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LensAge index as a deep learning-based
biological age for self-monitoring the risks
of age-related diseases and mortality

Ruiyang Li1,7, Wenben Chen1,7, Mingyuan Li1,7, Ruixin Wang1, Lanqin Zhao1,
Yuanfan Lin 1, Xinwei Chen1, Yuanjun Shang1, Xueer Tu1, Duoru Lin1,
Xiaohang Wu1, Zhenzhe Lin1, Andi Xu1, Xun Wang1, Dongni Wang1, Xulin Zhang1,
Meimei Dongye1, Yunjian Huang1, Chuan Chen2, Yi Zhu3, Chunqiao Liu1,
Youjin Hu 1, Ling Zhao1, Hong Ouyang 1, Miaoxin Li 4,5, Xuri Li 1 &
Haotian Lin 1,4,6

Age is closely related to human health and disease risks. However, chron-
ologically defined age often disagrees with biological age, primarily due to
genetic and environmental variables. Identifying effective indicators for bio-
logical age in clinical practice and self-monitoring is important but currently
lacking. The human lens accumulates age-related changes that are amenable
to rapid and objective assessment. Here, using lens photographs from 20 to
96-year-olds, we develop LensAge to reflect lens aging via deep learning.
LensAge is closely correlated with chronological age of relatively healthy
individuals (R2 > 0.80, mean absolute errors of 4.25 to 4.82 years). Among the
general population, we calculate the LensAge index by contrasting LensAge
and chronological age to reflect the aging rate relative to peers. The LensAge
index effectively reveals the risks of age-related eye and systemic disease
occurrence, as well as all-cause mortality. It outperforms chronological age in
reflecting age-related disease risks (p <0.001). More importantly, our models
can conveniently work based on smartphone photographs, suggesting suit-
ability for routine self-examination of aging status. Overall, our study
demonstrates that the LensAge index may serve as an ideal quantitative indi-
cator for clinically assessing and self-monitoring biological age in humans.

Assessing an individual’s aging process is important to evaluate one’s
health status. As one ages, the human body becomes frail with regard
to biological functions and the occurrence of chronic diseases, such as
Alzheimer’s disease1, cancer2, diabetes3, and cardiovascular diseases4.

Chronological age is defined as the time that an individual has
experienced since birth. Since aging involves complex determinants,
including genetic regulation, and the nutritional and environmental
factors, peers with the same chronological age vary in aging and may
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have different health status and life expectancy5–7. Thus, chronological
age does not precisely reveal the true physiological age of individuals.

Biological age assessment based on various physiological bio-
markers canquantitatively evaluate thedegreeof aging andpredict the
mortality and incidence of age-related diseases more accurately than
chronological age. However, measuring biological age is challenging,
largely due to obstacles in sample collection, variable aging rates of
different tissues, and insufficient reliability of measuring tools and
protocols8. Intensive investigations of the biological indicators
reflecting the overall aging pace of the human body are currently
underway. For example, invasivemethodsmeasuring telomere length9

and DNA methylation status10, profiling transcriptomics11 and
proteomics12, and the inflammatory aging clock13 have been used to
generate biomarkers of aging at themolecular level usinghumanblood
cells. Furthermore, noninvasive techniques usingmachine learning and
medical imaging, such as chest X-ray14, magnetic resonance imaging
(MRI) of the brain15, and 3D facial imaging16, were introduced to eval-
uate biological aging. However, these techniques are limited by high
costs or instability in clinical practice. Therefore, a more objective,
reliable, convenient, and noninvasive method that can accurately
evaluate the biological age of an individual has yet to be developed for
broader applications and self-management of health status.

The human lens, located in the anterior segment of the eye, is
transparent under normal conditions and exchanges substances with
the vitreous through the aqueous humor cycle17. Age-dependent
changes in the lens include nucleus enlargement, elasticity reduction,
and increased opacity, all of which can be objectively and reliably
observed through noninvasive imaging and rapidly assessed using
digital photography18. Thus, the human lens appears to be an optimal
tissue with unique advantages for assessing biological age.

In this study, we used informative lens photographs to generate
LensAge as an innovative indicator to reveal aging status of lens based
on deep learning (DL) models. Under ideal physiological conditions
(both genetic and environmental), biological age should be synchro-
nized with chronological age. While in reality, there are almost always
differences between biological age and chronological age, which is
considered to result from individually different aging processes19.
Therefore, we measured the difference between LensAge and chron-
ological age as the LensAge index to assess an individual’s aging rate
relative to peers, and investigated its ability to evaluate the risks of age-
related disease occurrence and all-cause mortality. Importantly, we
tested whether our models can be generalized to smartphone-based
lens photographs, which may have potential applications for self-
monitoring the risks of age-related diseases andmortality during aging.

Results
Performance of DL models for age estimation
In this study, to generate LensAge, we first developed DL-based age
estimation models on a reference dataset of relatively healthy indivi-
duals who did not report any medical history of systemic diseases and
had no abnormalities in physical examination at baseline. A total of
8255 lens photographs (4542 for diffuse-light mode and 3713 for slit-
lampmode) from 1990 relatively healthy individuals aged between 20
and 96 years (mean age [± s.d.] of 55.3 [ ± 18.0] years, 63.2% females,
Table 1) were included. LensAge at the individual level was calculated
by averaging the LensAge values of all diffuse-light or slit-lamp images
corresponding to one individual. Four classic convolutional neural
networks (CNNs), including InceptionV3, ResNet50, DenseNet, and
InceptionResNetV2, were trained to predict the ages of relatively
healthy individuals. The most outperformed network was selected for
further analyses. The study workflow is summarized in Fig. 1.

Among the four trained CNNs, the InceptionV3 models displayed
best overall performance for model validation (Supplementary
Table 1). For diffuse-light mode, at the image level, the InceptionV3
model had a mean absolute error (MAE) of 4.88 years (Supplementary

Table 1), while at the individual level, the model showed a strong
correlation (R2 = 0.89, p < 1.00e-36, Fig. 2a) between LensAge and
chronological age, with anMAE of 4.25 years (Supplementary Table 1).
For slit-lamp mode, at the image level, the InceptionV3 model had an
MAE of 5.25 years (Supplementary Table 1), whereas at the individual
level, themodel achieved a significant correlation (R2 = 0.82, p < 1.00e-
36, Fig. 2c) between LensAge and chronological age, with an MAE of
4.82 years (Supplementary Table 1). In addition, we assessed the level
of agreement between InceptionV3-generated LensAge and chron-
ological age using Bland‒Altman plots. Bland‒Altman plot analyses
revealed that the average differences between LensAge and chron-
ological age were −0.21 (−1.96 s.d. −11.40 to +1.96 s.d. 10.98) for
diffuse-light mode and −0.59 (−1.96 s.d. −12.79 to +1.96 s.d. 11.62) for
slit-lamp mode (Fig. 2b, d). These results demonstrate that the Incep-
tionV3 models show small biases and good performance in age esti-
mation for relatively healthy individuals.

