
Article https://doi.org/10.1038/s41467-023-42898-9

replicAnt: a pipeline for generating
annotated images of animals in complex
environments using Unreal Engine

Fabian Plum 1 , René Bulla 2, Hendrik K. Beck 1, Natalie Imirzian1 &
David Labonte 1

Deep learning-based computer vision methods are transforming animal
behavioural research. Transfer learning has enabled work in non-model spe-
cies, but still requires hand-annotation of example footage, and is only per-
formant in well-defined conditions. To help overcome these limitations, we
developed replicAnt, a configurable pipeline implemented in Unreal Engine 5
and Python, designed to generate large and variable training datasets on
consumer-grade hardware. replicAnt places 3D animal models into complex,
procedurally generated environments, from which automatically annotated
images can be exported. We demonstrate that synthetic data generated with
replicAnt can significantly reduce the hand-annotation required to achieve
benchmark performance in common applications such as animal detection,
tracking, pose-estimation, and semantic segmentation. We also show that it
increases the subject-specificity and domain-invariance of the trained net-
works, thereby conferring robustness. In some applications, replicAnt may
even remove the need for hand-annotation altogether. It thus represents a
significant step towards porting deep learning-based computer vision tools to
the field.

Enabledby the continued reduction in cost of computational hardware
and breakthroughs in deep neural network architectures and training
paradigms, data-driven deep learning approaches now represent the
state of the art in almost all computer vision applications1,2. This suc-
cess has been achieved in discriminative applications such as
classification3, detection4, pose-estimation5, and semantic
segmentation6, asmuch as in generative applications, asdemonstrated
by recent advancements in diffusion networks which can create sty-
lised and near photo-realistic images from text prompts7,8. Both dis-
criminative and generative approaches have in common that they
primarily involve supervised learning, which, to an extent, resembles
high dimensional interpolation: achieving generalisability is practically
synonymous with ensuring that inputs at training time reasonably
resemble those encountered at inference time. As an illustrative
example, successful detection requires that instances of the target

class are identified regardless of image context and subject
appearance4; the ideal detector is subject-specific, but domain-
invariant. Large, curated and annotated datasets—such as those pro-
vided by ImageNet9, COCO10, or CiFAR11—are indispensable in this
process, as they provide a basis for learnable real-world principles, and
complex testing grounds.

A prime area of application for the emerging machine learning
toolset is animal behavioural research12–18, where it promises to reduce
time costs, increase statistical power, and minimise potential for
human bias; machine learning may altogether revolutionise what is
possible in ethology13,18, and its intersection with neuroscience16,19,20,
morphology21, locomotion13,18,22, and conservation23. Despite the
divergence in the questions tackled, all applications in these research
areas have in common the need for annotated training data. Unfor-
tunately, datasets of a size and quality required to achieve robust
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domain-invariant inference are rarely available, and—apart from a few
model species such as mice or Drosophila—the effort required to
curate them often outweighs the immediate benefit of the enabled
automation. Transfer learning—i.e., pre-training (parts of) a networkon
a separate, much larger, dataset, and refining the network on a small
number of hand-annotated images—is a strategy that has been imple-
mented with great success in markerless animal pose-estimation16,17,20.
However, the price paid for the substantial reduction in the necessary
amount of hand-annotation is that the resulting networks are typically
only performant under stereotyped conditions, and frequently require
extensive input pre-processing. Even minute deviations from the
refinementdata—for example in formofpartial occlusionor changes in
specimen appearance, lighting, background, perspective, or camera
type—can result in a substantial drop in network performance. As a
result, transfer-learning strategies perform best in well-controlled
recording conditions, and additional refinement is required to analyse
more variable footage from the gold standard of behavioural studies—
field experiments. Although refinement with relatively few hand-
annotated samples of the order of a fewhundred to a few thousand can
enable accurate inference under field conditions13,17,20,23–26, large
appearance deviations from the hand-annotated examples—for
example, due to changes in weather conditions, recording back-
ground, the time of day, or varying camera perspective—typically
considerably decrease performance17,19,23,27: networks learn latent fea-
tures specific to the recording environment, rather than a general
subject-specific understanding. Some of these generalisation issues
can be addressed through data augmentation, i.e. the application of
image perturbations with the aim to alter image appearance while
retaining its meaning and label4,28,29. For example, by changing the
rotation, scale, hue, and resolution of an image, its contents would still
remain identifiable. More sophisticated augmentation strategies, such
as style transfer, can further improve network robustness30–32. Alter-
natively, where large volumes of unlabelled data are available, self-
supervised approaches may be employed to learn consistently iden-
tifiable features24,33. But these features may then be distinct from case-
specific points of interests, in some sense just passing the batonof key-
point extraction further down in the analysis pipeline. Currently, even
extensive augmentation and unsupervised or self-supervised strate-
gies still pale in their efficacy in comparison to simply using larger and
more varied datasets in supervised approaches instead4,28,29.

In robotic34–36, human37–40, and automated driving41–43 applica-
tions, annotated datasets comprising billions of images can now be
produced “synthetically”, i.e. through simulation with a computer. By
placing 3Dmodels in simulated environments, variable and annotated
datasets can be generated at scale, and at a fraction of the cost and
time required for hand-annotation of real images39,40,42,44. The use of
synthetic data is particularly attractive where annotated real datasets
are practically absent or only of insufficient size, as is the case for
almost all non-human animal studies22,30–32,45–50. However, for all its
conceptual attractiveness, using synthetic data is not without pro-
blems: the simulated images must bridge the “simulation-reality gap”,
i.e. they must be comparable in appearance to real images; as before,
the key challenge remains that the training data must represent a
superset of the inputs received at inference time22,27,47–49. As an illus-
trative example, Arent et al.22 modelled Indian stick insects as a rigid
body consisting of simple geometrical shapes to improve the perfor-
mance of a DeepLabCut20 pose estimator. Such simplified geometric
approaches can improve performance, but remain restricted to ste-
reotyped recording settings, simple animal morphology, and a single
output data type.Morecomplex approaches have usedhand-animated
or learned motion priors, or combined low fidelity synthetic data with
style- or domain transfer networks to close the simulation-reality
gap27,30,31,47–50. These approaches however remain labour-intense, tied
to specific species, possess limited options for annotations, or still
require extensive real image datasets in order to generalise to real

examples. Comprehensive and generalisable approaches which utilise
more realistic animal representations, handle large digital animal
populations, can create highly variable environments, and provide
options for complex annotation, remain absent.

Here, we address this gap and present a synthetic dataset gen-
erator, replicAnt, implemented in Unreal Engine 5, a 3D computer
graphics game engine, and Python. replicAnt can be used to simulate
the appearance of animals in complex, procedurally generated envir-
onments with all but a few clicks of a mouse. Leveraging recent
advancements in photogrammetry, real-time ray tracing, and high-
resolution mesh handling, replicAnt runs on consumer-grade compu-
tational hardware, automatically produces rich image annotations, and
can simulate virtually any recording conditions, including variations in
camera model and perspective; individual number, size, pose, and
colouration; scene lighting; image resolution and magnification; and
environment appearance. We demonstrate the versatility and utility of
replicAnt by using the synthetic data it generates to train deep neural
networks for automatic inference in four commonanimal applications:
(1) detection—localising animals in an image; (2) tracking—retaining
the identity of animal detections across continuous frames; (3) mar-
kerless pose-estimation—extracting the coordinates of user-defined
body landmarks; and (4) semantic and instance segmentation—deter-
mining which areas of an image correspond to an animal on a
pixel level.

Results
replicAnt
replicAnt uses 3Dmodels of animals to produce a user-defined number
of annotated images. It is designed to generate large and variable
datasets involving hundreds of animals with minimal user effort; due
to the rich and automated annotation, a single synthetic dataset can
then be used to train a variety of deep neural networks. replicAnt
requires: 3D models of the study organism(s); the installation of a pre-
configured Unreal Engine project; and custom-written data parsers,
used to translate the generated data into formats compatible with the
deep learning-based computer vision system(s) of choice (see Fig. 1).

replicAnt is agnostic to the origin of the subject 3Dmodel(s) used
as input. Throughout this work, we use high resolution 3D models
produced with the open-source photogrammetry platform scAnt
(Fig. 1a)51; but we also demonstrate that simpler hand-sculptedmodels
can suffice for some applications. In general, the higher the 3D model
fidelity, the higher the application flexibility.

Depending on their origin, 3D models may need to be cleaned,
and—if the randomised pose variation feature of replicAnt is to be used
—virtual bones and joints need to be assigned, and their range of
movement defined (see Fig. 1c, “Methods—3D subjectmodels”, and the
replicAnt GitHub https://github.com/evo-biomech/replicAnt). In this
paper, we focus on insects, first because of personal predilection, and
second because an exoskeleton avoids the need to simulate the com-
plex soft tissue deformation associated with postural changes in ani-
mals with endoskeletons. However, powerful approaches to create
photo-realistic models of vertebrates exist52–54, and replicAnt is not
limited to arthropodmodels (or even just animals, forwhat it isworth).
The cleaned and rigged model is imported into a pre-configured
Unreal Engine 5 project, where a simplified collisionmesh is computed
to enable interactions with objects inside the simulatedworld (Fig. 1d).

