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The asymmetric effects of climate risk on
higher-moment connectedness among
carbon, energy and metals markets

Yuqin Zhou1, Shan Wu 2 , Zhenhua Liu3 & Lavinia Rognone 4,5

Climate change affects price fluctuations in the carbon, energy and metals
markets through physical and transition risks. Climate physical risk is mainly
caused by extreme weather, natural disasters and other events caused by cli-
mate change, whereas climate transition risk mainly results from the gradual
switchover to a low-carbon economy. Given that the connectedness between
financial markets may be affected by various factors such as extreme events
and economic transformation, understanding the different roles of climate
physical risk and transition risk on the higher-moment connectedness across
markets has important implications for investors to construct portfolios and
regulators to establish regulation system. Here, using the GJRSK model, time-
frequency connectedness framework and quantile-on-quantile method, we
show asymmetric effects of climate risk on connectedness among carbon,
energy and metals markets, with higher impacts of climate physical risk on
upward risk spillovers, and greater effects of climate transition risk on the
downside risk of kurtosis connectedness.

Risks associated with climate change typically encompass two types:
physical risks and transition risks1. Climate-induced physical risks pri-
marily arise from acute or chronic events such as increasing tempera-
tures, rising sea levels, intensified storms, floods, and wildfires, leading
to potential damages and losses2. On the other hand, transition risks
result from the gradual shift towards a low-carbon economy, encom-
passing climate policies changes, consumer preferences shifts, and the
emergence of competitive green technologies. Compared to traditional
disaster risks, climate change risks usually exhibit a longer time scale, a
broader geographic scope, more intricate scientific attribution, and
higher levels of uncertainty3. These have drawn the attention of
numerous scholars to investigate the influence of climate change on
various financial markets, including the stockmarket4,5, bondmarket6,7,
and currency market8,9.

Previous research findings have demonstrated that climate
change exerts a substantial influence on price and volatility, as well as
supply and demand dynamics in carbon trading, energy, and metal

markets (Supplementary Note 1). These effects occur through the
channels of both physical risk and transition risk10,11. In terms of
physical risk, climate change, especially at extreme high and low
temperatures, can lead to more energy consumption and higher
carbon emission prices12,13. Because clean energy power generation is
highly dependent on weather factors14, extreme climate change has
also exposed clean energy companies to physical risks, seriously
affecting carbon prices15,16. On the other hand, climate change may
force governments to formulate relevant environmental policies
such as carbon reduction, changing the supply of carbon emissions
rights, and thus affecting carbon prices17,18. Driven by the “carbon
neutrality” goal, countries have been forced to reduce traditional
energy consumption, expand clean energymarkets, anddevelop low-
carbon basic products such as solar panels and power cells,
increasing the demand for metal minerals19,20. Conversely, Carbon
emissions trading is one of the mainstream ways to address climate
change21. Energy consumption and the mining of metal minerals will
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increase the carbon dioxide emissions22,23, increasing the risk of cli-
mate change24.

Overall, previous studies have sought to provide evidence about
the impact of climate risk on specific financial markets, with limited
work exploring the connectednessbetweenmarkets. Nevertheless, the
carbon, energy, andmetalmarkets are closely linked21,25. Higher energy
and metal prices will lower the demand for carbon dioxide emissions,
leading to lower carbon prices26,27. Rising carbon prices will partly
encourage companies to reduce energy consumption28 and the pro-
portion of metal mining such as raw ore29, which affects the profit-
ability of related companies such as metal energy30. Hence, climate
change risk will not only have an impact on the carbon, energy and
metal markets, respectively, but it is also expected to have an impor-
tant effect on the connectivity of thewhole system formedbydifferent
markets. For instance, Ding et al.31 show an evident causal relationship
between climate change and the spillover effects between carbon and
energy markets. However, they mainly measure climate change from
the perspective of investors’ attention, and do not deeply take into
account the heterogeneous effects of different risks of climate change
on the correlation between markets.

Meanwhile, the objectives and preferences of market participants
differ in the short and long term, leading to variations in spillover
effects among carbon, energy, and metal markets at different
frequencies23. The price behaviors of these markets also exhibit var-
ious frequencies, ranging from long-term trends to short-term fluc-
tuations. The cap-and-trade principle of the EuropeanUnion Emissions
Trading System affects the short- and long-term price of carbon mar-
ket trading demand, causing differences in frequency spillover
effects31,32. Furthermore, energy and metal commodity markets have
sticky prices in the short term and exhibit complete flexibility in the
long term, resulting in different frequency connections with other
markets33. In addition, the existing literature primarily focuses on the
spillover effects in terms of return and volatility (Supplementary
Note 2), while the literature on the impact of climate risk on higher-
order moment risk remains limited. However, higher moment risks on
asset pricing, volatility modeling and risk hedge and portfolio opti-
mization are important. Many studies suggest that the interrelation-
ship between different financial assets is reflected in the second
moment and higher moments34,35.

In this work, we employ the GJRSK model proposed by Nakagawa
and Uchiyama36, the spillover method introduced by Baruník and
Krehlík37, and the quantile-on-quantile method to investigate the
influence of climate risk on high-order time-frequency spillover
effects. First, we explore the risk spillover effects in the carbon-energy-
metals nexus from the perspective of higher-order moment risk,
adding to the previous studies, which mainly investigate the spillover
effects of returns and volatility. Our results provide evidence that the
risk spillover effects at the higher-order moment level should be
considered, while the spillover effects of skewness or kurtosis risk
among carbon, energy, and metal markets are lower compared to
volatility risk spillover. Second, the high-order moment risk spillovers
are decomposed in different frequency domains, and combined with
multidimensional network analysis, the high-order moment risk tran-
sition path in the carbon-energy-metals nexus and its heterogeneity in
the short-term and long-term frequency domains are characterized.
We find that risk spillovers show strong heterogeneity at different
frequencies and higher-order moment levels, with the long-term
volatility spillovers accounting for the largest proportion of cross-
market volatility spillovers, while high-order moment risk spillovers
mainly occur in the short term. Finally, this study examines the impact
of climate risk on the risk spillover effects in the carbon-energy-metals
nexus via measures of physical and transition climate risk proxies
obtained from textual analysis. The empirical findings demonstrate
that both physical and transition risks positively affect short-term
kurtosis spillovers, but have a negative impact on long-term volatility

and skewness spillover effects. Our findings will provide valuable
reference evidence for investors and policymakers in devising risk
management strategies and making informed investment decisions.

Results and discussion
To investigate the time-frequency high-order risk spillover effects
among carbon, energy, and metal markets, we employ the spillover
method introduced by Baruník and Křehlík37 along with the GJRSK
model. By combining network analysis, we can unveil the network
structure and transmissionpathways of time-frequency high-order risk
spillover in the carbon-energy-metal nexus. This approach aids in
determining the relative significance of eachmarket within the system.
Moreover, we employ the quantile-on-quantilemethod to examine the
influence of climate risk on the overall spillover effects within the
carbon-energy-metal markets.