Furthermore, our InceptionV3 models exhibited favorable per-
formance across various types of cataracts (Supplementary Table 2).
Although the majority of participants in this study were of Chinese
descent, we also included individuals from different nationalities. The
performance of the InceptionV3 models in this non-Chinese popula-
tion demonstrates their potential applicability to other ethnicities
(Supplementary Fig. 1). Additionally, we compared the accuracy of our
age estimation models with biological age measurements in previous
studies and found that the LensAge models achieved reasonably
accurate performance among relatively healthy individuals (Supple-
mentary Table 3). Hence, the InceptionV3 models were employed for
further analyses.

Interpretation of the DL age estimation models
We enhanced the interpretability of our DL age estimation models by
visualizing the attention regions that the models utilized to extract
relevant features from the images. Representative attention maps for

Table 1 | Baseline characteristics of the datasets

Traditional slit-lamp
images

Smartphone images

Reference
dataset

Analysis
dataset

Reference
dataset

Analysis
dataset

No. of
participants

1990 3433 50 102

Nationality, n (%)

Chinese 1952 (98.1%) 3370 (98.2%) 50 (100%) 99 (97.1%)

Non-Chinese 38 (1.9%) 63 (1.8%) 0 3 (2.9%)

Age in years
(mean ± s.d.)

55.3 ± 18.0 66.0 ± 11.5 64.6 ± 11.4 62.0 ± 10.8

Distribution of chronological age, n (%)

≥ 20 and < 30 245 (12.3%) 8 (0.2%) 0 0

≥ 30 and < 40 231 (11.6%) 55 (1.6%) 3 (6.0%) 4 (3.9%)

≥40 and < 50 246 (12.4%) 224 (6.5%) 0 6 (5.9%)

≥ 50 and < 60 292 (14.7%) 624 (18.2%) 15 (30.0%) 37 (36.3%)

≥60 and < 70 507 (25.5%) 1139 (33.2%) 12 (24.0%) 28 (27.5%)

≥ 70 and < 80 334 (16.8%) 976 (28.4%) 18 (36.0%) 23 (22.5%)

≥ 80 134 (6.7%) 407 (11.9%) 2 (4.0%) 4 (3.9%)

Sex, n (%)

Male 732 (36.8%) 1482 (43.2%) 20 (40.0%) 45 (44.1%)

Female 1258 (63.2%) 1951 (56.8%) 30 (60.0%) 57 (55.9%)

Images, n

Diffuse-light
images

4542 5641 N/A N/A

Slit-lamp
images

3713 5663 157 389
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age estimation are shown in Fig. 2e, f. The specific lens areas high-
lighted by the heatmaps indicate that the DLmodels prioritize the lens
during age assessment for both diffuse-light and slit-lamp modes.
These results suggest that our DL age estimation models can extract
information on the aging characteristics of human lenses across dif-
ferent age groups.

Furthermore, we analyzed the influence of masking different lens
structures onLensAgeprediction for slit-lampmode.Whenmasking the

lens cortex for cortical and noncortical cataracts, the predictive error
was higher among cortical cataracts (adjusted odds ratio [OR] = 1.23,
95% confidence interval [CI] 1.16–1.31, p= 6.72e-11, Supplementary
Table 4). This indicates that in the case of cortical cataracts, the lens
cortex regions played a more crucial role in the decision-making pro-
cess of the model compared to other types of cataracts. Similarly, the
predictive errors were higher among nuclear cataracts and subcapsular
cataracts than among other types of cataracts when masking the lens

0 +-

LensAge index

Cardiovescular
indicators

All-cause 
mortality

Metabolic
indicators

Electrocardio-
graph

Chest 
X-ray

Blood
indicators

Respiratory
indicators

C. Abilitiy of the LensAge index to reflect aging status

LensAge index=LensAge-Chronological age 

B. Measuring individual’s aging level

Lens photographs

0 +-

LensAge Chronological age LensAge index

Relatively healthy population from age 20 to 96

Input

Outperformed CNN for further analysis

CNN generate LensAge

OR

Output

InceptionV3

ResNet50

DenseNet

InceptionResNetV2

CNNs

Model for diffuse-light mode

Model for slit-lamp mode

A. Development of DL age-estimation model  

Fig. 1 | Overview of the study workflow. A DL-based age estimation models were
developed to predict LensAge using lens photographs taken in diffuse-light or slit-
lamp mode from relatively healthy individuals aged 20 to 96 years with
chronological-age labels. B DL-based age estimation models can be applied to lens
photographs taken with traditional slit lamps and smartphones. The difference
between LensAge at the individual level and chronological age was considered a

measure of an individual’s aging level and served as the LensAge index. A positive
LensAge index indicates accelerated aging relative to peers of the same chron-
ological age, while a negative LensAge index indicates deccelerated aging or a
younger biological age compared to peers. C The ability of the LensAge index to
assess risks of ocular and systemic aging conditions and all-cause mortality was
analyzed. DL, deep learning; CNN, convolutional neural network.

Article https://doi.org/10.1038/s41467-023-42934-8

Nature Communications |         (2023) 14:7126 3



nucleus and lens capsule, respectively (lens nucleus, adjustedOR= 1.24,
95% CI 1.16–1.33, p = 1.55e-10; lens capsule, adjusted OR= 1.12, 95% CI
1.02–1.22, p= 1.60e-2; Supplementary Table 4). These results indicate
that our models can focus on specific lens regions corresponding to
different types of cataracts to make accurate age estimations.