Next, a customisable digital “population” is generated by simu-
lating multiple instances of the original subject model. Variation
between subject instances is achieved through simple appearance
modifications, such as changes in brightness, contrast, hue, saturation,
and scale. The range of these modulations can be adjusted through a
simple user interface, and custom modifications can be added. Sub-
jects are later sampled at random from this population, andplaced into
procedurally generated environments, from which annotated images
are extracted.
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Each scene is generated in a hierarchical process, structured into
five customisable levels to maximise computational efficiency; chan-
ges in lower-level hierarchical elements influencehigher level elements
(Fig. 1e). At the lowest level of scene hierarchy sits a ground plane with
random topology. At the second level, this ground plane is populated
with 3D assets; polygon meshes of objects such as plants, rocks, and
common household items, all of random size. Assets are drawn from a

curated library, and placed by a configurable number of asset scat-
terers. At the third level, the ground and each asset are assigned
Physically Based Rendering materials, generated by blending ran-
domly generated patterns with a curated texture library. Large mate-
rial maps, or decals, are generated and wrapped around the ground
plane and all assets to achieve a cohesive scene appearance. At the
fourth level, a configurable number of subjects from the model
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population are placed at random locations, and their pose is adjusted
via inverse kinematics, such that they can interact with the surround-
ing meshes. At the fifth and highest hierarchical level, scene lighting is
introduced in form of a configurable number of coloured light sources
and High Dynamic Range Images (HDRIs), and a virtual camera with
randomisable extrinsics, intrinsics and post processing parameters is
placed; the scene generation is now complete (Fig. 1f).

Using the virtual camera, “image passes” are exported from each
scene iteration. Eachpass encodes different information (Fig. 1g–j), for
example the optical image render itself, or depth information (for
details, see “Methods”). User-defined passes can be added as required.
Each image pass set is supplemented by a data file which contains
configurable annotations, for example subject bounding boxes, 2D
and 3D key point coordinates, class labels, or camera intrinsics and
extrinsics. The combination of image passes and data files constitute
synthetic data which can be used to train deep neural networks for
various computer vision tasks (Fig. 1k–n).

The entire process, including the generation of a user-specified
number of scene iterations, imagepass rendering, anddatafilewriting,
is fully automated, but leaves open plenty of opportunity to introduce
variation with minimal effort. The pre-configured Unreal project,
detailed documentation, and additional resources are available from
https://github.com/evo-biomech/replicAnt.

Applications
In order to demonstrate that the synthetic data generated by replicAnt
is of sufficient quality to power applications in animal behavioural
research, we used it to train various popular deep learning networks
for animal detection, tracking, pose-estimation, and semantic and
instance segmentation. The performance of these networks was then
evaluated on dedicated example datasets. Unless stated otherwise, all
synthetic data used for trainingwas generated using replicAnt’s default
settings (see “Methods—Data parsers” and GitHub for details). We will
now show that replicAnt significantly improves the trained networks’
ability to generalise to unseen conditions; in some cases, it removes
the need for hand-annotation altogether, and in others, it may present
the only option to generate datasets large enough to train robust and
performant networks in reasonable time.

Detection. A digital population of Atta vollenweideri leafcutter ants
(Forel 1893), comprising 100 simulated individuals, was created using
3D models of a minor, media, and major worker, all generated with
scAnt51 (Fig. 2b, see “Methods—Detection” for details). This population
formed the basis for two synthetic datasets, each encompassing
10,000annotated imageswith a resolutionof 1024 × 1024px: oneused
all three 3D models (“group”), and one using only the largest model
(“single”). Furthermore, to investigate the influence of synthetic
dataset size on inference performance, networks were trained on 1%
(“small”), 10% (“medium”), and 100% (“large”) of the “group” dataset.
Dataset generation took about ten hours each for the full “group” and
“single” datasets on a consumer-grade laptop (6 Core 4 GHz CPU, 16
GB RAM, RTX 2070 Super).

The generated synthetic datasets were then used to train a com-
monly used object detector, YOLOv44, subsequently tested on
laboratory recordings of a crowded foraging trail (Fig. 2d). Foraging
trails ofAtta ants present an ideal example for complex detection tasks
as individuals vary in size, trails are highly cluttered, and partial as well
as full occlusions occur frequently. In order to introduce variation in
scene appearance, akin to what may be expected in field conditions,
scene lighting, exposure time, cameramagnification and foraging trail
backgroundwere altered systemically, yieldingfive different recording
scenarios (Fig. 2e). For each recording scenario, 1000 frames eachwith
between 36 to 103 individuals were hand-annotated using
BlenderMotionExport55. For comparison, we also trained detectors on
5000 of these hand-annotated images, using image combinations
from the different recording scenarios. Five-fold cross validation, with
80/20 splits between training and validation data, was used for all
training (see “Methods” for details on test data and training schedules).

In general, detectors performed best on within-domain data,
where they achieved close to perfect performance (Fig. 2g). The
notable exception to this rule were close-up recordings, where the
detector trained on synthetic data outperformed the within-domain
network. However, the performance of detectors trainedwith real data
droppednotablywhen theywere used for inference on unseen images,
despite the similarity in perspective (Fig. 2g, h). In sharp contrast, the
detectors trained with synthetic data retained a robust and consistent
performance throughout (Fig. 2g). To quantify this difference, the
Average Precision (AP) was averaged, so yielding a mean Average
Precision across all unseen test cases (mAP, see Eq. (2)). The detectors
trained exclusively with synthetic data achieved an mAP of
0.913 ± 0.0079, both higher and less variable than all detectors trained
with any of the five real sub-datasets (Fig. 2g). For comparison, the best
real data detector was trained on noisy images, and achieved an mAP
of 0.878 ±0.0258. Networks trained exclusively on synthetic data
converged more slowly and exhibited an overall higher loss during
training compared to any set of real training images, indicating a
higher level of complexity of the generated images (Fig. 2f). These
results indicate that the large volume and variability of synthetic data
substantially increases robustness of detections; supplementing
training datasets with synthetically generated samples may be a sui-
table strategy to significantly reduce the hand-annotation required to
achieve benchmark performance, and can improve the ability of net-
works to generalise to unseen conditions. To test these ideas, detec-
tors were trained on “mixed” datasets, containing both real and
synthetically generated images (see methods for details). Networks
trained with a 10,000/100 synthetic/real split (“sb1”) achieved anmAP
of 0.9501 ± 0.014, close to the benchmark performance (Fig. 2g). A
more extensive quantitative comparison of the performance across
inference cases is provided in the Supplementary Table 5. In order to
confirm that synthetic data enables networks to recognise ants spe-
cifically and not just objects with similar appearance, we tested
detectors trained with 3D models of desert termites (Gnathamitermes
sp., see below), which resulted in a negligible mAP of
0.007 ±0.005 (Fig. 2g).

Fig. 1 | replicAnt is a toolbox designed to procedurally generate and auto-
matically annotate image samples from 3D animalmodels. The combination of
images and annotations constitutes “synthetic data” which can be used in a wide
range of deep learning-based computer vision applications. a replicAnt requires
digital 3D subject models; all but one subject model used in this work were gen-
erated with the open-source photogrammetry platform scAnt51. Each model com-
prises b a textured mesh, c an armature, defined by virtual bones and joints, to
provide control over animal pose, and d a low-polygonal collision mesh to enable
interaction of the model with objects in its environment. e 3D models are placed
within environments procedurally generated with a pre-configured yet customi-
sable project in Unreal Engine 5. f Every scene consists of the same core elements,

configurable via dedicated randomisation routines to maximise variability in the
generated data. 3D assets are scattered on a ground of varying topology; layered
materials, decals, and light sources introduce further sources of variability across
scene iterations (see examples in Figs. 2–6). From each scene, we generate g image,
h ID, i depth, and normal passes, accompanied by j a human-readable data file
which contains annotations and key information on image content (see “Methods”
for details). Synthetic datasets generated with replicAnt can then be parsed to train
networks for a wide range of computer vision applications in animal behavioural
research, including k detection, l tracking,m 2D and 3D pose-estimation, and
n semantic segmentation.
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Next, we sought to demonstrate that high model fidelity is not
required for detection tasks which typically involve low magnification
recordings. Instead, even simpler hand-sculpturedmodels can be used
to train performant networks, powered by the large volume and
variability of training images that can be generated with replicAnt. We

procured a test dataset of 1000 consecutive frames of 49 freely
moving desert termites, Gnathamitermes sp., recorded in the field and
hand-annotated using BlenderMotionExport55 to provide a simple
benchmark (Fig. 3 and “Methods” for details). Two 3Dmodels, one of a
worker and one of a soldier, were hand-sculpted from reference

Fig. 2 | Performance of YOLOv4 detectors trained with real, synthetic and
“mixed”data. a 3Dmodels of leafcutter ant workers, createdwith scAnt51, form the
basis of b a digital population comprising 100 individuals which differ in scale, hue,
contrast, and saturation. replicAntwas thenused toproduce syntheticdatasetswith
10,000 annotated samples from this population. c Examples of image render
passes (top row) and bounding box annotations (bottom row). d Test data were
obtained with a laboratory setup consisting of an OAK-D OpenCV camera, which
recorded foraging trails of Atta leafcutter ants from a top-down perspective.
e Recording conditions were varied to produce five sub-datasets of varying diffi-
culty (see “Methods” for details). fYOLOv44 networks convergedmore slowly when
trained on synthetic data, indicating a more complex training taskbut ultimately
yielded higher mean Average Precision (mAP) scores. g Networks trained on real
images from any sub-dataset perform poorly on out-of-domain recordings, as

indicated by the low average precision (AP) of the detections (solid triangles). In
notable contrast, networks trained solely on synthetic data achieved a strong
detection performance throughout, likely because they have been exposed to
considerably larger variation at training time (black circles). h The superior per-
formance of networks trained on synthetic data is most apparent when the mAP is
compared directly: The highest mAP of 0.951 ± 0.014 was achieved by a network
trained on amix of synthetic and real data (case sb1, 10,000 synthetic and 100 real
images; see “Methods” and Supplementary Tables 1–6 for a full breakdown of each
dataset including sample sizes). Remarkably, the second highest and most con-
sistent mAP was achieved by a network trained solely on synthetic data
(0.913 ± 0.001, marked with an asterisk). Error bars (f–h) indicate the standard
deviation of the respective mean with fivefold cross-validation using different
withheld data splits during training. Source data are provided as a Source data file.
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images using Blender v3.1. A YOLOv44 network, trained on a dataset of
10,000 synthetically generated images with a resolution of
1024 × 1024 px (Fig. 3a–c, see Supplementary Table 4 for details),
achieved an AP of 0.956 ±0.001 on the annotated recordings, and
produced accurate detections in qualitative test cases (Fig. 3e, f).

