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A generative adversarial network model
alternative to animal studies for clinical
pathology assessment

Xi Chen 1, Ruth Roberts2,3, Zhichao Liu 1,4 & Weida Tong 1

Animal studies are unavoidable in evaluating chemical and drug safety. Gen-
erative Adversarial Networks (GANs) can generate synthetic animal data by
learning from the legacy animal study results, thus may serve as an alternative
approach to assess untested chemicals. AnimalGAN, a GAN method to simu-
late 38 rat clinical pathology measures, was developed with significant
robustness even for the drugs that vary significantly from these used during
training, both in terms of chemical structure, drug class, and the year of FDA
approval. AnimalGAN showed comparable results in hepatotoxicity assess-
ment as using the real animal data and outperformed 12 conventional quan-
titative structure-activity relationship approaches. Using AnimalGAN, a virtual
experiment of 100,000 rats ranked hepatotoxicity of three structurally similar
drugs in a similar trend that has been observed in human population. Ani-
malGAN represented a significant step with artificial intelligence towards the
global effort in replacement, reduction, and refinement (3Rs) of animal use.

Animal studies are pivotal in biomedical sciences for understanding
disease progression, discovering prognosis/diagnosis biomarkers,
risk and safety assessments, and developing novel treatment
options1. Since animal studies generate multidimensional informa-
tion, much of which parallels metrics taken in the clinical setting,
animal data are critical in characterizing the risk and safety profiles
of many chemical and drug products under the jurisdiction of the
Food and Drug Administration (FDA). Nonetheless, focus has shifted
from traditional animal work for assessing human safety2,3. The FDA
Modernization Act 2.0 has recently been signed into law by the
President, which emphasizes a need to explore alternative options
that support the 3Rs (Replacement, Reduction, and Refinement)4 of
animal use.

Artificial Intelligence (AI) technology has driven innovation in
many spheres, including toxicology, where AI has the potential to form
alternative approaches for risk assessment in support of the 3Rs5,6.
Most AI application in toxicology has been largely used for analyzing
and processing data to identify patterns andmake predictions such as
Quantitative Structure Activity Relationships (QSARs). Often, these

approaches are focused onpredicting a single endpoint representing a
high-level abstraction (e.g., toxic vs. non-toxic) of toxicological
effects7. In contrast, animal-based toxicity assessments provide much
richer, multi-dimensional information to support risk assessment and
decision making, such as that derived from toxicogenomics and clin-
ical pathology.

Recently, generative AI has gained tremendous momentum such
as ChatGPT. Generative AI such as Generative Adversarial Networks
(GANs)8 can create new content, thus lending itself as an alternative
approach to generate synthetic animal data of untested chemicals by
learning from the legacy animal study results. We reported here a
generative AI model for animal studies, called AnimalGAN, which was
developed using a GAN method. AnimalGAN were able to simulate a
virtual animal experiment to generate multi-dimensional profiles
similar to those obtained from traditional animal studies. Specifically,
AnimalGAN established the association between chemical exposure
(the combination of chemical, dose, and exposure duration) and
clinical pathology findings (e.g., clinical chemistry and hematologic
measures) in legacy animal study data to generate synthetic clinical
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pathologyprofiles for newanduntesteddrugs andother chemicals in a
predefined dose and treatment duration.

We demonstrated that the AnimalGAN approach was robust even
for the drugs that vary significantly from these used during training,
both in terms of chemical structure, drug class, and the year of FDA
approval. By comparing to the conventional computational toxicology
methods, AnimalGAN outperformed the 12 traditional quantitative
structure-activity relationship (QSARs) methods in predicting all clin-
ical pathology measures. Moreover, AnimalGAN results were com-
parable to animal studies in assessing hepatotoxicity of drugs. One of
themost critical arguments in 3Rs science is that animal studies do not
always predict human outcomes in complex conditions such as idio-
syncratic drug induced liver injury (iDILI)2. We found that, however,
AnimalGAN could approximate populations of diverse individual ani-
mal clinical pathology data by conducting unlimited synthetic
experiments (as the resource allows), which offers an opportunity to
detect rare toxicological events that almost certainly would not be
possible to identify in traditional animal studies, thus improving the
translation of animal data to human outcomes.

Results
AnimalGAN development
In the present study, AnimalGAN generated 38 clinical pathology
measurements, where the test compounds are represented by che-
mical descriptors along with the study conditions of treatment dura-
tion (3, 7, 14, and 28-day) and dose groups (high,medium, and low). As
depicted in Fig. 1, the AnimalGAN model was developed on 6442 rats
(the training set) corresponding to 110 compounds (most are drugs)
under 1317 treatment conditions (a combination of compound-dose-
time) from the Open Toxicogenomics Project-Genomics Assisted
Toxicity Evaluation Systems (TG-GATEs) database9 with a hybrid GANs
architecture (see Methods and Fig. 1a). The model was then evaluated
with 1636 rats (the test set) under 332 treatment conditions for 28
different compounds from the same TG-GATEs database (Fig. 1b). The
high concordance between the synthetic and real clinical pathology
measurements in the test set was observed with low root-mean-square
error (RMSE) (17.58, which is significantly smaller than the median of
background control 72.46 with a Wilcoxon rank-sum test p value
2.48 × 10−169, Fig. 1c) and high cosine similarity (1.00, which is sig-
nificantly higher than the median of background control 0.98 with a
Wilcoxon rank-sum test p value 1.45 × 10−181, Fig. 1d). Visualization using
t-distributed stochastic neighbor embedding (t-SNE) dimensionality
reduction also showed the high similarity between the synthetic and
real clinical pathology measurements for the test set (Fig. 1e). Sup-
plementary Fig. 1 detailed the correlations between the synthetic and
real clinical pathology data for each of the 38 measurements,
demonstrating the small differences between AnimalGAN synthetic
results and real laboratory animal testing data.