Measurement of aging progression in the general population
We subsequently expanded our analyses to encompass a general
population consisting of both healthy and unhealthy participants
and assessed LensAge within the analysis dataset, including 3433
participants (mean age [± s.d.] of 66.0 [ ± 11.5] years, 56.8% females)

aged 20 to 96 years (Table 1). The individual-level discrepancy
between LensAge and chronological age indicated that the aging
process deviated from the aging norm learned by DL models for
peers of the same chronological age in the reference dataset. This
difference, served as the LensAge index, provided a measure of an
individual’s aging progression and highlighted its deviation from
the norm. A positive LensAge index indicated that an individual was
older than peers, whereas a negative index indicated younger
(Figs. 1b, 2g).

The distributions of the LensAge index in the analysis dataset are
shown in Fig. 2h–i and Supplementary Table 5. For the population
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Fig. 2 | Analyses of LensAge and the LensAge index based on InceptionV3
models. a, c Scatterplots for the correlation of LensAge at the individual level with
chronological age of relatively healthy participants for diffuse-light mode (a) and
slit-lamp mode (c) (p < 1.00e-36, two-sided linear regressions; n = 525 for diffuse-
lightmode; n = 430 for slit-lampmode). b, dBland–Altman plots for the agreement
between LensAge at the individual level and chronological age of relatively healthy
participants for diffuse-light mode (b) and slit-lamp mode (d) (n = 525 for diffuse-
light mode; n = 430 for slit-lamp mode). e, f Attention maps for age estimation of
the model based on lens photographs from different individuals for diffuse-light
mode (e) and slit-lamp mode (f). g The LensAge index was used to measure an
individual’s aging level among the general population. h, i The distributions of the
LensAge index for diffuse-light mode (h) and slit-lampmode (i) among the general
population. j, lThe distributions of the LensAge index for diffuse-lightmode (j) and
slit-lampmode (l) by age groups. Themean LensAge indexes in the groups aged 60
years and above were less than those for the other age groups (*p <0.001; diffuse-

light mode: 20–40 vs. ≥60, p = 3.20e-15, mean difference = 6.10, 95% CI 4.59–7.61,
n = 2464; 40–60 vs. ≥ 60, p < 1.00e-36, mean difference = 4.76, 95% CI 4.32–5.20,
n = 3,205; slit-lampmode: 20–40 vs. ≥ 60, p = 2.84e-29,mean difference=9.34, 95%
CI 7.73–10.95,n = 2483; 40–60 vs. ≥ 60, p < 1.00e-36,meandifference= 5.95, 95%CI
5.43–6.46, n = 3237; two-sided Student’s t tests). k, m The distributions of the
LensAge index for diffuse-lightmode (k) and slit-lampmode (m) by sexgroups. The
mean LensAge indexes for the males were greater than those for the females
(*p <0.001; diffuse-light mode, p = 3.00e-6, mean difference =0.97, 95% CI
0.56–1.38, n = 3,258; slit-lamp mode, p = 2.40e-5, mean difference = 1.05, 95% CI
0.56–1.54, n = 3298; two-sided Student’s t-tests). The cross symbols denote the
means, the thick central lines and triangle symbols denote the medians, the lower
andupper box limits denote the lowest and third quartiles, and thewhiskers extend
from the box to the outermost extreme values but no more than 1.5 times the
interquartile range in panel (j–m). Source data are provided as a Source Data file.
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photographed by diffuse light, the mean (± s.d.) and median (inter-
quartile range [IQR]) of the LensAge index were 2.0 ( ± 5.9) and 1.9
(−2.0, 6.0), respectively. The proportions of fast agers with a LensAge
index greater than 5, 10, and 20 years were 30.5%, 8.3%, and 0.4%,
respectively. For the slit-lamp images, a similar trend was observed.
The mean (± s.d.) and median (IQR) of the LensAge index were 2.9
( ± 7.1) and 2.5 (−1.7, 7.2), respectively. The proportions of fast agers
with a LensAge index greater than 5, 10, and 20 yearswere 35.5%, 14.7%,
and 1.3%, respectively.

We evaluated the LensAge index by stratifying the age groups into
20–40, 40–60, and ≥ 60 years. For both diffuse-light and slit-lamp
modes, the mean LensAge indexes for the groups older than 60 years
were less than those for the other age groups (diffuse-light mode:
20–40 vs. ≥ 60, p = 3.20e-15, mean difference = 6.10, 95% CI 4.59–7.61;
40–60 vs.≥ 60, p < 1.00e-36,mean difference = 4.76, 95% CI 4.32–5.20,
Fig. 2j; slit-lamp mode: 20–40 vs. ≥ 60, p = 2.84e-29, mean differ-
ence = 9.34, 95% CI 7.73–10.95; 40–60 vs. ≥ 60, p < 1.00e-36, mean
difference = 5.95, 95% CI 5.43–6.46, Fig. 2l), which demonstrates that
the aging diversity may reduce at older ages. When stratifying by sex,
the mean LensAge indexes for males were greater than those for
females (diffuse-light mode, p = 3.00e-6, mean difference = 0.97, 95%
CI 0.56–1.38, Fig. 2k; slit-lamp mode, p = 2.40e-5, mean difference =
1.05, 95% CI 0.56–1.54, Fig. 2m).

The ability of the LensAge index to reflect the risks of ocular age-
related diseases
In order to investigate whether the LensAge index can be an effective
marker of biological age, we assessed its ability to reveal the risks of
ocular age-related conditions in the analysis dataset using logistic
models adjusted for demographic (chronological age, sex, race, region,
and occupation) and lifestyle (smoking and alcohol intake status)
covariates. The individuals were stratified into two groups for further
analyses: those under 60 years old and those aged 60 years and above.