Static spillover effects
We employ the GJRSK model to estimate the conditional variance,
skewness, and kurtosis of each market. The parameter estimation
results of the GJRSK model (Supplementary Table 2) show that the
leverage coefficient in the equations for conditional variance, skew-
ness and kurtosis is observably non-zero, indicating a striking leverage
effect on the conditional volatility, skewness and kurtosis in the car-
bon, energy andmetal futuremarkets, which illustrates that the GJRSK
model is better suited to measuring higher order moments risk of
carbon, energy, andmetalmarkets than theGARCHSKmodel. Theβ3 in
each market is evidently greater than 0, indicating that negative
impacts in the carbon, energy and metal markets will lead to greater
fluctuations or more extreme events than the same degree of positive
impacts. Thismaybe because badnews in financialmarkets often have
a more negative impact on asset prices than the positive impact of
good news. The kurtosis leverage effect (δ3) is positive, indicating that
the negative return with a large absolute value often appears, which
will cause the probability of the extreme value of the return to appear
greater than the probability of the extreme value under the normal
distribution, thus increasing the kurtosis of the return distribution. In
contrast, the skewed leverage effect (γ3) of most markets is evidently
positive, indicating that the frequency and magnitude of negative
returns in thesemarkets are often greater thanpositive returns, except
for oil, gold, and zinc markets.

Supplementary Fig. 1 displays the time-varying conditional var-
iance, skewness, and kurtosis of each market. It provides insights into
how these measures fluctuate over time and highlights the dynamic
nature of market conditions. The variations in conditional volatility,
skewness, and kurtosis observed across differentmarkets highlight the
distinctive information processing characteristics to each market
category. Dynamic volatility, skewness and kurtosis can stem from
actual facts. For example, the outbreak of COVID-19 in January 202023

led to sharp fluctuations of the price of Oil, Gold, Silver and other
markets, or, as a consequence of the escalated conflict between Russia
and Ukraine in February 202238, the supply of energy and non-ferrous
metals market was affected, resulting in relatively large price fluctua-
tions of Gas, Coal, Nickel and Zinc markets.

To enhance our understanding of time-frequency spillovers in the
carbon-energy-metals nexus, we apply the spillover index approach
developed by Diebold and Yilmaz39,40 (DY model) and the frequency
connectednessmethodproposedbyBarunik andKrehlik37 (BKmodel).
These models enable us to effectively measure the connectedness
within and across different frequencies of thesemarkets. In this study,
the lag order of the VAR model has been determined to be 2 based on
the AIC criterion. Additionally, a fixed forecast horizon of 100 days has
been utilized for the analysis. In the frequency domain framework, two
distinct timescales are taken into consideration: the high frequency,
ranging from 1 to 22 days, and the low frequency, encompassing
durations greater than 22 days.
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The outcomes of volatility spillovers among carbon, energy, and
metalsmarkets are presented inTable 1, utilizing theDYmodel. Table 1
shows that the overall volatility connectedness index for the system is
47.37%. Coal emerges as the dominant transmitter of volatility spil-
lovers, contributing 6.48% to other markets, while the gold market
takes the forefront as the largest receiver, absorbing 6.23% from other
markets. The carbon market had the highest spillover to the Coal
market (9.62%) which had the largest spillover to the Nickel market
(19.42%), and the EUA accepted the largest spillover from the Oil
market which accepted the biggest spillover from the Silver market,
reflecting the connectivity among the carbon, energy and metals
markets. However, it is worth noting that carbon markets exhibit a
relatively low level of receptiveness, which is consistent with the
findings of Jiang and Chen23 and Qi et al.41, suggesting that carbon
market volatility has relatively little impact on the dynamics of the
carbon-energy-metal market system. The results of the BK model’s
volatility spillover analysis (as shown in Table 2) indicate that the total
volatility spillover indices at high-frequency and low-frequency bands
are 6.03% and 41.34%, respectively. Clearly, the magnitude of volatility
spillovers in the short run, characterized by high frequency, is com-
paratively lower in comparison to the long run, characterized by low
frequency. In the short run, the Zincmarket stands out as the principal
transmitter of volatility, while the Tin market assumes the role of the
primary receiver. In the long run, the Coal market emerges as the
primary transmitter of volatility, while the Gold market demonstrates
the highest susceptibility as a receiver of volatility. At any frequency,
the volatility of carbon price is more affected by the price fluctuations
of the Oil market, while the high-carbon emission industries should
also focus on the Copper and Tin markets in the short and long run.
The spillover of EUA leads tofluctuations of theOil andCoalmarkets in
the short and long run, respectively. Overall, the carbon markets are
more correlated to energy markets. The Supplementary Table 3 pro-
vides the results of skewness spillovers obtained fromboth theDY and
BK models, encompassing twelve different markets. The total skew-
ness connectedness index for this system is observed to be 12.08%,
suggesting a relatively weak interdependence in terms of skewness
among these markets. And each market is predominantly influenced
by its own shocks rather than the skewness of other markets. Among
the considered markets, Tin emerges as the primary recipient of
skewness spillover,while Aluminum stands out as themain transmitter
of skewness spillover. The Lead and Copper markets exhibit the
highest skewness spillovers among allmarket pairs, indicating a strong
transmission of skewness information between these twomarkets. The
results of the BK model reveal that the total skewness spillover index

amounts to 10.89% in the high-frequency band and 1.19% in the low-
frequency band. This indicates that skewness spillovers have a more
significant impact in the higher frequency range as opposed to the
lower frequency range, indicating that the skewness spillovers among
these markets is primarily driven by short-term effects. The results of
kurtosis connectedness derived from both the DY and BK models are
presented in Supplementary Table 4. The overall kurtosis spillover
index for the entire system amounts to 20.01%, with 17.12% and 2.89%
observed at high-frequency and low-frequency bands, respectively.
The results indicate that, similar to thefindings for skewness spillovers,
the level of kurtosis spillovers is higher at high frequencies compared
to low frequencies. The Aluminum market takes on the role of the
primary transmitter of kurtosis, while the Zinc market serves as the
major receiver of kurtosis. In the long run, Silver emerges as the pri-
mary transmitter of kurtosis, while Gold assumes the position of being
the most significant recipient of kurtosis.

In summary, the total spillover indices for volatility, skewness,
and kurtosis in the time domain are recorded as 47.37%, 12.08%, and
20.01%, respectively. These results demonstrate an inconsistency
with the findings reported by Yang et al.35, who detect a weakening of
system connectedness as the order of moments increased. However,
we find that the spillover of kurtosis is not necessarily lower than the
spillover of skewness. The findings indicate that volatility spillover
effects exhibit the highest intensity. This is consistent with the
assertion made by Bouri et al.11, who argue that volatility spillovers
tend to bemore influential in terms of the strength of linkages among
markets.