AnimalGAN approach evaluation
The AnimalGAN approach was challenged with three training/test set
split strategies to demonstrate its ability to produce reliable results for
test drugs (1) whose chemical structures were far different from those
that were used to build AnimalGAN itself, (2) whose therapeutical
classes were not included in the development of AnimalGAN, and (3)
thatwere approvedby FDAmore recently compared to theolder drugs
used to construct AnimalGAN. In all these three scenarios, the derived
AnimalGANmodels yielded the same results on the corresponding test
sets as observed in the original AnimalGAN model. As summarized in
Supplementary Fig. 2, the medians of cosine similarities between the
synthetic and real data for all three scenarios were >0.99 (significantly
higher than the median of background control 0.98 with
p-values < 5.65 × 10−140) while the medians of RMSEs were <20.18 (sig-
nificantly smaller than the median of background control 72.46 with
p-values < 4.80 × 10−141). Additionally, in all these three scenarios, the

correlation between the synthetic and real data for each of the 38
clinical pathology measurements were comparable with those
observed in the original AnimalGAN model (Supplementary Fig. 3).
Here, the first extreme scenario was highlighted since there are con-
cerns (e.g., applicability domain and activity cliff) when chemical
information is the sole input in developing predictive models. In Ani-
malGAN, these concerns were mitigated by including the exposure
information (i.e., dose and treatment duration) to warrant a robust
application in real-world settings.

AnimalGAN versus traditional AI approaches
We compared AnimalGAN results with QSAR analyses for each of 38
clinical pathology measurements. Specifically, for each measure-
ment, we developed 12 regression models using the exact same
study design and input (i.e., the descriptor and exposure informa-
tion) as used in AnimalGAN; these are k-nearest neighbors, decision
tree, extremely randomized tree, random forest, epsilon support
vector regression, linear support vector regression, stochastic
gradient descent, AdaBoost, gradient boosting, Bayesian ARD
regression, Gaussian process regression andmulti-layer perceptron
(see Methods). As depicted in Fig. 2, AnimalGAN had much smaller
Mean Square Error (MSE) between the predicted and true value than
what can be achieved by all the QSAR models for every clinical
pathology measurement (Supplementary Data 1). Of note, for each
of 38 measurements, an individual QSAR model was developed
while AnimalGAN generated the prediction for all 38 measurements
at once.

AnimalGAN application
A common scenario in toxicological assessment with animal data is to
compare a measurement observed from a treatment group against its
time-matched control group to determine a safety margin. We com-
pared the AnimalGAN results with real animal testing data with this
scenario (Fig. 3a andMethods), where a high agreement (i.e., 96.08% ~
100%)wasobserved in the test set (see SupplementaryTable 1). In both
clinical and preclinical settings, out of the 38 clinical pathology mea-
surements studied here, the seven are commonly used for hepato-
toxicity assessment (i.e., alanine aminotransferase [ALT], aspartate
aminotransferase [AST], lactate dehydrogenase [LDH], alkaline phos-
phatase [ALP], γ-glutamyltranspeptidase [GTP], total bilirubin [TBIL],
and direct bilirubin [DBIL]) while the other seven are for nephrotoxi-
city assessment (i.e., blood urea nitrogen [BUN], creatinine [CRE],
sodium [Na], potassium [K], chlorine [Cl], calcium [Ca], and inorganic
phosphorus [IP]). The consistency between the AnimalGAN based
assessment agreedwith the animal studies for both hepatotoxicity and
nephrotoxicity with the range of 96.08~100% and 97.89~100%,
respectively (Fig. 3b, c), indicating thepotential utility of AnimalGAN in
animal-free testing (Fig. 3b, c).

External validation with DrugMatrix data in toxicity assessment
An external validation of AnimalGAN was performed using a dataset
derived from DrugMatrix10. It is a known that clinical pathology mea-
surements can vary significantly between different experimental pro-
tocols or between different labs. For that reason, we analyzed the
experiment data for the 70 common compounds (corresponding to
175 treatment conditions) tested in both TG-GATEs and DrugMatrix to
establish a baseline concordance in their experiment settings. The
overall average consistency between the two datasets for all 25 com-
mon measurements was 81.20%. For the external validation with 355
compounds under 717 treatment conditions, the consistency between
AnimalGAN generated results and the real data from DrugMatrix was
82.85%. Figure 4a shows a comparison of the consistency of the
baseline settings for all the 25 measurements based on experiment
data and the AnimalGAN results. Moreover, we compared the chem-
istry space of 110 training compounds against the 355 external
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Fig. 1 | AnimalGAN overview and study design. a AnimalGAN model develop-
ment. The AnimalGANwas developed based on 80%of TG-GATEs data (the training
set) which consists of 6442 rats exposed to 110 compounds under 4 different time
points (i.e., 3/7/14/28 days) and three dose levels (i.e., low/medium/high). The
chemical representation (i.e., 1826 Mordred descriptors), time point, dose level,
and Gaussian noise as input to the Generator (G) to yield the 38 synthetic clinical
pathology measurements which was compared to the real data by the Dis-
criminator (D). The average 100 generated clinical pathology measures passed the
blood cell counts check to represent the clinical pathology measurements. Once
the difference between the synthetic and real data could not be distinguished by
the Discriminator (D), the AnimalGANmodel was established. b AnimalGANmodel
evaluation. The AnimalGAN model was employed to generate the 38 clinical
pathologymeasurements for 20% of TG-GATEs dataset (the test set) which consists
of 332 treatment conditions exposed to 28 different compounds under 4 different
time points (i.e., 3/7/14/28 days) and three dose levels (i.e., low/medium/high). We
calculated the average 100 generated clinical pathology measures met a criterion

