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Ancestry-specific polygenic risk scores are
risk enhancers for clinical cardiovascular
disease assessments

George B. Busby 1 , Scott Kulm1, Alessandro Bolli1, Jen Kintzle1,
Paolo Di Domenico1 & Giordano Bottà1

Clinical implementation of new prediction models requires evaluation of their
utility in a broad range of intended use populations. Here we develop and
validate ancestry-specific Polygenic Risk Scores (PRSs) for Coronary Artery
Disease (CAD) using 29,389 individuals from diverse cohorts and genetic
ancestry groups. The CAD PRSs outperform published scores with an average
Odds Ratio per StandardDeviation of 1.57 (SD =0.14) and identify between 12%
and 24% of individuals with high genetic risk. Using this risk factor to reclassify
borderline or intermediate 10 year Atherosclerotic Cardiovascular Disease
(ASCVD) risk improves assessments for both CAD (Net Reclassification
Improvement (NRI) = 13.14% (95% CI 9.23–17.06%)) and ASCVD (NRI = 10.70
(95% CI 7.35-14.05)) in an independent cohort of 9,691 individuals. Our ana-
lyses demonstrate that using PRSs as Risk Enhancers improves ASCVD risk
assessments outlining an approach for guidingASCVDpreventionwithgenetic
information.

Atherosclerotic Cardiovascular Diseases (ASCVD) contribute an
increasing burden on healthcare systems and are responsible for 1 in 3
deaths worldwide1. Whether an individual will suffer from ASCVD
depends on the complex interplay between environmental and life-
style exposures such as poor diet and lack of physical activity, phy-
siological components such as high LDL cholesterol and high systolic
blood pressure2 and their genes. Given the high heritablity of ASCVD
(40–60%)3 it is unsurprising that many studies have successfully
uncoveredgenetic contributions fromboth rare pathogenicmutations
in genes such as APOB, LDLR and PCSK9, that can cause hypercholes-
terolemia, and more common genetic variants spread throughout the
genome4–8. Utilizing common genetic variation, Polygenic Risk Scores
(PRSs), have shown promise as tools to quantify genetic risk and
identify significant proportions of the population at high genetic risk
of cardiovascular disease9–12.

However, questions remain about the utility of PRSs in clinical
care. These include doubts and misconceptions about what PRSs are
and how they should be used13, as well as important considerations
about the lack of transferability across populations with divergent
ethnicities and genetic ancestries from those used in their

development14. Historical biases in the collection and analyses of
genomic data have led to an over-representation of individuals of
European genetic ancestry in clinical datasets15, which in turn has led to
a lack of sufficiently diverse data with which to build PRSs. While the
attenuation of PRSs in different populations is expected based on
known differences in allele frequencies and linkage disequilibrium
patterns across global populations16, for PRSs to be utilized clinically
they need to deliver meaningful risk stratification regardless of the
range of genetic ancestries present in the populations in which they
are intended to be used.

Here we describe the development and validation of multi-
ancestry PRSs for CAD using an approach that utilizes multiple
ancestry-specific GWASs17 and diverse PRS discovery, validation, and
testing datasets. The aim of this work is to provide evidence of the
performance of CAD PRSs across diverse ancestries and to demon-
strate how they can be used to enhance clinical ASCVD prevention
tools. Throughout, we use the term genetic ancestry and ancestry
interchangeably to refer to groupings of individuals who are similar to
each other genetically and label these groups using current-day geo-
graphical names that relate to the continents on which most
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individuals belonging to that group currently reside. These labels are
intended to assign individuals to groups based on their genetics alone
and are not social or ethnicity identifiers. We acknowledge that these
labels are imperfect, both because modern human populations rarely
contain ancestry from a single region18, but also because they enforce
the artificial discretisation of continuous human genetic diversity19.
Moreover,when grouping individuals into continental-level ancestries,
as we do here, a large amount of within-group diversity is concealed.
Nevertheless, because genetic variation is shared amongst individuals
with similar genetic ancestry, these approximations help to assess
genetic effects in groups of similar individuals, and are a necessary
tradeoff between optimizing PRSs for a diverse range of populations
and having sufficient data from such groups to validate and test
resulting scores.

Results
We developed 152 PRSs for CAD by applying 38 different combina-
tions of seven separate ancestry-specific GWASs, including a range
of allele frequency filters and finemapped variations (Supplemen-
tary Table 1, Supplementary Figs. 1 and 2 and “Methods”), to the PRS-
CSx tool17 implemented within Allelica’s DISCOVER software. Fine-
mapping is particularly appropriate for this study because it
increases the portability of GWAS signals across populations by
identifying putatively causal as opposed to linked variants, and has
been shown to increase the transferability of PRSs across
ancestries20. We used three publicly available prospective cohorts
comprising clinical ASCVD related covariates and matched genetic
data to validate and test these PRSs: the MultiEthnic Study of
Atherosclerosis (MESA);21 Atherosclerosis Risk in the Community
(ARIC);22 and UK Biobank (UKB)23. These data were harmonized into
a combined dataset of 30,809 cases and 466,860 controls of which
27,158 cases and 440,404 controls were employed in genome wide
association studies and 2931 cases and 26,456 controls were
employed in PRS development (Supplementary Table 2). We infer-
red continent-level genetic ancestry proportions for each individual
and assigned them to genetic ancestry groups on the basis of this
inference (“Methods”). We applied the 152 PRSs to five genetic
ancestry-specific PRS validation datasets, both individually and in
combination as metaPRSs, so that the best performing score in each
genetic ancestry group could be identified (Supplementary Table 3).
To the best of our knowledge, the output of PRS-CSx has never been
previously used to create a metaPRS in this way. These best scores
were then evaluated in independent ancestry-specific testing data-
sets to define a final assessment of their predictive performance
(Fig. 1). When possible, we focused on fixed effects meta-analyses of
the results of two independent cohorts of a single ancestry group.
The predictive performancemeasured by the score’s Odds Ratio per
Standard Deviation (ORxSD) ranged from 1.47 (95% CI 1.08–2.01) in
the American genetic ancestry group to 1.81 (95% CI 1.31–2.50) in the
South Asian genetic ancestry group (Fig. 1a).