Among individuals of all age groups, those with a positive Len-
sAge index had a higher risk of moderate or severe visual impairment
(adjusted OR= 1.65, 95% CI 1.31–2.08, p = 1.80e-5), senile cataracts
(adjusted OR= 1.76, 95%CI 1.45–2.14, p = 1.50e-8), and vitreous opacity
(adjusted OR= 1.89, 95% CI 1.27–2.81, p = 1.84e-3), compared to those
with a negative LensAge index for diffuse-light mode (Fig. 3a). Among
individuals of all age groups with a positive LensAge index, an increase
in the LensAge index was positively associated with the occurrence of
moderate or severe visual impairment (adjusted OR= 1.14, 95% CI 1.10-
1.19, p = 9.25e-12), senile cataracts (adjusted OR= 1.14, 95% CI 1.10–1.19,
p = 5.29e-13), and vitreous opacity (adjusted OR= 1.06, 95% CI 1.03-
1.10, p = 4.06e-4) for diffuse-light mode (Fig. 3b). Most of the findings
were also consistent for slit-lampmode (Fig. 3a, b) and across different
age groups (SupplementaryTables 6–9). Compared to individualswith
LensAge results of < 60 years, those with LensAge results of ≥ 60 years
had a higher risk of moderate or severe visual impairment (slit-lamp
mode, adjusted OR= 1.72, 95% CI 1.24–2.38, p = 1.20e-3) and senile
cataracts (diffuse-light mode, adjusted OR= 2.26, 95% CI 1.71–2.99,
p = 1.03e-8; slit-lamp mode, adjusted OR= 1.97, 95% CI 1.49–2.60,
p = 1.95e-6) (Supplementary Table 10). These findings indicate that the
LensAge index can be an effective measure of biological age to reflect
risks of ocular age-related diseases and advanced aging in the
human eyes.

The ability of the LensAge index to reflect the risks of systemic
age-related diseases
We next assessed the ability of the LensAge index to evaluate the risks
of systemic age-related diseases using adjusted logistic models and
blood glucose (BG) levels using adjusted linear regression models in
the analysis dataset. Subgroup analyses were also performed by
dividing participants into two groups: those under 60 years old and
those aged 60 years and above.

Among individuals of all age groups, those with a positive Len-
sAge index hada higher risk of systemic age-related diseases (diabetes,
hypertension, coronary heart disease, cancer and cerebral infarction)
(adjusted OR= 1.26, 95% CI 1.05–1.52, p =0.010), age-related changes
in chest X-ray findings (arteriosclerosis and left ventricular hyper-
trophy) (adjusted OR= 1.50, 95% CI 1.17–1.92, p =0.010), and age-
related changes in electrocardiographic findings (myocardial ische-
mia, myocardial infarction, atrial fibrillation, and hypertensive heart
disease) (adjustedOR= 1.27, 95%CI 1.08–1.50,p = 0.004), compared to
those with a negative LensAge index for diffuse-light mode (Fig. 3a). In
addition, to further evaluate the impact of significantly higher LensAge
index on biological aging, we compared the differences in the risks of
age-related diseases between individuals with a LensAge index in the
highest quartile and at the moderate level (in the second or third
quartiles). The results show that individuals with the LensAge index in
the highest quartile had a higher risk of age-related diseases than those
with the LensAge index at the moderate level (diffuse-light mode,
adjusted OR= 1.61, 95% CI 1.31–1.97, p = 5.46e-6; slit-lamp mode,
adjusted OR= 1.23, 95% CI 1.00–1.53, p = 4.73e-2; Supplementary
Table 11). Among the individuals of all age groups with a positive
LensAge index for diffuse-light mode, the increase in the LensAge
index was positively correlated with the occurrence of age-related
diseases (adjusted OR= 1.10, 95% CI 1.07–1.13, p = 5.97e-11), age-related
chest X-ray findings (adjusted OR= 1.06, 95% CI 1.02–1.10, p = 0.001),
and electrocardiographic findings (adjusted OR= 1.03, 95% CI
1.00–1.05, p =0.042) (Fig. 3b). The above findings were also mostly
consistent for slit-lamp mode (Fig. 3a, b) and across different age
groups (Supplementary Tables 6–9). Moreover, the degree of posi-
tivity of the LensAge index was significantly correlated with the
increase in BG (diffuse-light mode, adjusted β =0.04, 95% CI
0.01–0.07, p =0.006, Supplementary Table 12). Additionally, com-
pared with individuals with LensAge results of < 60 years old, those
with LensAge results of ≥ 60 years old had a higher risk of age-related
diseases (diffuse-light mode, adjusted OR= 2.00, 95% CI 1.48–2.69,
p = 5.09e-6; slit-lamp mode, adjusted OR= 1.36, 95% CI 1.02–1.79,
p =0.034; Supplementary Table 10).

We further compared the ability of the LensAge index to predict
the occurrence of age-related diseases with that of chronological age
using receiver operating characteristic (ROC) curve analyses, parti-
cular among individuals with a significantly greater LensAge index. We
performed the ROC analyses among the participants with a LensAge
index in the lowest quartile or the highest quartile. The ROC curves
graphically illustrate the predictive performance of the LensAge index
with an area under the curve (AUC) of 0.621 (95% CI 0.596–0.645) for
diffuse-light mode (Fig. 3c), and 0.600 (95% CI 0.575–0.624) for slit-
lamp mode (Fig. 3d). Compared with those of chronological age, the
AUCs of the LensAge index were significantly greater (diffuse-light
mode, difference in AUCs =0.098, 95% CI 0.077–0.120, Z = 8.968,
p <0.0001, Fig. 3c; slit-lampmode, difference in AUCs = 0.090, 95% CI
0.030–0.151, Z = 2.924, p = 3.50e-3, Fig. 3d), demonstrating that the
LensAge index can better reflect the aging process in humans and can
be an optimized indicator of age-related disease risks in whole body.

The predictive performance of the LensAge index for all-cause
mortality
To comprehensively assess the LensAge index’s ability to indicate
biological age, we evaluated the predictive performance of the Len-
sAge index for all-cause mortality using Cox proportional hazards
regression models adjusted for chronological age, sex, race, region,
occupation, smoking, and alcohol intake status. The results show that
each 1-year increase in the LensAge index for the diffuse-light mode
was associated with an 8% relative increase in the risk of all-cause
mortality (adjusted hazard rate [HR] = 1.08, 95% CI 1.01–1.15, p = 2.43e-
2; Supplementary Table 13). Comparatively, individuals in the second
quartile of the LensAge indexhad a similarmortality risk to those in the
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lowest quartile (adjustedHR = 1.11, 95%CI 0.47–2.63, p =0.818; Fig. 4a).
Notably, participants in the third and fourth quartiles of the LensAge
index had significantly increased all-causemortality risks compared to
those in the lowest quartile (adjusted HR = 2.55, 95% CI 1.22–5.37,
p =0.013; adjustedHR = 2.96, 95%CI 1.39–6.32,p =0.005; respectively;
Fig. 4a). Similar results were observed for the survival analyses con-
ducted using the slit-lampmode (Fig. 4b and Supplementary Table 13).
These findings demonstrate that the LensAge index is a significant
predictor of survival, and the acceleration or deceleration of aging

detected by LensAge measurements aligns with individual aging
status.