using the blood cell counts to represent the clinical pathologymeasurements from
AnimalGAN and compared them to the corresponding real ones for each treatment
condition. Boxplot of c RMSE - Root Mean Square Error and d Cosine Similarity
between AnimalGAN generated synthetic data and real animal testing data for
treatment conditions in the test set. The statistical difference between RMSEs/
Cosine Similarities of AnimalGAN generated synthetic data and real animal testing
data for n = 332 treatment conditions in the test set and RMSEs/Cosine Similarities
of real data across any two treatment conditions (n = 1,358,776, derived from
1649× 1648/2) was determined using a two-tailed Wilcoxon rank-sum test without
adjustments for multiple comparisons. The boxplot displays the distribution of
RMSEs/Cosine Similarities, with the centerline representing the median, the
bounds of the box representing the first and third quantiles, and the whiskers
representing the 1.5 times the interquartile range (IQR). e t-SNE visualization of
generated data and real data for treatment conditions in the test set. Each point
depicted one treatment condition. Source data are provided as a Source Data file.
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validation compounds and found that they were not significantly
overlapped (Fig. 4b).

AnimalGAN predicts idiosyncratic drug-induced liver
injury (iDILI)
Since AnimalGAN is a virtual animal model, it could simulate the clin-
ical pathology distribution from a large population of rats, fromwhich
the resultsmight predict rare harmful events in the humanpopulation,
thus offering an unprecedent opportunity to reliably translate the
preclinical findings to clinical implications. For example, iDILI is rare
and cannot be detected even in the late phase of clinical trials in drug
development, let alone be foreseen in preclinical settings. Conse-
quently, iDILI is only reported from the post-market surveillance and is
thus a leading cause of drug recall and acute liver failure (ALF) in the
United States11. Detecting iDILI has become one of the most challen-
ging fields in pharmacovigilance, since the limited sample size in both

live animal and human studies are not suitable to provide sufficient
statistical power. Here, we conducted a virtual 28-day study with Ani-
malGAN to generate liver enzyme data for a population of 100,000
rats under the treatment of high dose with each of three thiazolidi-
nediones (i.e., troglitazone, pioglitazone, and rosiglitazone). The
thiazolidinediones are a familyof drugswith similar chemical structure
for the treatment of type 2 diabetes12; troglitazone was withdrawn
from the market due to its high frequency and severity of DILI, while
pioglitazone and rosiglitazone are still on the market with less DILI
frequency (less than 1%) and severity (most are mild and reversible).
We examined the difference of these three thiazolidinediones in DILI
risk by counting the number of rats (out of 100,000 simulation) that
were above Upper Limit of Normal (ULN) in key liver enzymes that are
traditionally used to assess DILI; these are ALT, AST and TBIL. ALT and
AST measure the degree of liver injury while TBIL indicates the loss of
liver function. We specifically emphasized on the classic Hy’s law13 that
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Fig. 2 | Comparisons of AnimalGAN results with QSAR predictions for the test
set of all 38 clinical pathology measurements. a Clinical Chemistry measure-
ments. ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST aspartate
aminotransferase, DBIL direct bilirubin, GTP γ-glutamyltranspeptidase, LDH lactate
dehydrogenase, TBIL total bilirubin, BUN blood urea nitrogen, Ca calcium, Cl
chlorine, CRE creatinine, IP inorganic phosphorus, K potassium, Na sodium, A/G
albumin globulin ratio, GLC glucose, PL phospholipid, RALB albumin, TC total
cholesterol, TG triglyceride, TP total protein. b Hematology measurements. APTT
activatedpartial thromboplastin time, Bas basophil, Eos eosinophil, Fbg fibrinogen,
Hb hemoglobin, Ht hematocrit value, Lym lymphocyte, MCH mean corpuscular
hemoglobin, MCHC mean corpuscular hemoglobin concentration, MCV mean
corpuscular volume, Mono monocyte, Neu neutrophil, Plat platelet count, PT

prothrombin time, RBC redblood cell count, Ret reticulocyte,WBCwhite bloodcell
count. For eachmeasurement, the performanceof the 12QSARswas represented in
a violin plot while the performance of AnimalGAN was denoted by a golden star.
The plot was z-score scaled for an improved visual inspection. AnimalGAN exhib-
ited consistently smaller MSE than what can be achieved with QSARs. The violin
plot shows the distribution of the 12 QSARs’ performance, with the width at dif-
ferent points indicating the estimated probability density of the data and the inner
boxplot displaying the lower quantile (Q1), median (centerline), upper quantile
(Q3) andwhiskers extending to theminimum andmaximum values within 1.5 times
the interquartile range (IQR). All data points in this figure are provided in the
Supplementary Data 1.
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combines ALT (or AST) with TBIL and been traditionally used to assess
the overall risk of DILI in clinical settings. As summarized in Table 1,
Troglitazone had much more rats with liver enzyme elevation (except
ALT) above their ULNs than these observed for both Pioglitazone and
Rosiglitazone. Particularly, in terms of the overall DILI risk measured
by the combination of ALT (or AST) with TBIL, the DILI frequency of
Troglitazone wasmore than double than these from both Pioglitazone
and Rosiglitazone.