To contextualize the performance of the novel multi-ancestry
scores we benchmarked them against three previously published
scores9,10,12. Our multi-ancestry PRSs had a greater ORxSD than pre-
viously published panels across all ancestry groups (Fig. 2 and Sup-
plementary Tables 4 and 5). As an illustrative example, models fit to
predict incident and prevalent cases of CAD in individuals of African
ancestry in the UK Biobank resulted in an ORxSD of 1.37 (95% CI
0.935–2.01) and for individuals in MESA resulted in an ORxSD of 1.79
(95%CI 1.14–2.81). TheORxSD fromameta-analysis of these two results
was 1.53 (95% CI 1.15–2.05), greater than ORxSDs of 1.04 (95% CI
0.79–1.39) from the GPS_CAD PRS, 1.24 (95% CI 0.92–1.67) from the
Allelica_CAD_EUR_2020 PRS and 1.30 (95% CI 0.96–1.76) from the
multiGRS_CAD PRS (Supplementary Table 6). These differences sug-
gest that not utilizing the novel PRSs for future usewould likely lead to
relatively inferior predictions.

As a major aim of this study is to build accurate models across
ancestries it is necessary to test calibration as well as model perfor-
mance. Ourmulti-ancestry PRSs were similarly better calibrated (lower
Brier score) than competing scores for all single ancestry groups
(Supplementary Table 6) as well as in a group of individuals who were
of admixed ancestry and could not be assigned a single ancestry label.
In this group,weused the ancestryweighted sumof the single ancestry
model predictions to compute a Brier score of 0.06085 for all of the
Allelica_CAD_vJ PRSs ("Methods"). The Brier scores computed in an
equivalent process for the GPS_CAD score was 0.06089, Allelica_CA-
D_EUR_2020 PRS was 0.06095 and multiGRS_CAD PRS was 0.06107
(Supplementary Table 6). We hypothesize that this increase in cali-
bration performance compared to all alternative PRSs was due to the
additional information gained from the ancestry-specific effect sizes
present in the multiple GWASs and the use of finemapping to focus
effects towards causal variants. Additional statistics, such as Nagelk-
erke R2 and the Area Under the receiver operator Curve, and models
containing additional sets of covariates, such as age and/or sex alone,
further confirmed that our novel multi-ancestry score performed
better than the alternative scores (Fig. 2, Supplementary Figs. 3 and 4,
and Supplementary Tables 4 and 8).

The Pooled Cohort Equations (PCE)24 are a validated clinical tool
that take multiple risk factors associated with ASCVD to calculate an
individual’s 10-year risk of disease25. The PCE and other related ASCVD
risk prediction algorithms do not currently take genetics into account
despite growing evidence demonstrating both that individuals at
heightened risk of disease can be identified by PRSs, and that these
individuals are largely invisible to clinical risk assessments9–11,26,27.
Current American Heart Association and American Academy of Car-
diology blood lipid management guidelines advocate that for indivi-
duals with borderline (5–7.5%) or intermediate (7.5–20%) 10-year risk
(BIR), additional Risk Enhancers can be used to further refine risk
mitigation discussions between physician and patient, and PRSs have
recently been proposed to aid clinical management of ASCVD in such
discussions25,28 while reducing healthcare costs from a payer’s
perspective29. We therefore sought to assess the potential for the
multi-ancestry PRSs to be used as a discriminatory risk enhancing
factor for CAD by using a twofold increased risk threshold to identify
individuals at high risk of CAD. Similar to the ORxSD, this threshold
carries a range of error that is exacerbated by the size of the sample
analyzed. Nevertheless its point estimate is equivalent to that of well
established risk factors such as family history and some Mendelian-
inherited genetic variants30 as well other risk enhancing factors such as
diabetes and ethnicity which are currently used to upclassify BIR PCE
individuals11,24,31.

In a PCE testing dataset comprising 9691 individuals of diverse
ancestry, we identified ancestry-specific twofold risk thresholds as the
percentile of the PRS distribution at which the risk in the upper tail is
twice the risk of the lower tail ("Methods"). With meta-analyses where
possible, we identified the top 12–24% of individuals of each ancestry
groupwith twofold increased risk compared to the remainder (Fig. 1c, d
and Fig. 2c). We tested the accuracy of these thresholds by applying
them to a unused subset of 6480 admixed individuals from the testing
dataset by constructingunique individual-level thresholds as an average
of the ancestry-specific percentiles weighted by each admixed indivi-
dual’s ancestry proportions ("Methods"). This approach allowed us to
classify admixed individuals whose PRS scores placed them at twofold
increased genetic risk. We then tested whether this binary risk factor
recovered twofold increased risk for CAD for those carrying it with
logistic regression, and confirmed that the thresholds were able to
accurately assign individuals at twofold risk in this group (ORxSD of
1.96; 95% CI 1.42–2.70). In addition to accurately assigning risk in the
independent admixed group, the percentile thresholds also identified a
greater share of individuals than any of the competing PRSs. For
example, the average difference between the twofold threshold found
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with all of theAllelica_CAD_vJ scores and the lowest percentile threshold
of each of the three competing scores (Supplementary Tables 3 and 8)
averaged 7.0% (SD 3.74%). This difference would imply that for every
1000 individuals screened the Allelica scores would identify 70 more
individuals at high risk who would have otherwise been missed.

