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NIPMAP: niche-phenotype mapping of mul-
tiplex histology data by community ecology
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Advances inmultiplex histology allow surveyingmillions of cells, dozens of cell
types, and up to thousands of phenotypes within the spatial context of tissue
sections. This leads to a combinatorial challenge in (a) summarizing the cel-
lular and phenotypic architecture of tissues and (b) identifying phenotypes
with interesting spatial architecture. To address this, we combine ideas from
community ecology and machine learning into niche-phenotype mapping
(NIPMAP). NIPMAP takes advantage of geometric constraints on local cellular
composition imposed by the niche structure of tissues in order to auto-
matically segment tissue sections into niches and their interfaces. Projecting
phenotypes on niches and their interfaces identifies previously-reported and
previously-unreported spatially-driven phenotypes, concisely summarizes the
phenotypic architecture of tissues, and reveals fundamental properties of
tissue architecture. NIPMAP is applicable to both protein and RNA multiplex
histology of healthy and diseased tissue. An open-source R/Python package
implements NIPMAP.

The function of healthy tissues and their disruption in diseasedepends
on the cooperationbetween cells of different types: hepatocytes in the
liver, neurons in the nervous system, immune cells, endothelial cells,
fibroblasts, and more1.

To carry out their functions, cells adopt different phenotypes
such as activated or quiescent, adhesive or motile, proliferative or
senescent2. According to the histological principle of functional
zonation, cell types, and their phenotypes organize spatially to facil-
itate tissue function3. For example, in the liver, hepatocytes perform
different functions depending on their position along an artery-vein
axis3. In the lymph node, B cells need to relocalize from the B-cell zone
to T-cell zone to potentiate antibody-mediated immunity4.

The disruption of this organization can directly contribute to
disease progression and guide clinical decisions. For example, dis-
ruption of pancreatic islet architecture through influx of T cells cor-
relates with the onset of type 1 diabetes5. In cancer, tumors can be
stratified by the density and distribution of cytotoxic T cells6: tumors
with dense and uniform T cell infiltration respond best to immune
checkpoint inhibitors whereas tumors in which T cells are segregated

away from cancer cells show poorer response6. Thus, tissue biology
and medicine can benefit from characterizing the spatial organization
of cell types and their phenotypes in tissues.

In revealing the spatial organization of cells and their phenotypes
in tissues, classical techniques such as histology and immuno-
fluorescence imaging are limited to a handful of molecular markers.
But in recent years, advances in mass spectrometry such as Multi-
plexed Ion Beam Imaging (MIBI)7 and Imaging CyTOF8,9 have allowed
the quantification of dozens of protein and non-protein markers with
single-cell resolution. Doing so has also become feasible by multiplex
immunofluorescence microscopy thanks to protein-based methods
such as t-CycIF10, 4i11, Codex12 as well as RNA-based methods such as
MERFISH13 and in situ sequencing14,15. After image processing and cell
segmentation, multiplex histology produces rich data in the form of a
cell-by-feature table, where features represent the cells’ 2D position in
the sample, their types, and quantification of dozens to thousands of
molecular markers (Supplementary Fig. 1). Markers are typically cho-
sen to identify the type of cells—hepatocytes, neurons, immune,
endothelial cells,—and their phenotype.
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The recent increase in the number of cell types and phenotypes
that can be surveyed in tissue sections leads to a combinatorial chal-
lenge in interpreting the data. For example, visualizing the spatial
architecture of cellular phenotypes in a multiplex histology dataset of
15 cell types with 15 phenotypic markers in 40 samples requires sur-
veying 9000 images (15 cell types × 15 markers × 40 samples), each
with 10,000 to 1,000,000 cells depending on the imaging technology.

Identifying spatial phenotypic interactions—for example, what
cancer phenotypes associate with local suppression of anti-cancer
immune activity—is even more daunting: co-visualizing all possible
pairs of 15 phenotypes for 15 cell types produces 50,000 images (15 cell
types × 15 markers to the square) from a single tissue section. An
additional layer of complexity is that phenotypes may only interact in
specific tissue regions, or at the interface between specific histological
niches. To address these combinatorial challenges, a systematic
approach is needed to summarize the cellular and phenotypic archi-
tecture of tissues and identify its most salient features.

Tissues are structured into histological niches16. Within each
niche, each cell type has a specific density, defined as the abundanceof
cells of that type per surface area of the niche. The niche recurs over
the tissue section so that a limited number of niches is sufficient to
capture the tissue’s cellular architecture, by piecing niches together. In
this view, interpreting the tissue architecture frommultiplex histology
data consists in (a) identifying histological niches and (b) segmenting
the image into these niches (Fig. 1a).

To automatically identify histological niches, one can determine the
local cellular composition at numerous sampling sites—defined as cells
found within tissue areas of a given size—across a tissue section. Alter-
natively, sampling sites can be groups of contiguous cells, identified by
graph-based community methods17. The histological niches of the tissue
are then revealed as clusters of sites with similar cellular composition17,18.

While the clustering approach has found numerous successful
applications in interpreting multiplex histology data so far17,18,

interpreting the data can benefit from ideas from the field of com-
munity ecology, a field with a long history of uncovering spatial
patterns19,20.

Community ecology studies how different species—the ecological
analog to our cell types—co-habit in different spatial niches—our his-
tological niches. Within each niche, sites are selected and fieldwork is
performed toquantify the species composition at these sites, similar to
how multiplex histology surveys cellular composition across a tissue
section.

Up until the 1950s, sites and species were then clustered to reveal
the organization of species in the different niches (clusters of sites on
Fig. 1b). But since thework of Goodall19, sites are scattered on axes that
represent cellular compositionusingmathematical procedures such as
principal components analysis (PCA), so that the proximity of sites
reflects the similarity of their cellular composition. Positioning sites on
axes of cellular composition allows examining if clustering sites is
justified. In the eventuality that sites do not form clusters, the revealed
structure of sites can suggest interpretations that better suit the data
than clusters (Fig. 1c).