Discussion
Global efforts have been made to promote animal-free studies as
alternatives to animal testing, such as the FDAModernizationAct14, the
FDA Predictive Toxicology RoadMap15, the Tox21 program16, and
ONTOX17 in Europe. Computational Toxicology has been actively
evaluated as a part of this non-animal and 3Rs efforts. However, this
field has remained unchanged for decades by predominantly relying
on QSAR-like approaches. QSARs usually predict a single endpoint,
often representing a high-level abstraction (e.g., liver toxicity vs non
liver toxicity) of toxicological effects and as such are often missing
critical contextual information. In contrast, animal-based assessments
of toxicity provide much richer, multi-dimensional information to
support risk assessment and decision making such as that derived
from clinical pathology profiles. AnimalGAN represents a significant
step towards synthetic, multi-dimensional toxicological profiles that
reflect traditional preclinical toxicity assessments. By comparing to 12
conventional QSAR methods for each of 38 clinical pathology mea-
sures using the exact same input, AnimalGAN outperformed QSARs in
prediction of all the clinical pathology measurements within the
chemistry space pertaining to TG-GATEs. We acknowledge that Ani-
malGAN was developed within a relatively restricted chemical space,

which may impact the generalizability of our findings. The conclusion
that AnimalGAN outperforms conventional QSARs is based on the
dataset we used, and caution should be exercised when extending our
results to diverse chemical classes or environmental compounds. It is
important to point out that AnimalGAN is distinct from conventional
QSAR approaches; the former can generate the prediction for the
entire toxicological profiles (such as clinical pathology profile as
reported here) at once while the latter predict one endpoint at a time.
The significance of AnimalGAN not only lies in its predictive accuracy
but also in its potential to replicate the complexity and richness of data
obtained through conventional animal testing.

It is important to note that selecting a validation dataset for Ani-
malGAN is a challenge since different experimental study designs can
lead to different test results. We established several criteria to select a
reasonable validation set in our study: (1) same rat strain and sex, (2) a
similar repeated dose study design as TG-GATEs, (3) common com-
pounds tested by TG-GATEs to establish a baseline in comparison, and
(4) contained clinical pathology measurements that significantly
overlapped with those tested by TG-GATEs. DrugMatrix met all these
criteria with several minor deviations. The first consideration is about
the age of rats; DrugMatrix used rats of 5–7 weeks while TG-GATEs
used rats that were 6-weeks, which might not be significant but worth
to mention. The second consideration is about the testing strategy to
determine Maximum Tolerated Dose (MTD); DrugMatrix applied a
5-day dose range finding method while TG-GATEs worked on a 7-day
protocol, whichmight also not result in significant difference between
two studies. The third consideration is in defining the dose level, which
might have a significant impact; DrugMatrix applied both MTD and
therapeutic dose to define dose levels whereas TG-GATEs only relied
onMTD. The fourth consideration regards control groups; DrugMatrix

Treatments
• Compounds
• Dose level
• Time point

Real
Clinical pathology
measurements

Generated
Clinical pathology
measurements

Control group
Identify treatment-related changes
in clinical pathology measurements

Assessment
• Change
• No change

Assessment
• Change
• No change

Consistency?

a

Nephrotoxicity-related measurements

0.979 0.988 0.994 1.000 1.000 1.000 1.000

BUN K CRE Na Cl Ca IP

c

Hepatotoxicity-related measurements Consistency between and

0.961 0.979 0.982 0.985 0.991 0.997 1.000

GTP LDH TBIL DBIL ALT AST ALP

b

Fig. 3 | AnimalGAN for toxicity assessment. aA framework for comparing toxicity
assessment outcomes between clinical pathology measurements generated by
AnimalGAN and those from real rat experiments conducted under identical treat-
ment conditions. Clinical pathology measurements were generated by AnimalGAN
for each treatment condition (i.e., compound/time/dose). Then, each generated
clinical pathologymeasurement and its corresponding real one (i.e., treated group)
were analyzed against their matched controls to establish a statistically significant

toxicity outcome. If both real and synthetic data lead to conclude the same toxicity
outcomes, we consider that an agreement or “consistency” is established between
experiment and AnimalGAN. The consistency for b hepatotoxicity and
c nephrotoxicity-related clinical pathologymeasurements between generated data
and their corresponding animal testing data in the test set. The consistency results
for all the 38 clinical pathology measurements can be found in the Supplementary
Table 1.
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used a shared control while TG-GATEs applied time-matched controls.
In addition, the source and purity of compounds might be different
between two datasets, whichwe do not have information. Considering
these differences between the two study designs, around 81% con-
sistency in toxicity assessment for the common compounds using the
experimental data seems reasonable. Consequently, the observed
~83% consistency of AnimalGAN results against the DrugMatrix
experiment data demonstrates its potential application for toxicity
assessment.

It is widely acknowledged that Phase III trials in drug development
may not reliably predict rare adverse events, such as iDILI. This is
mainly due to the limited and controlled population sample in these
trials, which may not be representative of the real-world population.
However, when it comes to explaining the poor translation of animal
study results to humans, the main factor often cited is species differ-
ences in biology. Despite this, we speculate that the small sample size
used in animal studies may also contribute to the poor translation.
Since AnimalGAN is a virtual experiment, we carried out a 28-day study
with a large population of rats for DILI assessment of three thiazoli-
dinediones. These three drugs are similar in chemical structure
(share the same scaffold) but with different DILI risk. The virtual
experiment with 100,000 rats revealed the difference in DILI potential

among these three. If we estimated the DILI frequency as a percentage
of ratsmeeting the overall DILI risk criteria (the last row of Table 1), the
AnimalGAN results agreed with the iDILI frequencies in the human
population of these three thiazolidinediones; that is 1.9% (troglita-
zone), 0.26% (pioglitazone), 0.25% (rosiglitazone). The results offer a
potential venue to assess rare adverse events in the human population
which are unlikely to be detected in conventional animal studies.

