15. A particular focus in recent years has been put on the impact
of PTMson protein aggregation, and on associated neurodegenerative
diseases6,16. Different PTMshave been shown tohavevarying effects on
the aggregation propensity of peptides and proteins6. N-terminal
truncation, incorporation of pyroglutamate, phosphorylation and
nitration increases oligomerisation of the amyolid-β peptide, while
citrullination and backbone modifications also increase oligomerisa-
tion but simultaneously decrease aggregation6. In therapeutic appli-
cations, examples include the increase in biological activity and
improvement of metabolic stability by N-methylation17,18, increasing
binding affinity4,19, half-life increase and improvement of tissue pene-
trating abilities by lipidation and acylation6. Methylation can also
increase binding selectivity19.

By adopting strategies that extend the scope of PTMs, the use of
modified amino acids (mAAs) has become prominent in biotechnology
and drug development3, through a variety of methods to engineer
mAAs into proteins20–29. A selection of the most common mAAs is
shown in Table 1, with those used in this work being highlighted in bold.
General approaches to improve peptide-based drugs often start with
alanine or glutamic acid scanning to identify interaction and cleavage
sites5, and continue with the replacement of natural amino acids with
modified amino acids (mAAs) to tailor a variety of other properties1,5.
ThesemAAs can contain new functional groups, and alter the backbone
or the terminal structureof apeptide5,30. Theeffects ofmAAsarediverse
and can counter specific problems inherent in biologics, including by
altering immunogenicity31. One of the major issues in peptide drug
development is the recognition by proteases and peptidases, which can
be attenuated by changing the backbone through incorporation of
amide bondmimics, D-isomers, β-amino acids, alteration of the termini
or tetra-substituted amino acids1,4,17,19,31–36. These mimics also tend to
increase bioavailability, another issue which often plagues peptide
drugs17 as well as restrict conformation and therefore reduce
flexibility1,37,38. Similar effects can also be caused by N-alkylations1,17,
incorporation of aminoisobutyric acid39, other constraining amino
acids31,40,41 or by cyclisation1,19,36,38. The latter and addition of sterically
bulky groups can also reduce T-cell recognition4,19. Bioavailability and
stability can also be improved by glycosylation, which enhances
protein-protein interactions and makes use of glucose transporters on
the cell surface which improves cell permeability31. Permeability can
also be improved by increasing hydrophobicity, which can be achieved
by methylation, lipidation31, and by adding fluorinated residues19 or
modifications to terminal residues42.

Many applications based on mAAs have been made in materials
science, especially with nanotubes and nanofibres43–46. mAAs can be
also used for photoactive, photo- or fluorescent-caged and photo-
crosslinking modifications47–56, fluorescent probes47,48,57–60, spectro-
scopic probes47,48,61 and as metal ion chelators47,48. Moreover, they can
be used to create redox-active enzymes62, reduce the complexity of
NMR spectra63 and can have antimicrobial activity64.

Commercial vendors currently offer hundreds of synthesis-
ready mAAs that can be synthesised into peptides and it has been
shown recently that this chemical space canbe greatly expanded65. At
the same time, experimental methods to characterise peptides are

often material-intensive and time-consuming. State-of-the-art solu-
bilitymeasurements such as PEG solubility assays, require substantial
amounts of material, and have a throughput typically unsuitable for
the screening of thousands of candidates66–69. Therefore, developing
computational methods to predict the intrinsic solubility and
aggregation propensity of peptides and proteins with mAAs would
be highly beneficial. Laborious solubility measurements could be
avoided or greatly reduced by incorporating fast and inexpensive in
silico screenings in development pipelines. Although there are

Table 1 | Selection of the most common modified amino
acids (mAAs)

Amino Acid Modification

Ala N-acetylation (N-terminus)

Ala Aminoisobutyric acid

Ala Cyclohexylalanine

Ala Addition of a primary amine

Arg Deimination to citrulline

Arg Dimethylation (N, N-Met)

Arg Methylation (O-Met)

Arg Methylation (N-Met)

Asn Deamidation to Asp or iso-Asp

Asn N-linked glycosylation

Asp Isomerization to isoaspartic acid

Asp N-acetylation (N-terminus)

Cys Disulfide-bond formation

Cys N-acetylation (N-terminus)

Cys Oxidation to sulfonic acid

Cys S-nitrosylation

Gln Cyclization to pyroglutamic acid (N-terminus)

Gly N-acetylation (N-terminus)

His Phosphorylation

Leu Norleucine

Leu Methylation (tert-Butyl-Alanine)