We used the PCE to classify individuals with BIR of ASCVD and
performed two analyses using the CAD PRS as a risk factor to
reclassify individuals using separate disease endpoints of Coronary
Heart Disease (CHD; N = 9691) and ASCVD (N = 9569). There was no
significant difference in the proportion of individuals in each PCE
risk strata with and without the twofold risk factor (Fig. 1e) indi-
cating that the PCE alone does not capture the increased risk

attributable to the PRS risk factor. Across BIR individuals, 16% had
the twofold PRS risk factor. Among BIR individuals with the twofold
risk factor, there were 64% more CHD events and 47% more ASCVD
events than in those BIR individuals without the PRS risk factor
(Supplementary Tables 10 and 11). Upclassifying BIR individuals on
the basis of the PRS risk factor resulted in a Net Reclassification
Improvement (NRI) of 13.14% (95% CI 9.23–17.06%) when applying
the CAD PRSs as a risk enhancing factor with CHD as an endpoint
(Supplementary Table 9) and 10.70% (7.35–14.05%) when using
ASCVD as the primary endpoint of the analysis (Supplementary
Table 10). We confirmed that the twofold increased risk effect of the
CAD PRSs was present in the PCE testing dataset (OR = 2.03 95% CI

Fig. 1 |Multi-ancestry PRSs for CADpredict risk in diverse ancestries and add to
clinical risk assessments. For five different genetic ancestry groups we show a the
point estimate and 95%CI of theOddsRatio per StandardDeviation (ORxSD) of the
ancestry-specific polygenic risk scores in the UK Biobank and MESA Testing
populations. META describes the results of a meta analysis of the cohort-specific
ORxSDs. Squares denote the reported ORxSD for each ancestry and point size is
proportional to the standard error of theORxSDestimate. Values on the right of the
panel are the reported ORxSD with 95% CI together with the numbers of cases and
controls in the Testing populations.bThe calibration curves of the PRSmodels that
compare each model’s response type predictions to the actual prevalence of dis-
ease. The points show the mean value of each quantity across deciles of the pre-
dictions, vertical error bars show the 95% CI around the mean probability in each
decile, the red line follows the trend of these decile values and the black line shows
perfect calibration; c the Odds Ratio based on the upper tail compared to the
remainder of the distribution and the percentile threshold at which 2× increased
risk ismet;d theproportionof thePRSdistribution at at least twofold increased risk

compared with the remainder; e comparison showing no significant difference
(calculated via one-sided Fisher’s Exact Test) between the proportions of indivi-
duals in each of the PCE risk groups in those with and without PRS as a risk
enhancing factor; f theproportion of individuals in each of the PCE stratawhohada
CHD event during the follow-up time of the prospective cohort that they were
sampled from. We show the proportions for individuals classified into each PCE
group and the total dataset (All) split into individuals with andwithout PRS as a Risk
Enhancing Factor. Horizontal error bars denote the 95% CI around the proportion
of individuals ineach risk group; f is the sameasg except showing theproportionof
individuals in each of the PCE strata who did not have a CHD event during the
follow-up time of the prospective cohort that they were sampled from. Horizontal
error bars denote the 95% CI around the proportion of individuals in each risk
group. Total sample sizes for each group are (cases/controls): AFR / African (51/
1248); AMR / American (50/642); EAS / East Asian (50/1343); EUR / European: (346/
3694); SAS / South Asian (69/471).
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1.49–2.76) even after controlling for other PCE covariates with
logistic regression (Supplementary Tables 11 and 12). Stratifying
CHD cases within each PCE risk strata by the PRS risk factor con-
firmed that individuals with the PRS risk factor had around twice as
many events than those without (Fig. 1f, g). Finally, we assessed the
improvement in classification of integrating the CAD PRSs directly
into the PCE (Supplementary Table 13) and observed a lower but
significant categorical NRI for both CAD (NRI = 4.31%; 95% CI
1.85–6.78) and ASCVD (NRI = 2.90%; 95% CI 0.61–5.18).

Discussion
Here we have demonstrated that validated and calibrated ancestry-
specific PRSs for CAD can be used as a risk factor to better classify an
individiual’s overall risk of ASCVD. Nevertheless, there are several
limitations to this study. First, following best practice32 we developed
and validated PRSs using independent PRS training, validation and
testing cohorts which led to relatively small sample sizes, particularly
for the East Asian and American testing groups. Second, these sample
sizes necessitated the approach of grouping individuals into
continental-level genetic ancestry groups. This is sub-optimal because
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Fig. 2 | Evaluation of the performance of the Allelica CAD multi-ancestry PRSs
against three published PRSs. For each PRS/genetic ancestry combination we
show benchmarking results for the Allelica_CAD_vJ PRSs and three published PRSs
applied to exactly the same testing populations. Total sample sizes of the testing
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EAS / East Asian (50/1343); EUR / European (346/3694); SAS / South Asian (69/471)
and a breakdown per sub-cohort shown in Supplementary Table 15. We assessed

the statistics on the sub-cohorts and, where possible, a meta analysis of the sub-
cohort values. The statistics shown, with horizontal error bars detailing the 95% CI
of these values, are a thepoint estimate of theOddsRatioperStandardDeviation of
the PRSs; b the Area Under the Receiver Operator Curve with 95% CI estimated;
c the threshold percentile of the PRS distribution where 2× risk is achieved;
d Nagelkerke R2; and e the range of the odds at the 2× threshold.
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it masks genetic diversity and structure within continents which may
contribute to differential disease susceptibility within such groups33,34.
We also acknowledge that the individuals present in the non-European
genetic ancestry groups were sampled from individuals currently
residing in Europe and the USA and so the applicability of these multi-
ancestry PRSs to individuals living in Asia and Africa remains to be
tested35. Third, while differences in the predictive performance across
genetic ancestries may be the result of linkage disequilibrium patterns
ormay reflect true differences in genetic architecture theymay also be
affected by multiple other factors, such as age and sex distribution,
disease definitions, sample ascertainment, as well as variation in
environmental risk factors36. Future work that jointly considers the
environmental and genetic effects of ancestry differences on risk
predictions could also provide a potential avenue for further devel-
oping the approaches outlined here. Fourth, we have concentrated on
an analysis of using PRS as a Risk Enhancing Factor for the PCE. While
the applicability of this approach to other risk algorithms requires
further investigation, there is no reason tobelieve that these results are
not generalizable to any ASCVD risk algorithm that uses well estab-
lished clinical risk factors. Alternative approaches, such as integrating
CAD andother PRSs into these riskmodels are alsopossible37, but their
development is contingent on suitably powered testing datasets.
Moreover, if we view PRS as neither a deterministic nor diagnostic test
for ASCVD but as a biomarker equivalent to others currently in use,
then using such information to guide risk discussions has a precedent
in national guidelines with Coronary Artery Calcium scoring, which is
currently available to refine risk estimates for individuals at borderline/
intermediate 10-year ASCVD risk25. It also captures the essence of how
PRS should be used: as one tool among several that can be combined
to understand an individual’s overall risk of ASCVD.