While several less complex toxicological endpoints have found
adequate non-animal replacements, many efforts in this space have
runup against the challengepresented by the diversity and complexity
of systemic toxicological processes necessary to characterize toxicity
and establish safety. In addition, there are around 4,000 new chemi-
cals per day in U.S., making testing via conventional animal studies an
impossible task. Even some proposed alternative methods, such as
micro-physiological systems (e.g., organ-on-a-chip), donot possess the
throughput capacity to deal with such a large number of compounds
to be tested18. Therefore, read across has been introduced to address
this challenge by using existing chemical toxicity information to pre-
dict untested compounds based on chemical structure similarity.
However, the assumption of chemical-based read-across is not always
correct since chemicals with similar structures could have different
bioactivities and carry different hazards. AnimalGAN could overcome
these challenges by providing synthetic results for a large number of
chemicals, thus improving read-across.

It is worthwhile to point out that AnimalGANwasonly evaluated in
a fraction of toxicological space in its current form. Hence, a broad
assessment with much larger number of rats could further improve its
robustness and lead to a model to supplement toxicological assess-
ment in animals. Nonetheless, in the short term, AnimalGAN provides
the opportunity to generate data that will allow for rational prior-
itization of drugs based on toxicological risk. Looking further into the
future, it is anticipated that AI learning frommore comprehensive sets
of animal data will allow for more comprehensive forecasting of tox-
icological effects and chemical and drug safety assessmentwithout the
use of animals.
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Fig. 4 | External validation of AnimalGAN. a Comparison of Consistency in
Toxicity Assessment Outcomes based on experiment data and AnimalGAN-
generated data for all 25 measurements. The blue (left) bars represent the con-
sistency in toxicity assessment outcomes between the experiment data from TG-
GATEs and DrugMatrix. The orange (right) bars represent the consistency in

toxicity assessment outcomes between the AnimalGAN-generated measurements
and the experiment data tested inDrugMatrix.bVisualization of chemistry space of
the 110 training compounds and the 355 external validation compounds. Eachpoint
depicts one compound. Source data are provided as a Source Data file.

Table 1 | The number of rats exhibiting drug-induced liver
injury estimated by AnimalGAN for the three thiazolidine-
diones under the 28-day studywith high dose in 100,000 rats

Criteria Troglitazone Pioglitazone Rosiglitazone

ALT >ULNa 1230 1820 1467

AST >ULN 7413 4315 4591

TBIL >ULN 3421 2083 2215

ALT > ULN or AST >
ULN, and TBIL > ULN

375 161 158

aTheUpper Limit of Normal (ULN)was defined as the highestmeasurement value observed in the
28-day vehicle-treated control rats.
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Methods
Clinical pathology data from open TG-GATEs
TheOpenTG-GATEs9 was employed to develop theAnimalGANmodel.
The Open TG-GATEs is a large-scale publicly available toxicological
research database that stores toxicogenomic profiles and traditional
toxicological data derived from in vivo (i.e., rat liver and kidney) and
in vitro (i.e., rat and human primary hepatocyte) exposure to 170
compounds at multiple dosages and time points. In this study, we
focused on 38 clinical pathology measurements, including 21 hema-
tology and 17 biochemistry datapoints, generated using the standard
animal study protocols with three dose levels (low, middle, and high)
and four treatment durations (3, 7, 14, and 28 days). All the data were
downloaded from the website https://dbarchive.biosciencedbc.jp/en/
open-tggates/download.html, accessed in September 2021. Clinical
pathology data of 8078 rats treated with 138 compounds under 1649
treatment conditions (i.e., compound/duration/dose combinations)
were used for model development and validation. In addition, clinical
pathology data from 2775 vehicle control-treated rats were down-
loaded as controls for toxicity assessment. The detailed information
on treatment conditions is listed in Supplementary Data 2.

Molecular representation
Chemical structure was one of the inputs used to develop AnimalGAN,
which was represented with numeric molecular descriptors. First,
compound information for the 138 compounds, including PubChem
CID, Structure-Data File (SDF) and canonical simplified molecular-
input line-entry system (SMILES), was retrieved from the PubChem
database19 using PubChemPy20 (Supplementary Data 3). Then, mole-
cular representations were calculated using a Python package,
Mordred21, generating a length of 1826 2D and 3D molecular descrip-
tors for each compound.

Overview of AnimalGAN model
The architecture of the AnimalGAN is illustrated in Fig. 1a, Supple-
mentary Fig. 4 and Supplementary Table 2. The AnimalGAN model
comprises a generator G and a discriminator D. The generator G is fed
with a conditional input c (a combination of compound, time, and
dose) and a random input z to generate the simulated clinical pathol-
ogy measurements ex. The discriminator D takes real and generated
clinical pathology measurements under the condition c as the input
and analyzed their difference. During the training process, the gen-
erator and the discriminator compete against each other and thus
improve each other iteratively. At each training step, as the generator
G tried to produce hematologic and clinical chemistry data similar to
the real data, the discriminator D became better at distinguishing
between real data from animals and generated data produced by the
generator. The model was considered converged when the dis-
criminator could not distinguish the synthetic results from the real
ones. By then, the AnimalGAN model was finalized and could be used
to infer clinical pathology measurements of rats treated with untested
compounds at a specific time and dose.