Lys Hydroxylation

Lys Acetylation

Lys Methylation

Lys Ubiquitination

Lys SUMOylation

Met N-acetylation (N-terminus)

Met Oxidation to sulfoxide

Met Oxidation to sulfone

Phe C-amidation (C-terminus)

Pro Hydroxylation

Ser N-acetylation (N-terminus)

Ser O-linked glycosylation

Ser Phosphorylation

Thr N-acetylation (N-terminus)

Thr O-linked glycosylation

Thr Phosphorylation

Trp Di-oxidation

Trp Formation of naphthalene

Trp Mono-oxidation

Tyr C-amidation (C-terminus)

Tyr Phosphorylation

Tyr Sulfation

Val N-acetylation (N-terminus)

The mAAs used in this work are highlighted in bold.
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several accurate protein and peptide solubility predictors available
as well as predictors for individual amino acids, to our knowledge no
sequence-based method can readily handle non-natural amino
acids70–74.

To bridge this gap, here we exploited the CamSol framework for
the prediction of intrinsic solubility75–77 to develop the CamSol-PTM
method, which can handle peptides containing mAAs that are of
similar size to canonical amino acids. CamSol-PTM is capable of
assessing the effect of any kind of small-size noncanonical amino
acid on the intrinsic solubility of peptides in aqueous solution at
room temperature by combining a range of different physico-
chemical property predictors. The absolute solubility of a peptide is
the combination of its intrinsic solubility and external factors that
impact its solubility such as solvents, ionic strength and pH. By
focusing on predicting intrinsic solubility, we aim at creating a
general model that can be extended to take external factors into
account77. The base model is focusing on the intrinsic solubility in
aqueous solutions at room temperature. We experimentally validate
this approach on variants of three peptides incorporating different
mAAs at most positions. The wild-type peptides, which we include in
the validation, are glucagon-like peptide-1 (GLP-1), tyrosine tyrosine
(PYY), and 18 A.

GLP-1 is a peptide used to treat several disorders, most notably
obesity and type-2 diabetes78–80. It reduces appetite, glucagon secre-
tion and slows down gastric emptying80, and has a low risk of inducing
hypoglycemia, a common side effect for diabetes drugs78. GLP-1 is a 36
amino acid longpeptide thatwhen cleaved at theN-terminus produces
its active form: GLP-17-36 amide78. The drawback of GLP-1 in its native
form is that, like most peptides, it has a short half-life and fast clear-
ance rate80. The GLP-1 derivatives liraglutatide and semaglutide were
developed to overcome this issue80,81. The half-life of these drugs is
significantly extended compared to its native formby introducing long
fatty acid chains that improves drug half-life primarily by enabling
albumin binding82–87.

PYY acts similarly to GLP-1 and is sometimes administered in
combination with it to treat obesity, as it is co-released by the body
when nutrients are detected81. In addition to appetite regulation, it
affects energy and glucose homeostasis81,88,89. PYY is a gut hormone
with a length of 36 amino acids, although itsmajor form is truncated at
the N-terminus to give PYY3-36

88. Other truncated variants such as 1-34
and 3-34 are also present but appear to be inactive81. TheC-terminus of
PYY binds four different receptors of the neuropeptide Y receptor
family81,89. It has a similarly short half-life as GLP-1, approximately
10 minutes81.

18 A is a derivative of apolipoprotein A (ApoA-1) which is themajor
component of high-density lipoproteins (HDLs)2. Apolipoproteins are
complexes that contain lipids and proteins, which transport lipids and
other hydrophobic molecules through the body90. HDLs can remove
cholesterol by decreasing low-density lipoproteins (LDLs) and there-
fore act against lipid imbalance which is a major cause for cardiovas-
cular diseases2. ApoA-1 is a 243 amino acid-long protein that consists of
10 amphipathicα-heliceswhich interactwith lipids2. 18 A is an 18 amino
acid long peptide91 thatmimics theseα-helices2. Since the original 18 A
design, many improvements weremade to increase its affinity to lipids
and homology to ApoA-1 such as acetylating the N-terminus and ami-
dating the C-terminus2,90.

For each of these peptides, we screened computationally over
10,000 variants containing combinations of 5 different mAAs. For
validation, we then synthesised 30 of those peptides and measured
their solubility for the initial set. A second set of 7 peptides con-
taining 4 new mAAs was used to confirm the generalisability of our
approach. Our results show that CamSol-PTM can reliably predict the
intrinsic solubility of peptides containing mAAs, showing high cor-
relation between predicted and experimentally measured relative
solubility.