Assessment of lens aging using smartphones
We further implemented LensAge to evaluate biological aging using
smartphone photographs (Fig. 5a). A total of 389 smartphone images
from 102 participants (mean age [± s.d.] of 62.0 [ ± 10.8] years, 55.9%
females, Table 1) were included in the analysis dataset of smartphone
images. Among them, 157 images from 50 participants (mean age
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Fig. 3 | The ability of the LensAge index to evaluate age-related disease risks.
a Comparison of age-related changes between individuals with positive and nega-
tive LensAge indexes. p values from two-sided tests using adjusted logistic
regressions. b Association of the LensAge index with age-related changes in indi-
viduals with a positive LensAge index. p-values from two-sided tests using adjusted
logistic regressions. c Comparison of the AUCs between the LensAge index and
chronological age in predicting the occurrence of age-related diseases for diffuse-
light mode among the participants with a LensAge index in the lowest quartile or
the highest quartile using ROC curves. LensAge index, AUC =0.621 (95% CI
0.596–0.645); chronological age, AUC =0.523 (95% CI 0.498–0.548); difference in

AUCs = 0.098 (95% CI 0.077–0.120), Z = 8.968, p <0.0001, n = 1555, two-sided
paired DeLong test. d Comparison of the AUCs between the LensAge index and
chronological age in predicting the occurrence of age-related diseases for slit-lamp
mode among the participants with a LensAge index in the lowest quartile or the
highest quartile using ROC curves. LensAge index, AUC =0.600 (95% CI
0.575–0.624); chronological age, AUC=0.509 (95% CI 0.484–0.535); difference in
AUCs = 0.090 (95% CI 0.030–0.151), Z = 2.924, p = 3.50e-3, n = 1536, two-sided
paired DeLong test. Error bars show 95% CIs for OR values in (a, b). OR Odds ratio,
CI Confidence interval, ROC Receiver operating characteristic, AUC Area under the
curve. Source data are provided as a Source Data file.
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[± s.d.] of 64.6 [ ± 11.4] years, 60.0% females) without amedical history
of systemic diseases were used as a reference dataset of relatively
healthy individuals for model accuracy estimation.

LensAge generated by the DL model based on smartphone
photographs had a strong correlation (R2 = 0.71 at the individual
level, p = 1.59e-14, Fig. 5b, c) with chronological age in the reference
dataset, with MAEs of 6.87 years at the image level and 6.80 years at
the individual level. In the analysis dataset, compared to those with
a negative LensAge index, those with a positive LensAge index had a
higher risk of age-related chronic diseases (diabetes, hypertension,
coronary heart disease, and cancer) (adjusted OR = 4.21, 95% CI
1.44–12.36, p = 0.009, Fig. 5d). Among these individuals with a
positive LensAge index, the LensAge index was positively asso-
ciated with the occurrence of age-related diseases (adjusted OR =
1.53, 95% CI 1.09–2.15, p = 0.013, Fig. 5d). Thus, the LensAge index
based on smartphone photographs can be an effective indicator of
biological age for efficient self-examination of disease risks and
health status during aging.

Discussion
In this study, we developed DL models that evaluated LensAge using
lens photographs of a relatively healthy population aged 20 to 96
years. Based on LensAge, we calculated the difference between Len-
sAge and chronological age as the LensAge index to reflect individual’s
aging level relative to peers. The LensAge index can be applied to
reveal the risks of age-related diseases, including eye aging conditions
and systemic age-related diseases, and to predict all-cause mortality.
Furthermore, compared to chronological age, the LensAge index
achieved superior performance of assessing risks of age-related dis-
eases in humans. Importantly, our models can also be conveniently
implemented based on smartphone photographs for biological age
assessment, showing great potential to be used in self-monitoring
aging status. Our results show that the LensAge index is able to signify
age-related changes and can be an optimized indicator of
biological age.

Our interpretation analyses revealed the significance of opacities
in different lens structures for the decision-making process of our DL
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Fig. 4 | Survival curves for all-cause mortality risk by LensAge index quartiles.
Mortality risks are shown over time for participants in different LensAge index
quartiles for diffuse-lightmode (a) and slit-lampmode (b) (n = 2834 fordiffuse-light
mode; n = 2868 for slit-lamp mode). Comparatively, individuals in the second
quartile of the LensAge index had a similar mortality risk to those in the lowest
quartile (p =0.818 for diffuse-light mode; p =0.348 for diffuse-light mode).

Individuals in the third and fourth quartiles of the LensAge index had significantly
relative increased all-causemortality risks compared to those in the lowest quartile
(diffuse-light mode: 3rd quartile p =0.013, 4th quartile p =0.005; slit-lamp mode:
3rd quartile p =0.014, 4th quartile p =0.009). p-values from two-sided tests using
adjusted Cox proportional hazards regressions. HR Hazard ratio, CI Confidence
interval. Source data are provided as a Source Data file.
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models. An increase in the LensAge index was positively associated
with the occurrence of senile cataracts, demonstrating that the
increased opacities in lens play a crucial role in evaluating biological
age using our DL models. Moreover, our masking trial demonstrated
that our models effectively directed their attention towards the spe-
cific regions associated with the corresponding cataract types, show-
ing their objectiveness. However, it should be noted that the LensAge
index for slit-lamp mode showed significant correlations only among
analyses on certain eye aging diseases and systemic conditions, indi-
cating the weaker ability of slit-lamp mode to reveal aging status
compared with that of diffuse-light mode. This may be attributed to
inconsistencies in the angles orwidths of the slit light,whichare crucial
for capturing intricate lens features and structures during aging. Fur-
ther studies should implement additional strategies to capture lens
photographs of higher quality, such as introducing a quality control
pipeline, to effectively assess and filter out any subpar images.