GANs are a powerful class of generativemodels that aim to learn a
mapping from input distribution to output distribution, in this case, a
mapping from animal study conditions (the combination of chemical,
dose and treatment duration) to clinical pathologymeasurements. The
vanilla GAN8 structure comprises two neural networks: a generator G
and a discriminator D iteratively trained by competing against each
other in a min-max game with the following learning objective:

min
G

max
D

LðD,GÞ= min
G

max
D

fEx∼Preal
½logDðxÞ�+Ez ∼Pz

½logð1� DðGðzÞÞÞ�g ð1Þ

where E �½ � represents expectation, x is a vector of the clinical pathol-
ogy measurements sampled from the distribution of real lab test
reports Preal , and z is a vector with random noise sampled from a
Gaussian distribution Pz.

Conditional GAN (cGAN)22 is developed to generate data with the
specific condition. In the cGAN, both generator and discriminator have
the condition asoneof the inputs, and the loss function is expressed as

LðD,GÞ=Ex ∼Preal
½logDðxjcÞ�+Ez ∼Pz

½logð1� DðGðzjcÞÞÞ� ð2Þ

While cGAN has demonstrated outstanding capabilities in a wide
range of conditional generation tasks, training cGAN as playing a min-
max game between the generator network and discriminator network
is inherently unstable, especially for biomedical data with small size
training samples, and the conditions are continuous and infinite and
high-dimensional. Wasserstein-GAN (WGAN)23 employed the Wasser-
stein distance, also called the Earth Mover (EM) distance, as a more
explicit measure of the distribution divergence in the loss function to
overcome the gradient disappearance to partially alleviate the mode
collapse. Herein, the AnimalGAN framework was developed based on
the combination of cGAN andWGAN. cGAN allowed the generation of
clinical pathologymeasures at a given condition (i.e., compound/time/
dose), while WGAN improved the convergence of the model. Fur-
thermore, due to the small sample size and continuous high-
dimensional conditions in clinical pathology data, a regularization
term was implanted on generator loss to improve the generalizability
of the generator, allowing the generator to leverage neighboring
conditions in the continuous space without sacrificing the generator’s
faithfulness to the input conditions through Lipschitz regularization
along with the interpolations of conditions pairs. When the generator
was fed with new conditions that have never been seen in the training
set, the regularization term then leverages the neighbor information
and assists the generator in generating data that have similar condi-
tional distributions for each neighboring condition. Specifically, the
following regularization term was added to the generator loss to
encourage the optimized generator G to minimize this regularization
term:

LGRðGÞ=Ez ∼Pz ,c∼Pc
min

jGðc+ 4 c, zÞ � Gðc, zÞj
j 4 xj ,τ

� �� �
ð3Þ

where 4c∼P4c is a small perturbation added to c and P4c is the dis-
tribution of4c. The distribution P4c was designed to be a distribution
centered close to zero with small variance and normal distribution. τ is
a bound for ensuring numerical stability.

Finally, the model objective with generator regularization
becomes

min
G

max
D

LðD,GÞ=Eðc,xÞ∼Pðc,xÞ
½logDðc, xÞ�

+Ez ∼Pz ,c∼Pc
½logð1� DðGðc, zÞÞÞ� + λLGRðGÞ

ð4Þ

The condition space c in this study is the treatment information
(i.e., compound/duration/dosage combinations), and the output space
is the clinical pathology measurements.

Generator architecture
The generator G received four inputs, with the first three inputs as the
treatment condition c= concat s,d,tð Þ. The first one was the molecular
representation of a chemical (s), an 1826-dimensional vector of mole-
cular representation by usingMordred. The second inputwas the dose
level of a compound administrated to the rat (d). For the animal stu-
dies in the Open TG-GATEs database, the ratio among low,middle, and
high dose levels was set as 1:3:10 with the high dose equal to the
Maximum Tolerance Dose determined in a 7-day dose finding study,
with the same setting applied here. The third input denotes the time
point (3, 7, 14, and 28 days) a rat (t) was treated. The final input was an
1828-dimensional noise vector (n) sampled fromanormal distribution.
All these four inputs were concatenated into a 3656-dimensional
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vector and scaled to [−1, 1] as input to pass into the generator G,
resulting in ex =G c,zð Þ, where ex was a generated vector of clinical
pathology measurements. The generator G(c,z) was a fully connected
neural network with 5 hidden layers, where each layer has 4096, 2048,
1024, 256 and 64 nodes, respectively, and used LeakyReLU as activa-
tion function, followed by a batch normalization procedure. The out-
put layer has 38 nodes, which is equal to the dimensionality of the
clinical pathology measurements in the Open TG-GATEs database,
followed by a tanh activation function.

Discriminator architecture
The 38-dimensional vector of clinical pathology measurements and
1828-dimensional vector of treatment conditions (i.e., descriptors +
dose + time) were concatenated into an 1866-dimentional vector and
scaled to [−1,1] as an input to the discriminator. The discriminator was
a seven-layer multilayer perceptron (MLP) of hidden layers with 2048,
1024, 256, 64, and 32 neurons, respectively. We used the activation
function LeakyReLU in all the hidden layers with the angle of the
negative slope of 0.2. To avoid overfitting, we used dropout with a rate
of 0.4 after each hidden layer.

AnimalGAN model development
Of clinical pathology data consisting of 8078 rats treated with 138
compounds under 1649 treatment conditions, 38 clinical pathology
measurements (i.e., 21 hematologic and 17 clinical chemistry) of 110
compounds (~ 80%), corresponding to 6442 rats under 1317 treatment
conditions were randomly selected as a training set. The 21 hemato-
logic and 17 clinical chemistry measurements of the 1636 rats under
332 treatment conditions of the remaining 28 compounds (~ 20%)were
used as a test set.