Multi-animal tracking. Sufficiently precise detectors can in principle
be used to build simple, yet robust and performant trackers. To facil-
itate the use of replicAnt-trained detectors in tracking applications, we
introduce OmniTrax56, an open-source Blender add-on. OmniTrax
allows users to conduct interactive detection-based buffer-and-
recover tracking using imported YOLO detector networks4,57, and
multi-animal pose-estimation, using DeepLabCut (see below, and
ref. 20); it also provides extensive annotation options (see Supple-
mentary Videos 1–4 and 7). Tracking is achieved by linking YOLO
detections across frames via Kalman-Filtering and the Hungarian
method for track association58. To assess the performance of this
simple tracking architecture, we imported the best performing
detection networks trained exclusively on synthetic data into Omni-
Trax, and tracked laboratory and field recordings of A. vollenweideri
leafcutter ants andGnathamitermes sp. desert termites (Fig. 2). The ant
detector tracked between 61 and 103 A. vollenweideri ants over 1000
frames at 30 fps, equivalent to real time inference on a consumer-
grade laptop (6 core CPU, 16 GB Ram, RTX 2070); the desert termite
detector tracked 49 individuals across 1000 frames. Default tracker
settings were used for both test cases.

The ant tracker achieved Multiple Object Tracking Accuracy
(MOTA) scores of 0.901, 0.945, 0.859, 0.821 in the “base”, “dark”,
“bright”, “noisy” cases, respectively (see Eq. (3), ref. 59, and Fig. 4).
Most ID switches were caused by track fragmentation, which can be
avoided by refining tracker settings, or through simple manual cor-
rectionswithinOmniTrax. An extensive quantitative comparisonof the
performance across inference cases is provided in Supplementary
Table 5. The desert termite tracker achieved aMOTA of 0.96. Only two
true ID switches occurred; the remaining errors reflect partially frag-
mented tracks, and a single out-of-focus animal which was not regis-
tered (Fig. 4). Thus, and despite its structural simplicity compared to
other recent approaches16,60–62, the detection-based tracker powered
by replicAnt and implemented inOmniTrax can track a large number of
animals in crowded and open scenes—without the need to hand-
annotate a single image.

Pose-estimation. Animal pose-estimation typically leverages transfer-
learning. Although excellent performance is possible in controlled
settings, the characteristically small training datasets usually fail to
provide the variability required for generalisation to unseen recording
settings. As a result, performance is extremely sensitive to changes in
scene or specimen appearance15–17. The key problem is thatmaximising
performance through overfitting of perspective-dependent latent
features leads to domain-dependence. Our aim is to overcome this
limitation by leveraging the large and variable synthetic datasets pro-
duced by replicAnt to embed an improved subject understanding into

Fig. 3 | Even low fidelity 3D models can be used to train performant networks
for low-magnification applications such as animal detection. a 3D models of a
worker and a soldier desert termite (Gnathamitermes sp.) were sculpted and tex-
tured from reference images in Blender v3.1. b A digital population comprising 80
workers and 20 soldiers, eachwith randomised scale, hue, contrast, and saturation,
was generated from these models (see Supplementary Table 4), and used within
replicAnt to generate a synthetic datasetwith 10,000 annotated images. c Examples
of image render passes (top row), and bounding box annotations (bottom row).
d Test data was recorded in the field, using a Nikon D850 and a Nikkor 18–105mm
lens. e Example frames demonstrate the high precision of a YOLOv4 detector

trained exclusively on synthetic data; only a small number of occluded or blurry
individuals were missed, and few false positives were produced (confidence
threshold of 0.65, and non-maximum suppression of 0.45). f The YOLOv44 network
converged after about 20000 iterations, and achieved an Average Precision (AP) of
0.956± 0.001, retrieved from returned detections on 1000 hand-annotated frames
of 49 freely moving termites (see “Methods”). Error bars (f) indicate the standard
deviation of the respective mean AP, computed every 1000 training iterations on
the unseen real data with fivefold cross-validation using different withheld syn-
thetic data splits during training. Source data are provided as a Source data file.
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the pose-estimation networks. In other words, we ultimately seek to
train a single generalist network, rather than several scene- and
perspective-dependent specialists, as is currently best practice16,17,20.

To move towards this aim, we used a 3D model of a sunny stick
insect (Sungaya inexpectata Zompro 1996, first instar) to generate 10

sub-datasets with different randomisation seeds, characterised by 70%
scale variation, and hue, brightness, contrast, and saturation shifts
producing 1000 samples each. Thesedatasetswere combined intoone
single-animal synthetic dataset encompassing 10,000 images at a
resolution of 1500 × 1500 px; the automated annotations included the
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Fig. 4 | Detectors trained exclusively on synthetic data can be used for multi-
animal buffer-and-recover tracking. a A YOLOv4 network4 was trained on syn-
thetic images generated from a single Atta vollenweideri specimen, and then used
withinOmniTrax56 to automatically track individual ants in bwell-exposed, c noisy,
d dark and e bright (over-exposed) footage (left column). Detections are provided
by the YOLOv4 network4, and linked across frames through a simple buffer-and-
recover approach, using a 2D Kalman-Filter implementation and the Hungarian
method for track association cost assignment58. b–e Tracking performance was
evaluated by tracking between 61 and 103 individuals, which could freely enter and
exit the recording area, over 1000 frames, with up to 62 animals present simulta-
neously. ID switches (IDS) are marked in red and mostly occur at the entrances to

the recording site. They typically result from track fragmentation due to prolonged
occlusion, and can thus be easily excluded from further analysis (middle column).
Tracking performance deteriorates with overexposed images (e), fuelled by a
combination of motion blur and drastic changes in appearance due to exposure
clipping. Relative occupancy density maps visualise cluttered areas, path pre-
ferences, and static individuals (right column). f, g A YOLOv4 network4, trained
exclusively on synthetic images of desert termites (Gnathamitermes sp.) was used
to track 49 desert termites across 1000 frames from field recordings. Only two true
identity switches occurred (IDS, entrance at the top right corner); all other IDS are
the result of fragmented tracks. Source data are provided as a Source data file.
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location of 46 key points distributed along the body (Fig. 5a–c, see
“Methods” and Supplementary Fig. 1 for further details). Dataset gen-
eration took about three hours on a consumer-grade laptop (6 Core 4
GHz CPU, 16 GB RAM, RTX 2070 Super).

The synthetic dataset was then used to train a DeepLabCut20

(DLC) pose estimator with a ResNet101 backbone. We emphasise that
other excellent markerless pose estimators, such as SLEAP16 or

DeepPoseKit17, exist, and merely use DLC by way of example. The best
tool will likely dependon the specific use-case. To test pose-estimation
performance, two datasets of walking sunny stick insects were curated
as test cases (Fig. 5). One dataset, denoted “platform”, represents a
typical controlled case, where lighting and image background are
constant, and only camera perspective varies: S. inexpectata were
recorded walking across an evenly lit, tiltable platform, at 55 fps with

Fig. 5 | PerformanceofDeepLabCut (DLC)markerlesspose-estimators20 trained
on real, synthetic and mixed datasets. a, b A digital population of 10 individuals
wasgenerated froma single 3Dmodel of a Sungaya inexpectata stick insect, created
with the open-source photogrammetry platform scAnt51. Population subjects dif-
fered in scale, hue, contrast, and saturation, and formed the basis for a synthetic
dataset. c Examples of image render passes and key point annotation; the locations
of the 46 key points are provided in Supplementary Fig. 1. A DeepLabCut20 network
with a ResNet101 backbone was then pre-trained on the synthetic dataset for 800k
iterations, and fine-tuned on splits of real samples for a further 800k iterations (see
“Methods” and Supplementary Tables 8–11 for details). Two hand-annotated
datasets serve as test cases: d, e five synchronised machine vision cameras moun-
ted to a tiltable platform recordedwalking stick insects in controlled conditions, so
that only camera perspective varied; h handheld cell phone recordings of walking
stick insects across the laboratory, which include partial occlusions, and variations
in background and lighting. f, gNetworks pre-trained on synthetic data and refined

with just 10 samples per camera perspective achieved a mean relative error of
8.14%, and a mean pixel error of 37.69 px across orientations—lower than the
benchmark performance achievedby the network trainedon the full dataset of 805
total example images (mean relative error of 10.90%,mean pixel error of 50.57 px).
The asterisk, *, indicates networks for which ≤50% of the inferred key points were
above the confidence threshold of 0.6. i The performance of pose-estimation
networks trainedwith real data deteriorateddrastically when theywere put towork
on recordings of the same species obtained under different conditions, demon-
strating their relianceon specimen-independent features. Thisdomain-specificity is
most evident in the handheld recordings, where camera orientation, lighting, and
background change continuously: networks trained on real platform data per-
formed poorly, but networks trained solely on synthetic data approach benchmark
performancewith the additionof just five hand annotated example images (i, refine
25%), indicating a stronger specimen-specific understanding (see Supplementary
Videos 5–7). Source data are provided as a Source data file.
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five synchronised machine vision cameras (Fig. 5d, e). From these
recordings, all 49 key points were hand-annotated in each of 805
frames (see Supplementary Table 10 for split details). The second
dataset, denoted “handheld”, consists of 200 hand-annotated frames
from ten handheld videos (20 frames per video), recorded with a cell
phone at 25 fps (Fig. 5h). This dataset represents an uncontrolled case
with variable recording conditions, and includes motion blur, per-
spective andmagnification changes, out-of-focus frames, and frequent
partial occlusions.