Compared to invasive methods or other medical imaging tech-
niques used for biological age measurements, our age estimation
models achieved favorably accurate performance. Traditional
approaches such as analyses of transcriptome11, DNA methylation20,21,
and blood profiles22,23 require collecting blood sample or biopsied
tissue, making them invasive and limiting their application in large-
scale evaluations or routine physical examinations. Furthermore, the
use of different platforms to measure omics data may introduce

technical noise to the results19. Additionally, medical imagingmethods
were employed to capture age-related features for age prediction24,25.
However, the high cost and inconvenient nature of neuroimaging in
routine examinations26, as well as the privacy concerns related to
facial imaging27 have hindered their broader application. Some
studies have explored biological age estimation using ocular retinal
photographs28–30. While a retinal-photograph-based model showed
favorable performance30, its application is limited by the presence of
opaque dioptric media that can obscure the fundus, particularly in
conditions such as cataracts and vitreous opacity which are common
among older populations. Additionally, capturing retinal images still
requires professional equipment and expertise from the personnel
involved, which poses challenges to their widespread and convenient
applications.

Biological age estimation based on lens photographs offers
advantages over the previously mentioned methods and holds sub-
stantial potential for self-monitoring and large-scale evaluations.
Human lens accumulates biological changes during aging that can be
objectively observed and are amenable to rapid assessment. In this
study, our DL age estimation models successfully learned the
population-level characteristics of lens aging and effectively revealed
the risks of age-related disease occurrence in eyes. Moreover, as an
important structure, human lens is linked to themetabolic cycle of the
entire body31, and it serves as a crucial connection between ocular and
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Fig. 5 | Assessment of lens aging using smartphone photographs. a The appli-
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systemic aging. A previous study has demonstrated that the lens is
essential for the structural and functional changes of the neurological
system during aging32. Similarly, the LensAge index generated by our
DL models can reflect the risk of systemic diseases and even all-cause
mortality. These findings suggest that the human lens could be an
excellent tissue for monitoring the aging process in both the eye and
whole body. More importantly, lens features can be conveniently and
objectively captured by portable devices to identify disease states33.
This is particularly significant as previous biological age assessments
often relied on technologies limited to hospital or laboratory settings
and were impractical for community or home use. By utilizing our
smartphone-based method, we demonstrated the great potential of
assessing biological age for self-monitoring aging status. The rapid
development of mobile health (mHealth) and the widespread use of
mobile devices allow for continuous monitoring and intervention in
medical conditions, anytime and anywhere34. Our methods based on
smartphone photographs can facilitate regular self-assessment of
disease risks and aging/health status. Although our current approach
requires attaching a portable slit lamp for capturing lens photographs,
it has proven effective in the context of mHealth for self-monitoring
aging status. Future studies should validate the utility of smartphone-
based LensAge index determination through large-scale prospective
trials, while also exploring more convenient and cost-effective alter-
natives to portable slit lamps.

Currently, most published researches on biological age assess-
ment focus on specific age groups, such as middle-aged or elderly
individuals6,16,29. Given that age-related changes occur throughout the
entire lifespan and manifests at different rates across different age
groups12, we investigated a more diverse population spanning ages 20
to 96 years to provide a more comprehensive understanding. Our
findings specifically highlight the significant disparity of the LensAge
index among individuals younger than 60 years old. This observation
aligns with previous studies investigating the aging process, which
have consistently reported smaller variations andmore stable states of
specific biological age makers among individuals older than 60
years16,30. Consequently, it suggests that interventions targeting aging
should primarily be initiated during the stage characterized by sub-
stantial heterogeneity in the context of aging. Nevertheless, it is
important to note that the clinical merit of our models is not dimin-
ished within the older age groups. The LensAge index provides a
measureof an individual’s aging level relative to theirpeersof the same
chronological age. In the population aged more than 60 years, a
positive LensAge index showed a significant correlation with an
increased risk of age-related diseases (Supplementary Table 6),
demonstrating the effectiveness of our models in accurately identify-
ing disease risks within this age group. Therefore, our method pro-
vides an effective indicator for revealing the biological age of
populations spanning different age groups.

Importantly, the process of aging is multifaceted, involving var-
ious aspects such as the decline of bodily functions, the occurrence
and progression of age-related diseases, and mortality. In our study,
we extended the application of our models to evaluate age-related
status and the risk of all-cause mortality in the general population. By
adjusting for chronological age as a covariate, we found that the
higher LensAge index was significantly correlated with an increased
risk of age-related diseases in human eyes. Additionally, we also pro-
vided evidence for potential associations between lens aging and
systemic aging. Notably, the LensAge index showed a significant cor-
relationwith age-related chronicdiseases andBG levels, shedding light
on the metabolic conditions of individuals. Furthermore, previous
studies have applied markers of biological age to predict mortality or
estimate time until death, highlighting the potential utility of such
markers14,29,30. Similarly, through a comprehensive assessment of the
predictive performance of the LensAge index for mortality risk, our
results indicate that the LensAge index serves as a noteworthy

predictor of death in humans, elucidating a portion of the mortality
variation that remains unexplained by chronological age itself. This
highlights its significant clinical value as an indicator of biological age
identifying individuals at high risk of mortality, enabling early inter-
ventions. These findings suggest a considerable synchronization
between the aging processes in the lens and systemic metabolism,
extending to the mortality risk. Therefore, the application of our lens
aging assessment technique holds promise for self-monitoring health
status and implementing targeted interventions aimed at addressing
aging-related concerns.

Our study has a few limitations that should be acknowledged.
First, wemayhave not included individualswith extremely poor health
status across various age groups, as they were less likely to participate
in our study. Second, although a small proportion of non-Chinese
people were included in our study, showing the potential general-
izability of our models across additional ethnicities and nationalities,
further larger-scale validation on other ethnic groups and countries is
needed as an important continuation of this work. Third, our methods
may not be appropriate for a proportion of participants with compli-
cated cataracts or medical history of intraocular surgeries. However, it
does not impact our primary objective of evaluating the feasibility of
utilizing age-related features in lens to reveal biological age for large-
scale application and self-monitoring. Fourth, although we may
include participants who were unaware of their underlying and
undiagnosed diseases in the relatively healthy datasets, we excluded
most unhealthy patients based on the medical history and physical
examinations, and a sufficient sample size of relatively healthy parti-
cipants was included to minimize the influence of any patients with
underlying conditions on our models to learn the average aging
characteristics among the population.

In conclusion, we introduce an innovative DL-based technique,
that effectively assesses the risks of age-related diseases andmortality.
Importantly, this method can be implemented using smartphone
photographs, providing accurate healthmonitoring capabilities. These
findings emphasize the effectiveness of the LensAge index as an indi-
cator of biological age in humans, highlighting its potential for wide-
spread self-monitoring health conditions during the aging process.