Recent publications have highlighted the lack of diversity in
genetic studies and the poor transferability of polygenic scores
across populations14,35,38. These studies rightly advocate for the
increased collection and analysis of diverse genomes to aid the
clinical application of genomics in healthcare, a mission that we
wholeheartedly support. However, unlike the PRSs described here,
not all clinical tools currently utilized have been validated across all
populations, and this has not precluded their broad use. As an
example, most 10-year ASCVD risk models, including the PCE, have
not yet been clinically validated in individuals of South Asian des-
cent (and have been shown to underpredict risk in such groups39).
While the ultimate aim should always be to develop clinical tools
that work equally well across groups, pragmatism should lead us to
use those tools that can be considered good enough to significantly
enhance preventative efforts to ensure that their utility can be
realized. In the context of this study, this means utilizing indepen-
dently validated ancestry-specific PRSs that are able to identify
individuals with higher genetic risk. These PRSs provide actionable
information that can not be gleaned fromother tests available in the
current standard of care, even if there may be marginal differences
in model performance across groups. We show here that multi-
ancestry CAD PRSs can play a role in risk assessments by reclassi-
fying significant proportions of individuals at increased risk of dis-
ease because of their genetics, but who are invisible and therefore
missed by current ASCVD risk assessments andmay nevertheless go
on to have disease. These PRSs are validated and calibrated on US
populations and given their demonstrated cost-effectiveness29,40 it
is increasingly clear that they satisfy the criteria to be considered a
Risk Enhancing Factor in the management of ASCVD risk.

Methods
Association data
GWAS. We identified three largeGWAS from the literature that did not
include any individuals in the downstream Validation and Testing
datasets that we used to develop multi-ancestry PRS. These were the

CARDIoGRAMplusC4D GWAS41, the Japanese 161k and the Japanese
52k studies42,43. The summary statistics for all of these studies were
downloaded from the GWAS Catalog (Supplementary Table 2).

In the absence of publicly available South Asian and African spe-
cific GWAS summary statistics, we performed GWAS on separate
subsets of individuals from both ancestries in the UK Biobank using
fastGWA44. The South Asian GWAS comprised 932 cases and 4043
controls and the African GWAS comprised 91 cases and 3230 controls.
fastGWA was used due to the computational efficiency of the gen-
eralized linear mixed model (GLMM)-based method that it imple-
ments, which has improved statistical properties when applied to
binary traits. In addition we also performed a secondary GWAS on a
subset of individuals from the UK Biobank with European ancestry
(26,135 cases and 433,131 controls) to generate an additional set of
European-based variant associations.

Finemapping. GWAS provides an estimate of the size and significance
of the associations of alleles and disease at millions of sites across the
genome. Even so, a variant that surpasses a significance thresholdmay
not directly cause the disease of interest but rather only tag the causal
variant by being in linkage disequilibrium (LD) with it. To identify
putatively causal variants, we applied POLYFUN20,45, amethod that uses
ancestry-specific LD scores and additional data on the putative func-
tion of variants across the genome to generate a set of finemapped
summary statistics.We appliedPOLYFUN to theCARDIoGRAMplusC4D
summary statistics together with functional information from Gazal
et al.46 and LD maps provided with the software, with a causal para-
meter of 1 and maintaining all other parameters at their default value.
We only applied finemapping to the CARDIoGRAMplusC4D summary
statistics because it allowed us to introduce functional information
into our investigation with the best chance of utility, owing to the
CARDIoGRAMplusC4D’s great statistical power, without creating too
many, unwieldy modified summary statistics.

The combination of three publicly available GWAS (CARDIo-
GRAMplusC4D, Japanese 161k, Japanese 52k), three self-computed
GWAS (UK Biobank African, UK Biobank South Asian, UK Biobank
European) and one finemapped GWAS (CARDIoGRAMplusC4D, fine-
mapped) resulted in a final list of 7 different sets of summary statistics
for downstream polygenic risk score panel creation (Supplementary
Table 1).

Variant filtering. A series of quality control steps performed by Alle-
lica’s DISCOVER software were applied to each of the GWAS summary
statistics prior to their use in generating PRS. Specifically, we removed
all non-biallelic variants, removed variants with a minor allele fre-
quency (MAF) less thanonepercent (according to the ancestry-specific
1000 Genomes reported allele frequencies47), and removed variants
with duplicated IDs. For variants that underwent finemapping we also
removed all ambiguous variants and those with non-canonical allele
identifiers. For the European GWAS, we generated additional filtered
datasets that only contained the 2 million variants with the lowest P-
values, as well as a filtered set that only contained variants with
MAF >0.00001 (SupplementaryTable 1).We implemented thesefilters
to remove variants whose imbalanced allele counts lead to biased
statistics.

Developing PRS with DISCOVER
Polygenic risk scores are computed as a sum of single variant risk
effects. The variance explained by the resultant score can theoretically
reach the SNP-level of heritability. However, in practice factors, such as
limited sample size, prevent the score from reaching even close to the
heritability limit14,48,49. Determining the variants and the corresponding
effects that create the most accurate polygenic risk score is an area of
active research. We used PRS-CSx17 a Bayesian approach that shrinks
the GWAS computed effects of variants to disentangle the impact of
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linkage disequilibrium while considering multiple ancestral groups, to
build ancestry-specific PRSs for this study.