Moreover, the spillovers across carbon, energy and metals mar-
kets have a clear difference at different moments. For example, the
Silver and Oil markets have a relatively high volatility connectivity to
the gold market, while the skewness connectivity between the Lead
and Copper markets and the kurtosis connectivity between the Alu-
minum and Zinc markets contributed more to the total skewness and
kurtosis spillover, respectively. The above results demonstrate the
importance of considering the contagion effects between markets
from higher-order moments. From a frequency domain perspective,
long-term volatility connectedness contributes more to the overall
volatility spillover, which contradicts findings in several studies23,35.
However, for skewness and kurtosis, high-frequency band con-
nectedness plays a dominant role in their respective total spillovers.
This suggests that skewness and kurtosis information transmits rapidly
in the nexus among carbon, energy, and metal markets. This is due to
the fact that skewness and kurtosis spillover effects are predominantly
driven by market participants with shorter investment durations and

Table 1 | Static variance spillovers using the DY model (%)

EUA Oil Gas Coal Gold Silver Copper Aluminum Zinc Nickel Tin Lead FROM

EUA 78.25 6.04 1.35 3.38 0.43 2.12 1.57 0.76 0.38 1.10 3.36 1.26 1.81

Oil 6.16 69.54 0.45 1.20 4.09 7.59 5.48 0.60 0.75 0.26 2.91 0.97 2.54

Gas 7.39 0.65 56.36 14.49 0.74 0.37 2.77 0.78 3.60 2.10 7.93 2.83 3.64

Coal 9.62 0.94 19.44 51.68 1.85 0.65 5.95 0.06 2.33 0.29 5.07 2.12 4.03

Gold 5.10 26.82 0.71 0.96 25.21 36.04 2.18 0.35 0.60 0.50 0.82 0.71 6.23

Silver 0.52 7.71 0.49 0.30 14.35 68.56 1.95 0.57 2.02 0.44 0.74 2.35 2.62

Copper 4.41 18.55 2.11 0.43 0.48 16.00 38.77 1.91 5.76 1.49 8.53 1.55 5.10

Aluminum 4.79 0.54 5.91 12.72 1.88 0.51 5.29 60.23 3.49 0.84 2.71 1.09 3.31

Zinc 5.08 0.33 13.53 14.67 1.06 0.22 12.60 3.13 33.76 0.92 2.97 11.73 5.52

Nickel 4.92 0.35 12.29 19.42 0.70 0.51 2.37 0.86 3.59 46.18 7.51 1.30 4.49

Tin 4.68 2.06 13.23 7.59 1.58 1.00 3.90 7.81 9.44 0.51 41.53 6.66 4.87

Lead 2.20 0.41 2.04 2.58 0.86 2.20 1.93 2.05 15.59 1.06 7.54 61.55 3.20

TO 4.57 5.37 5.96 6.48 2.33 5.60 3.83 1.57 3.96 0.79 4.17 2.72 TCI = 47.37

The table presents the static spillover connectedness based on the DY method. We provide the total spillover index (denoted by the term “TCI”), the directional spillover received (denoted by
“FROM”), and transmitted (denoted by “TO”) by each market. The jk th value is the directional connectedness from k to j.
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trading strategies. These findings contrast with the conclusions drawn
by Bouri et al.42, whose research indicated that spillover levels in all
implied moments were notably higher at lower frequencies. This dis-
crepancymay stem from the distinct characteristics of conditional and
implied higher-order moments, where the latter reflects market par-
ticipants’ expectations regarding future market behavior43. The metal
market exhibits significant transmitters and receivers across multiple
dimensions, highlighting its crucial role within carbon-energy-metal
systems. This finding aligns with the conclusions drawn by Jiang and
Chen23. This phenomenon could be attributed to the close relationship
between metal production, high carbon emissions, and energy con-
sumption. Metals are essential raw materials in clean energy technol-
ogies, which are rapidly being developed to reduce carbon
emissions44. Therefore, metal prices are crucial to the price of energy
and carbon trading.

Rolling-windows analysis
One significant drawback of the static spillover index lies in its
underlying assumption that the relationships of volatility, skewness,
and kurtosis between carbon, energy, and metals markets remain
constant over time45. Some economic and financial events might have
taken place during the sample period and have influenced the
dependence across these markets. Figure 1 displays the dynamics of
the total volatility, skewness, and kurtosis spillover indices, whichwere
derived using a rolling window of 200 days. This implies that we have
computed these indexes for 1452 different time periods, spanning
from April 25, 2016 to June 30, 2022.

A careful examination of Fig. 1 reveals that the total volatility,
skewness, and kurtosis spillover effects exhibit obvious variations over
time. The overall volatility, skewness, and kurtosis spillover index
experienced a spike after significant events such as the trade disputes
between China and the United States in 2008, the outbreak of the
COVID-19 epidemic in 2020, and the conflict between Russia and
Ukraine in 2022. The amplification of spillovers across carbon, energy,
andmetalsmarkets during extreme event shocks provides evidence of
financial risk contagion. This finding aligns with the conclusions drawn
from prior studies25. Skewness and kurtosis spillovers exhibit higher
sensitivity to market information compared to volatility. These results
are in line with existing literature21,27. Moreover, the observed volatility
spillover effect in the high-frequency band is always lower compared
to the low-frequency band. This finding is inconsistent with the results
presented by Jiang and Chen23, who provide evidence that the primary
driver contributing to overall spillover in carbon, energy, and metals
markets is predominantly the short-term spillover effects. This could
be due to varying spillover effects at different frequencies on return
and volatility. While the higher skewness and kurtosis spillover effects
observed at higher frequency bands suggest that short-term shocks
play a significant role in driving the total skewness and kurtosis spil-
lover effects across carbon, energy, and metals markets. It is worth
noting that many spillover peaks appear in the long and short term.
This implies that risk events not only induce short-term market vola-
tility but also have lasting impacts, persisting for more than a month
and leading to significant spillover effects in both the short and long
term. Compared to the skewness and kurtosis, the total volatility

Table 2 | Static variance spillovers using the BK model (%)

