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Mutational spectra are associated with
bacterial niche

Christopher Ruis 1,2,3, Aaron Weimann1,2,3, Gerry Tonkin-Hill4,
Arun Prasad Pandurangan5, Marta Matuszewska2,6, Gemma G. R. Murray 7,
Roger C. Lévesque 8, Tom L. Blundell 5, R. Andres Floto 1,3,9,10 &
Julian Parkhill 2,10

As observed in cancers, individual mutagens and defects in DNA repair create
distinctive mutational signatures that combine to form context-specific
spectrawithin cells.We reasoned that similar processesmust occur in bacterial
lineages, potentially allowing decomposition analysis to detect both disrup-
tion of DNA repair processes and exposure to niche-specific mutagens. Here
we reconstruct mutational spectra for 84 clades from 31 diverse bacterial
species and find distinct mutational patterns. We extract signatures driven by
specific DNA repair defects using hypermutator lineages, and further decon-
volute the spectra into multiple signatures operating within different clades.
We show that these signatures are explained by both bacterial phylogeny and
replication niche. By comparing mutational spectra of clades from different
environmental and biological locations, we identify niche-associated muta-
tional signatures, and then employ these signatures to infer the predominant
replication niches for several clades where this was previously obscure. Our
results show that mutational spectra may be associated with sites of bacterial
replication when mutagen exposures differ, and can be used in these cases to
infer transmission routes for established and emergent human bacterial
pathogens.

Studies on human cells and tissues have demonstrated that mutagens,
endogenous mutagenesis, and defects in DNA repair each induce
highly specific context-dependent patterns of base substitutions
termed mutational signatures, which combine to form a mutational
spectrum1–9. Reconstructing the set ofmutations and signatureswithin
cancers has enabled inference of the drivers of tumourigenesis1,2,7. We
therefore reasoned that reconstructingmutational spectra in bacteria,
decomposing them into different signatures, and correlating these
with known DNA repair defects and environmental exposures, should

allow the association of specific signatures with bacterial replication
niches. We define niches as replication sites within which the bacter-
ium spends sufficient time to be exposed to mutagens; depending on
the bacterium, this may be a mixture of colonization and infection
sites, colonization sites only or infection sites only. These signatures
could potentially be used both to infer environmental location or site
of colonization and/or infection and to identify defects in DNA repair
when niche is known. In this work, we tested this by undertaking a
large-scale comparison of mutational spectra and their underlying
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signatures across bacteria, correlating the results with specific DNA
repair defects and replication niche.We identifymutational signatures
associated with defects in DNA repair and with replication niche, and
apply these niche signatures to infer transmission routes for several
bacterial clades where this was previously unclear.

Results and discussion
Bacteria exhibit diverse mutational spectra
Using a specifically-developed open-source bioinformatic tool,MutTui
(https://github.com/chrisruis/MutTui), we analysed whole genome
sequencealignments andphylogenetic trees to reconstruct singlebase
substitution (SBS) mutational spectra of 84 phylogenetic clades from
31 diversebacterial species representing abroad rangeof phylogenetic
diversity and replication sites (Figs. S1 and S2; Supplementary Data 1
and 2; Methods; dataset sources and replication sites are described in
Supplementary Note 1). SBS spectra were rescaled by genomic
nucleotide composition to enable direct comparison between
bacteria. We find that SBS spectra are highly diverse, both in the
nucleotide mutations themselves and their surrounding context
(Figs. 1 and S2).

Using this approach, several generalisable properties of bacterial
SBS spectra could be identified. As expected from previous analysis10,
we found that transition mutations are more common than transver-
sion mutations in all cases (ranging from 52 to 55% in Klebsiella pneu-
moniae to >90% in Campylobacter jejuni; Fig. S2) and cytosine to
thymine (C> T) was typically the most common mutation type iden-
tified (in 69 of 84 SBS spectra examined), potentially due to cytosine
deamination11. T > C was the most common mutation type in the
remaining 15 spectra. Genomic G +C content exhibited a negative
correlation with proportion of C >A/T mutations but a positive cor-
relation with proportion of C >Gmutations (Fig. S3). Finally, transition
mutations exhibit enriched context specificity compared to transver-
sion mutations while several contextual mutations are significantly
elevated across datasets (Fig. S4).

We observe a strong correlation between phylogenetic related-
ness and spectrum similarity (Tukey HSD corrected ANOVA P < 0.001;
Fig. S5), with spectra being typically conserved across highly related
clades in which there has likely been no change of niche or DNA repair
capacity (Figs. 1 and S6). Since these spectra represent composites of
mutagenesis and DNA repair, we reasoned that they could be
decomposed into combinationsof specificmutational signatures, each
driven by distinct defects in DNA repair, by endogenous processes, or
by specific mutagens12, as has previously been achieved for cancer-
associated spectra1,3,7.