We implemented PRS-CSx within Allelica’s DISCOVER PRS devel-
opment software. The purpose of the DISCOVER software is to take in
summary statistics and output a panel of variants, alongisde effect
sizes, that can be used to create a polygenic risk score of superior
accuracy. This designmatches the design of other well known genetics
software, like LDPred and PRS-CS. In this specific investigation, within
DISCOVERwecombinedGWAS summary statistics thatweregenerated
from different ancestral groups so that the modified variant effects in
the output would benefit from a diversity of data. Specifically, PRS-CSx
generated a separate PRS panel for each set of GWAS summary sta-
tistics. These PRS panels were combined into a single panel for
downstream validation and testing, by combining the constituent
variant effect sizes across panels using an inverse-variance-weighted
meta-analysis of the panel specific posterior effect sizes. For example,
wemay input the EUR-1 (fromCARDIoGRAMplusC4D), EUR-3 (fromUK
Biobank European) and AFR-1 (from UK Biobank African) GWAS sum-
mary statistics into the DISCOVER software, which are jointly analyzed
and output as three separate PRS panels. These are then ultimately
joined into a single panel of modified variants effects. We used 38
different combinations of multiple input GWAS in this way and named
the resulting panel by the GWAS datasets used to generate it, so in this
example the panel was named EUR-1;EUR-3;AFR-1 (Supplementary
Table 1).

In addition to running PRS-CSx with multiple combinations of
GWAS summary statistics, we also ran PRS-CSx with a range of global
shrinkageparameter values (ϕ).We applied a small rangeofϕ values to
each combination of GWAS summary statistics, (e.g.,ϕ = 1e−6, 1e−4, 1e
−2, 1) to generate multiple panels of variant effect sizes for a single
combination of GWAS summary statistics. This resulted in 152 total
panels of variant effect sizes by applying 38 different combinations of
GWAS summary statistics. Throughout the application of PRS-CSx we
utilized LD panels that were made available in the GitHub repository
https://github.com/getian107/PRScsx.

Applying PRSs to cohort genetic data with PREDICT
For each of the 152 panels of variant effect sizes generated by DIS-
COVER we used Allelica’s PREDICT software to compute individual-
level PRS scores. The purpose of the PREDICT software is to take in a
PRS panel (list of variants, effect alleles and effect sizes) and genotypes
then output a PRS value for each individual who input a genotype. In
other circumstances the PREDICT software can also calculate genetic
risk percentiles and longitudinal risk projections. In this investigation
we applied PREDICT to 12,751 individuals in the UK Biobank (all of
which were not utilized in a previous GWAS), 5748 individuals within
MESA, and 10,888 individuals within ARIC. After each PRS was com-
puted it underwent ancestry adjustment and normalization. Ancestry
adjustment was accomplished following an established approach31

which subtracts the effect of the first four principal components from
the PRS values (as indicated in equations 1 and 2 below). Ancestry
adjustment was performed on the ancestry-specific cohorts sepa-
rately. Normalization resulted in the PRSs having a mean of zero and
standard deviation of one.

adjust model : PRSraw ∼PC1 +PC2+ PC3 +PC4 ð1Þ

PRSadjusted =PRSraw � adjust modelðPC1,PC2,PC3,PC4Þ ð2Þ

PRS validation and testing
Datasets. As described above, we compiled a joint dataset of 29,387
individuals for the purpose of assessing the predictive value of the
PRSs (Supplementary Tables 2 and 3). This joint dataset comprised the

UK Biobank23 (specifically the portion not already utilized for the
GWAS), the MultiEthnic Study of Atherosclerosis21 (MESA) and the
Atherosclerosis Risk in Communities Study22 (ARIC). Details of the
collection of these datasets are detailed in the original publications.
Briefly, the UK Biobank is a large, general purpose, prospective bio-
bank containing approximately 500,000 individuals who were aged
40–69 when they were enrolled from 2006 and 2010. If a UK Biobank
individual met any of the conditions listed in Supplementary Table 14,
we defined the individual as being a CAD case. MESA is a diverse,
moderate sized, atherosclerosis-focused study that contains approxi-
mately 6500 individuals who were aged 45?84 years when they were
enrolled around 2000. If a MESA individual had a physiological event
thatwas recorded asmyocardial infarction, resuscitated cardiac arrest,
definite angina, probable angina or coronary heart disease (CHD)
death we denoted them as being a CAD case. ARIC is a prospective
study of atherosclerosis that contains approximately 15,000 indivi-
duals enrolled from 1987 to 1998 who were aged 35–74 years. If an
ARIC individual reported CAD at baseline or during a follow-up inter-
view then we defined them as being a CAD case. Additional covariates
suchas age, sex, and family history of CADwere directly accessed from
each cohort’s descriptive data.

We applied quality control to each of these three datasets. First,
we removed individuals from the UK Biobank dataset who were out-
liers in heterozygosity, contained putative sex chromosome aneu-
ploidy, corresponded to a genotype missing rate greater than 10% or
had excess relatives. All of these steps follow quality control flags
provided by the UK Biobank23, and have been taken by other
investigators50–52. Second, in both ARIC and MESA we removed indi-
viduals whose (pre-imputation) genotype missing rate was greater
than 10%. Third, the following variant level QC was applied to all three
datasets: variants that had an allele frequency less than 0.01 or a
Hardy–Weinberg Equilibrium p-value less than 1e−50 were removed.
These quality control metrics fall in line with those others have
applied53–55.