EUA Oil Gas Coal Gold Silver Copper Aluminum Zinc Nickel Tin Lead FROM

Panel A: Frequency 1 (High frequency): 1day to 22 days

EUA 34.68 0.95 0.29 0.75 0.32 0.49 0.80 0.27 0.03 0.19 0.31 0.60 0.42

Oil 0.75 15.47 0.02 0.02 0.12 0.06 2.21 0.30 0.29 0.03 0.72 0.49 0.42

Gas 0.43 0.03 20.05 0.72 0.05 0.02 0.07 0.51 0.91 0.33 2.30 0.66 0.50

Coal 0.11 0.01 0.48 3.50 0.02 0.02 0.14 0.04 0.01 0.03 0.03 0.02 0.08

Gold 0.07 0.32 0.00 0.01 1.87 0.29 0.12 0.05 0.06 0.07 0.04 0.05 0.09

Silver 0.08 0.20 0.03 0.01 2.39 8.41 0.19 0.03 0.10 0.08 0.04 0.05 0.27

Copper 0.07 0.14 0.02 0.03 0.02 0.06 1.79 0.13 0.25 0.17 0.22 0.23 0.11

Aluminum 0.35 0.10 0.09 0.84 0.34 0.07 1.01 41.53 2.36 0.35 1.36 0.56 0.62

Zinc 0.04 0.00 0.03 0.41 0.16 0.04 0.01 0.33 1.99 0.12 0.78 0.69 0.22

Nickel 0.16 0.02 0.48 0.20 0.10 0.02 0.32 0.38 0.76 20.74 1.37 0.19 0.33

Tin 0.44 0.12 1.28 0.54 0.83 0.34 0.59 4.65 5.11 0.26 20.33 3.60 1.48

Lead 0.53 0.05 0.27 0.27 0.37 0.99 1.13 1.42 8.11 0.71 4.15 33.58 1.50

TO_ABS 0.25 0.16 0.25 0.32 0.39 0.20 0.55 0.68 1.50 0.20 0.94 0.60 TCI = 6.03

Panel B: Frequency 2 (Low frequency): 22 days to infinity

EUA 43.57 5.09 1.06 2.63 0.11 1.63 0.77 0.48 0.36 0.91 3.05 0.66 1.40

Oil 5.40 54.08 0.44 1.18 3.97 7.53 3.27 0.30 0.46 0.23 2.18 0.47 2.12

Gas 6.96 0.62 36.31 13.76 0.69 0.35 2.69 0.27 2.69 1.77 5.63 2.17 3.13

Coal 9.51 0.94 18.97 48.18 1.82 0.63 5.81 0.03 2.32 0.25 5.03 2.11 3.95

Gold 5.03 26.51 0.71 0.95 23.34 35.75 2.06 0.30 0.54 0.43 0.78 0.67 6.14

Silver 0.45 7.51 0.45 0.29 11.96 60.14 1.77 0.54 1.92 0.36 0.70 2.30 2.35

Copper 4.34 18.41 2.09 0.41 0.46 15.94 36.99 1.79 5.51 1.32 8.31 1.32 4.99

Aluminum 4.44 0.44 5.82 11.88 1.55 0.44 4.28 18.70 1.13 0.49 1.35 0.53 2.70

Zinc 5.05 0.33 13.50 14.26 0.90 0.18 12.58 2.80 31.78 0.80 2.19 11.04 5.30

Nickel 4.76 0.33 11.81 19.22 0.60 0.49 2.05 0.48 2.83 25.43 6.14 1.11 4.15

Tin 4.24 1.94 11.94 7.05 0.75 0.66 3.31 3.17 4.33 0.25 21.20 3.06 3.39

Lead 1.68 0.36 1.77 2.31 0.49 1.21 0.80 0.63 7.48 0.35 3.39 27.97 1.70

TO_ABS 4.32 5.21 5.71 6.16 1.94 5.40 3.28 0.90 2.46 0.60 3.23 2.12 TCI = 41.34

The table presents the static spillover connectednessbasedon theBKmodel.Weprovide the total spillover index (denotedby the term “TCI”), thedirectional spillover received (denotedby “FROM”),
and transmitted (denoted by “TO_ABS”) by each market. The jk th value is the directional connectedness from k to j.
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spillover effects havemany obvious peaks, indicating that the dynamic
connectivity of volatility is more volatile.

To gain deeper insights into the dynamic nature pertaining to
spillover effects within the carbon, energy, and metal markets, our
study focuses on examining the net directional spillover observed in
each respective market. This analysis allows us to understand the flow
and intensity of spillovers between these markets over time. Figure 2
showcases the dynamic estimation of net volatility spillover indices.
These indices represent the discrepancy between the volatility trans-
mitted from a particular market to the overall system and the volatility
received by that particular market from the system. In summary, a
positive net spillover index indicates the transmission of shocks from
the market to other markets, whereas a negative net spillover index
suggests the reception of shocks from other markets. It is evident that
the net volatility spillovers demonstrate significant variability over
time, with the EUA and Oil markets consistently acting as contributors
of shocks throughout most of the sample period. However, the net
volatility spillovers of most metal markets burst in either a negative or
a positive direction. Due to the outbreak of the COVID-19 epidemic, Oil
prices have fluctuated sharply, with net volatility spillover effects
reaching 20% in March 2020. Then, the Zinc market experienced a net
volatility spillover effect over 8% in October 2021. This surge was pri-
marily triggered by Nyrstar’s decision to reduce zinc production,
which subsequently set off a series of events leading to a remarkable
increase in industrial metal prices.

Supplementary Fig. 2 shows the dynamic net skewness time-
frequency spillover effects. With the exception of extreme spillovers,
the range of net skewness spillover effects is comparably narrower
when compared to net volatility spillover. As can be seen from Sup-
plementary Fig. 2, EUA, Aluminum, and Lead play a role as transmitters
of skewness information, while Oil, Silver, and Zinc are more inclined
to receive such information. During the observed period, the Alumi-
num market predominantly exhibits positive net skewness spillover,

while the Silver market primarily shows negative net skewness spil-
lover. These findings indicate that the Aluminum market plays a
dominant role as a transmitter of net skewness spillovers within the
carbon-energy-metal system. Supplementary Fig. 3 provides a visual
representation of hownet kurtosis spillovers vary over time and across
different frequency bands. The Gas market largely serves as a trans-
mitter of net kurtosis, while theOilmarket is primarily a receiver of net
kurtosis. In particular, during the China-US trade tensions in 2018,
there were observable positive spillover effects of Gas on other mar-
kets. In 2016, the net kurtosis spillover effects of the carbon market
surpassed 5% due to the increased economic uncertainty resulting
from the UK’s exit from the EU. In summary, the findings of the net
spillover effects demonstrate a clear manifestation of higher-order
moment risk spillovers across carbon, energy, and metals markets.

We contrast the net spillover effects before and after the COVID-
19 outbreak on 1 January 202023. Figure 3 reports the average net total
directional connectedness across carbon, energy, and metal markets
in the full-sample period and two phases. The COVID-19 epidemic
period witnessed a significant increase in absolute net directional
connectedness across most markets, particularly in terms of net
skewness and kurtosis spillovers. This surge in connectedness indi-
cates a heightened propagation of risk and uncertainty during the
pandemic compared to the pre-pandemic period. The influence of
COVID-19 on risk spillover is widespread across various domains. This
may be because the negative sentiment caused by the COVID-19 epi-
demic may trigger pessimistic expectations among investors in the
market and amplify the spillover effects between markets through
asset adjustments. Additionally, we can observe how the roles of each
market change across different periods. Volatility in the Gold and
Copper markets was mainly net spillovers before the outbreak of
COVID-19, but converted to net recipients during the COVID-19 epi-
demic. However, the results from the COVID-19 outbreak period indi-
cate that Gold and Copper markets exhibit positive short-term net
volatility connectedness, aligning with the findings reported by Jiang
and Chen23.

Network analysis of time-frequency spillover
To examine the network of net-pairwise directional connectedness
among the analyzed markets, we construct a connectivity network of
volatility, skewness, and kurtosis over both the time and frequency
domains. Tomitigate the influence of external extreme events, such as
the Russia-Ukraine conflict, on the spillover network, we utilize the
average of dynamic net-pairwise directional connectedness observed
across thewhole sample period to construct and visualize thenetwork,
as depicted in Fig. 4. Figure 4 demonstrates that the network structure
of spillover effects in the carbon-energy-metals nexus exhibits distinct
features across various dimensions. The location of the nodes is
decided by the algorithm of Fruchterman and Reingold46, which is one
of themost used layout algorithms47 and applies an iterativeprocess to
select the location of the nodes to minimize the energy of the system.
Then, the nodes sharing more connections are located closer to
each other.