DNA repair genes are associated with diverse mutational
signatures
We first used natural variation to extract contextual mutational sig-
natures associated with a broad range of distinct DNA repair pathways
by calculating SBS spectra of 50 naturally occurring hypermutator
lineages across four bacterial species (Fig. 2A, Fig. S7). We identified
mutations and frameshifts in DNA repair genes that occurred on, or
immediately ancestral to, each hypermutator lineage (Methods) to
infer the genesmost likely responsible for hypermutation, enabling us
to attribute mutational signatures to defects in 11 DNA repair genes
that function inmismatch repair (MMR), base excision repair (BER), or
homologous recombination (HR) (Fig. 2B–D). Although mutational
types associated with knockouts of several DNA repair genes have
previously been characterised in vitro in a limited number of bacterial
species10,13–18, contextual signatures (which increase the power to dis-
criminate between distinct mutational drivers) have only previously
been calculated for MMR defects in Escherichia coli and Pseudomonas
aeruginosa10,13.

Naturallyoccurringdeleteriousmutations of bacterialMMRgenes
result in high levels of context-specific C >T and T >C mutations
(Figs. 2B and S8)1,8,19, similar to previously calculated in vitro
signatures10,13,15,16 and likely represent the error profile of DNA Poly-
merase III that is usually repaired by functional MMR. T >C mutations
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Fig. 1 | Clustering of bacterial SBS spectra.UMAP clustering based on contextual
mutation proportions within the 84 SBS spectra across 31 bacterial species.
Selected groups are coloured. The environmental bacteria label includes

Burkholderia pseudomallei and known environmentalMycobacteria. Example SBS
spectra are shown for selected groups. Source data are provided as a Source
Data file.
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are particularly enriched in GpTpN contexts in both P. aeruginosa and
Burkholderia cenocepacia (Fig. 2B), similar to previous in vitro
results10,13. While context specificity is highly similar between species,
the relative rates of C > T and T >C differ between P. aeruginosa and B.
cenocepacia (Figs. 2B and S9), likely reflecting distinct polymerase

error profiles (a possibility supported by structural modelling analysis;
Fig. S10).

Mutations in distinct base excision repair (BER) components
result in characteristic gene-specific patterns (Fig. 2C), as expected
from the diverse repair functions of proteins within this pathway11.
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Fig. 2 | Mutational signatures associated with DNA repair genes. A Example P.
aeruginosa phylogenetic tree (ST274) showing hypermutator branches and the
inferred responsible genes. Hypermutator branches were identified based on
branch length and the ratio of transition and transversion mutations. Responsible
genes were identified as DNA repair genes exhibiting a mutation on the long phy-
logenetic branch or ancestral branch. Black branches are background non-
hypermutator branches that did not contribute to hypermutator spectra.
B Mutational signatures associated with MMR genes. C Mutational signatures

associated with BER genes.DMutational signatures associated with genes involved
in homologous recombination. E Top panel shows the mutations elevated in C.
jejuni cluster 2 compared with E. coli lineage 34, calculated by subtracting each
respective mutation proportion in the SBS spectra. The pie chart shows the pro-
portion of mutations elevated in C. jejuni cluster 2 that are assigned to each bac-
terial DNA repair gene signature in a decomposition analysis. Source data are
provided as a Source Data file.
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We identified P. aeruginosa hypermutators for each component of
the GO repair pathway (mutT, mutY and mutM) that prevents
8-oxoguanine (8-oxo-G)-induced mutations20. Mutation of mutT,
whose product degrades 8-oxo-G monomers to prevent their incor-
poration into DNA20, results in non-specific T > G mutations (Fig. 2C),
suggesting incorporation of 8-oxo-G opposite adenine is context-
independent. Conversely, mutation of mutY which excises adenine
opposite 8-oxo-G20, results in C > A mutations predominantly in
CpCpN and TpCpN contexts (Fig. 2C), indicating context-specific
mutation of incorporated guanine to 8-oxo-G. This likely represents
the pattern of reactive oxygen species (ROS) damage, of which 8-
oxo-G is amajormutagenic lesion9. The C > A contexts differ between
the P. aeruginosa mutY signature and human cell signatures of ROS
exposure5 and knockout of either the mutY homologue or OGG17,9

(Fig. S11), suggesting differential repair of these lesions by other
proteins. Mutation of mutM results in C > G mutations in ApCpN
contexts (Fig. 2C). While the mechanism of C > G mutations is
unclear, the lack of C > A mutations inmutM knockouts is potentially
due to functional MutY being sufficient to repair mutagenic 8-oxo-G
lesions in P. aeruginosa21. We additionally identify PA4172 in P. aer-
uginosa whose knockout exhibits C > A mutations in CpCpN and
TpCpN contexts similar to mutY (Pearson’s r P < 0.001; Fig. 2C;
Fig. S11), suggesting that its product may similarly repair mutagenic
8-oxo-G lesions.