Results
Computational predictions
In this work we exploited the CamSol framework for the accurate
prediction of the intrinsic solubility of proteins75–77 to introduce a
methodable topredict the effect ofmAAson the solubility ofpeptides.
The original CamSol method predicts the intrinsic solubility of pro-
teins by combining tabulated values of hydrophobicity, charge, and α-
helical and β-sheet propensities of the 20 standard amino acids. To
extend these tables to a range of different mAAs, information on the
physicochemical properties of thesemAAs is required (Fig. 1). Because
our goal is to estimate the intrinsic solubility of mAA-containing pep-
tides without the need to carry out extensive experimental studies, we
build a pipeline in which the physicochemical properties of the mAAs
are predicted computationally.

pKa values
We calculated pKa values of modified side-chains using the recently
developed pIChemiSt suitewhich calculates ionisation constants using
pKaMatcher92. pKaMatcher matches SMARTS patterns of the mAAs
with a list of SMARTS patterns with known pKas92.

Hydrophobicity
CamSol uses hydrophilicity values closely related to the inverse of
experimental logP values75. Here, to develop a predictor of the
hydrophobicity of the mAAs, we used a combination of different
hydrophobicity calculators to reduce possible biases. After consider-
ing the results of several benchmarks, we selected three hydro-
phobicity predictors: ALOGPS, XLOGP3 and KOWWIN93–95. All these
methods are machine learning-based, which train their algorithms on
different descriptors. ALOPGS96,97 is based on creating 75
electrotopological-state (E-state) indices trained on the Physprop
database (Syracuse Research Corporation. Physical/Chemical Property
Database (PHYSPROP); SRC Environmental Science Center: Syracuse, NY.
(1994))93,98. XLOGP3 is an atomic-based model99 that uses 87 atomic
groups and two correction factors93. KOWWIN is fragment-based,
using 150 different fragments and 250 corrections93,100.

Next, wefitted the hydrophobicity values for the 20 natural amino
acids as calculated with these predictors to the tabulated CamSol
hydrophilicity values. This fit accomplishes two goals. First, the origi-
nal tabulated values of the 20 natural amino acids do not have to be
changed. Second, aligning mAA hydrophilicity values to the original
value range bypasses the need to re-fit the parameters used to com-
bine the different biophysical properties in the CamSol framework75.
We thus calculated the correlation of each of these individual pre-
dictors with the original hydrophilicity values of CamSol for the
20 standard amino acids (Supplementary Fig. 1a–c). Using a linear
regression analysis, we obtained a fit function to the target values,
which showed a higher correlation than with the individual predictors
with a Pearson’s coefficient of correlation of 0.9 (Supplementary
Fig. 1d). Although the combination of the three predictors was accu-
rate, KOWWINwas not suited for the automation of thewhole process.
SinceKOWWIN isonly available as part of the EPA suitewhichonly runs
on Windows and is not open source, it would be very laborious to
include this in the process101. However, we found that the accuracy of
CamSol-PTM is not significantly affected when using only the other
two predictors (Pearson’s coefficient of correlation = 0.88) (Supple-
mentary Fig. 1e).

Secondary structure propensity
We set out to develop a predictor of secondary structure propensity
for mAAs based on physico-chemical properties. The values for the
20 standard amino acids are calculated using statistics from the PDB75.
However, many types of mAAs are either too rare or altogether absent
in the PDB, meaning that a new approach was needed. We considered
the following characteristics: molecular weight (MW), number of
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hydrogen donors (HD) number of hydrogen acceptors (HA) number of
rotational bonds (RB) and topological polar surface area (TPSA). The
information on these properties for all standard amino acids and the
mAAs used in this work were initially gathered from https://pubchem.
ncbi.nlm.nih.gov/. The final version of CamSol calculates these values
using the python module RDKit. To determine which combination of
propertieswould yield thebest predictor,we explored a series of linear
equations for different combinations of these five properties, such for
example

pα
i =αMW �MWi +αTPSA � TPSAi +αRB � RBi, ð1Þ

where pα
i is the calculated α-helical propensity of amino acid i and αX

are the linear coefficients to be fitted. For each combination of the
properties, we fitted a function to the tabulated secondary structure
propensity values of the standard amino acids. We excluded glycine
and proline, since these two amino acids have unusual secondary
structure propensities and would skew the fit. Moreover, we also used
the resulting secondary structure propensity values of each of these
combinations within the CamSol-PTM framework to predict the
solubilities of all peptides. To choose which secondary structure
propensity predictor was the most promising we looked at the
Pearson’s coefficients of correlation between the predicted secondary

structure propensity values and their tabulated counterparts aswell as
at the correlation between the experimental and predicted solubility
data for the 30 peptide variants. The choice of propensities that
offered the best combination of high correlation for the secondary
structure propensities as well as the high correlation between the
predicted and experimental solubilities while simultaneously using as
few parameters as possible was HD and TPSA for α-helical propensities
(R =0.59) and MW, RB and TPSA for β-sheet propensities (R =0.69,
Supplementary Fig. 2).