Upon closer examination of Fig. 4, we observe that Gas, Alumi-
num, Silver, Coal, and Copper are the primary volatility transmitters,
while EUA, Oil, Lead, Gold, Tin, and Zinc are the major volatility reci-
pients, as indicatedby the results of theDYmodel. According to theBK
results, Gas exerts significant influence in the volatility connectedness,
acting as a spillover transmitter of the other 10 markets. On the other
hand, the Coal market tends to receive volatility from the other mar-
kets in the short run. In the longer run, Silver shows stronger volatility
spillover effects. The key net transmitters in both the time-domain and
high-frequency skewness connectedness networks are Silver, Gold,Oil,
Copper, and Aluminum, whereas Lead, Nickel, and Tin act as net
receivers. In a low-frequency skewness connectedness network, Gold
undergoes a role transformation and becomes a receiver, indicating
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Fig. 1 | Dynamic overall spillovers of carbon, energy and metals markets. In
order to avoid extreme values frommasking other period trends, wedrew the plots
with the monthly mean of dynamic total connectedness. The top panels “Overall
spillovers” is the dynamic total spillover index of the DY model. “Short-term” and
“Long-term” is the dynamic frequency connectedness on the band:3.14 to 0.14 and
0.14 to 0 of BK model, respectively.

Article https://doi.org/10.1038/s41467-023-42925-9

Nature Communications |         (2023) 14:7157 5



that the transmission of skewness shocks by gold primarily occurs in
the short term. In the kurtosis spillover network, Oil, Copper, and
Aluminum serve as net transmitters to other markets, while Lead,
Nickel, and Zinc are net receivers. Over an extended period, Gas
demonstrates more pronounced spillover effects in terms of kurtosis.
These findings suggest that the energy and metal markets play a
leading role in carbon-energy-metal systems. However, the roles of
various markets in different higher-order moment risk spillovers are
inconsistent. For instance, the Oil market serves as a transmitter of
volatility risk spillover and also exhibits a susceptibility to skewness
and kurtosis risks.

Supplementary Figs. 4 and 5 provide visual representations of the
net pairwise directional spillover during both the pre and during
COVID-19 periods. The findings indicate that the carbon market is

vulnerable to shocks in other markets, demonstrating higher vulner-
ability both in the short and long run. The magnitude of spillover
effects between metal markets and energy markets is comparatively
higher, indicating that these markets exert a more substantial influ-
ence and play a dominant role in the overall dynamics. Importantly, it
should be emphasized that the spillover effect between the carbon
market and the energy and metal markets has experienced an inten-
sification amidst the COVID-19 pandemic period, demonstrating the
heightened significance of the carbon market within carbon-energy-
metal systems.

To enhance the representation of the relative significance of
each market within the network, we introduce additional measures
such as closeness centrality, betweenness centrality, and Pagerank
centrality48. These measurements provide useful insights into the
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importance and impact of individual markets within the overall
network structure. Closeness centrality measures the average dis-
tance or proximity between a given node and all other nodes in a
network. The closeness centrality of node j is computed using for-
mula (1), where Cij � min

C
fC 2 ½1,N � 1� : ðj!C iÞ= 1g is the length of the

shortest path from j to i. According to Barthelemy49, the betweenness
centrality (BC(v)) of node v can be defined as Eq. (2), where R1 and R2

represent two regions, σst represents the total number of shortest
paths from a specific node s to another specific node t, and σst(v)
refers to the number of shortest path from s to t traverse via a

Fig. 3 | Net total directional connectedness. This figure shows the net total directional connectedness, representing the mean of each period’s dynamic net total
directional connectedness. The top panels represent net total directional connectedness of different order moments.
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specific node v. If a member of a network lies on multiple shortest
paths connecting other members, it can be considered the core
member with higher betweenness centrality.

Cjs =
1

N�1

X
i≠j

Cji j!C i
� �

ð1Þ

BC vð Þ=2
X

s2R1 ,t2R2
s≠v≠t

σst vð Þ
σst

ð2Þ

Eigenvector centrality measures the significance of a node within
a network by assigning relative scores based on its connectivity with
other nodes. The higher the degree of connection a node has with
other nodes in the network, the more important it is considered. The
eigenvector centrality of j is the sum of eigenvector centrality of all
nodes that are infected by j: Vj =

PN
i= 1 A½ �jiV i, where the A is the adja-

cency matrix as A½ �ji = j ! ið Þ and its the eigenvector associated with
eigenvalue V: AV =V.

Table 3 showcases the highest values of closeness centrality,
betweenness centrality, and eigenvector centrality in terms of time-
frequency connectedness. The findings indicate that themainmarkets

Fig. 4 | Net-pairwise directional connectedness in the full-sample period. This
figure shows the 66 pairs of carbon, energy and metals markets. The nodes
represent each market, and the thickness of the edge shows the degree of the net-
pairwise directional connectedness. The arrows going frommarkets i to j represent
net spillovers, that is, the contribution ofmarket i tomarket j is greater than that of
market j to market i. “Net-pairwise spillovers” is the aggregate net-pairwise

directional spillovers of the DYmodel. The “short-term” and “long-term” is the net-
pairwise directional spillover in the short and long-term horizons of BK model,
respectively. The toppanels represent the volatility, skewness and kurtosis network
in different frequencies, such as “Volatility (short-term)” represents the network
drawn by the net-pairwise directional volatility connectedness in the short-term
horizons of BK model in the full-sample period.
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of varying centrality differ across different dimensions. The carbon
market and the energy,metalmarkets, are considered to be among the
markets with the highest centrality. An important observation is that
the key markets are primarily concentrated in the energy and metal
sectors. Specifically, significant markets in the energy sector include
Coal and Oil, while the metal market is dominated by Copper, Gold,
and Lead. Thisfinding alignswith the conclusiondrawnbyZhouet al.21,
who discovered that the Coal market serves as the central market
within the carbon-energy-nonferrous system. At lower frequencies, the
carbon trading market exhibits a relatively weaker position or influ-
ence.While, the carbonmarket hasbecomemore important in carbon-
energy-metal systems during the COVID-19 epidemic period.

Robustness check
We investigate the reliability of the estimated spillover measures by
changing the selection of rolling-window sizes. In order to achieve this
goal, Supplementary Fig. 6 depicts thedynamic total volatility spillover
index, employing three different rollingwindow lengths (150, 200, and
250days), with 200 days being utilized as the baseline in our empirical
analysis. The visual examination of these graphs elucidates that the
estimation of the dynamic total volatility spillover index remains
qualitatively and quantitatively unchanged, irrespective of the chosen
rolling window size. These findings lend validation to our results. In
order to ensure brevity, the outcomes pertaining to the spillovers of
skewness and kurtosis across various rolling window sizes are not
shown.However, it isworthnoting that the empiricalfindingsobtained
with alternative window lengths do not differ significantly from the
results of our initial analysis.