Disruption of ung, whose product removes uracil from DNA11,
results in similar patterns of context-specific C >T mutations in P.
aeruginosa and Mycobacterium abscessus (Pearson’s r P < 0.001;
Fig. 2C; Fig. S12). This bacterial signature exhibits subtle contextual
differences compared with ung knockout in human cells9, particularly
through enriched mutations in NpCpG contexts (Fig. S12), suggesting
differential patterns of uracil incorporation in humans and bacteria.

Mutation of nth, whose product Endonuclease III removes
damaged pyrimidines, results in C > T mutations in multiple Myco-
bacteria species and human cells8 but with different context specificity
(Pearson’s r P >0.05; Fig. 2C; Fig. S13). Disruption of the apurinic-
apyrimidinic (AP) endonuclease xthA results in mutations in multiple
specific contexts (Fig. 2C), particularly transversions in [C,G,T]p[C,T]
pG contexts, indicating repair of a broad range of specific lesions.
Finally, hypermutators resulting from mutation of the homologous
recombination pathway components recF and recN exhibit context-
specific transition mutations (Fig. 2D). Recombination is known to
drive GC-biased gene conversion22 and this may contribute to this
signature.

Wenext examinedwhether different bacterial species thatoccupy
a similar niche (and are therefore exposed to similar sets of niche-
specificmutagens)might exhibit spectrumdifferences consistent with
differences in DNA repair. Campylobacter jejuni has previously been
shown to be deficient in several types of DNA repair23 so we compared
mutations accumulated by C. jejuni with those accumulated in the
gastrointestinal E. coli lineage 3424. Decomposition analysis showed
that almost all mutations elevated in C. jejuni could be explained by a
failure to repair deaminated cytosines and a lack of MMR (Fig. 2E;
Fig. S14); pathways which are known to be absent in C. jejuni23. These
results indicate that differences in DNA repair may be inferred by
comparing bacteria from a similar niche.

Bacteria exhibit phylogeny-associated and non-phylogeny-
associated mutational signatures
We then proceeded to extract de novo further bacterial signatures
through a decomposition analysis employing non-negative matrix
factorisation (NMF)25,26 on SBS spectra datasets froma range of species
and genera (Supplementary Data 3). We extracted 33 SBS signatures
and collapsed these into a final set of 24 (named with the prefix Bac-
teria_SBS) by combining highly similar signatures (with cosine simi-
larity of 0.95 or greater) (Fig. S15; Supplementary Data 4). The

extracted signatures exhibit divergent base mutations and contexts
(Fig. 3A). As these signatures predominantly consist of multiple
mutation types, they are likely to be composites formed from the
action ofmultiple underlyingmutagenic and/or repair processes.Most
signatures are genus-specific (Fig. 3B), supporting differential activity
of mutagens and repair between clades and a strong influence of
bacterial phylogeny on mutational patterns. An exception to this was
signature Bacteria_SBS15 that was extracted from the Staphylococcus
genus, Enterococcus faecalis, Streptococcus pneumoniae and Strepto-
coccus agalactiae datasets (Fig. 3B), indicating broad distribution
across Bacillota. As these bacteria inhabit different niches, this sig-
nature likely represents phylum-specific endogenous mutations and/
or DNA repair profiles.

Most SBS spectra were decomposed into multiple signatures.
Comparison of signature clustering with bacterial phylogeny showed
that the similarity between signatures does not follow phylogenetic
relationships, with interspersion of extracted signatures across the
deeper parts of the bacterial tree and multiple examples of similar
signatures extracted from diverse bacterial genera (Fig. 3B). For
example, Bacteria_SBS1was extracted fromMycobacteria and is similar
to Bacteria_SBS13 extracted from Burkholderia, while Bacteria_SBS6
within E. coli is similar to the streptococcal signature Bacteria_SBS18.
These results support a significant role for additional non-phylogeny
factors in shaping mutational spectra. We hypothesised that niche-
specific mutagens are one such factor that may act on multiple bac-
terial clades inhabiting similar niches. We therefore tested the con-
tribution of niche to mutational spectra by comparing linear models
incorporating niche and genus withmodels including genus alone. We
examined the fit of these models to mutation type proportions across
the full dataset (82 clades, as we excluded two clades where niche is
controversial) and found that incorporating niche resulted in a sig-
nificantly better fit for four of the sixmutation types: C > A, C > T, T > A
and T >C (Fig. 3C, p < 0.005). Furthermore, including niche sig-
nificantly improved fit to 92 of the 96 contextual mutations (Supple-
mentary Data 5, p <0.05). While species-level signatures may still
contribute (and our analysis includes multiple clades that share the
same niche jump, and may therefore not represent individual events),
these results strongly suggest that niche plays a significant role in
shaping mutational spectra.