Methods
Study design and population
For diffuse-light and slit-lampphotographs, participants aged 20 to 96
years were recruited from (1) an ongoing national Chinese cataract
screening program by the Chinese Medical Alliance for Artificial
Intelligence (CMAAI) between April 2018 and May 2021 with compre-
hensive baseline information (chronological age, sex, race, region, and
occupation), anthropometric and lifestyle factors (not/formerly/cur-
rently smoking and alcohol intake status), medical history of diseases,
regular physical examinations and ophthalmic examinations; and (2)
the retrospective hospital dataset of Zhongshan Ophthalmic Center
(SunYat-senUniversity, Guangdong, China)between January2020 and
May 2021 with comprehensive baseline information (chronological
age, sex, race, region, and occupation), medical history of diseases,
regular physical examinations, ophthalmic examinations, chest X-ray
examinations, electrocardiographs, full blood count, and basic profile
of blood collected from the hospital admission records. All enrolled
participants were eligible for the study if they had no history of pre-
vious eye surgery, eye trauma, ocular diseases (high myopia, etc.) that
can cause complicated cataracts, and long-term use of corticosteroids
or other drugs that can cause drug-induced cataracts. The collected
systemicmedical histories atbaseline includeddiabetes, hypertension,
cardiovascular diseases, cerebrovascular diseases, cancer, and other
chronic systemic diseases. All participants underwent regular physical
examinations including heart rate, blood pressure, respiratory rate,
height, and weight and ophthalmic examinations consisted of func-
tional and structural examinations, including visual acuity, intraocular
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pressure, slit-lamp examinations, fundoscopy examinations, and
cycloplegic refraction. All participants underwent binocular anterior
segment photographs for diffuse-light and slit-lamp modes using a
variety of slit lamps, including the BQ-900, BX-900, OVS-II, and PSL-
Classic. The distribution of images captured by the different tradi-
tional slit lamps is summarized in Supplementary Table 14. For
smartphone photographs, participants aged 35 to 90 years were
recruited from Sun Yat-senMemorial Hospital (Sun Yat-sen University,
Guangdong, China) and community screening in Lianzhou, Guang-
dong, China. The inclusion criteria were the same as described above.
Baseline information and a comprehensivemedical history of diseases
were also collected from questionnaires for the recruited individuals.
All participants had smartphone photographs taken for both eyes with
a portable slit lamp (MediWorks portable slit lamp S150, Shanghai)
attached to the iPhone/Huawei smartphones. All enrolled individuals
had no more than three photographs taken for each eye for each
mode. The images for which the lens area was included with sufficient
image quality were eligible for this study. The demographics and
summary of the study datasets are shown in Table 1. The overall study
workflow is summarized in Fig. 1.

The study protocol was approved by the Institutional Review
Board/Ethics Committee of Zhongshan Ophthalmic Center and regis-
tered on ClinicalTrials.gov (Identifier NCT05588921). Before data col-
lection, informed consent was obtained from each participant. The
investigators followed the requirements of the Declaration of Helsinki
throughout the study. All datasets used in the study were deidentified
before being transferred to the study investigators.

DL model development for age estimation
Relatively healthy participants were defined as those who did not
report any medical history of systemic diseases and had no physical
examination abnormalities at baseline. Lens photographs from rela-
tively healthy participants were included in the reference dataset. A
total of 8255 anterior segment photographs, including diffuse-light or
slit-lamp mode images of sufficient image quality together with
chronological age labels from 1990 relatively healthy individuals
(mean age [± s.d.] of 55.3 [ ± 18.0] years, 63.2% female) were included in
the training and evaluation processes of the DL age estimationmodels.
The chronological age label was the age of an individual since birth,
rounded to the nearest year at the time when the lens photographs
were taken. Birth dates were obtained from Chinese government-
issued official resident identity cards. Images for model development
were split into a training set (60%), a tuning set (20%), and a validation
set (20%). All data were split at the individual level, and images
belonging to one individual did not appear in different sets, which can
avoid overestimation in the evaluation of DL models.

We trained the DL age estimation models based on CNNs using
lens photographs of diffuse-light or slit-lamp mode to generate Len-
sAge (Fig. 1a), exploring whether the changes in lens features reflect
the process of aging. We first trained four classic CNNs (InceptionV335,
ResNet5036, DenseNet37, and InceptionResNetV238) and selected the
most outperformed network for further analyses. All images were
resized to a resolution of 299 × 299 pixels at the training and inference
stages for unified processing. The Adam optimizer was used
throughout the whole procedure of the training stage39. The initial
learning rate was set to 0.0001, and the learning rate decreased by a
factor of 10 for fine learning when the mean squared error on the
validation set stopped decreasing for three epochs. All the parameters
were initialized with the ImageNet weights40. We trained the models
for 50 epochswith a batch size of 32 and chose themodel with optimal
performance on the tuning set for each mode of image.

Interpretable visualization of DL models
A gradient-weighted class activation map (Grad-CAM) was used to
enhance the interpretability of our DL age estimation models41. The

Grad-CAM algorithm can produce a class-specific activation heatmap
whereeachactivation value represents the importance of classifying to
that class. However, predicting the age of a person is a regression
problem, and Grad-CAM failed to generate a heatmap directly. To
overcome this, we employed a workaround. We normalized the age
values to the range of 0–1 by dividing them by 100 because an indi-
vidual’s age generally ranges from 0 to 100, and there were no parti-
cipants over 100 years old in our datasets. By mapping the target age
values to the same range as a classification problem, Grad-CAM could
be effectively employed to produce meaningful heatmaps for age
estimation.

To further interpret the DL models, we evaluated the model pre-
diction when masking different lens structures for the lens images for
slit-lampmode. Lens structures including cortex, nucleus, and capsule
were separately masked for each lens image in the validation set. All
the LensAge predictive results of each image with these three lens
structures masked were used for analysis. Then, adjusted logistic
regressionmodels were used to compare the influence of masking the
cortex on predictive errors between cortical cataracts and other cat-
aracts, the influence of masking the nucleus on predictive errors
between nuclear cataracts and other cataracts, and the influence of
masking the capsule on predictive errors between subcapsular catar-
acts and other cataracts.