Asymmetric effects of climate risk on the spillovers
Climate change is widely recognized as an important source of risk in
the financial system. Since the quantile regression model ignores the
possibility of different states of the explanatory variables, and can not
reveal the complexity of the influence of independent variables on the
dependent variable, we employ the quantile-on-quantile approach
(QQ) to examine the relationship between climate risk and spillover
effects across carbon, energy andmetalmarkets under differentmarket
conditions. The QQ, in fact, provides us with a comprehensive view of
asymmetry between variables, enabling more accurate investor deci-
sions and policy advice. Referring toDing et al.31, our primary focus is to
investigate the influence of climate risk on the overall spillover indices.

Figures 5 and 6 display the response coefficients between the
Physical Risk Index (PRI), the Transition Risk Index (TRI), and the total
spillover index. Both Fig. 5 and Fig. 6 show that the estimated coeffi-
cients vary between different quantiles, and the influence of physical
risk and transition risk on the spillover index is asymmetric, that is, its
influence on both sides of the tails of the spillover index is different.
The impact of physical risk on the total spillover upward risk is higher
than the downside risk, especially in long-term spillovers. Transition
risk has a higher impact on the upward risk of the total volatility and
skewness spillovers, but it has a greater impact on the downside risk of
the total kurtosis connectedness.

Second, it is worth noting that in the short run, physical riskmainly
has a positive impact on the total spillover index, while in the long run,
physical risk negatively affects the total spillover index. Thisfinding can
be attributable to the heightened focus of investors for environmental
protection in response to climate events, resulting in a short-term
decrease in carbon emissions and an increase in the demand for
metals31, increasing the connectedness of carbon-energy-metal system,
while this effect will gradually weaken as time goes on. However, the
influence of transition risk on total volatility and skewness spillover
index at the high- and low-frequency band is almost negative at each
quantile level which is contrary to the effect on the kurtosis con-
nectedness. This may be because the transition risk is mainly focused
on the implementationof climate-relatedpolicieswhich is conducive to Ta
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the better development of the carbon and themetalmarket, effectively
hedging carbon-energy-metal volatility and skewness spillover effect.
Additionally the transition risk may lead to the extreme risk for the
market, making a positive impact on the kurtosis connectedness.

Finally, the hedging effects of physical risk and transition risk on
volatility, skewness, and kurtosis spillovers are different. The PRI
exhibits negative effects on the volatility spillover index, but a more
positive effect on the skewness and kurtosis spillover indices between
0.3 and0.4 quantiles. In termsof volatility risk spillover effects, the TRI
has a negative impact on the downside risk, and mainly has a positive
impact on the extreme upside risk. However, the total skewness and
kurtosis spillover indices are mainly negatively and positively affected
by the TRI in each state. It is noteworthy to mention that PRI exerts a
positive impact on the volatility, skewness and kurtosis spillover

indices when τ reaches approximately 0.55 to 0.65, indicating that the
losses caused by general climate events may increase the connected-
ness of the carbon-energy-metal system. The positive effect of PRI on
the total spillover index is not significant at 0.9 and 0.95 quantiles,
which may be because the duration of extreme climate events is short
which is not enough to break the chain of infection between the phy-
sical risk and carbon-energy-metal system. The above results are of
great importance to the regulatory authorities. In addition to mon-
itoring extreme climate events, we should also be alert to the repeated
impact of climate events and the introduction of climate-related
policies onother relatedmarkets, and establish a regulatory system for
the climate risk process.

In summary, the impacts of climate-related physical risk and
transition risk on the total spillover indices of the carbon-energy-metal

Fig. 5 | The impact of climate physical risk (PRI) on total spillovers (TCI). The
z-axis represents the estimation of the slope β1(θ,τ) (see Eq. 19) which captures the
effect of the τ th quantile of PRI on the θ th quantile of TCI. The colors in the color
bar on the right represent the strengths of correlations. “Overall spillovers” is the
dynamic total spillover index of the DYmodel. The “short-term” and “long-term” is

the dynamic frequency connectedness on band:3.14 to 0.14 and 0.14 to 0 of BK
model, respectively. Toppanels show the volatility, skewness, and kurtosis spillover
effects in different frequencies, such as “Volatility (short-term)” represents the
coefficients got by the impact of PRI on TCI in the short-term horizon based on
QQ model.
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system are different and have asymmetric characteristics. Physical risk
has a higher impact on the total spillover upward risk than the
downside risk. This could be because physical losses triggered by
extreme climate events bring about greater financial market risks.
However, the climate transition risk has a greater impact on the
downside risk of the total kurtosis connectedness. This suggests that
when there is a high skewness risk, the market’s response to climate
policy transitions and other related information is insufficient. The
coordination between physical risk and total spillover index in the
short term is more positive, while the effects of TRI on TCI in the long
term are mainly negative. However, the impact of transition risk on
volatility and skewness spillovers at high and low frequency appears to
be predominantly negative, which contradicts the effect on kurtosis
spillovers. It is worth noting that even when both physical risks and

transition risks are at normal levels, they can still have an impact on the
cross-market risk spillover effects. This finding echoes the results
reported by Mao et al.50.

To enhance the robustness of our findings, we conduct an addi-
tional test by comparing the results obtained through the quantile-on-
quantile (QQ) method with those obtained from the quantile regres-
sion (QR) method. For comparative analysis, we have selected the
estimated Quantile Regression (QR) parameters and compared them
with the τ-averaged QQ regression parameters. The equation can be
represented as follows:

γ1 θð Þ= 1
S

X
τ

β̂1 θ,τð Þ ð3Þ

Fig. 6 | The impact of climate transition risks (TRI) on total spillovers (TCI).The
z-axis represents the estimation of the slope β1(θ,τ) (see Eq. 19) which captures the
effect of the τ th quantile of TRI on the θ th quantile of TCI. The colors in the color
bar on the right represent the strengths of correlations. “Overall spillovers” is the
dynamic total spillover index of the DYmodel. The “short-term” and “long-term” is

the dynamic frequency connectedness on the band:3.14 to 0.14 and 0.14 to 0 of BK
model, respectively. The top panels show the volatility, skewness, and kurtosis
spillover effects in different frequencies, such as “Volatility (short-term)” repre-
sents the coefficients obtained by the impact of TRI on TCI in the short-term
horizon based on QQ model.
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Where S = 19 is the number of quantiles, ranging from 0.05 to 0.95,
with an interval of 0.05. The results are shown in Supplementary Figs. 7
and 8. The general patterns of coefficients for climate risk basedon the
QQ and QR methods demonstrate minor differences, except for the
extreme quantiles. This observation further confirms the efficacy of
the QQ model. Comparing the results obtained from the QQ and QR
models, it can be observed that the parameters of the quantile
regression exhibit smaller fluctuations compared to those of the QQ
model. This finding validates the results reported byUmar et al.51. Both
theQQandQRmodels showa consistent trend in the impact of climate
physical risk on volatility spillover. However, theremay be instances of
inconsistency, as also documented in previous studies52. Despite this,
both the QQ and QR models indicate that when climate physical risk
and transition risk levels are elevated, the influence of these risks on
total risk spillover effects across carbon, energy, and metal markets
also intensifies. It is crucial to acknowledge that even in times of
moderate climate risk, there is a substantial impact on the long-term
skewness risk connectivity.