A DLC network trained on frames from all camera perspectives
achieved a benchmark mean relative error on platform data of 10.9%
across all camera views (Fig. 5g, see Eq. (4)). In remarkable contrast,
networks trained exclusively on data from a single camera perspective
produced amean relative error of up to 86.4% for frames from unseen
perspectives. This poor performance partially reflects domain-sensi-
tivity, characteristic of many transfer learning approaches: the net-
works fail to generalise, because they have only been exposed to a
small inference-specific dataset with limited variation.

A DLC network trained exclusively with synthetic data seemingly
competes with the benchmark performance out-of-the-box: it
achieved a mean relative error of 5.89% across all platform camera
views (Fig. 5g). However, this low error is deceiving, as the network
assigned low confidence scores tomore than 50% of key points, which
are thus excluded from the error estimate. However, the network
provides an excellent starting point for refinement: the provision of a
mere ten hand-annotated frames per camera orientation suffices to
estimate key points with a mean relative error of 8.14%—better than
benchmark performance.

The limited ability of networks trained on real data to generalise
becomes evenmore apparentwhen they areput toworkon recordings
of the same species, recorded under different conditions. The pose-
estimation network trained on the full platform dataset achieved a
mean relative error of 77.18% on the handheld dataset (Fig. 5g). Key
points were frequently placed more than two body lengths away from
the specimen, demonstrating that key point detection strongly relies
on recording-specific latent features; the volume and variability of the
supplied training data was insufficient to embed a general specimen-
specific understanding. In sharp contrast, the network trained solely
on synthetic data achieved amean relative error of 6.25% on handheld
recordings—more than an order of magnitude smaller. Refinement
with five randomly sampled frames from each video resulted in amean
relative error of 5.03%, close to the benchmark performance of 3.55%,
achieved by a network trained on the full handheld dataset (Fig. 5g, i).
An extensive quantitative comparisons of the performance across
inference cases is provided in the supplementary information (see
Supplementary Table 10 as well as Supplementary Table 11).

On the basis of the above, we conclude that the large sample size
and variability afforded by synthetic data can meaningfully increase
the domain-invariance and robustness of pose-estimation networks,
and thus substantially reduce the required user effort: better or near-
benchmark performance was achieved with 4-fold and 16-fold fewer
hand-annotated samples in the handheld and the platform case,
respectively (Fig. 5e–i, see also Supplementary Videos 5 and 6).

Semantic segmentation. We have demonstrated that synthetic data
generated by replicAnt can substantially reduce the hand-annotation
required to power accurate detection, tracking and pose-estimation,
or even render it obsolete. Next,weshow that it can enable inference in
applications for which hand-annotation is so onerous that it is unlikely
to be performed at the required scale for all but the most common
objects: semantic segmentation, a computer vision task involving
pixel-level classification (Fig. 6).

replicAnt was used to generate a digital population of 20 leaf-
footed bugs (Leptoglossus zonatus, Dallas, 1852), based on a 3D model
of an adult specimen produced with scAnt51 (Fig. 6a, b). Two synthetic

datasets were generated, each encompassing 10,000 images with
1024 × 1024px resolution (Fig. 6c): one dataset used replicAnt’s default
parameters; for the other, replicAnt’s asset library was supplemented
with various plant models from the Quixel Asset library (Epic Games,
Inc.), in order to simulate the image content of typical field macro-
photographs.Data generation tookbetween6 and 10 hona consumer-
grade laptop (6 Core 4 GHz CPU, 16 GB RAM, RTX 2070 Super) for the
default and plant case, respectively.

Images from both datasets were combined to form a single
dataset, used to train Mask-R-CNN6, UperNet + SWIN transformer63,
and PSPNet64 networks (see methods and Supplementary Table 12 for
details). Producing large validation datasets is infeasible for highly
specific semantic segmentation tasks—the very reason why synthetic
data is so helpful in these applications. To provide an indicative per-
formance metric, we extracted network masking accuracy for a small
number of hand-annotated image examples via the Average Class-wise
Recall (ACR. See Eq. (5)).

All trained networks were able to identify the majority of speci-
men pixels, and segmented few background pixels (Fig. 6d, e).
Remarkably, PSPNet, the oldest tested architecture, produced the
most accurate segmentations at both high and low magnification, and
even in the presence of partially occluded or out-of-focus bodyparts: it
achieved anACRof 94.03% (Fig. 6d, e). Overallmask qualitywas lowest
forMask-R-CNN,which struggledwith high-aspect ratio appendages at
higher magnification and with images with higher background noise
(ACR of 82.3%). This problem may in part be specific to the particular
implementation of Mask-R-CNN, which was trained using lower reso-
lution segmentation polygons instead of per-pixel segmentationmask
encoding (see “Methods” for details). Mask-R-CNN does however
additionally produce instance segmentations, useful where images
containmore thanone individual. Toutilise this feature, aMask-R-CNN
network was trained on 10,000 synthetically generated images of
leafcutter ants (Figs. 2a–c and 6f; see “Methods” for training details),
and used to run inference on photographs of foraging Atta. The pro-
duced masks were of high quality, and contained few false posi-
tives (Fig. 6g).

Discussion
Deep learning-based computer vision methods promise to funda-
mentally alterwhat is possible in animalbehavioural research12–18. A key
remaining bottleneck is the “data-hunger” of supervised learning
techniques: annotated datasets of the size and variability required to
achieve robust, domain-invariant performance are rarely available, and
in any case time-intensive to produce44,65. One strategy to overcome
this limitation is to produce annotated data synthetically, using suffi-
ciently realistic computer simulations30–32,39,40,42,44,47–50,66. In order to
facilitate this process, we developed replicAnt: a synthetic data gen-
erator built in Unreal Engine 5 and Python. replicAnt is designed to run
on consumer grade hardware, and can generate around 1000 anno-
tated images per hour. We provide extensive documentation, parser
scripts for popular deep learning frameworks, pre-trained networks
for all listed applications, benchmark datasets, additional software to
aid automated detection-based buffer-and-recover tracking and 2D
pose-estimation56, and a growing library of ready-to-use 3D animal
models.

The utility of replicAntwas demonstrated by using it to train deep
neural networks for stereotypical tasks in animal behavioural research.
In multi-animal detection, tracking, and semantic segmentation, net-
works trained exclusively with synthetic data achieved a performance
sufficient to remove the need for hand-annotation altogether. In
markerless pose-estimation, pre-training networks on synthetic data
increased the subject-specific understanding of the networks, so
enabling a reduction of the amount of hand-annotation required to
achieve benchmark performance by more than one order of magni-
tude (Fig. 5g). The resulting reduction in time costs enables broad
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comparative studies—of key biological importance, but currently
absent from the literature67. We hope that open sharing of 3D models,
test data and trained networks will decrease the need for case-specific
refinement, and eventually lead to powerful “generalist” networks.

Ample of opportunity for expansion of replicAnt exists. For
example, the combination of depth passes and camera intrinsics and
extrinsics can in principle be used to train networks to infer 3D loca-
tions directly froma single 2D image36,40,68; informing posture variation
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Fig. 6 | Performance of semantic- and instance segmentation networks trained
exclusively on synthetic data. a, b A population of Leptoglossus zonatus leaf-
footed bugs was simulated from a 3D model of an adult, produced with the open
photogrammetry platform scAnt51. c This population was used to generate two
datasets, each encompassing 10,000 images: one with replicAnt’s default settings;
the otherwith additional scattererswhichplaced 3Dassets of plants to simulate the
image content of typical macro photographs. Images show examples of the image
(top row) and ID (segmentation) passes (bottom row), respectively.d, eThree deep
convolutional semantic segmentation networks—Mask-R-CNN6, UperNet + SWIN
Transformer63, and PSPNet64—were trained on the synthetic data, and their per-
formance was assessed on a small number of hand-annotated d laboratory and

e fieldmacro-photographs. The highest Average Class-wise Recall (ACR) of 94.03%
was achieved by the PSPNet architecture with a ResNet101 back-bone. The Uper-
Net + SWIN Transformer network achieved an intermediate overall performance,
reduced by fragmentedmasks and false positives. Segmentations produced by the
Mask-R-CNN network had the lowest ACRof 82.3%, but asMask-R-CNN additionally
performs instance segmentation, it is attractive for images that contain multiple
individuals. f, g To illustrate this feature, a Mask-R-CNN network was trained on
10,000 synthetic images of Atta vollenweideri ant workers (Fig. 2), and used to
segment g crowded laboratory (left) and field photographs (right) of foraging Atta
leaf-cutter ants.
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within replicAnt with 3D kinematics data from live animals30,49 may
yield networkswhichcan infer the location of occludedkeypointswith
reasonable accuracy; and further annotation, for example auto-
matically labelling minute morphological species differences or body
size, can readily be appended. Recent advancements in style- and
domain transfer couldbe combinedwithdata producedby replicAnt to
produce even stronger generalist30,31,66, or application specific
networks47–49. The domain-gap may be narrowed further by introduc-
tion of novel pre-trained networks, such as Segment Anything69 and
DINO(v2)33, as feature-extraction backbones.

Although in principle applicable to any subject model, the
experiments and results presented in this study focused primarily on
terrestrial arthropods. Further functionality, such as a quadruped
armature and models46,49, animation blueprints, and use of Unreal
Engine’s soft body and fur simulation capabilities for realistic render-
ings are planned, to further decrease the entry barrier, and emphasise
accessibility and modularity.

replicAnt provides a fertile testing ground to further our funda-
mental understanding of supervised learning. As an illustrative exam-
ple, replicAnt can in principle generate arbitrarily large datasets. Not all
images are created equal, however, and the control over environ-
mental variability, combined with the ability for “mixed training”,
provides an excellent opportunity to probe which image elements are
most effective for accelerated networkfitting. Ultimately, it is our hope
that replicAnt represents a significant step towards porting machine-
learning based computer vision tools to the field.