Sequence parser
As a 1-letter alphabet is not available for all possible mAAs, we parsed
the input sequence as follows.mAAs are added to the standard protein
sequence as a three-letter code in square brackets (e.g. Ala-norleucine-
Gly would be denoted as ‘A[NLE]G’). A careful literature research
regarding nomenclature for denoting mAAs showed that there is
currently no widely used and simultaneously easy-to-read format for
codingmAAs. Therefore, we kept the implementation flexible in order
for any kind of nomenclature to be used.

Choice of modifications
To decide the set of mAAs for an initial testing, we considered a range
of different functionalities. Acetylationofnative lysine (NAC) residue is

Fig. 1 | Workflow for optimising the solubility of peptides containingmodified
amino acids (mAAs) using CamSol-PTM.A linear combination of ALOGPS96,97 and
XLOGP3100 is employed to determine the hydrophobicity values. pIChemiSt suite92

is used to predict the pKa values of mAAs. Structural propensities are calculated
using a separate predictor that gives an estimate on the likelihoodof finding amAA

in an α-helix or a β-sheet. The predictor employs a combination of the number of
hydrogen donors and acceptors, the number of rotational bonds, molecular
weight and the topological polar surface area. All this information is fed into the
CamSol-PTM algorithm to predict the effect ofmAAs on the solubility of a peptide.

Article https://doi.org/10.1038/s41467-023-42940-w

Nature Communications |         (2023) 14:7475 4

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/


a common PTM with great impact on the properties of a peptide, as it
removes a positive charge. Aminoisobutyric acid (AIB) is often used to
make peptides more resistant against peptidases as it is not easily
recognised79. Norleucine (NLE) is closely related to the natural amino
acids leucine, valine and isoleucine, but with its longer non-branched
aliphatic chain offers a slightly different functional group; it is also
typically used as a non-oxidation labile methionine substitution.
Cyclohexylalanine (CHA) offers a unique functionality due to its highly
hydrophobic non-aromatic six-membered ring. Citrulline (CIT) offers
alternative functionality that resembles arginine. Moreover, we also
implemented modifications to the N- and C-termini of peptide scaf-
folds: N-acetylated aspartic acid, C-amidated phenylalanine and
C-amidated tyrosine as these were already included in the base pep-
tides. With this mix of new functionalities and some closely related
mAAs we aimed to cover a broad chemical space.

Peptide design
Due to the limit of the number of possible variants that could be
synthetised and purified in this study, we wanted to ensure that our
designs covered the largest possible chemical space while exploring a
broad range of solubility values. For each peptide we designed five
variants each containing one mAA. We chose alanine residues as the
starting point for single modifications to have a common baseline for
all mAAs. Additionally, we screened all possible combinations of
double modifications for each peptide. The first step, however, was to
define regions for each peptide that allowed for modification without
interfering with the binding capabilities and specific folds.

GLP-1 consists of twoα-helices separated by a linker.We chose the
first alanine in the linker region (residue 24) as the starting point for
single-site modifications. For the double-site modifications, we further
excluded the following residues due to their essential role in binding:
7His, 8Ala, 9Glu, 11Thr, 12Phe, 13Thr, 14Ser, 16Val, 17Ser, 18Ser, 19Tyr,
20Leu, 21Glu, 26Lys, 28Phe, 29Ile, 31Tyr, 32Leu, 33Val, 34Lys.

PYY consists of a proline-rich α-helix at the N-terminus which
forms H-bonds with the α-helix that comprises the rest of the mole-
cule. Hence, we chose an alanine in the proline-rich region to perform
the single-site modifications. For the double-site modifications, we
excluded all prolines and hydrogen-bonding residues, i.e. R, H, K,
D, E, N, Q.

18 A has an amphipathic nature that is convenient to maintain.
Therefore, for the single-site modifications, we chose alanine at posi-
tion 10, located on the edge between the two sides. For the double-site
modifications, we ensured that the hydrophilic residues (D, E, K) were
only replaced with hydrophilic modifications (CIT, AIB) and hydro-
phobic residues (W, F, A, V) were only replaced with hydrophobic
mAAs (CHA, NAC, NLE).