Genetic ancestry inference. We inferred the ancestry of every indi-
vidual in the Validation and Testing datasets with iAdmix56 following
default settings and with individuals from the 1000 Genomes47 study
as a referencedataset. For each individualweestimated theproportion
of their genetic ancestry that originated fromeach of the 5 established
One Thousand Genome Project continental-level superpopulations:
African, American, East Asian, European and South Asian (Supple-
mentary Table 15). These individual-level inferred proportions, which
we also call ancestry components, are used in both the validation and
testing of the polygenic risk scores in this investigation. Visualizations
showing the first and second genetic principal component colored by
cohort, reported ethnicity and the genetic ancestry defined above are
provided in Supplementary Fig. 5.

Data organization. We used separate independent Validation and
Testing datasets to assess the performanceof the PRSs acrossdifferent
genetic ancestries (Supplementary Table 3).We split the entirety of the
available data into these independent validation and testing datasets
by following three straightforward guidelines: (1) keep cohorts toge-
ther and (2) achieve at least 50 cases within the testing dataset and 10
cases within the validation dataset for each ancestry group and (3)
maintain ancestry groups that are as homogeneous (non-admixed) as
possible. Additionally, because of different goals corresponding to the
validation and testing datasetswe counted cases and analyzed the data
within eachdifferently. For the validation dataset we fitmodels with all
individuals regardlessof their ancestry,weighting their contribution to
themodel by their iAdmix ancestry component. For the testing dataset
we fit models with only the individuals who belonged to the specific
ancestry group. We followed this procedure in order to have the
greatest statistical power as possible within the validation dataset and
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have accuracy estimates that most faithfully matched the ancestry
label in the testing dataset. As the models fit with validation datasets
considered far more individuals than just those in a single ancestry
group we lowered the number of cases needed for a single ancestry
group. However, to maintain clarity the counts within Supplementary
Table 3 for the validation dataset are based on single ancestry group
thresholds.

We applied data splitting guidelines following the flow chart in
Supplementary Fig. 2. For example, when considering the African
ancestry group we counted 336 cases when placing the ARIC cohort in
the validation dataset and 51 cases when placing the UK Biobank and
MESA cohorts in the testing dataset. Another example, when con-
sidering the South Asian cohort nearly all of the cases were held in a
single cohort, the UK Biobank. However, we could split this single
cohort evenly and reach our guideline of having 50 cases in the testing
dataset and 10 cases in the validation dataset. A final example, when
considering the American ancestry group, no single cohort could be
split evenly to reach the testing and validation dataset case quotas.
Even when putting all of one cohort’s cases in the testing dataset and
splitting the other cohort cases across testing and validation datasets
wewere still unable to reach the casequotas.We therefore lowered the
iAdmix ancestry component threshold used to count cases to 50%, and
were then able to satisfy the case quotas.

The limited number of cases and controls within non-European
ancestry groups increased the chance of generating an anomalous
result. We attempted to prevent this by carefully constructing entirely
independent validation and testing datasets, applying cross-validation
repeatedly within the validation dataset (as will be described in the
next section) and ultimately reporting the confidence intervals of all
statistics generated from the testing dataset after appropriate control
for multiple testing. The only way for us, and many others who have
presented similar sample sizes in comparable genetic-based
investigations57–59, to achieve an exceedingly large sample size would
be to limit the investigation to individuals of European ancestry, a
move that would only increase the current inequity in healthcare.

PRS validation. Within each ancestry group of the validation dataset
we aimed to identify a best performing PRS that could be evaluated in
the testing dataset. We began with 152 PRS values for each individual.
Each PRS value was generated from an unique mix of component
GWASs and computational parameters as outline above. Following
previous work60,61 we theorized that rather than selecting a single PRS
value for an individual it might be advantageous to form a single
ensemble or meta PRS value. Our motivation was that each different
combination of component GWASs and computational parameters
captures a different aspect of the true underlying genetic architecture.
For example, with one parameterization we may highlight rare high
effect variants, in the same way that the clumping method might,
whereas in another parameterizationwemay evenly weight thousands
of marginally relevant variants, in the same way that the LDpred
method might. By allowing the data, in a [meta PRS] cross-validation
procedure, to determinewhich constituent PRSs from those generated
assuming a range of genetic architectures, or methodological philo-
sophies, best explain the data we may achieve the best possible risk
predictions. This approach has been used by multiple previous
publications61–63. However, we can not rule out that more predictive
PRSpanelsmay be generatedwith theuseof additionalmethodologies
in the future.

To form this meta PRS we applied elastic net logistic regression
within a repeated cross-validation framework. Across 10 repeats
and 10 folds we split the validation dataset into training and testing
partitions. In both partitions the model included independent
variables of age, sex, the top four genetic principal components,
family history of CAD, cohort and all 152 polygenic risk scores.
Specifically, on the training partition we determined the optimal λ

value of the elastic net logistic regression and on the testing parti-
tion we fit an elastic net logistic regression model with the pre-
viously determined λ value. From this model fit to the testing
partition we measured the coefficients of the polygenic risk score
terms. At the end of the repeated, cross-validation process we
generated 100 coefficients for each of the 152 PRSs, with each
coefficient representing how salient or important the PRS was to the
determination of the CAD case status. The average of the 100
coefficients became the final PRS weight used in the calculation of
the meta PRS. The elastic net logistic regression was accomplished
with glmnet and cv.glmnet functions from the elasticnet package
within R. The repeated cross-validation process was organized with
the trainControl function of the caret package within R.

While several other groups have either created metaPRSs by
forming a weighted average of individual, predictive PRSs, or applied
PRS-CSx upon a variety of multi-ancestry GWAS summary statistics, to
the best of our knowledge no one else has previously combined both
methodologies together. By doing so here, we present a novel way to
generate a potentially maximally predictive PRS.

As described previously, to utilize the maximum amount of
genetic information as possible (and thereby increase statistical
power) we weighted the individuals in the glmnet models by their
ancestry component. For example, when forming an African ancestry-
specificmeta PRSwewould set theweights term in themodel function
call to the African ancestry component. We were then able to extend
the number of individuals included in themodel from those in just the
ancestry group of the validation dataset to everyone in any ancestry-
specific group of validation dataset.