Methods
The generation of synthetic datasets with replicAnt can be divided
into three steps: (i) 3D Subject Model creation and preparation; (ii)
set-up of the generator in Unreal Engine; and (iii) parsing gen-
erator outputs into common machine learning data formats to
train deep neural networks of choice. In the following sections, we
first outline the general structure of the data generation process;
application specific details are provided at the end. A glossary is
provided in Supplementary Note 1, and detailed documentation
and interactive Jupyter notebooks for data parsing and bench-
marking are available on GitHub (https://github.com/evo-
biomech/replicAnt).

3D subject models
In principle, 3D models used in replicAnt can come from any source.
However, model fidelity is a primary determinant of the simulation-
reality-gap, and thus influences the performance that can be
achieved. Practically, the required model fidelity depends on the
desired application. For example, in applications which typically
involve low resolution footage, such as multi-animal tracking
(Figs. 2–4), lower fidelity 3D models may suffice; networks used for
high-resolution semantic segmentation (Fig. 6) or pose-estimation
(Fig. 5), in turn, require models with higher fidelity. We used the
open-source photogrammetry platform scAnt55 to produce high
fidelity models, and Blender v3.1 to sculpt lower fidelity models.
Irrespective of model origin, the model mesh may need to be
cleaned, retopologised, and rigged prior to import in the generator.
For all models used in this study, this process was completed using
Blender v2.92 & 3.1.

Clean-up. All unconnected vertices and floating artefacts of themodel
mesh were deleted, and surfaces cleaned, using Blender’s native edit-
ing and sculpting tools. Holes were closed by collapsing surrounding
vertices to a single point, and/or rebuilding the surrounding topology.
The re-connected mesh regions were made seamless by projecting
adjacent texture information onto the collapsed or newly created area,
respectively; any overlapping vertices and self-intersecting faces were
removed (for further details, see ref. 55).

Retopologising. To accelerate the data generation process and to
allow for larger simulated digital populations, we decreased the mesh
resolution of each model to between 1000 and 10,000 vertices, using
Blender’s native decimate modifier. The number of vertices was cho-
sen such that the overall shape was preserved, but fine topology
information, such as hairs and other surface detail were removed; this
information was captured by albedo and normal maps instead, gen-
erated for the retopologised meshes through texture baking from the
original high-resolution input55.

Rigging. In order to enable posture variation, models were rigged—
each model was assigned a set of rigid segments referred to as bones,
with individual bones connected through joints. The collection of
bones and joints defines the model’s armature. In principle, users can
assign an arbitrary number of virtual bones and joints, each with a
specific range of motion. We provide a base armature template that
was used throughout this work; it can readily be adapted to animal-
specific needs (see Supplementary Fig. 1). The segment deformation
associated with joint movement was restricted to proximal parts of
each mesh segment using weight painting, an appropriate simplifica-
tion due to the effectively rigid arthropod exoskeleton.

Model porting toUnreal Engine. Curatedmodels, includingmaterials,
textures and the armature, were transferred from Blender to Unreal
engine 5 via the send-to-unreal Add-on (https://github.com/
EpicGames/BlenderTools). Rigged meshes can also be imported
directly into Unreal Engine 5, but may then require additional manual
editing. Regardless of model origin, process shader, scaling, collisions
properties, and animation blueprints need to be assigned to the sub-
ject model after import. Examples of configured 3D subject models as
well as detailed documentation on the model preparation process are
available on GitHub (https://github.com/evo-biomech/replicAnt).

replicAnt
The core of replicAnt is a pre-configured Unreal Engine 5 project that
includes: (i) example subject models; (ii) project configurations,
referred to as levels within Unreal Engine 5; (iii) an asset library—a
curated collection of 3D meshes which may populate the generated
scenes; (iv) a set of basic materials—image maps that are blended with
procedurally generated textures to define the appearance of scattered
assets and the ground; and (v) High Dynamic Range panorama images
(HDRIs), used as the environment background and to provide addi-
tional scene lighting.

These elements form the backbone for the dataset generation
process, which canbe controlled through a simple user interface;more
advanced configuration is possible through editable blueprints, a
visual and structured node-based alternative to the use of text-based
source code. User-control is facilitated through four main compo-
nents: (1) The User Interface editor widget (UI); (2) the content brow-
ser; (3) the outliner; and (4) the viewport.

The UI is divided into four tabs: General—to define the randomi-
sation schedule of all generator elements, to control the balance
between generation speed and output variability, to configure the
desired output types and location, and to set the number of unique
output samples; Subjects—to select 3D models for inclusion in the
digital population, and to specify subject population size and
appearance randomisation; Environment—to select HDRIs and to
specify the ground mesh resolution; and Debug—to control various
stalling periods related to stability, and the randomisation seed. The
seed value controls the randomisation routines of all elements and so
enables repeatability. For example, identical scenes can be populated
with different subjects, so producing datasets of different animals in
equal environments.

TheContent Browser is akin to a file explorer, and provides access
to the full project data structure, all assets and blueprints. Additional
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content, such as textures or 3D models, can be imported, and key
individual components of the data generator can be modified (for
additional documentation, refer to https://docs.unrealengine.com/5.
0/). The Outliner displays and provides access to all elements included
in the current project configuration, for example the generated subject
population, the scene camera, the ground plane, and lights. Users can
add, edit, or remove randomisable elements such as asset scatterers,
light blocking elements, and decal generators (for details, refer to the
respective sections below).

Finally, the viewport provides a 3D preview of the current project
state. By selecting “change preview environment” from within the
Environment tab of the UI, or by selecting “Test” at the bottom of any
of the UI tabs, users can directly assess how the current settings
translate into the randomised scene generation process, through
either randomising the lighting setup or executing a complete ran-
domisation iteration respectively. The viewport also provides a win-
dow into active dataset generation processes: it displays snapshots of
output passes, and indicates both the time elapsed and an estimated
time to completion.

Dataset generation then proceeds through simulation of scenes,
defined by a series of randomisable elements as detailed below. In
order to generate datasets with maximal variability in minimal time,
the frequency with which scene elements are updated is tied to the
time it takes to execute each update. To rationally guide this process,
we defined a hierarchy from computationallymost to least demanding
randomisation components: (i) ground plane, (ii) asset, (iii) subject
placement and pose, (iv) material, lighting, camera intrinsics and
extrinsics, and image post processing. Elements lower in this hierarchy
influence elements upstream, and the frequency with which each ele-
ment is updated can be user-controlled (Fig. 1). We nowbriefly explain
the basic scene generation at each of these hierarchical element levels.

Environment. The environment, which we define as all scene elements
aside from subjects, is procedurally built from a number of hier-
archically linked modules of surface and material generators, asset
scatterers, and a dynamic lighting system. In the first step, a ground
plane is generated and tessellated to create a parameterisable surface
of up to 5,120,000 triangles. All assets are later placed on this ground,
initially created as a 2D surface plane. Height variation is then encoded
through a three-channel RGB map. Each channel controls different
aspects of the terrain generation process, a design choice which
enables independent variation of terrain topology and terrainmaterial.
The RGBmap is procedurally generated through a set of sub-modules
which introduce mesh noise of variable granularity and geometric
pattern. In order to maximise variation in terrain topology and mate-
rial, the generated noise is blended with a curated library of mono-
chromatic displacement maps. The red channel encodes the
displacement map for the tessellated ground plane. High values (≥0.5)
indicate a positive, and low values (≤0.5) a negative shift in height
relative to the mean height, respectively; a value of 0.5 thus corre-
sponds to mean ground plane height. The green channel encodes
additional noise to blend different materials. The blue channel pro-
vides an opportunity for additional user-defined variation; it does not
affect default randomisation routines.

Asset scatterers. In order to increase the variability of the environ-
ment, 3D assets—texture-less photogrammetry models of common
objects—are placed on the terrain by a user-defined number of asset
scatterers (all models used in this study are from Quixel AB, Epic
Games). Each scatterer is assigned a number of assets, one of which is
randomly selected per iteration (see “Methods—replicAnt”). Each
scatterer is also assigned a material at random; assets spawned by the
same scatterer thus share the same material, so that no separate tex-
ture information is required for each asset mesh. As a result, the pro-
ject file size remains small, even though the numbers of meshes in the

asset library is large. A number of scatterer presets are provided. The
number of scatterers and their individual configuration can be set in
the Outliner, which provides further control over key parameters of
each scatterer: (i) the set of assets whichmay be scattered; (ii) the asset
size range (all assets are by default of equal size, that is their largest
length in X,Y,Z coordinate space is normalised); and (iii) the asset
number range, defining the minimum and maximum number of
instances of the drawn asset the scatterer may spawn per iteration,
respectively.

Subject placement and posing. In each randomisation iteration, the
generator places subjects drawn from a user-defined “population” at a
randomised coordinate. Each subject is subjected to pose variation,
which is randomised at two levels: mesh-interacting and mesh-
independent posing. Key in this process is an animation blueprint
(ABP_InsectBase), which specifies the list of body parts subject to
mesh-interacting and mesh-independent posing, respectively, along
with the joint types and the joint range of motion. Different subjects
within the a population can be assigned individual animation blue-
prints by generating “child instances” of the original “parent”
blueprint.