Measuring an individual’s aging level
LensAge at the individual level for diffuse-light or slit-lamp mode was
calculated by averaging the LensAge values generated by the DL
models of all diffuse-light or slit-lamp images corresponding to one
individual. The difference between LensAge at the individual level and
chronological age was used to unveil an individual’s aging level and
served as the LensAge index. A LensAge index above 0 indicated a
higher level of aging than their peers of the same chronological age,
while a LensAge index below0 indicated a lower level of aging (Fig. 1b).

Evaluation of the LensAge index in reflecting the risks of age-
related diseases
A total of 3433 participants in the general population (meanage [± s.d.]
of 66.0 [ ± 11.5] years) aged 20 to 96 years with available physical data
were included as the analysis dataset to investigate the ability of the
LensAge index to reflect age-related disease risks. The validation
dataset for the DL models was also included in the analysis dataset.

The ability of the LensAge index to reflect the risks of ocular age-
related conditions, including moderate or severe visual impairment
(visual acuity [VA] of the better eye less than 0.3), senile cataracts, and
vitreous opacity, was assessed with adjusted ORs using logistic
regression models. The ability of the LensAge index to reveal the risks
of systemic age-related diseases, including age-related chronic dis-
eases (diabetes, hypertension, coronary heart disease, cancer, and
cerebral infarction), age-related chest X-ray findings (arteriosclerosis
and left ventricular hypertrophy), and age-related electrocardiograph
findings (myocardial ischemia, myocardial infarction, atrial fibrillation,
and hypertensive heart disease), was also assessed with adjusted ORs
using logistic regressionmodels. The association of the LensAge index
with BG level was investigated with the β value using the adjusted
linear regression models. The individuals were grouped into < 60 and
≥ 60 years for further analysis. Furthermore, the AUCs of the LensAge
index and chronological age for predicting the occurrence of age-
related diseases among the participants with a LensAge index in the
lowest quartile or the highest quartile were determined and compared
using paired DeLong tests.

Evaluation of the predictive performance of the LensAge index
for all-cause mortality
The participants in the analysis dataset were followed up from the
timewhen the lens photographs were taken. To gather information on
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all-cause mortality status and date of death, questionnaires were
administered by the investigators to the relatives of the participants.
The duration of follow-up for each participant was calculated as the
time elapsed between their baseline and the date of death or the
completion of the follow-up period (July, 2023), whichever came first.
The percentage of individuals in the analysis dataset lost to follow‐up
was 13.1%. After a median follow-up of 30.2 months (IQR 28.0-
32.0 months), a total of 66 (2.2%) individuals died from all causes. The
baseline information of both individuals who were followed up and
those who were lost to follow-up was comparable (Supplementary
Table 15). To assess the predictive performance of the LensAge index
for all-cause mortality risk, Cox proportional hazards regression
models adjusted for chronological age, sex, race, region, occupation,
smoking, and alcohol intake status were utilized. These models esti-
mated the impact of a 1-year increase in the LensAge index on the risk
of all-causemortality. Additionally, we compared all-causemortality of
participants in the different quartiles of the LensAge index with those
in the lowest quartile for reference.

Lens aging assessment using smartphones
We further assessed whether our DL-based age estimation model
based on smartphone photographs can evaluate biological age. Non-
ophthalmologist volunteers used their own smartphones attached to a
portable slit lamp to assist patients in capturing lens photographs
according to our instructions (Supplementary Fig. 2). A total of 389
qualified lens photographs (accounting for 94.4% of all photographs
taken) from 102 individuals (mean age [± s.d.] of 62.0 [ ± 10.8] years)
were obtained using iPhone/Huawei smartphones attached to a por-
table slit lamp. Among these, 157 images from 50 participants (mean
age [± s.d.] of 64.6 [ ± 11.4] years) without a medical history of diseases
were used as a reference dataset of relatively healthy individuals for
accuracy estimation of the DL model of slit-lamp mode. Furthermore,
the ability of the LensAge index to reflect the risks of age-related
chronic diseases (diabetes, hypertension, coronary heart disease,
cancer, and cerebral infarction) based on smartphone photographs
taken in slit-lamp mode was investigated with adjusted ORs using
logistic regression models.

Statistical analysis
The MAEs at both the image level and the individual level and R2 at the
individual level were used to evaluate the performance of the DL-based
age estimation models. Adjusted logistic regression models were used
to analyze the influence of masking different lens structures on the
model prediction and the ability of the LensAge index to reflect age-
related disease risks. The results are reported as adjustedORs. Adjusted
linear regressionmodels were used to investigate the association of the
LensAge index with BG level, and the results are reported as the
adjusted β. Adjusted Cox proportional hazards regressionmodels were
used to evaluate the association between the LensAge index with all-
cause mortality and the results are reported as the adjusted HRs. All
regression models were adjusted for chronological age, sex, race,
region, occupation, smoking, and alcohol intake status. Paired DeLong
tests were used to compare the AUCs of the LensAge index and
chronological age for predicting the occurrence of age-relateddiseases.
Descriptive statistics, including means and s.ds., numbers and percen-
tages, were used to report the baseline characteristics of the partici-
pants. Subgroup analyses stratified by sex and age group (20–40,
40–60, and ≥60 years) were performed. A two-sided p-value of < 0.05
indicated statistical significance. All statistical analyses were performed
using R Statistics (version 4.1.2) or SPSS (version 20.0). Plots were cre-
ated using the ggplot2 package (version 3.3.5) for R Statistics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information or/and
from the corresponding author upon request. Data used to generate
the main and supplementary figures are provided in the Source Data
file. The patient data used in this study cannot be shared publicly due
to privacy restrictions. However, in the case of noncommercial use,
researchers can sign the license, complete a data access formprovided
at Github [https://github.com/RYL-gif/LensAge] and contact H.L.
[linht5@mail.sysu.edu.cn] to access the de-identified representative
images. For requests fromverified academic researchers, accesswill be
evaluated by the data access committee and be granted within one
month. Source data are provided with this paper.

Code availability
The code for the development of the LensAge index is available for
academic and noncommercial use. Researchers can sign the license,
complete a code access form provided at Github [https://github.com/
RYL-gif/LensAge] and contact H.L. [linht5@mail.sysu.edu.cn] to access
the code. For requests from verified academic researchers, access will
be evaluated by the code access committee and be granted within
onemonth.
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