Replication niches can drive mutational signatures
We therefore aimed to identify mutational signatures associated with
specific niches, initially focussing onMycobacteria and Burkholderia as
these genera contain multiple independent comparisons between
clades that are transmitted from person-to-person and clades that are
acquired from environmental sources27,28. We found that known lung
and environmental clades cluster separately based on SBS spectrum
composition (Fig. 4A). Spectrum subtractions consistently revealed
elevated C >A29 and C>T mutations in lung bacteria and higher levels
of T >C in environmental bacteria (Fig. 4A, Fig. S16). We correspond-
ingly observed that including a binary lung or environmental niche
variable significantly improves the fit of linear models to C >A, C > T
and T >C proportions compared to a model including genus only
(Fig. S17). Lung and environmental bacteria additionally exhibit dif-
ferent contextual patterns within C >A and T>C mutations (Fig. S18).
Decomposition of niche-specific mutations from subtracted spectra
using known human mutagen signatures suggests that higher C > A
mutations in lung bacteria may be driven by exposure to mutagens
including reactive oxygen species (ROS), while higher T >Cmutations
within the environment is potentially caused by exposure to alkylating
agents and nitro-polycyclic aromatic hydrocarbons (Fig. 4B), both
established environmental mutagens5. As this decomposition analysis
can only identify mutagens with known signatures, additional muta-
gens with currently uncharacterised signatures may contribute to the
observed patterns. It is also possible that the long-term evolutionary
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selection towards GC richness seen in some bacterial genomes30 may
contribute to the observed environmental signature. Nevertheless our
findings provide strong support for the ability to extract information
from spectra about bacterial exposure to niche-specific mutagens31

and supports a central role for ROS in host immunity to these patho-
gens (as suggested by previous experimental studies32,33).

We further examined niche signatures through a targeted NMF
decomposition of the Mycobacteria and Burkholderia spectra and were
able to extract a human lung-associatedmutational signature consisting
ofmultiplemutation types that we termBacteria_Lung1 (Fig. 4C, D). This
signature is elevated in human lung clades with independent origins
across the Mycobacteria and Burkholderia phylogeny (Fig. 4E).

Inference of Mycobacteria replication niches from mutational
patterns
Due to the separation between known niches, we next used SBS
spectra to infer niche for two Mycobacteria clades where this was
previously poorly understood. The dominant circulating clones
(DCCs) ofM. abscessus have emerged as an important global cause of
pulmonary infections in individuals with Cystic Fibrosis (CF) and other
lung conditions27,34. While whole genome sequencing has shown that
many geographically widespread patients are infected with near-
identical bacteria27,34, epidemiological linkage typically cannot be
established between such patients. This has led to the niche(s) and
transmission pathways of the DCCs being controversial, with some

studies suggesting most cases arise through human-to-human lung
transmission27,35 while other studies suggest independent acquisition
from environmental reservoirs36–38. The mutational spectrum of the
DCCs strongly suggests that they are replicating within, and trans-
mitting from, the lung since they: cluster with known human lung
bacteria based on the SBS spectrum (Fig. 4A); exhibit lung-like con-
textual patterns of C > A and T >C mutations (Fig. S18); exhibit high
levels of C > A and low levels of T >C (Fig. 4A); and exhibit signature
Bacteria_Lung1 at similar levels to known lung bacteria (Fig. 4D). While
it is possible that other body sites could exhibit similar mutational
patterns, our observations strongly suggest that most DCC infections
are acquired through human-to-human lung transmission.

The Mycobacterium kansasii main cluster (MKMC) causes the
majority ofM. kansasii lung infections39 and was previously thought to
be independently acquired fromwater sources39. However, theMKMC
spectrum exhibits characteristics of both lung and environmental
spectra. Specifically, the MKMC exhibits lung-like C > A patterns but
environmental-like T >C patterns (Fig. S18) and is therefore inter-
mediate between knownhuman lung and environmental spectra in the
SBS clustering andC >A vs T >C comparison (Fig. 4A). Together, these
results suggest that the MKMC is exposed to both lung and environ-
mental mutagens and therefore likely replicates within (and is poten-
tially acquired from) both niches. In further support of this, we find
close international transmission linkages that are likely driven by
human-to-human transmission (Fig. S19, Supplementary Note 2), and
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identify mutations of known lung pathoadaptive genes40 on internal
phylogenetic branches that transmit to multiple patients and exhibit
characteristics of lung mutational spectra (Fig. S20, Fig. S21, Supple-
mentary Note 2). These observations support human-to-human
transmission being a major contributor to MKMC infections.