During mesh-interacting posing, subjects are first scattered and
then rotated around their geometric centre, once they are in proximity
to the generated ground plane. If a subject intersects with the ground
plane or a scattered asset or their randomised location lies below the
ground plane, the process is repeated until valid locations are deter-
mined for every subject. Each subject is moved along its down-vector
until its mesh intersects with any scattered asset, previously spawned
subject, or the ground plane. If a subject does not intersect with any
mesh along its trace, a new centre-rotation is proposed, and the pro-
cess repeated until a valid rotation and resulting placement location
are found. Possible end-point locations are determined via ray casts;
theUnreal Engine 5 internal Full body InverseKinematics solver (IKS) is
then used to determine permissible joint angles for all body parts
assigned in the respective animation blueprint. By default, mesh-
interaction posing is performed for all leg segments, i.e. subjects
generally stand on other meshes (see Supplementary Fig. 1). By
restricting the number of solver iterations, however, some legs can
also be left intentionally “mid-air”. In such instances, a random point is
placed within reach of the most distal part of the IK chain of the
respective leg, and the IKS is used to solve for an appropriate joint
configuration.

Mesh-independent posing, in turn, controls the pose of other
key “bones”, such as the head, antennae, or mandibles; the
respective joints are each assigned a random angle within the
permissible range.

Materials, lighting, camera and post-processing. Materials for the
terrain, decal and asset layers are generated by independent material
generators. Each generator combines randomly generated patterns
with a curated library of image textures. Further textures can be added
to the respective content directories. The selection of textures, pattern
generation, and blending are controlled via the seed value defined in
the debug tab of the UI controls.

The environment is then lit using a series of lighting elements:
colour-filtered High Dynamic Range Images (HDRIs); a main direc-
tional light; randomly placed coloured spotlights, which cast multiple
sharp and diffuse shadows, either from scattered assets onto the
subjects, or from the subjects themselves onto the environment; light
blocking occlusion planes; and volumetric fog, which introduces dif-
fuse lighting and reduced visibility. The array holding theHDRIs can be
appended with external images, and the volumetric fog density can be
adjusted within the environment tab of the UI. For example, usersmay
wish tomatch specific lighting conditions of an experimental setup, or
simply increase lighting variation further. The number and colour of
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spawned spotlights is user-definable (see documentation on GitHub
for details).

The combination of ground topology, assets, material and decal
layers, subjects and lighting fully defines a specific populated envir-
onment. In a last step, a simulated camera is randomly spawned, and
oriented such that it points towards a randomly selected subject; this
random orientation offset ensures that the subject location relative to
the image centre varies across images.Using this camera, an annotated
sample image of the randomisation iteration can be captured; each
unique camera perspective on an environment constitutes a scene. In
addition to camera location and orientation (extrinsics), the generator
can also randomise camera intrinsics, such as the simulated sensor
size, focal length, aperture, and exposure. The camera randomisation
step therefore presents a prime opportunity for computationally
inexpensive variation, as variable scenes canbe extracted froma single
populated environment. In a final step, an array of post-processing
filters, providing control over colour temperature and tint, saturation
and contrast, vignetting, and various types of grain, are applied. These
filters only affect the image render pass (see “Generator outputs”). All
camera and post-processing attributes are randomisable (see doc-
umentation on GitHub).

Generator outputs
The generator produces two key outputs: annotation files and image
passes. The annotation files comprise a single batch file, containing
information of relevance for thewhole dataset, and one annotation file
per scene, containing image specific annotations. Image passes
decode key scene information (see below); custom pass types can be
added, or configured passes modified (see GitHub documentation).
The desired image pass types, image resolution, compression and
output directory are specified in the general tab of the UI.

Annotation files. Each dataset is accompanied by a single human-
readable batch file, which contains general information: the number of
samples, the dataset name, the seed value, and the image pass
dimensions. Additionally, it provides references to the IDs internally
assigned to each subject within the population, as well as its class,
which corresponds to the assigned subject model name, and relative
scale. This information is alsoused by customdata parsers (see below).

For each iteration, the set of image passes is accompanied by a
unique human-readable sample file. Sample files document informa-
tion essential for 3D localisation and pose-estimation applications: the
camera intrinsics and extrinsics, including the 3D camera location and
rotation, diagonal field of view, and the full view projection matrix.
Additionally, samplefiles provide annotations, such as the coordinates
of subject bounding boxes, all 2D key point locations in pixel space,
and all 3D key point locations relative to the camera coordinate for
every simulated subject. Further custom annotations can be added.

Image passes. By default, the generator is configured to write four
image pass types per scene: image render, ID, depth, and normal
passes. Each pass types encodes different key information.

The image render pass is an RGB colour rendering of the simu-
lated camera view, including image noise, variation in exposure, and
depth of field (see “Materials, lighting, camera and post-processing”).
The level of compression can be fixed or randomised, and several
image formats are available for selection in the general tab of the UI
(JPG, PNG, EXR, BMP).

The ID pass encodes subject IDs by assigning all pixels a unique,
subject-specific RGB colour value; all non-subject pixels are assigned a
valueof (0,0,0).Occlusion can thusbedetermined at pixel-level for the
full subject mesh, and for individual key points at the following parser
stage. Furthermore, the relative occupancy of the subject mesh within
its 2D bounding box can be extracted. Information on occlusion, key
point location and bounding box occupancy is essential to exclude

fully occluded subjects or individual key points from neural network
fitting where desired. In our illustrative pose-estimation examples (see
below), occluded key points were excluded from training; however,
users can toggle this option on and off in the respective Jupyter
notebook parsers (see GitHub documentation). The ID pass also forms
the basis for segmentationmaps (Fig. 6c, ID (segmentation) pass) used
for run-on encoding, polygon encoding, or per-pixel encoding at the
parser stage. ID pass images are always saved in uncompressed PNG
format.

The depth pass is a monochromatic render which encodes the
depth of each pixel in the scene, relative to the virtual camera plane. In
combination with camera intrinsics/extrinsics and the ID pass, depth
pass images can in principle be used to train networks for 3D semantic
segmentation, size estimation, and depth inference. Depth pass ima-
ges are always saved in uncompressed PNG format.

The normal pass encodes surface normals, required by some
specialised pose-estimation applications40,68. Normal passes can be
produced both in camera view space and world space. We did not use
normal passes in this work, but provide them to illustrate the mod-
ularity and extendibility of replicAnt. Normal pass images are always
saved in uncompressed PNG format.

Data parsers
The combination of image passes and annotation files constitutes
synthetic data which can be used to train a suite of machine-learning
based computer vision models. In order to facilitate this process, five
groups of data parsers were implemented in form of documented
Jupyter notebooks. These parsers translate the generated data into
various data formats used by popular deep learning-based computer
vision models: (i) YOLO compatible data4,57; (ii) three DeepLabCut20

and SLEAP16 compatible data parsers; (iii) COCO6,10 formatted data,
including image masks for detection, single and multi-animal pose-
estimation, as well as semantic segmentation applications; (iv)
MMSegmentation70 compatible data for segmentation training and
benchmarking; and (v) a custom3Dpose-estimationdata formatwhich
includes camera intrinsics and extrinsics.

The data parsers use a number of common python packages
(including h5py, imutils, jupyter, json5, matplotlib, opencv-python,
pandas, scikit-image, scikit-learn, scipy) to interface with various deep
learning frameworks, such as tensoflow and keras, darknet, and
open-mmlab.

Applications
The synthetic data generatedby replicAntwas used in conjunctionwith
a set of machine learning tools, to conduct multi-animal detection,
tracking, pose-estimation, and semantic and instance segmentation.
For each of these applications, we below describe (1) the curation of
hand-annotated benchmark data; (2) the origin of 3D models and the
pertinent details of the synthetic data generation process; (3) the
network training procedure; and (4) the performance characterisation.
By necessity, these applications required to choose specific network
architectures for each use case. In choosing specific network archi-
tectures over others, we do not wish to imply their superiority; all
choices merely serve as illustrative examples, and other options may
be better or worse, depending on the specific use case. Our aim is not
to determine the best network architecture, but to test the broad
applicability and quality of the synthetic data generated by replicAnt.

Detection
Benchmark data. Two video datasets were curated to quantify
detection performance; one in laboratory and one in field conditions.
The laboratory dataset consists of top-down recordings of foraging
trails of Atta vollenweideri (Forel 1893) leaf-cutter ants. The colony was
collected in Uruguay in 2014, and housed in a climate chamber at 25∘C
and 60% humidity. As Atta vollenweideri neither fall under European
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Directive 63/2010/EU, nor are they considered protected species
under the Convention on International Trade in Endangered Species
(CITES), no specific permits were required. All experiments were
designed such that they minimise animal suffering. A recording box
was built from clear acrylic, and placed between the colony nest and a
box external to the climate chamber, which functioned as feeding site.
Bramble leaves were placed in the feeding area prior to each recording
session, and ants had access to the recording box at will. The recorded
area was 104 mm wide and 200 mm long. An OAK-D camera (OpenCV
AI Kit: OAK-D, Luxonis Holding Corporation) was positioned centrally
195 mm above the ground. While keeping the camera position con-
stant, lighting, exposure, and background conditions were varied to
create recordings with variable appearance: The “base” case is an
evenly lit and well exposed scene with scattered leaf fragments on an
otherwiseplainwhite backdrop (Fig. 2). Videoswerecaptured from the
OAK-D camera using the accompanying depthai python package
(v0.4.0.0). A “bright” and “dark” case are characterised by systematic
overexposure or underexposure, respectively, which introduces
motion blur, colour-clipped appendages, and extensive flickering and
compression artefacts. In a separate well-exposed recording, the clear
acrylic backdrop was substituted with a printout of a highly textured
forest ground to create a “noisy” case. Last, we decreased the camera
distance to 100mmat constant focal distance, effectively doubling the
magnification, and yielding a “close” case, distinguished by out-of-
focus workers. All recordings were captured at 25 frames
per second (fps).