Using the proposed loss function above, the converged Animal-
GAN model could only generate the clinical pathology measurements
with a similar distribution to the real ones. To enable the Generator G
to generate the clinical pathology measurements maximally identical
to the real ones, additional post optimization criteria were proposed.
First, an “invalid records” check based on the blood cell counts was
implemented. Among the 38 clinical pathology measurements, white
blood cells (WBCs) are composed of neutrophils, eosinophils, baso-
phils, monocytes, and lymphocytes, so the total percentages of each
type of WBC should not exceed 100%. Considering the cell counting
protocol performed in the lab and the rounding numbers used in test
results, the cell count with total percentages of more than 105% were
considered invalid records. In other words, only the generated clinical
pathologymeasurements thatpassed the blood cell counts checkwere
kept. Then, cosine similarity and RMSE were ensured between gener-
ated clinical pathology measurements and their corresponding real
ones to be optimum, where the cosine similarity and RMSE of a given
treatment condition are defined as below:

cosine similariy =
P38

i= 1
�Gi
�RiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP38

i= 1
�G
2
i

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP38
i= 1

�R
2
i

q ð5Þ

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP38
i = 1ð�Gi � �RiÞ

2

38

s
ð6Þ

where �Gi and �Ri are the i-th measurement of the mean vector of gen-
erated clinical pathology results and their corresponding real ones,
respectively.

The generator G and discriminator D losses tended to be stable
after 1000 epochs, respectively. To further optimize the AnimalGAN,
the AnimalGAN models were examined in different checkpoints using
the proposed post-optimization strategy mentioned above. Using the
stored AnimalGAN model under each training epoch, the average 100

generated clinical pathology measures that passed the blood cell
counts check were calculated to represent the clinical pathology
measurements in the training set and compared to the corresponding
real ones for each treatment condition (Supplementary Fig. 5). The
cosine similarity and RMSE between generated clinical pathology
measures and their corresponding real ones in the training set reached
the optimal at 6000 epochs. Also, the similar distributions of gener-
ated clinical pathology measurements and their corresponding real
animal data in the training set in t-distributed stochastic neighbor
embedding (t-SNE) space suggested that the AnimalGAN model at
6000 epochs was well-trained.

AnimalGAN predicts clinical pathology measurements
The test set consisting of the 1636 rats under 332 treatment conditions
of the 28 different compounds were used to evaluate the AnimalGAN
performance, where the treatment conditions (i.e., compound/time/
dose) were input to AnimalGAN to generate clinical pathology data.
For each treatment condition, the averaged 100 generated clinical
pathology measures that passed the blood cell count check were
employed to represent the AnimalGAN synthetic testing results, fol-
lowed with additional verifications using the cosine similarity and
RMSE between the averaged clinical pathology data from AnimalGAN
and their corresponding real ones under the same treatment condi-
tion, respectively. Furthermore, the proposed control analysis24 in our
previous study was utilized to justify whether the similarities between
the generated clinical pathology measurements and their corre-
sponding real ones were superior to those of background control
distribution, where the similarities were generated between real clin-
ical pathology measurements in any two treatment conditions. Spe-
cifically, in order to construct a background control distribution, we
calculated the Cosine Similarities and RMSEs between every pair of
treatment conditions (i.e., compound/time/dose combination) based
on their lab-tested clinical pathology profiles. We then compared the
distributions of Cosine Similarities and RMSEs between the profiles
generated by AnimalGAN and the corresponding profiles obtained
from TG-GATEs against the background control distributions. We
employed Wilcoxon rank-sum tests to compare these distributions
against the background control distributions. The t-SNE was also used
to visualize the generated data and real data.

AnimalGAN evaluation
To investigate the applicability domain of the proposed AnimalGAN,
we employed three scenarios to mimic real-world situations by
repartitioning the training set and test set. To warrant a fair compar-
ison among the different scenarios, we kept the same ratio (80% and
20%) of compounds in the training set (i.e., 110 compounds) and test
set (i.e., the remaining 28 compounds). The three designed scenarios
are listed below:
(1) To investigate whether the AnimalGAN model could infer the

clinical pathology measures for the compounds that are not
similar to those included in the training process, the pairwise
structural similarities between any two of the 138 compounds
were first calculated based on their Mordred molecular repre-
sentations. Second, the compounds were ranked according to
their median similarities to others, and then the sorted com-
pounds were partitioned into two sets, with the first 110 com-
pounds in one set, and the last 28 compounds in anther set. Via
this, treatment conditions using the 110 compounds with higher
similarities to others were used as training set to develop model
and treatment conditions using the remaining 28 compounds
with little structural similarity to the compounds in the training
set were used as test set to evaluate the model (Supplementary
Figure 6 and Supplementary Data 2).

(2) Whether the AnimalGAN framework could be used to infer clin-
ical pathology measurements for drugs whose therapeutic use
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was not included in the training set was also investigated. Spe-
cifically, the 138 compounds were mapped onto the first level of
the WHO Anatomical Therapeutic Chemical (ATC, https://www.
whocc.no/atc_ddd_index/) code, which represents which organ
that drug impacts. Then, the AnimalGAN model was developed
with drugs from therapeutic categories, including A- Alimentary
tract and metabolism, H- Systemic hormonal preparations,
excluding sex hormones and insulins, L- antineoplastic and
immunomodulating agents, along with compounds with ATC
code. Then, drugs belonging to R- respiratory system, and P-
antiparasitic products, insecticides, and repellents were left as
the test set to evaluate the developed AnimalGAN (Supplemen-
tary Data 2).

(3) A ‘time-split’ strategy7 was employed to investigate whether
AnimalGAN could be used to infer clinical pathology measure-
ments based on accumulated animal data to foresee the animal
response of untested compounds. For that, drugs approved
before the year 1982 and non-drug-like compounds were used as
the training set to develop AnimalGAN, while drugs approved
from the year 1982 onward were held out as the test set to
examine the performance of the model (Supplementary Data 2).