Identification of additional niche-associated mutational
signatures
Finally, we extended our approach to identify mutational signatures
associated with other bacterial replication niches in humans. We used

further linear models to test for signatures associated with the upper
respiratory tract (URT) where we have independent pairs of URT and
non-URT clades across three genera: Staphylococcus, Streptococcus
and Neisseria. This identified reduced T >A mutations associated with
URT replication in each genus (Fig. 5A, Fig. S22) (likely due to a higher
rate of T >A mutations in non-URT niches). We also tested for differ-
ences in spectrum between bacteria with different micro-niche pre-
ferences in human skin. We find a high level of CC >TT double
mutations characteristic ofUV-light damage5 in the pan-skinbacterium
Cutibacterium acnes that is not present in Staphylococcus epidermidis
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Fig. 4 | Comparison of mutational spectra between lung and environmental
niches. A Upper panel - principal component analysis on mutation proportions in
the SBS spectra across Mycobacteria and Burkholderia. Axes labels include the
inferred proportion of variance each principal component describes. Points are
coloured by niche; clades with a previously unknown niche are labelled. Environ-
mental includes B. pseudomallei and known environmental clades ofMycobacteria.
Lower panel - comparison of the proportion of T >C and proportion of C >A
mutations in Mycobacteria and Burkholderia SBS spectra. B Decomposition of
mutational spectra into their underlying components. Only mutations elevated
within the respective clade compared to a closely related clade in a different niche
were included. Known environmental clades were decomposed into the set of
previously extracted environmental mutagen signatures5 while known lung clades
and clades with unknown niche were decomposed into the set of previously
extracted lung signatures from human data. B. cenocepacia ECs: B. cenocepacia
epidemic clones. Nitro-PAH: nitro-polycyclic aromatic hydrocarbons; PAH: poly-
cyclic aromatic hydrocarbons; ROS: reactive oxygen species. C Composition of
signature Bacteria_Lung1 extracted from NMF decomposition ofMycobacteria and

Burkholderia SBS spectra.D The proportion ofmutations within eachMycobacteria
and Burkholderia SBS spectrum assigned to signature Bacteria_Lung1. Boxplot
centre lines show median value; upper and lower bounds show the 25th and 75th

quantile, respectively; upper and lower whiskers show the largest and smallest
values within 1.5 times the interquartile range above the 75th percentile and below
the 25th percentile, respectively. All clade values are shown as points (number of
clades included: Human lung = 9, Unknown = 2, Animal lung = 3, Environmental =
11). E Dendrogram shows phylogenetic relationships between Mycobacteria and
Burkholderia. The left hand heatmap shows niche of each clade; lung clades have
arisen on multiple independent occasions across the tree. The right hand heatmap
shows the proportion of mutations assigned to signature Bacteria_Lung1 in a
decomposition analysis of the Mycobacteria and Burkholderia spectra. More
mutations are consistently assigned to Bacteria_Lung1 in lung clades than envir-
onmental clades and lung clades exhibit a higher assignment to Bacteria_Lung1
than closely related environmental clades. Source data are provided as a Source
Data file.
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which preferentially inhabits moist, and therefore less sun-exposed,
skin sites such as the groin and armpits41 (Fig. 5B). This again suggests
that niche-associated differences in mutagen exposure can leave
detectable signatures in mutational spectra.

In conclusion, we show that we can reconstruct mutational
spectra from bacterial phylogenies and decompose these into specific
signatures. We can ascribe some of these signatures to defects in DNA
repair pathways, and others to exposure to location-dependent
mutagens. We provide examples where these signatures can be used
to infer the niche in which bacteria replicate and thereby infer their
transmission routes. It is also clear fromour data that not all niches are
currently associated with specific signatures. Some niches may not
contain distinct mutagens that allow discrimination via signature
analysis, and in many cases we may not yet have enough data to per-
form the discrimination analysis. However, we anticipate that further
data collection and deeper analyses will allow identification of more
signatures at different levels in bacterial phylogenies. This will identify
ancestral niches and therefore sources of emergent humanpathogens,
reveal routes of acquisition of colonization or infection permitting
targeted interventions, and provide a mechanism to monitor patho-
genic evolution and host adaptation. We envisage that mutational
spectra analysis could be applied to viruses and parasites, enabling
similar predictions.

Methods
Dataset sources and reconstruction of phylogenetic trees
We collated published whole genome sequencing datasets from 84
phylogenetic clades across 31 bacterial species (Supplementary Data 1,
accession numbers listed in Supplementary Data 6). Datasets were
obtained either from public databases as FASTQ files or genome
assemblies, or from study Authors as whole genome sequence align-
ments or post-recombination removal variable sites alignments (Sup-
plementary Data 1). Where datasets were obtained as genome
assemblies, they were initially shredded to FASTQ files containing 100

base pair reads with a 350 base insert size and depth 40 using Fastaq
v3.17.0 (https://github.com/sanger-pathogens/Fastaq). Sequencing
reads from obtained FASTQ files and shredded assemblies were
mapped against a clade-specific reference genome (Supplementary
Data 1) using the multiple_mappings_to_bam pipeline v1.6 (https://
github.com/sanger-pathogens/bact-gen-scripts) with BWA-MEMas the
aligner. Recombination was removed from mapped alignments and
whole genome sequence alignments obtained from study Authors
using Gubbins v2.4.142. Maximum likelihood phylogenetic trees were
reconstructed from post-recombination removal variable sites align-
ments for all datasets using RAxML v8.2.1243 with the general time
reversible (GTR) model of nucleotide substitution and gamma rate
heterogeneity with four gamma classes. Dataset sources are described
in more detail in Supplementary Note 1.