The field datasets consists of video recordings ofGnathamitermes
sp. desert termites, filmed close to the nest entrance in the desert of
Maricopa County, Arizona, using a Nikon D850 and a Nikkor 18–105
mm lens on a tripod at camera distances between 20 and 40 cm. All
video recordings were well exposed, and captured at 23.976 fps.

Each video was trimmed to the first 1000 frames, and contains
between 36 and 103 individuals. In total, 5000 and 1000 frames were
hand-annotated for the laboratory (Fig. 2e) and field dataset (Fig. 3e),
respectively: each visible individual was assigned a constant size
bounding box, with a centre coinciding approximately with the geo-
metric centre of the thorax in top-down view. The size of the bounding
boxes was chosen such that they were large enough to completely
enclose the largest individuals, and was automatically adjusted near
the image borders. A custom-written Blender Add-on aided hand-
annotation: the Add-on is a semi-automated multi animal tracker,
which leverages blender’s internal contrast-based motion tracker, but
also include track refinement options, and CSV export
functionality55,56. Comprehensive documentation of this tool and
Jupyter notebooks for track visualisation and benchmarking is pro-
vided on the replicAnt and BlenderMotionExport GitHub55.

Synthetic data generation. Two synthetic datasets, each with a
population size of 100, were generated from 3D models of Atta vol-
lenweideri leaf-cutter ants. All 3D models were created with the scAnt
photogrammetry workflow51. A “group” populationwas based on three
distinct 3D models of an ant minor (1.1 mg), a media (9.8 mg), and a
major (50.1 mg). To approximately simulate the size distribution of A.
vollenweideri colonies, these models make up 20%, 60%, and 20% of
the simulated population, respectively. A 33% within class scale varia-
tion, with default hue, contrast, and brightness subject material var-
iation, was used (Fig. 2). A “single” population was generated using the
major model only, with 90% scale variation, but equal material varia-
tion settings.

A Gnathamitermes sp. synthetic dataset was generated from
two hand-sculptedmodels; a worker and a soldier made up 80% and
20% of the simulated population of 100 individuals, respectively
with default hue, contrast, and brightness subject material variation
(Fig. 3). Both 3D models were created in Blender v3.1, using refer-
ence photographs.

Each of the three synthetic datasets contains 10,000 images,
rendered at a resolution of 1024 by 1024 px, using the default gen-
erator settings as documented in the Generator_example level file (see
documentation on GitHub). To assess how the training dataset size
affects performance, we trained networks on 100 (“small”), 1000
(“medium”), and 10,000 (“large”) subsets of the “group” dataset (see
Supplementary Table 2 for dataset sizes and splits). Generating
10,000 samples at the specified resolution took approximately 10 h
per dataset on a consumer-grade laptop (6 Core 4 GHz CPU, 16 GB
RAM, RTX 2070 Super).

Additionally, five datasets that contain both real and synthetic
images were curated. These “mixed” datasets combine image samples
from the synthetic “group” dataset with image samples from the real
“base” case. The ratio between real and synthetic images across thefive
datasets varied between 10/1 to 1/100 (see Supplementary Table 3 for
dataset sizes and splits).

Network training. We used the AlexeyAB darknet implementation of
YOLOv44 as a detector, because it balances inference quality and
speed, and is in widespread use. Each network was trained for 20000
iterations to ensure convergence. The burn-in ratewas set to 1000, the
learning rate to 10-4, and trained weights were saved every 1000
iterations. As the benchmark data contain recordings with variable
subject magnification, we selected a YOLOv4 variant with adjusted
anchors, enabling both small and large detections relative to the image
size; this variant performed best in preliminary trials.

All training was performed on a computational cluster with
compute nodes providing 16 CPU cores, 64 GB of RAM, and a single
NVIDIA RTX Quadro 6000 GPU. A comprehensive list of trained net-
works is provided in the Supplementary Tables.

Evaluation. In order to evaluate detection performance, we retrieved
the Average Precision (AP) over 13 confidence thresholds, equally
spaced between 0.2 to 0.8. A detection was considered correct if the
Euclidean distance between its centre and the corresponding ground
truth detection was within 5% of the image width; multiple detections
of the same object were removed by non-maximum suppression at
run-time. To provide a single measure of overall detection perfor-
mance, we report the mean of the individual APs retrieved for each
unseen case (mAP).

We chose a centre-based precision definition over the traditional
intersection-over-union (IoU), because differentmethodswere used to
assign bounding boxes across hand- and computer annotated data:
Synthetically generated bounding boxes represent the smallest rec-
tangle which includes all projected 2D key points in the rendered
images; hand-annotated bounding boxes, in turn, are fixed-area,
square bounding boxes, as the custom-written centre tracking tool55

does not report the shape of bounding boxes, and extracts bounding
box centres for ease of use instead. Thus, in our application, the IoU is
secondary to the proximity of bounding box centres.

The AP was computed as defined in the official scikit learn
implementation71: it summarises the precision-recall curve with a sin-
gle weighted mean of the precision at each threshold; the increase in
recall from the previous threshold acts as weight:

AP =
X

n

ðRn � Rn�1ÞPn ð1Þ

mAP=
X

m

APm

m ð2Þ

Here, Pn and Rn are the precision and recall at the nth threshold.
Using decreasing threshold values, the recall Rn−1 at the first threshold
is set to 0; when the threshold is maximal, no detections are returned,
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so that the precision P0(R0) is equal to unity by definition. This calcu-
lation differs fromcomputing the area under the precision-recall curve
with the trapezoidal rule, which relies on linear interpolation, and can
result in inflated performance estimation71.

Five-fold cross validation was performed for all trained networks,
with an 80/20 data split. Due to the similarity of neighbouring frames
from videos recorded with a framerate high compared to the average
individual movement speed, validation based on withheld frames
alone can artificially inflate accuracy. To avoid this inflation, accuracy
was instead assessed by computing the mAP of networks tested only
on images outside the original recording domain.

Tracking
Benchmark data. To evaluate multi-animal tracking performance, we
used the benchmark datasets curated for the detection experiments—
these also provide individual identities across frames due to the
annotationwith the BlenderMotionExportAdd-on55. For the laboratory
dataset, we used the annotated “base”, “dark”, “bright”, and “noisy”
videos, which include between 63 and 103 ant workers. For the field
dataset, we use the annotated recording of 49 Gnathamitermes sp.

Synthetic dataset generation and automated tracking. In principle,
sufficiently precise detectors can be used to build simple yet robust
and performant detection-based trackers. By retrieving detections for
eachprocessed frame, a simple buffer-and-recover tracker can be used
to automatically associate detections of adjacent frames to produce
coherent tracks and preserve individual identities across frames. The
best performing detector models for laboratory and field recordings,
trained exclusively on synthetically generated images of A. vollenwei-
deri and Gnathamitermes sp., respectively, were used for detection-
based tracking (see 2). To facilitate tracking, we introduce an open-
source Blender Add-on, OmniTrax56. The best performing YOLO
detectormodelswere imported intoOmniTrax(v0.2.1).OmniTrax then
uses the loaded network to retrieve input detections for each frame,
and to assign detections across frames to specific individuals; tracks
are produced automatically and without further user-intervention (for
further information, refer to the OmniTrax implementation and
ref. 56). For all tracking, we used the default tracker and Kalman filter
settings, a detector input sizeof 1088x 1088, a confidence thresholdof
0.5, and non-maximum suppression of overlapping detections of 0.45.
Detections with bounding boxes smaller than 20 pixels were auto-
matically excluded from track association.

Evaluation. To assess tracker performance, the tracks produced by the
detector networks were compared to the hand-annotated ground
truth of each frame via the Multiple Object Tracking Accuracy
(MOTA)59. Calculating the MOTA requires definition of a maximum
distance dmax between the ground truth detection centres and the
inferred tracks beyond which tracks are no longer considered correct.
We chose a dmax of 50 px at 4k resolution, equivalent to 2% deviation
relative to the frame size. The MOTA is then a combined measure of
three distinct errors: False Negatives (FNt)—no detection was regis-
tered at the location of a ground truth track; False Positives (FPt)—a
detection was registered in the absence of a ground truth track within
dmax; ID switches (IDSt)—the identity of an inferred track does not
correspond to the identity of the ground truth track previously asso-
ciated with the inferred track identity. Provided that the identity of an
object in the ground truth track at some frame (t) is matched with the
identity of an inferred track, we keep track of this correspondence. If,
at a later frame (t + i), the ground truth track is associated with a dif-
ferent inferred track, this occurrence is counted as an ID switch. The
new identity is then considered “correct” for all subsequent frames,
and forms the basis for the identification of any further identity
switches. ID switches thus capture “true” identity switches, but also
changes in identity due to fragmented tracks that were terminated

early and restarted with a new ID. The MOTA is simply the sum of all
FNt, FPt, and IDSt errors, divided by the sum of all detections ŷt in the
ground truth tracks.

MOTA= 1�

P
t
FNt +FPt + IDSt

P
t
ŷt

ð3Þ

A maximum MOTA score of unity thus implies that all instances
have been detected in every frame, were associated with the correct
tracks, and no false positives were produced. Multiple-object tracking
evaluation can also yield falsely identified ID switches, IDSt, due to
correspondence problems of IDs in close proximity. We keep track of
all relevant tracks before and after overlap events, defined as two or
more ground truth tracks closer than dmax, to check whether possible
ID switches are simply the result of changes in distances to the
respective closest ground truth detection, although identities are
retained correctly after the overlap event. Therefore, when assessing
overlapping tracks, track identities are only evaluated before and after
the event, so that incorrectly identified identity switches are sup-
pressed. If, however, the number of detections is underestimated or
overestimated during overlapping events, those occurrences are still
counted towards FNt or FPt, respectively.