Given these constraints, we screened over 50,000 mAA variants
using CamSol-PTM. From all these possible variants for double mod-
ifications, we chose at least one variantwhere oneof themodifications is
rather small, e.g., L to NLE, F to CHA, A to AIB or R to CIT. For the
remaining three doubly modified variants per peptide, we chose one
variant eachpredicted as either very soluble, very insoluble or average in
solubility. The sequences of the designed peptides are given in Table 2.

Generation of experimental data
Relative solubility was measured using a recently developed PEG pre-
cipitation assay66. For all PYY variants the standard assay worked well,
and no changes had to be implemented (Fig. 2a). Variants 27 and 28
were completely soluble whereas variant 30 was already insoluble in
the absence of PEG, and variant 29 proved to be difficult to produce
and purify. Therefore, these four are not reported in Fig. 2. 18 A and its
variants proved more complicated, as most variants were completely
soluble up to 30%PEG.We therefore switched fromPEG to ammonium
sulphate (AMS) precipitation (Fig. 2b), as it has been shown that rela-
tive solubility measurements with PEG and AMS are correlated102.

Moreover, to ensure that the results stemming from the AMS assay are
consistent and reliable, we performed the 18 A experiments twice
independently on different days. The results confirmed that they are
indeed replicable, andwewere therefore confident to use them for the
validation of our approach (Supplementary Fig. 3). Two variants,
namely variant 17 and 18 proved to be completely insoluble and variant
12 was not produced in sufficient amounts. Therefore, these are not
reported in the figures. The last set of variants stemming from GLP-1
had the inverse problem, as most variants proved to be very insoluble.
Even at final concentrations of 0.33mg/mL (instead of 1mg/mL) most
variants remained insoluble.We used ultracentrifugation to determine
the relative solubilities of the GLP-1 variants (Table 3). To confirm the
reliability of this method we replicated the results on a different day
with the same stock solutions (Supplementary Fig. 4).

Correlation between predicted and experimental
solubility values
By comparing the computational predictions with the experimental
data, we found high correlations between the two data sets. The
Pearson’s coefficients of correlation for the PYY variants are 0.78, 0.81
for the 18 A variants and 0.58 for the GLP1 variants (Fig. 3). To ascertain
that these findings were not merely a coincidence, we designed a
second set of PYY variants containing four new mAAs and measured
their solubilities (Fig. 2c). The results are depicted in Fig. 3a in ochre.
Variant 32 is not depicted as it was not possible to measure its solu-
bilitywith the PEGAssay. The overall Person’s coefficient of correlation
for the combined set of PYY variants is 0.6.

Encouraged by the results of the experimental validation, we set
out to generalise the computational approach to broaden its applic-
ability to more mAA types. We set up a web server under https://www-
cohsoftware.ch.cam.ac.uk/index.php/camsolptm for academic user to
freely use ourmethod.We automated the process of addingnewmAAs
by replacing the hydrophobicity predictor with the Crippen tool from
RDKit. If a user would like to predict the solubility of a peptide con-
taining a noncanonical amino acid that has not been implemented yet,
only the SMILES code is required. By providing this information, the
web server will automatically calculate the necessary properties for
this mAA in order for the user to include it in the prediction.

To demonstrate the speed of the automation, we incorporated
the whole set of non-canonical amino acids that Amarasinghe et al.
recently produced through extensive in silico screenings65. CamSol-
PTM can calculate about 15 new residues per second on a single CPU
core. We then designed 40,000 single mutational variants of a 60
residue-long Nrf2 peptide fragment centred around the mutational
sites Leu76, Asp77, Glu78 and Leu84, which were previously
identified65. We predicted the intrinsic solubility for each of these
variants which took 8min on a single CPU core (around 80/s) and
plotted the distribution of the solubilities (Fig. 4). By analysing the tail
ends of the distribution, we found that, in agreement with chemical
intuition, mAAs that containmany hydrogen bonding residues such as
those containing nitrogen and oxygen atoms are among the most
solubility-promoting residues (Supplementary Fig. 5). The mAAs that
most negatively affected the solubility largely contain several aromatic
rings and often halogens such as chlorine or bromine (Supplemen-
tary Fig. 6).

Discussion
Peptide intrinsic solubility is one of the most crucial parameters that
determine the likelihoodof apeptide tobe successfullydeveloped into
a commercial drug product. Application of automated, predictive
technologies with high throughput and low compound requirements
are very useful for efficient early profiling and optimization of physico-
chemical properties, such as solubility during early discovery program
allowing for more comprehensive screenings and faster develop-
ment times.
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Non-canonical amino acids are often used to introduce unique
functionalities to drugs such as peptidase resistances1,4,17,19,31–36 or
increase binding affinities4,19. However, experimental methods to
evaluate the developability of peptides containingmAAs are typically
costly, and current computational approaches lack the capability of
capturing the effects of mAAs on the solubility of peptides. To
address this problem, we have presented CamSol-PTM, a software
that predicts the intrinsic solubility in aqueous solution at room
temperature of peptides and proteins containing non-canonical
amino acids based on the physicochemical properties of their amino
acid sequences75–77.