Reconstruction of bacterial mutational spectra
We reconstructed mutational spectra using MutTui v1.1.10 (https://
github.com/chrisruis/MutTui) which employs the variable sites align-
ment, phylogenetic tree and reference genome for each dataset.
Mutations are reconstructedonto thephylogenetic tree using treetime
v0.8.144 which enables identification of the direction of eachmutation.
It was not possible to identify suitable outgroups to root phylogenetic
trees for many datasets and we therefore used midpoint rooted phy-
logenetic trees. The surrounding nucleotide context (defined as the
nucleotide immediately 5’ and nucleotide immediately 3’) of each
mutation is inferred from the genome sequence at the start of the
respective phylogenetic branch, identified by incorporating substitu-
tions between the root of the tree and the start of the branch into the
genome sequence at the root of the tree. We therefore infer the con-
text of eachmutation at the time it occurred. Themutational spectrum
is constructed by counting the numbers of each contextual mutation
across the clade. Single nucleotidemutations are included in the single
base substitution (SBS) spectrum, mutations at two adjacent genome
positions on the same phylogenetic branch are included in the double
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base substitution (DBS) spectrum and tracts of mutations at three or
more adjacent genome positions are excluded. To account for differ-
ences in G +C content and triplet availability between clades, we
rescale each spectrum by dividing the count of each contextual
mutation by the frequency of the starting triplet in the clade reference
genome.

For several datasets (SupplementaryData 1), the twophylogenetic
branches that diverge immediately from the root of the tree repre-
sented a large proportionof themutations in the dataset.We excluded
mutations on these root branches in these cases as, due to the
necessity to use midpoint rooted trees, their direction may not be
inferred accurately and they would account for a large proportion of
mutations in the spectrum. Several datasets exhibited evidence of
hypermutator branches (Supplementary Data 1) which were excluded
from the main clade SBS spectrum but split into separate SBS spectra
based on the mutated gene (described in more detail below).

We used the M. abscessus SBS spectra we calculated previously
where phylogenetic branches were divided into DCCs and non-DCCs34.
TheM. kansasii phylogenetic tree contains both the MKMC clade and
non-MKMC branches39. We split these into separate SBS spectra by
labelling branches in the phylogenetic tree as MKMC or non-MKMC
which enables MutTui to extract a separate SBS spectrum for each
group. The Burkholderia pseudomallei genome contains two
chromosomes28.We calculated the SBS spectrumof eachchromosome
separately to enable removal of recombination. Due to very high
similarity between SBS spectra from chromosomes one and two in
each group (cosine similarity >0.99 in each case), we used the chro-
mosome one SBS spectra in further analyses. The B. cenocepacia SBS
spectrum includes three epidemic clones whose SBS spectra were
calculated separately and combined for further analyses.

Overall SBS spectra were compared using UMAP45 based on the
proportion of each of the 96 contextual mutations in each SBS spec-
trum. To examine the relationship between phylogenetic relatedness
and overall spectrum similarity, we calculated the cosine similarity
between all pairs of SBS spectra and split the comparisons into within-
species, within-genus but different species, within-phylum but differ-
ent genus anddifferent phylum. Thedistributions of cosine similarities
were compared between groups using two-way ANOVA with Tukey
Honestly Significant Difference (HSD) correction.

We compared the degree of context-specificity betweenmutation
types by calculating the variance of the contextual mutation propor-
tions within each of the six mutation types in each of the 84 SBS
spectra. The variance distribution between mutation types was com-
pared using two-way ANOVA with Tukey HSD correction. Individual
contexts within a mutation type were inferred to be significantly ele-
vated or reduced if their median proportion within the respective
mutation type across the 84 SBS spectra was more than 2.5 times the
median absolute deviation outside the median of all context propor-
tions in the mutation type.

Identification of DNA repair gene mutational signatures
We identified potential hypermutator lineages as very long branch
lengths (either terminal branches or internal branches where each
downstream branch is long) within phylogenetic trees across the 84
datasets; such lineages were identified in P. aeruginosa, B. cenocepacia
and M. leprae. We additionally examined a broader P. aeruginosa
dataset consisting of 18 sequence types and identified hypermutator
lineages in this dataset. For each clonal cluster in this dataset, we
compared the ratio of transition mutations to transversion mutations
on each branch to the background distribution to identify candidate
hypermutator branches (Fisher exact test, padj <0.1).We only included
branches in the background distribution that had at most 50 sub-
stitutions. The gene likely responsible for the hypermutation in each
lineage was inferred through identifying DNA repair genes that exhibit
a frameshift, insertion/deletion or nonsynonymousmutation on either

the hypermutator branch or an upstream branch where each of the
descendent branches are hypermutators. We identified the effects of
these mutations using MutTui v1.1.10 applied independently to the
branches containing the mutations.