Similarly, the cosine similarity and RMSE between the generated
clinical pathology measurements and their corresponding real ones
were used to evaluate the model performance. Also, prediction errors
of synthetic results against actual laboratory animal testing values
were also analyzed for eachof the 38 clinical pathologymeasurements.

Comparing AnimalGAN results with QSAR predictions
QSARs are computational toxicology methods that are widely used in
chemical and pharmacological research to predict the biological and
toxicological activity of a compound based on its structural features.
To compare the performance of AnimalGAN with QSARs, we used the
same input for both approaches. Specifically, for each of the 38 clinical
pathology measurements, 12 regressors (i.e., k-nearest neighbors,
decision tree, extremely randomized tree, random forest, epsilon
support vector regression, linear support vector regression, stochastic
gradient descent, AdaBoost, gradient boosting, Bayesian ARD regres-
sion, Gaussian process regression and multi-layer perceptron) were
used to developQSARmodels. To validate the QSARsmodels, we used
the same test set as used in AnimalGAN for a fair comparison. In
addition, the same molecular descriptors along with the exposure
information (i.e., dose and treatment duration) used in AnimalGAN
were the input to QSARs modeling. A 5-fold cross-validation was used
for hyperparameter optimization, followed with the final model con-
struction using the entire training set. Then, thepredictions for the test
set were made by the QSAR models and then subsequently compared
with AnimalGAN results using Mean Square Error (MSE) which mea-
sures the difference between the predicted value and true value.

AnimalGAN for toxicity assessment
Clinical pathology measurements are critical to assess the toxicity of
different organ systems in the preclinical setting. To demonstrate the
potential application of AnimalGAN in toxicity assessment, we carried
out a comparison of toxicity assessment outcomes derived from
clinical pathologymeasurements generatedbyAnimalGANand real rat
experiments conducted under the same treatment conditions. Clinical
pathology measurements were generated by AnimalGAN for each
treatment condition (i.e., compound/time/dose). Then, each gener-
ated clinical pathology measurement and the corresponding real one
(i.e., treated group) were analyzed against their matched controls to
establish a statistically significant toxicity outcome. Specifically,
unpaired t-tests were performed to compare the control and treated
groups, and values of p < 0.05 were considered statistically significant.
Calculations were based on the hypothesis that the clinical pathology

measurements are normally distributed and that the within-group
variances are the same. For those measurements that did not follow
the normal distribution, non-parametric tests were used. Eventually, if
both real and synthetic data lead to conclude the same toxicity out-
comes, we consider that an agreement or “consistency” was estab-
lished between experiment and AnimalGAN, otherwise, an
inconsistent toxicity outcome was concluded. The consistency was
calculated based on the following formula,

consistencyi =
Number of tretament conditions with consistent toxicity outcomes

Total of treament condidtions

ð7Þ

where i denotes the i-th clinical pathology measurement.

External validation with DrugMatrix dataset
The other largest, publicly available, TG-GATEs comparable dataset is
DrugMatrix10. This is managed by the National Toxicology Program of
the US Department of Health and Human Services and was used for
external validation in this study. The dataset includes 38 clinical
pathology measurements, 25 of which overlap with those in TG-GATEs.
Subsequently, these 25 common clinical pathologymeasurementswere
evaluated to assess AnimalGAN performance on the DrugMatrix data.
The animal testingdatawith treatment conditions fromDrugMatrixwas
downloaded from ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_
Matrix/DrugMatrixPostgreSqlDatabase.tar.gz. To ensure that the study
design for animal data from DrugMatrix was comparable to TG-GATEs,
the following animal data from DrugMatrix were excluded: (1) com-
pounds that did not have a matched vehicle control, (2) samples where
a different route of administration was used between treated and con-
trol conditions, (3) samples where the treated and control experiments
were conducted in different labs, or (4) samples where studies were
from female rats. As a result, 355 compounds with 717 treatment con-
ditions (i.e., compound/dose/time combination) were used as an
external dataset, which were not tested in TG-GATEs (Supplementary
Data 4). In addition, there were 70 compounds, corresponding to 175
treatment conditions, which were tested in both TG-GATEs and Drug-
Matrix. We analyzed the concordance between the two databases for
these 70 compounds to serve as a baseline to assess the external vali-
dation results on 355 compounds.

The external validation was carried out as described in the
previous section (i.e., AnimalGAN Application). Specifically, for each
of the 717 treatment conditions of the external validation set,
100 simulations with valid blood records were generated with Ani-
malGAN and were subsequently compared against matched controls
to calculate the toxicity of each of the 25 clinical pathology measures.
The toxicity outcome for eachmeasurementwas then compared to the
outcome from the real experimental results in DrugMatrix to calculate
consistency as an external validation of the performance of
AnimalGAN.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets used to develop and evaluate AnimalGAN are sourced
from clinical pathology data in the Open TG-GATEs database,
available for downloaded at https://dbarchive.biosciencedbc.jp/en/
open-tggates/download.html. The PubChem database can be
accessed at https://pubchem.ncbi.nlm.nih.gov/. The animal testing
data with treatment conditions from DrugMatrix were downloaded
from ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
DrugMatrixPostgreSqlDatabase.tar.gz. Source data are provided
with this paper.
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Code availability
All the networks were built and trained using PyTorch version 1.11.0
withCUDA 10.2 under open-source Python (version3.9.18). The source
code is available at https://github.com/XC-NCTR/AnimalGAN, which
has also been deposited in the Zenodo at https://doi.org/10.5281/
zenodo.841640625.
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