To test the CamSol-PTM predictions, 30 variants of 3 peptides
containing 5 different mAAs were chosen from a preliminary screen of
over 50,000 designs. The peptides were produced and purified, and
their solubilities were experimentally measured. The comparison
betweenmeasurements and predictions showed that CamSol-PTMcan
predict the intrinsic solubility of peptides and proteins containing

mAAs with high accuracy (Pearson’s coefficients of correlation 0.72 on
average).

We confirmed the generalisability of our approach by designing a
second set of PYY variants with four new mAAs and measured their
solubility and compared it to our predictions. The high overall Pear-
son’s coefficient of correlation for the whole set of PYY variants –

although being slightly lower at 0.6 - showcases the robust applic-
ability of our method.

Although the wild types of the peptides tested in this study tend
to form α-helices, we do not expect our method to be significantly
biased towards this type of secondary structure. First, most para-
meters, including the ones to calculate the solubility score for indivi-
dual amino acids and the parameters used to determine the overall
solubility of a protein are identical to original CamSol method which
was trained on a wide range of varying secondary structure. Second,
themAAs testedwere notmerely α-helical promoting residues and are
therefore not biased towards α-helical structures.

Table 2 | List of peptides designed to verify the CamSol-PTM predictions

Compound Peptide Sequence Modifications

1 GLP1 HAEGTFTSDVSSYLEGQAAKEFIAWLVKGR None

2 GLP1 HAEGTFTSDVSSYLEGQ[CHA]AKEFIAWLVKGR A - >CHA

3 GLP1 HAEGTFTSDVSSYLEGQ[NLE]AKEFIAWLVKGR A - > NLE

4 GLP1 HAEGTFTSDVSSYLEGQ[NAC]AKEFIAWLVKGR A - > NAC

5 GLP1 HAEGTFTSDVSSYLEGQ[AIB]AKEFIAWLVKGR A - > AIB

6 GLP1 HAEGTFTSDVSSYLEGQ[CIT]AKEFIAWLVKGR A - >CIT

7 GLP1 HAEGTFTSDVSSYLEGQ[CHA]AKEFIAWLVKG[CIT] A - > CHA, R - > CIT

8 GLP1 HAE[AIB]TFTSDVSSYLEGQAAKEF[CIT]AWLVKGR G - > AIB, I - > CIT

9 GLP1 HAEGTFTS[CHA]VSSYLEGQAAK[NAC]FIAWLVKGR D - >CHA, E - > NAC

10 GLP1 HAE[NLE]TFTSDVSSYLEG[CIT]AAKEFIAWLVKGR G - >NLE, Q - > CIT

11 18 A [ntDAC]WFKAFYDKVAEKFKEA[ctFAD] None

12 18 A [ntDAC]WFKAFYDKV[CHA]EKFKEA[ctFAD] A - > CHA

13 18 A [ntDAC]WFKAFYDKV[NLE]EKFKEA[ctFAD] A - > NLE

14 18 A [ntDAC]WFKAFYDKV[NAC]EKFKEA[ctFAD] A - > NAC

15 18 A [ntDAC]WFKAFYDKV[AIB]EKFKEA[ctFAD] A - > AIB

16 18 A [ntDAC]WFKAFYDKV[CIT]EKFKEA[ctFAD] A - > CIT

17 18 A [ntDAC]W[CHA]KAFYDKV[CHA]EKFKEA[ctFAD] F - > CHA, A - > CHA

18 18 A [ntDAC]WFK[CHA]FYDKVAEKFKE[NLE][ctFAD] A - > CHA, A - > NLE

19 18 A [ntDAC]WF[AIB]AFYDKVAEK[CHA]KEA[ctFAD] K - > AIB, F - > CHA

20 18 A [ntDAC]W[NAC]KAFYDKVAEK[NLE]KEA[ctFAD] F - > NAC, F - > NLE

21 PYY3-36 IKPEAPREDASPEELNRYYASLRHYLNLVTRQR[ctYAD] None

22 PYY3-36 IKPEAPRED[CHA]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > CHA

23 PYY3-36 IKPEAPRED[NLE]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > NLE

24 PYY3-36 IKPEAPRED[NAC]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > NAC

25 PYY3-36 IKPEAPRED[AIB]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > AIB

26 PYY3-36 IKPEAPRED[CIT]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > CIT

27 PYY3-36 IKPEAPRED[CIT]SPEELNRYYASLRHY[NLE]NLVTRQR[ctYAD] A - > CIT, L - > NLE

28 PYY3-36 IKPEAPREDA[NLE]PEELNRYYA[NLE]LRHYLNLVTRQR[ctYAD] S - > NLE, S - > NLE

29 PYY3-36 IKPE[AIB]PREDASPEELNRYYA[NAC]LRHYLNLVTRQR[ctYAD] A - > AIB, S - > NAC

30 PYY3-36 [AIB]KPEAPREDASPEELNRYYASLRHYLNL[AIB]TRQR[ctYAD] I - > AIB, V - > AIB

31 PYY3-36 IKPEAPRED[DAP]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > DAP

32 PYY3-36 IKPEAPRED[NAP]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > NAP