Where a DNA repair gene was mutated on multiple branches, we
calculated the SBS spectrum of the mutant as the mean mutational
spectrum across branches. We excluded several P. aeruginosa bran-
ches that had both mutS and mutL mutations. In several cases, mutS
and another DNA repair gene were mutated on the same branch; we
here calculated the SBS spectrum of the other DNA repair gene by
subtracting the mean mutS SBS spectrum from the branch SBS
spectrum.

We additionally included two previously identified M. abscessus
hypermutator lineages that arosewithin individual chronic pulmonary
infections40. The genes responsible for the hypermutation and the full
set of mutations within the hypermutator lineages were previously
inferred40. We used MutTui v1.1.10 to identify the surrounding
nucleotide context of each mutation from a closely related reference
genome40.

To compare the extracted bacterial DNA repair gene signatures
with those previously calculated in human cells, we obtained COSMIC
SBS signatures from https://cancer.sanger.ac.uk/signatures/sbs/ (date
last accessed 24/06/2022) and gene knockout signatures from https://
signal.mutationalsignatures.com/ (date last accessed 24/06/2022). We
compared mutational patterns through a regression of the propor-
tions of the 16 contextual mutations within the mutation type that is
dominant within the respective gene signatures and applied a
Benjamini-Hochberg correction on p-values from all comparisons.

Identification of defective DNA repair signatures in C. jejuni
To identify mutations that are likely the result of defective DNA repair
in C. jejuni, we subtracted the SBS spectrum of E. coli lineage 34 from
the SBS spectrum of each of the five C. jejuni clusters. The elevated
mutations were decomposed using the signal R package signature.-
tools.lib v2.1.24 into the set of bacterial DNA repair gene signatures we
extracted above.

DNA polymerase III structure modelling
To compare the structures of DNA polymerase III subunits between P.
aeruginosa and B. cenocepacia, we carried out structural modelling.
Protein sequenceswere obtained for each subunit in each species from
UniProt46 (Supplementary Data 7). Homology models were built using
SWISS-MODELonline server47 for all subunits except gamma, forwhich
a local installation of AlphaFold v2.048 was used to buildmodels due to
sequence coverage below 95% (Supplementary Data 7). We selected
the top scoringmodels for structural analysis in each case. ChimeraX49

was used for the calculation of electrostatic surfaces, structural
alignment and visualisation of predicted models. Template structures
for alignment are shown in Supplementary Data 7.

Linear models to assess the influence of niche on SBS spectra
We compared the fit of linear models incorporating genus alone with
models including genus and niche. Niche was coded to best describe
current knowledge of replication niches (Supplementary Data 1, Sup-
plementary Note 1). Datasets where replication niche is currently
controversial (M. abscessus DCCs and M. kansasii MKMC) were exclu-
ded from this analysis. Linear models were calculated for each muta-
tion type separately using the proportion of the mutation type as the
dependant variable. The improvement inmodelfit when incorporating
niche was assessed using analysis of variance (ANOVA); Benjamini-
Hochberg correction was applied to p-values to correct for multiple
testing. Linear model results are shown in Supplementary Data 8.

We additionally tested the influence of the lung/environmental
niches and the URT niche on mutational spectra by coding these
niches as a binary yes/no variable and comparing the fit of a linear
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model including this variable and genus with a model including genus
only. Models were again fitted for each mutation type separately. We
examined these niches as they contained independent comparisons
across multiple genera. Mutation types identified as significant were
examined further by comparing mutation type proportions between
clades within the niche and clades not within the niche. Significance of
differences was assessed within each genus through a bootstrapping
approach where we compared the difference between median muta-
tion type proportions in the observed data with that in 1000 rando-
misations of the niche labels across samples. While C >G was detected
as significant in the lung/environment comparison, further inspection
did not identify a consistent direction of change across genera so we
excluded this mutation type from further analysis.

De novo signature extraction
Mutational signatures were extracted from each of 14 datasets con-
taining SBS spectra from multiple clades within a species or genus
(Supplementary Data 3). We used SigProfilerExtractor v1.1.026 which
uses nonnegative matrix factorization (NMF) to split a matrix of
mutation counts into underlying matrices of mutational signatures
and their activities within each input SBS spectrum. The number of
signatures is initially set to one and is increasedup to amaximumof 25.
We identified the optimal number of signatures for each dataset
through comparison of the average signature stability (reflecting how
well supported the signatures arewithin the data),mean sample cosine
distance (reflecting how well the signatures fit the input SBS spectra)
and individual signature stabilities.