Despite increasing the number of individuals within the meta PRS
process,we found that themetaPRS could generate very uncertain risk
predictions. To specify the degree of uncertainty, within each of the
100 total folds of the meta PRS generation process we formed a meta
PRS from the coefficients estimated for the 152 PRS terms within that
fold. We then regressed the scaled meta PRS against the phenotype
and adjusted for the non PRS covariates of the glmnetmodel and lastly
recorded the standard error of the meta PRS term. At the end of the
meta PRS generationprocesswe thenhad 100 standarderror terms for
each ancestry group.Wedecided that if themean of the standard error
terms was greater than 1 the meta PRS could not be relied upon as a
precise risk predictor. To find an alternative PRS to apply within the
testing dataset we utilized a bootstrapping procedure which sub-
sampled the validation dataset, with replacement, 1000 times and fit a
model for each of the 152 PRSs in each subsample. The PRS with the
greatest average ORxSD was chosen as the single PRS to use for that
ancestry group within the testing dataset.

All models computed upon the validation data included the cov-
ariates of the 152 PRSs, age, sex, top four genetic principal compo-
nents, family history of CAD and cohort. Each of these covariates was
normalized to a mean of zero and standard deviation of one. Any
missing values were mean imputed. Each model was weighted by the
iAdmix ancestry component corresponding to the group of individuals
currently under analysis. Additionally, each PRS was ancestry adjusted
by predictions made from a model fit to the top ten genetic principal
components. This ancestry adjustment process is equivalent to that
introduced by Hao et al.31, and provides an additional means of cor-
recting for fine-scale ancestry confounding of the polygenic risk
scores. The average coefficients resulting from this process, which
were then used to calculate the meta PRS, are provided within Sup-
plementary Table 6 for all scores.

PRS testing. Within each ancestry group of the testing dataset we
aimed to fairly measure the discriminative ability of the polygenic risk
scorederivedwithin the validation dataset.Within eachof the finalized
ancestry groups of the testing dataset we created the meta PRS score
by combining the rawPRSvalueswith eachof theweights derived from
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the validation process. However, before combining the weights with
the testing dataset PRSs, we first performed ancestry adjustment and
normalization, following the same series of steps applied within the
validation dataset. Alternatively, for ancestry groups that were not
amenable to themetaPRS process we directly identified the PRSwhich
performed best in a validation dataset bootstrapping process to serve
as the ancestry-specific PRS in the testing dataset. We repeated this
process for each set of ancestry-specific group for all individuals in the
testing dataset. Therefore, each individual in the testing dataset had
five, ancestry-specific polygenic risk scores.

These testing dataset ancestry-specific polygenic-risk scores were
derived in the entirely independent validation datasets, meaning that
any score that worked well in the validation dataset just by chance
would almost certainly not also work well in the testing dataset. Fur-
thermore, formost of the ancestry groupsweutilized not just different
individuals, but individuals from different cohorts between the vali-
dation and testing datasets, reducing the chance that some cohort-
specific confoundingmay limit the ability of our scores to performwell
in other cohorts in the future.

Next, within each cohort of each ancestry-specific group we
formed a logistic regression model of the corresponding ancestry-
specific PRS against CAD disease status adjusted for age, sex, top four
genetic principal components, and family history. All of the adjusting
covariates were normalized to a mean of zero and standard deviation
of one. Following other authors, we utilized the top four genetic
principal components when using these covariates in different
analyses64–67. Furthermore, we conducted some sensitivity analyses
and found that four genetic principal components were sufficient to
predict the genetic ancestry assignments, within ten fold cross vali-
dation of the testing dataset, with an accuracy of 99%. The plots of all
four genetic principal components graphically how certain combina-
tions of components well split genetic ancestries (Supplemen-
tary Fig. 6).

The exponentiated coefficient of the PRS term in the model
became the reported Odds Ratio per Standard Deviation (ORxSD). We
also calculated the Brier score, Area Under the receiver operator
Curve, NagelkereR2 and threshold atwhich aportionof the samplewas
at a certainmultiple of odds compared to the remainder of the sample.
When multiple cohorts were available for a single ancestry group
(Africans, East Asians and Europeans) we performed a fixed effects
meta-analysis with themeta packagewithin theR computing language.
We chiefly analyze the results of thismeta-analysis, and not the results
of the component cohorts, for these ancestry groups where a meta-
analysis was conducted (Supplementary Table 16).

Individuals who we were unable to assign a single ancestry
group, because they did not meet the iAdmix cut-off value of any
group, were placed within a group we considered to be of admixed
individuals. For these individuals we calculated an ancestry weigh-
ted PRS. This ancestry weighted PRS is a sum of the product
between an individual’s ancestry-specific PRS and the log(ORxSD) of
that PRS measured within the corresponding single ancestry group
and the corresponding ancestry component68. So if an individual
was determined to be admixed with 20% European and 80% African
ancestry their weighted PRS would be 0.2 of their European specific
PRS value multiplied by log(1.56) plus 0.8 of their African specific
PRS value multiplied by log(1.53). We additionally performed
ancestry adjustment and normalization upon this weighted PRS
within each ancestry group. For each ancestry group we thereby
generated an admixture-aware PRS with a mean of zero and stan-
dard deviation of one. We then applied each of the models fit upon
the single ancestry groups to the group of individuals with admixed
ancestry to form a set of ancestry-specific predictions. Although, in
this prediction calculation, the standard PRS was replaced with the
weighted PRS. We additionally summed the ancestry prediction
weighted by each individual’s ancestry component to form a final,

single set of predictions. The logistic transformed predictions were
compared to the true disease status of the individuals to calculate
brier scores.