Policy implication
Insights gleaned from the findings in this study are useful for both
investors and market regulators. These findings hold significant
implications for investors who are interested in constructing diversi-
fied investment portfolios, as well as for regulators who are seeking to
establish climate risk regulatory policies. On the one hand, this study
offers a different perspective on the analysis of the carbon-energy-
metal system, thereby enriching the existing research on risk spillover
effects. On the other hand, the findings have implications for both
governments and investors, the specific policy implications can be
outlined as follows.

First, from the theoretical perspective, the previous relevant lit-
erature mainly focused on the return and volatility level, ignoring the
influence of tail series. Therefore, measuring the connectedness of
carbon-energy-metal systems should be focusednotonlyon the return
and volatility risk spillover effects but also on the high-ordermoments,
further obtain more multidimensional comprehensive research
conclusions.

Second, the regulatory authorities should improve their risk man-
agement efficiency and guard against the risk contagion across carbon,
energy, and metal markets, particularly in times of the outbreak of
major emergencies (E.g., SARS, GFC, COVID-19, natural disasters et al.).
They should also carefully consider long-term volatility, short-term
skewness and kurtosis risk spillover effects. Investors and institutions
should pay more attention to extreme risk events and their compound
risks (e.g., the compoundevent andclimate risk53, COVID-19 and climate
risk54,55). When making investment plans, it is suggested to set up a
reasonable investment portfolio to avoid or hedge the adverse effects
that may be caused by relevant extreme events in different periods.

Third, the government may consider the formulation of emer-
gency plans in the case of a climate event in order to mitigate the
impact of climate riskon the carbon-energy-metal system.Considering
that climate change is a global threat, it has a great impact on countries
around theworld56. Hence, it is imperative for governments to enhance
communication and coordination of policies across countries, for
example, promoting the development of a joint climate convention to
reduce extreme climate events (E.g., United Nations Framework Con-
vention on Climate Change, 1992; The Paris Agreement, 2021). In the
future, the portfolio construction and optimization of hedging stra-
tegies under the framework of high-moment risk spillover can be
further discussed.

Methods
Data
To determine the volatility, skewness, and kurtosis time-frequency
risk spillover effects among carbon, energy and metal markets, We

take the prices of WTI oil futures contracts (Oil), natural gas futures
(Gas) and Rotterdam coal futures (Coal) launched by London Inter-
national Petroleum Exchange (IPE), COMEX gold (Gold), COMEX sil-
ver (Silver), LME copper futures (Copper), LME aluminum futures
(Aluminum), LME Lead futures (Lead), LME Zinc futures (Zinc), LME
Nickel futures (Nickel) and the ICE European emission allowance
futures (EUA) from theWind database21,57. Since the continuous price
data of IPE natural gas futures in 2014 are lacking in records58, our
sample spans July 1, 2015 to June 30, 2022. We select the time period
inwhich both data are recorded. Due to the outbreak of theCOVID-19
epidemic and the Russia-Ukraine conflict, the Oil and Nickel market
has singular values on April 20 and 21,2020, March 7,2022, respec-
tively. In order to avoid the analysis of the results, the singular values
of the three days were specially deleted. Moreover, the returns of the
12 assets are computed as 100 × (Pt − Pt−1)/Pt−1 with a total of 1653
observations for each series. In order to study the impact of climate
risk, we use the climate risk indices of Bua et al.59, revised on daily
trading hours, to reflect the European climate risks. Compared to
other related indicators, these indicators can explore the different
effects of physical risk (PRI) and transition risk (TRI) on the total
spillover effects, respectively.

Supplementary Table 5 shows the sample minimums (Min.),
medians, means, maximums (Max.), skewness, kurtosis, standard
deviations (Std. Dev), Jarque-Bera (J-B) tests for normality, Aug-
mented Dickey-Fuller (ADF) tests for stationarity and ARCH-LM test
for the ARCHeffect of the twelve returns series of carbon, energy and
metals markets. According to the mean or the standard deviation of
each return series, the returns dispersion is the highest for the Gas,
followed by Oil and EUA, and the return of carbon and energy mar-
kets appears bigger than that of metal markets which is consistent
with the results of Zhou et al.21. As observed for skewness coefficient,
all the return distribution is asymmetric. All the kurtosis coefficients
are not equal to three and the most of return series show peak dis-
tribution. The J-B and ADF statistics of all the series reject the null
hypotheses, which indicate that the twelve returns series are all sta-
tionary and not normally distributed at the 1% significance level.
According to the results of ARCH-LM test, the return sequence of
each market has a significant ARCH effect which shows that estab-
lishing GJRSK model is reasonable.

The heat map which reflects the pairwise correlation between
pairs of assets is shown in the Supplementary Fig. 9. We find that the
correlation coefficient between the metal markets is relatively high,
especially between the Gold and Silver markets. Whereas, the corre-
lation coefficient between carbon and metals markets is lower. This is
justifiable given that Gold and Silver belong to a similar.

Higher-order moment risk measure
The financial time series is not strictly subject to normal distribution,
but has the characteristics of leptokurtosis, fat-tail and leverage effect.
To measure the conditional volatility, skewness, and kurtosis of car-
bon, energy and metal markets, we use the GJRSK model proposed by
Nakagawa and Uchiyama36 which is the GARCHSK model with a
leverage effect to establish a high-order moment model. The GJRSK
model is based on the GJR framework, which allows for asymmetric
responses to positive and negative shocks. This is useful for carbon,
energy and metals time series which have asymmetric properties60,61.
The GJRSK model can be expressed as:

rt =a1rt�1 + εt
ht =β0 +β1ε

2
t�1 + β2ht�1 + β3ε

2
t�1I ηt�1<0f g

st = γ0 + γ1η
3
t�1 + γ2st�1 + γ3η

3
t�1I ηt�1<0f g

kt = δ0 + δ1η
4
t�1 + δ2kt�1 + δ3η

4
t�1I ηt�1<0f g

ηt =h
�1=2
t εt

8>>>>>>><
>>>>>>>:

ð4Þ
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Where ηt It�1

�� ∼ g 0,1,st ,kt

� �
, and It−1 denotes the information set at

time t-1. g(0,1,st,kt) is a probability density function with mean 0, var-
iance 1, skewness st, and kurtosis kt. The parameter of the GJRSKmodel
can be estimated by maximizing the log-likelihood function. The rt
denotes a vector of return of carbon, energy and metals markets and
computed by 100 × (Pt − Pt−1)/Pt−1, where the Pt is the closing market
indices which were obtained on a daily basis.