We identified cases where the same mutational signature was
extracted from multiple datasets by carrying out a hierarchical clus-
tering of all extractedmutational signatures based on cosine distances
(calculated as oneminus cosine similarity). Signatures were combined
if they clustered at cosine distance <0.05, corresponding to cosine
similarity >0.95.Where signatureswere combined, thefinalmutational
signature was calculated as the mean of the combined signatures. The
majority of combined signatures were extracted from taxonomically-
nested datasets, with the exception of Bacteria_SBS15 which was
extracted from several non-nested species and genus datasets within
Bacillota.

The activity of each signature within each SBS spectrum was cal-
culated as the maximum proportion of mutations assigned by Sig-
ProfilerExtractor to the signature within any extraction in which the
SBS spectrum was included and the signature was extracted.

To compare the clustering of the extracted signatures with bac-
terial phylogeny, we constructed a dendrogram representing the
phylogenetic relationships between bacterial clades from previous
literature24,28,50–61.

Testing the impact of pathogen niche on mutational spectra
We compared SBS spectra across lung-infecting and environmental
clades ofMycobacteria andBurkholderia through principal component
analysis (PCA) of: 1) proportions of the 96 contextual mutation in SBS
spectra, 2) proportions of the six mutation types in SBS spectra and 3)
proportions of the 16 contextualmutations within eachmutation type.
To directly compare the SBS spectra of closely related pairs of lung-
infecting and environmental clades, we subtracted the SBS spectrum
of the environmental clade from that of the lung-infecting clade. The
mutations elevated within each clade were decomposed into potential
underlying inputs using signal at https://signal.mutationalsignatures.
com/ (date last accessed 24/06/2022)4. We decomposed mutations
elevated in environmental clades into the full set of Environmental
Mutagen Signatures, excluding those associated with drug therapy
which are unlikely to operate on environmental bacteria. Known and
hypothesised lung-infecting clades were decomposed into the full set
of lung signatures.

We carried out a targeted NMF decomposition on the full set of
SBS spectra from Mycobacteria and Burkholderia using SigProfiler-
Extractor v1.1.026. The presence of six signatures was identified as
optimum by SigProfilerExtractor and exhibited high average sig-
nature stability (0.96 out of maximum 1) and low mean cosine dis-
tance between the input and reconstructed SBS spectra (0.016
corresponding to a mean cosine similarity of 0.984). To determine
whether any of these signatures are likely niche-associated, we
compared the proportion of mutations assigned to SBS spectra
from the lung with SBS spectra from the environment and identified
one signature that consistently exhibits a higher proportion
within lung SBS spectra. We therefore named this signature
Bacteria_Lung1.

We compared the DBS spectra calculated by MutTui v1.1.10
between the skin bacteria C. acnes and S. epidermidis. The DBS spectra
of S. epidermidis phylogenetic groups A, B and C were combined for
this analysis.

Analyses of the M. kansasii MKMC
We calculated transmission networks for M. kansasii isolates defining
‘probable’ transmission as isolates fromdifferent patients that differ by
fewer than 20 SNPs, and ‘possible’ transmission as isolates from dif-
ferent patients that differ by fewer than 38 SNPs, based on previous
cutoffs established for M. abscessus27.

For mutational burden analysis, the rooted MKMC clade was
extracted from the M. kansasii phylogenetic tree. Nucleotide
mutations were reconstructed onto the tree using Treetime v0.8.1
and the effect of each mutation was inferred using the gene
annotation for the M. kansasii reference (accession NC022663.1).
The impact of each mutation was assessed in the context of the
genome at the start of the respective phylogenetic branch. Only
nonsynonymous and nonsense mutations were included in muta-
tional burden testing. We assumed a Poisson distribution of
mutational burden per gene and calculated the expected number
of mutations in each gene based on the gene length and the total
number of mutations across the tree. This was compared with the
observed number of mutations to identify genes with significantly
more mutations than expected. Benjamini-Hochberg correction
was applied to account for the number of tests (equal to the
number of genes with at least one mutation across the reference
genome) and a false discovery rate of 5% used to identify significant
genes. We tested whether the tetR1/tetR2 genes mutate sig-
nificantly more on internal branches than the remaining genes
through a Fisher exact test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated and analysed during this study have been
deposited at https://doi.org/10.5281/zenodo.8435731. All source data,
including sequence alignments, phylogenetic trees, reference
sequences and mutational spectra are available at https://doi.org/10.
5281/zenodo.8435731. Accession numbers of all sequences used in this
study are provided in Supplementary Data 6. Human mutational sig-
natures were obtained from the COSMIC database (https://cancer.
sanger.ac.uk/signatures/). Source data are provided with this paper.

Code availability
TheMutTui pipeline used to reconstruct pathogenmutational spectra
is available at https://github.com/chrisruis/MutTui. Additional custom
scripts used for data analysis are available at https://doi.org/10.5281/
zenodo.8435731.
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