Estimating the proportion of a population at twofold risk. An addi-
tional statistic that measures the discriminative ability of a polygenic
risk score is the odds against the remainder. The odds against the
remainder is calculated by splitting a group of individuals according to
whether their polygenic risk score is above or below a given threshold
value, then calculating the odds ratio of disease of the high risk group
against the low risk group. This type of odds ratio is often calculated at
a specific quantile of the polygenic risk score within the group of
individuals. Alternatively, we can work backwards and attempt to
measure the quantile that achieves a specific odds against the
remainder. And just as the odds ratio has a corresponding error range,
the quantile value also has an error range. The single, point estimate of
the quantile value is not the absolute two fold threshold but rather the
best guesswithin a range of likely values. This idea builds uponAragam
et al.11, who estimated the odds ratio conferred by being in the top
quintile against the remainder of the distribution.

Just as ameasured odds ratio is only relevant to the polygenic risk
score it was computed from, the threshold is only relevant to a specific
polygenic risk score applied to a specific testing population. There-
fore, if the metaPRS panel we developed for a specific ancestry group
generates a threshold of 80%, then only a PRS value calculated from
the same panel upon the same ancestry group can be used with this
80% threshold.

The relatively small samples available to us made it unfeasible for
us to calculate the odds threshold directly. Rather, we utilized a
bootstrapping process which repeatedly sampled with replacement
from an ancestry group within the testing dataset. With this boot-
strapped sample we measured the odds against the remainder at a
range of quantile values. Where possible (the African, East Asian and
European ancestry groups) the final odds against the remainder value
was calculated with a fixed effects meta-analysis (specifically with the
metabin function of the meta package within the R computing lan-
guage). After the bootstrap process we had a sample of odds against
the remainder values at a variety of polygenic risk score quantiles. We
were then able to fit a trend to the data and determine the exact
polygenic risk score quantile at which the trend surpassed the desired
odds against the remainder. In this fashion we computed the value
recorded as the 2X threshold percentile.

Estimating 10-year ASCVD risk with the Pooled Cohort Equations.
To estimate 10-year clinical risk using the Pooled Cohort Equations
(PCE) we extracted and recoded information about clinical covariates
from data available in the UK Biobank and MESA cohorts. This inclu-
ded: age, sex, smoking, LDL, HDL and total cholesterol, treated and
untreated systolic blood pressure, diabetes status, family history of
heart disease, CAD outcome.

Individuals within the Testing cohort were combined and fil-
tered for adherence with 2018 American College of Cardiology
(ACC)/American Heart Association (AHA) guidelines using the fol-
lowing Inclusion criteria: LDL comprised between 70 and lower than
190 mg/dL; Age at baseline comprised between 40 and 75; No Dia-
betes status at Baseline; No LDL-lowering medications at baseline;
No missing values at any PCE variables. Re-calibrated 10-year risk
was calculated for the PCE testing dataset as per Elliot et al.69. We
estimated the baseline survival function in the PCE testing dataset
through a Cox regression proportional hazard model (with PCE risk
factors as control covariates) and combined it with published PCE
Hazard Ratio values.

Comparison of risk category frequencies (Low, Borderline, Inter-
mediate, and High 10-year PCE risk) between Not elevated and High
genetic risk (genetic risk lower or equal/higher than twofold,
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respectively) was assessed and no significant difference between risk
frequencies in Low and High PRS groups was found (one-way χ2 test; P
= 0.983).

Finally, we performed separate confirmatory analyses using
logistic regression of CHD and ASCVD as outcomes in the full PCE
dataset recomputing the effect sizes (odds ratios) for all PCE covariates
(age, sex, smoking, LDL, HDL and total cholesterol, treated and
untreated systolic blood pressure, diabetes status, family history of
heart disease) and a binary indicator variable denoting high CAD PRS
(>2X threshold).

IntegratingCADPRS into the PCE. We used Allelica’s INTEGRATEpce
tool to assess the effect of integrating our ancestry-specific PRSs
into the PCE model. The INTEGRATEpce software generally com-
bines genetic risk predictions with non-genetic risk factors (such as
cholesterol and medication status) in order to form a single, inte-
grated disease risk prediction. In this investigation, we incorpo-
rated PRS-specific weights as the logarithm of the PRS hazard ratio
(i.e. Log(HR)) with clinical risk weighted from the PCE model to
output a single 10-year risk value. HRs for the PRSs were calculated
in a Cox proportional hazards regression, with time of follow-up
time variable and CAD as outcome. Cox regression was adjusted for
age and first four Principal Components of ancestry, and used CAD
as clinical outcome and time of follow-up as time variable. Cox
regression was performed in the PCE testing dataset (N = 9114) and
because separate HRs are available for sex and ethnicity, we strati-
fied by sex and self-reported ethnicity (African Americans and non-
African Americans). Of note, the African American group comprised
all individuals with African major genetic ancestry fraction, while
the non-African Americans comprised individuals with European,
South American, East-, and South-Asian major genetic ancestry
fractions. As before, we analyzed the Net Reclassification
Improvement (NRI) of PRS, considering two NRI measures: cate-
gorical NRI (calculated for a risk threshold of 20%) and continuous
NRI (Supplementary Table 13).

Computational considerations
We analyzed the PRS with the coding languages R and Python. With
each of these languages multiple packages/libraries were utilized.
These packages/libraries are listed within Supplementary Table 17.
Finally, as we have utilized multiple abbreviations within this text we
have compiled a glossary within Supplementary Table 18 for easier
reading.

Statistical considerations
When not otherwise noted the ranges around a point statistic are 95%
confidence intervals. P-value significance thresholds were obtained
after Bonferonni Correction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The UK Biobank is available to qualified researchers through https://
www.ukbiobank.ac.uk/enable-your-research/apply-for-access. Both
the MESA and ARIC datasets are freely available through dbGaP with
accession codes phs000209.v2.p1 and phs000280.v3.p1, respectively.
The 1000 Genomes dataset is freely available from multiple sources,
including https://www.internationalgenome.org/. The polygenic risk
scores described in this study are available under restricted access for
non-commercial research use and can be obtained upon written
request detailing their proposed use to the corresponding authors
(giordano@allelica.com/george@allelica.com).
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