Pose-estimation
Benchmark data. Two pose-estimation datasets were procured. Both
datasets used first instar Sungayainexpectata (Zompro 1996) stick
insects as a model species. As Sungaya inexpectata do not fall under
European Directive 63/2010/EU, nor are they considered protected
species under the Convention on International Trade in Endangered
Species (CITES), no specific permits are required. All proposed
experiments are designed to minimise animal suffering and are unli-
kely to cause harm. Recordings from an evenly lit platform served as
representative for controlled laboratory conditions (Fig. 5e); record-
ings from a hand-held phone camera (Fig. 5h) served as approximate
example for serendipitous recordings in the field.

For the platform experiments, walking S. inexpectata were
recorded using a calibrated array of five FLIR blackfly colour cameras
(Blackfly S USB3, Teledyne FLIR LLC, Wilsonville, Oregon, U.S.), each
equippedwith 8mmc-mount lenses (M0828-MPW3 8MM6MPF2.8-16
C-MOUNT, CBC Co., Ltd., Tokyo, Japan). All videos were recorded via
SpinView (v2.7.0.128) at 55 fps, and at the sensors’ native resolution of
2048 px by 1536 px. The cameras were synchronised for simultaneous
capture from five perspectives (top, front right and left, back right and
left), allowing for time-resolved, 3D reconstruction of animal pose via
DeepLabCut20 (DLC) and Anipose72.

The handheld footage was recorded in landscape orientation with
a Huawei P20 (Huawei Technologies Co., Ltd., Shenzhen, China) in
stabilised video mode: S. inexpectata were recorded walking across
cluttered environments (hands, lab benches, PhDdesks, etc.), resulting
in frequent partial occlusions, magnification changes, and uneven
lighting, so creating a more varied pose-estimation dataset. Repre-
sentative frames were extracted from videos using DeepLabCut (DLC)-
internal k-means clustering20. Forty-six key points in 805 and 200
frames for the platform and handheld case, respectively, were subse-
quently hand-annotated using the DLC annotation GUI (see Supple-
mentary Tables 7–9 for additional details regarding dataset splits and
composition).

Synthetic data. We generated a synthetic dataset of 10,000 images at
a resolution of 1500 by 1500 px, based on a 3Dmodel of a first instar S.
inexpectata specimen, generated with the scAnt photogrammetry
workflow51. Generating 10,000 samples took about three hours on a
consumer-grade laptop (6 Core 4 GHz CPU, 16 GB RAM, RTX 2070
Super). We applied 70% scale variation, and enforced hue, brightness,
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contrast, and saturation shifts, to generate 10 separate sub-datasets
containing 1000 samples each, which were combined to form the full
dataset (see Supplementary Table 6 for details).

Network training. DeepLabCut20 version 2.1, built with Tensorflow 2.0
and CUDA 11.2, was used for markerless pose-estimation by way of
example. Other excellent choices such as SLEAP16 or DeepPoseKit17

exists, and are compatible with the provided data parsers. The best
pose-estimation networkmay dependon the use case, and thus should
be chosen by the end-user.

For all experiments,we used aResNet101 backbonepre-trainedon
ImageNet9, with the skeleton configuration and hierarchy as outlined
in the base armature (see Supplementary Fig. 1). All networks were
trained for 800,000 iterationswith a batch size of two; trainedweights
were saved every 50,000 iterations. These parameters were chosen to
prevent excessive overfitting; no further decrease in validation error
was observed after 800,000 iterations in preliminary trials. Networks
pre-trained on synthetic data were then refinedwith a small number of
real frames for an additional 800,000 iterations (see Supplementary
Table 7 for dataset sizes and splits). We used DeepLabCut’s default
training and augmentation parameters,with imagemirroring disabled,
to ensure comparability between the trained networks, rather than
attempting to tailor network and parameter choice to any singular
dataset. All training was performed on a dedicated computational
cluster with compute nodes using 16 CPU cores, 32 GB of RAM, and
single NVIDIA Quadro RTX 6000 GPU. For a full list of trained net-
works, refer to the Supplementary Tables 7–9.

Evaluation. Pose-estimation performance was quantified as the mean
pixel error Δ�y and mean relative percentage error δ�y. The pixel error
reported by DLC, Δy, is the Euclidean distance between the ground
truth annotated key point ŷ coordinate and the inferred key point
coordinate y, averaged across all inferred key points with a sufficient
confidence value; we chose DLC’s default confidence threshold of 0.6.
In order to derive a relative error metric, we determined the body
length l in pixels as the distance between the most distal point on the
head and abdomen for three frames for each ground truth video.
Dividing the mean pixel error Δ�y by this length proxy yields a
resolution-independent measure of pose-estimation performance,
expressed as a percentage via:

δ�y=
100
n

X

n

Δ�yn
l ð4Þ

We performed fivefold cross-validation for all trained networks,
with an 80/20 data split between training and withheld data.

Semantic segmentation
Benchmark data. Semantic and instance segmentation is used only
rarely in non-human animals, partially due to the laborious process of
curating sufficiently large annotated datasets. replicAnt can produce
pixel-perfect segmentation maps with minimal manual effort. In order
to assess the quality of the segmentations inferred by networks trained
with these maps, semi-quantitative verification was conducted using a
set of macro-photographs of Leptoglossus zonatus (Dallas, 1852) and
Leptoglossus phyllopus (Linnaeus, 1767), provided by Prof. Christine
Miller (University of Florida), and Royal Tyler (Bugwood.org; see
Fig. 6d–f). For further qualitative assessment of instance segmenta-
tion, we used laboratory footage, and field photographs of Atta-
vollenweideri provided by Prof. Flavio Roces (Fig. 6g). More extensive
quantitative validation was infeasible, due to the considerable effort
involved in hand-annotating larger datasets on a per-pixel basis.

Synthetic data. We generated two synthetic datasets from a single 3D
scanned Leptoglossus zonatus (Dallas, 1852) specimen: one using the

default pipeline, and one with additional plant assets, spawned by
threededicated scatterers. Theplant assetswere taken from theQuixel
library and include 20 grass and 11 fern and shrub assets. Two dedi-
cated grass scatterers were configured to spawn between 10,000 and
100,000 instances; the fern and shrub scatterer spawned between 500
to 10,000 instances. A total of 10,000 samples were generated for
each sub dataset, leading to a combined dataset comprising 20,000
image render and ID passes. The addition of plant assets was neces-
sary, as many of the macro-photographs also contained truncated
plant stems or similar fragments, which networks trained on the
default data struggled to distinguish from insect body segments. The
ability to simply supplement the asset library underlines one of the
main strengths of replicAnt: training data canbe tailored to specific use
cases with minimal effort.

For an additional qualitative demonstration of instance and
semantic segmentation, we use the image render and ID passes of the
Atta vollenweideri “group” dataset also used for detection (see “Syn-
thetic data generation” and Fig. 2a–c).

Network training. We trained three different semantic segmentation
networks: Mask-R-CNN6, UperNet with SWIN Transformers63, and
PSPNet64. All networks useResNet101 backbones, andwere pre-trained
on ImageNet9. We used the official Matterport implementation of
Mask-R-CNN6. For both PSPNet and UperNet training, we use the
MMSegmentation70 implementation, favoured for its versatility and
comprehensive architecture support. The generated synthetic data
was converted to match the required file format and folder structure
conventions, using separate data parsers for the COCO (Common
Objects in COntext) and MMSegmentation annotations (see GitHub).

In order to leverage Mask-R-CNN’s ability to provide both
semantic and instance segmentations, we use the COCOdata parser to
train a separate Mask-R-CNNmodel with a ResNet101 backbone, using
otherwise identical training parameters and the “group” dataset used
also for detection and tracking (see “Results—Detection”). In all cases,
the segmentation problem is treated as a binary task: class label of zero
or unity are assigned to pixels or polygon areas attributed to the
background or any subject, respectively. All networks were trained for
a total of 160 epochs, and all training and evaluation of was performed
on a desktop workstation with a 14 core CPU, 64 GB of RAM, and a
NVIDIA RTX 2080 Ti GPU with 11 GB of VRAM. The full configuration
and training schedule is provided with the Semantic And Instance
Segmentation Datasets and Trained networks via Zenodo.

Evaluation. To provide an indicative quantitative performancemetric,
we hand-annotated binary masks for the images shown in Fig. 6d, e,
and computed the Average Class-wise Recall (ACR):

ACR=
100
c

Xc

i

Xn

j

ŷj � ðFPi,j + FNi,jÞ
ŷj

ð5Þ

Here, FP is the number of false positives—the number of pixels
falsely attributed to a class; FN is the number of false negatives—the
number of pixels falsely attributed to other classes; and ŷ is the total
number of pixels in the ground truth mask for each class c. The
resulting value is multiplied by 100 to provide a percentage score
which quantifies the fraction of correctly identified pixels.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets, both generated and real, additional documentation
regarding network fitting, and the best performing networks are hos-
ted via Zenodo and are available from: 3D Models https://zenodo.org/
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record/7849059 and DOI: 10.5281/zenodo.7849059; Detection and
Tracking Datasets and Trained networks https://zenodo.org/record/
7849417 and DOI: 10.5281/zenodo.7849417; Pose-Estimation Datasets
and Trained networks https://zenodo.org/record/7849596 and DOI:
10.5281/zenodo.7849596; Semantic And Instance Segmentation Data-
sets and Trained networks https://zenodo.org/record/7849570 and
DOI: 10.5281/zenodo.7849570. Source data are provided with
this paper.

Code availability
All produced code, documentation, and software releases are hosted
via GitHub: https://github.com/evo-biomech/replicAnt. The specific
version used to generate all synthetic data presented in this study is
hosted via Zenodo: https://zenodo.org/record/8378035: DOI: 10.5281/
zenodo.8378035.
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