Time-frequency connectedness
In order to explore the frequency domain risk spillover effects among
carbon, energy and metals markets, we use the frequency con-
nectedness theoretical framework proposedbyBaruník andKehlík37 to
calculate the time-frequency risk spillover effects. According to Die-
boldandYilmaz40, Generalized Forecast Error VarianceDecomposition
(GFEVD) can be expressed as:

ϑH
� �

j,k =
σ�1
kk

PH
h=0 ψhΣ

� �
j,k

h i2
PH

h =0 ΨhΣΨ
0
h

� �
j,j

ð5Þ

Which, H is the forecast horizon, and Ψh is the n × n order matrix
technique. σkk = (Σ)k,k, (ϑH)j,k measure how much the k th variable
contributes to the variance decomposition of the j-th element. To
make the different (ϑH)j,k comparable, they are standardized, namely:

eϑH
� �

j,k
=

ϑH
� �

j,kPn
k = 1 ϑH

� �
j,k

,
Xn

k = 1
eϑH

� �
j,k

= 1 ð6Þ

Following Diebold and Yilmaz40, the total connectedness index (TCI)
measures the contribution of spillovers of volatility shocks to the
system’s forecast error variance. Then, the connectedness is defined as
the share of the predicted variance generated other than the predic-
tion error itself, namely, the ratio of the sum of the off-diagonal
elements to the sum of the entire matrix elements:

C Hð Þ= 100×

PN
j,k = 1
j≠k

eϑH
� �

j,kPN
j,k = 1

eϑH
� �

j,k

ð7Þ

Where Tr{∙} is the Trace Operator, C(H) measure the total spillover
effect strength of the carbon-energy-metal system. Next, this method
measures the size of the spillover effect of the market k on all the
remaining markets and the magnitude of market k accepting the
spillover effects of all remaining markets, namely, “the total spillover
effect on other markets (TO)” and “the total spillover effects from
other markets (FROM)”, which can be calculated by Eqs. (8) and (9),
respectively.

C�k Hð Þ= 100×

PN
j = 1
j≠k

eϑH
� �

j,kPN
j = 1

eϑH
� �

j,k

ð8Þ

Ck� Hð Þ= 100×

PN
j = 1
j≠k

eϑH
� �

k,jPN
j = 1

eϑH
� �

k,j

ð9Þ

Finally, we obtain the net spillover index which can be obtained by the
difference between TO and FROM (Eq. 10), and net pairwise spillover
indexwhichcanbe computedby thedifferencebetween total volatility
shocks transmitted from market j to k and total volatility shocks
transmitted from k to j (Eq. 11).

Ck Hð Þ=C�k Hð Þ � Ck� Hð Þ ð10Þ

Cj,k Hð Þ= 100×
eϑH

� �
j,kPN

k = 1
eϑH

� �
j,k

�
eϑH

� �
k,jPN

j = 1
eϑH

� �
k,j

0
B@

1
CA ð11Þ

Furthermore, we adopt the BK model to study the spectral
representation of variance decomposition. Considering the spectral
behavior of each sequence, it can be represented by the following
Frequency Response Function62:

SX wð Þ=
X1

h=�1E XtXt�h

� �
e�iwh =φ e�iw� �

Σφ0 e+ iw� � ð12Þ

Where i=
ffiffiffiffiffiffi
�1

p
, and φ e�iw

� �
=
P1

h=0φhe
�iwh,h = 1,2, � � � ,H. The w

represents frequency. Power Spectrum SX(w) which describe how the
sequences are distributed over the frequency component w is
important to characterize the frequency dynamics. Given a specific
frequency w =∈(−π, π), generalized causation spectrum can be
defined as:

f wð Þ½ �j:k =
σ�1
kk φ e�iw

� �
Σ

� �
j,k

��� ���2
φ e�iw
� �

Σφ0 e+ iw
� �
 �

j,j

ð13Þ

Where, φ(e−iw) represents the Fourier Transform of pulse effect func-
tion Ψ, and [f(w)]j.k represents the spectral part of the first variable on
the frequencyw caused by the shock of the k-th variable. According to
Baruník and Krehlík37, given an arbitrary frequency band: d = (a,b) and
a,b ∈ (−π,π), the total connectedness index under the frequency band
d can be specified as:

Cw
d = 100× 1�

Tr eϑd
n o� �

P eϑd
� �

j,k

0
B@

1
CA ð14Þ

And, the Frequency Connectedness on the frequency band d can be
defined as:

CF
d = 100×

P
j≠k

eϑd
� �

j,kP eϑ1
� �

j,k

�
Tr eϑd

n o� �
P eϑ1

� �
j,k

0
BB@

1
CCA ð15Þ

Quantile-on-quantile regression
Since the quantile regression model ignores the possibility of dif-
ferent states of the explanatory variables, and it cannot reveal the
complexity of the influence of independent variables on the depen-
dent variable. Sim and Zhou63 proposed quantile-on-quantile
approach, which is a generalization of the standard quantile regres-
sion model, and it combines quantile regression and non-parametric
techniques to explore how the quantiles of independent variables
affect the conditional quantiles of the dependent variable. Letting
the θ superscript denote the quantile of the TCI, we first postulate a
model for the θ-quantile of the TCI (TCIt) as a function of climate risk
(Climatet) as:

TCIt =β
θ Climatet
� �

+αθTCIt�1 + v
θ
t ð16Þ

Where vθt is an error term that has a zero θ-quantile. The above model
can study the spillover effect of climate risk on different quantiles of
total connectedness index, but it cannot explain the differentiated
effects of different states of climate risk on total spillover effects. High
and low climate risk states may have different effects on
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connectedness, and connectednessmay responddifferently to climate
risk. Therefore, it is necessary to examine the relationship between the
τ quantile of climate risk and θ quantile of spillover effects. As βθ(∙)
unknown, βθ(Climatet) can be approximated by a first-order Taylor
expansion, as follows:

βθ Climatet
� �

≈βθ Climateτ
� �

+βθ0 Climateτ
� �

Climatet � Climateτ
� �

ð17Þ

Rewrite βθ(Climateτ) and βθ′(Climateτ) to β0(θ,τ), β1(θ,τ), and the above
formula is transformed to:

βθ Climatet
� �

≈β0 θ, τð Þ+β1 θ, τð Þ Climatet � Climateτ
� � ð18Þ

Replacing formula (18) to the formula (16), get the following formula:

TCIt =β0 θ,τð Þ+β1 θ,τð Þ Climatet � Climateτ
� �

+α θð ÞTCIt�1 + v
θ
t ð19Þ

Where β0(θ, τ) and β1(θ, τ) are the coefficients to be estimated. Unlike
the standard quantile regressionmodel, β0 and β1 are related to θ and τ
which can capture the impact of τ quantiles of climate risk on θ
quantiles of the total connectedness index.

Data availability
The original data used in this study are available at the
figshare database (https://figshare.com/articles/dataset/original_
data/24033399). All the data except the climate risk indices are
made available to the public. The climate risk data used in this paper,
namely the Physical Risk Index (PRI) and Transition Risk Index (TRI)
of Bua et al.59 will be, in fact, made available to the public only with
the publication of the paper that originates them, namely “Transition
Versus Physical Climate Risk Pricing in European Financial Markets: A
Text-Based Approach” (corresponding author Lavinia Rognone,
email lrognone@ed.ac.uk).

Code availability
The code used in this study are available at the figshare database
(https://figshare.com/articles/dataset/All_code_R/24033336). All other
processed data and results are presented in the paper and can be
generated through the code.
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