33 PYY3-36 IKPEAPRED[TBA]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - > TBA

34 PYY3-36 IKPEAPRED[OPO]SPEELNRYYASLRHYLNLVTRQR[ctYAD] A - >OPO

35 PYY3-36 IKPE[CHA]PREDASPEELNRYYASLRH[OPO]LNLVTRQR[ctYAD] A - > CHA, Y - >OPO

36 PYY3-36 IKPE[OPO]PREDASPEELNRYYASLRHYLN[TBA]VTRQR[ctYAD] A - >OPO, L - > TBA

37 PYY3-36 [CIT]KPEAPREDASPEE[AIB]NRYYASLRHY[DAP]NLVTRQR[ctYAD] I - > CIT, L - > AIB, L - > DAP

Initially, for each peptide, nine variants were designed. Five include single-site modifications, one is a double-site modification where one modification is small and three are random double-site
modifications. In a second step another seven variants for PYY were designed (31–37) containing four new mAAs.
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It has been recently shown that by creating new unnatural
amino acids in silico, it is possible to create effective new com-
pounds, thus demonstrating the potential of incorporating more
diverse mAAs into the drug development process65. By automating
the process of adding new mAAs to CamSol-PTM, the method is
now capable of predicting the effects of small mAAs on the solu-
bility of proteins and peptides. We have demonstrated the speed
and versatility of the method by adding all 10,000 mAAs reported
recently by Amarasinghe et al. to our method and predicting the
solubility of 40,000 mutational variants of a Nrf2 peptide
fragment65.

We acknowledge that although our method increases the chemi-
cal space that can be covered by solubility predictions by several
orders of magnitude compared to the 20 natural amino acids, it is
currently restricted to modifications that are of similar size to cano-
nical amino acids. Further developments will be required to assess the
effects of larger modifications such as lipids or glycans on the intrinsic
solubility of peptides.

We envisage that the CamSol-PTMmethodwill substantially aid
in the understanding of the effects of non-canonical amino acids on
the intrinsic solubility of proteins and peptides. As with previous

versions, it can also be used to identify aggregation hot spots by
analysing the solubility profiles. Moreover, we except it to be a
valuable tool for drug development as it enables the fast and
accurate solubility prediction of peptides containing modified
amino acids.

Methods
Materials
N-α-D-Fmoc protected amino acids were sourced from Bachem AG
(Switzerland). Synthesis reagents and solvents were all obtained from
NovaBioChem, Merck (UK) and used without further purification.
Peptide sequences were prepared using automated microwave-
assisted solid phase peptide synthesis using the CEM Liberty Blue
synthesiser and Fmoc chemistry with standard side chain protecting
groups.

Peptide synthesis
All peptides were synthesised as C-terminal carboxamides on Rink
Amide MBHA resin (loading 0.23mmol/g, 100–200 mesh) on a
0.1mmol scale usingDIC/HOBt activation. All amino acidswere double
coupled for 4min at 75 °C, with the instrument set to deliver the N-α-
Fmoc-amino acid solutions (0.2M solution in DMF), HOBt (1.0M
solution in DMF) and DIC (1.0M solution in DMF). Deprotection cycles
were performed using 20% piperidine solution (in DMF, + 0.1mol
HOBt) for 1min at 90 °C following each cycle. Crude peptides were
cleaved from the resin using a cleavage cocktail containing TFA (95%),
triisopropylsilane (2.5%) and water (2.5%) for 4 hours at room tem-
perature. The resinwas removedby filtrationand the cleavage solution
removed in vacuo. The peptides were precipitated by addition of
diethyl ether, isolated by centrifuge at 3500 rpm and dried under a
flow of dry nitrogen.

Table 3 | Experimental solubility data for the GLP-1 variants
generated using ultracentrifugation

Variant 1 2 3 4 5 6 7 8 9 10

Run 1 / mg/mL 0.58 0 0.09 S 0.09 S 0.84 S 0 0.15

Run 2 / mg/mL 1.38 0 0.16 S 0.07 S 0.82 S 0 0.12

Results of two independent ultracentrifugation runs measuring the solubility of the GLP-1 var-
iants. S symbolizes the outcomes in which no precipitation occurred.
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Fig. 2 | Experimental solubility data for peptides generated using the PEG
solubility assay. Solubility curves determined using a recently developed PEG
solubility assay66 for all successfully synthesised variants (all designs except var-
iants 12 and 29) that are neither completely soluble (variants 27 and 28) nor
insoluble (variants 17, 18 and 30) for: PYY (a), 18 A (b) and the second batch of PYY
variants (c). For 18 A AMS was used instead of PEG. PEG1/2/AMS1/2 values are shown

as a vertical linewith the shaded region depicting the 95% confidence interval. PEG
percentages are mass/volume66. Error bars represent the standard error of the
experimental measurements across technical replicates (n = 4 for PYY and PYY –

SecondBatch,n = 2 for 18 A)where the centre represents themean. Sourcedata are
provided as a Source Data file.
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Peptide purification and analysis
Prior to purification, crude peptides were reconstituted in 5% acet-
onitrile in water (v/v) or dissolved in TFA and diluted with ACN/Water/
TFA 50/50/0.1 mixture and filtered (0.4 μm, PTFE). The purifications
were performed by preparative HPLC (Waters Fraction Lynx system
connected to a PDA detector and Waters SQD mass spectrometer)
using a Waters Atlantis T3 OBD column, Waters XSelect CSH Fluoro
Phenyl OBD column or a Waters XBridge C18 OBD column with a
focused acetonitrile gradient at room temperature. Themobile phases
usedwere either at acidic or neutral conditions. For specific conditions

see SupplementaryData 1. Fraction collectionwas triggeredoneither a
UV threshold or target mass intensity threshold, the UV trace was
monitored at 230 nm. The collected fractions were pooled and ana-
lysed on a C8 or a C18 column by Waters UPLC system (or Agilent
1200 series gradient HPLC system) using a linear acetonitrile gradient
at acidic conditions (Supplementary Data 1). UV purity was estimated
to between 82 and 99% at 210 nmor 230nmon aWaters H-Class UPLC
system with a PDA, Waters SQD mass spectrometer (or Waters
3100 system). Target masses were verified against theoretical values
on the mass spectrometer operating in ES+ mode.
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score for thewild typeNrf2 peptide fragment. Source data are provided as a Source
Data file.
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Solubility assay
Aliquots of 1mg were prepared from the purified and lyophilised
stocks. The solubility of the PYY and 18 A variants wasmeasured using
the PEG solubility assay that was developed in this group66. Briefly, a
precipitant is titrated in increasing concentration to a fixed con-
centration of protein to induce precipitation of the protein. The
samples are incubated for 48 h at 4° after mixing. The samples are
centrifuged and the remaining protein concentration is measured in
the supernatant using a plate reader. PYY and 18 A variants were dis-
solved in 10mM citrate 10mM phosphate buffer at pH 7 for a final
concentration of 3mg/mL. The assay was run with 50% 6000 PEG for
PYY and with 3.8M AMS for 18 A. To improve throughput, a multi-
channel robot was employed tomeasure several peptides at oncewith
the workflow being kept the same as described previously66. The
solubility of the GLP1 variants was measured with ultracentrifugation
as follows: The peptides were dissolved in 10mM citrate 10mM
phosphate buffer at pH 7 for a final concentration of 2mg/mL. 120 µL
of each sample were centrifuged using an OptimaTLX Ultracentrifuge
and spinning for 30min at 500,000g at 4 °C. The supernatant was
removed, and the peptide concentration was measured using a
NanoDrop.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All peptide sequences are given in Table 2 and Supplementary Data 1.
All data necessary to replicate, evaluate or extend the research pre-
sented in this article are provided throughout the article, the sup-
porting information and the Source Data file. All predicted values are
provided in the Source Data file and can be replicated by using the
webserver under https://www-cohsoftware.ch.cam.ac.uk/index.php/
camsolptm. Information on peptide production and purification are
included in the supporting information. Source data are providedwith
this paper.

Code availability
This method is available as a web server which is free for academic
users after registration at https://www-cohsoftware.ch.cam.ac.uk/
index.php/camsolptm. For industry users it is possible to purchase a
license for the CamSol method from Cambridge Enterprise.
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