Applying the community ecology approach tomultiplex histology
data reveals a caveat of clustering sites to identify niches. Sites will
form clusters of cellular composition if histological niches occupy
distinct areas of the tissue with few interfaces, so that sites belong to
only one niche (Fig. 1b). But, when niches colocalize and form larger
interfaces, many sites lie at the interface of niches. Because the cellular
composition of these sites is a mix (a weighted average) of the corre-
sponding niches, no clear clusters can be distinguished by scattering
the cellular composition of sites (Fig. 1c).

Instead, in the case of a two-niche tissue, sites describe a segment
in cellular composition space. At each extremity of the segment, we
find sites located in the core of the corresponding niche (Fig. 1c). Sites
located at the interface between two niches fall in the middle of the
segment.

Fig. 1 | Ideas from community ecology can complement clustering-based
approaches in interpretingmultiplexhistology data. a–cClustering can identify
the cellular and phenotypic architecture of tissues from multiplex histology data
but can misinterpret the niche-interface structure of tissues. a To segment histo-
logical sections into niches, local cellular composition is surveyed at multiple
sampling sites. Sites with similar cellular composition are clustered, and each
cluster is interpreted as a histological niche. b–c Local cellular composition does
not necessarily formclusters.b In tissueswith little interface, sitesmainly fall within
a certain niche, and their cellular composition thus clusters by niche. cWhenniches
feature large interface regions, sites often cover more than a single niche so that
site cellular composition is amixof the twoniches. Consequently, in the caseof two

niches, the cellular composition of sites describes a linear segment. Sites from the
core region of a given niche are found at the extremities of the segment while sites
in the middle of the segment represent interface regions. d Niche-phenotype
mappinguses ideas fromcommunity ecology to automatically segment tissues into
niches and their interfaces. For instance, the breast cancer tissue section illustrated
here segments into a cancer niche and an inflammatory niche, separated by a
cancer-inflammatory interface (1). Based on this segmentation, the phenotypic
architecture of the tissue is summarized in terms of the cell types—tumor, mac-
rophage, ...—and phenotypes—CD45RO+, IDO+, ...—associated with different niches
and their interfaces (2). Finally, the strongest niche-phenotype associations iden-
tified in this way are highlighted to support formulating novel hypotheses (3).
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The notion that the local cellular composition of tissues does not
necessarily form clusters of cellular composition can help interpret
multiplex histology data in two ways. First, when sites do not form
clusters, many clusters can be needed to describe tissue architecture,
potentially leading to an inflation of clusters of unclear histological
significance that over-complicate our view of tissue architecture with
little scientific benefit. Interpreting local cellular composition as a
continuum defined by a parsimonious number of niches can help
address this.

Second, interfaces between niches are of interest to interpret
tissue dynamics, for example, how tumor progression associates with
the biology of the cancer immune interface6. Yet, existing approaches
to finding interface regions require parameter tuning to specify their
cellular compositionor the local image properties of interfaces, a time-
consuming and potentially subjective process21–23. Recognizing that
sites that fall in the middle of the segment represent interface regions
can identify interfaces automatically.

Here, we implement the community ecology approach for niche-
phenotype mapping (NIPMAP, https://github.com/jhausserlab/
NIPMAP) of multiplex histology data (Fig. 1d). Applying NIPMAP to
protein and RNA multiplex histology of healthy and pathological
tissues reveals unexpected geometry in the cellular composition of
sites: sites do not form clusters of cellular composition but instead

fall on simplexes, the geometric generalization of triangles or trian-
gular pyramids to arbitrary dimensions. These simplexes are auto-
matically identified using algorithms from satellite image analysis to
explain spatial variation in the cellular composition of tissues in
terms of histological niches and their interfaces. Projecting cellular
phenotypes onto niches and their interfaces reveals known and novel
spatial phenotypes, and concisely summarizes how these pheno-
types associate with niches and their interfaces (Fig. 1d). Finally,
analyzing the niche-interface architecture of tissues uncovered by
NIPMAP reveals that (a) spatial context is a stronger determinant of
phenotype than cell-autonomous effects, and (b) both niches and
their interfaces structure the cellular and phenotypic architecture of
tissues (Fig. 1d).

Results
Community ecology niches offer a concise and accurate frame-
work to interpret the cellular architecture of tissues
We illustrate the community ecology approach in amultiplex histology
dataset of 17 cell types in 40 triple-negative breast tumor samples
(Fig. 2a, Supplementary Fig. 1, Methods) from Keren et al.21.

We determined the cellular composition—the number of cells of
each type per unit area (Methods)—of 4000 sites: 100 sites per tumor
sample in each of our 40 tumor sections.
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Fig. 2 | Community ecology-inspired niches offer a quantitative framework to
interpret cellular tissue architecture from multiplex histology data. a MIBI
identifies the position and the type of cells in tumor sections. Shown is sample 5
from Keren et al. b Co-variance structure emerges when considering the cellular
composition of sampling sites 25μm in size or larger. c Representing the cellular
composition of sites on three axes (PCs) reveals that site cellular composition does
not form clusters but instead describes a continuum constrained by a 3D simplex.
P-value: t-ratio test, n = 4000 sampling sites, one-sided. d The finding that site
cellular composition is constrained by a 3D simplex suggests a view of tumor
architecture in which local cellular composition is a weighted average of four his-
tological niches, the endpoints of the simplex. Sites located close to an endpoint
localize at the core of the niche while sites at the interface between niches fall on
the edges of the simplex. eColoring tissue sections according to the local weight of
the four niches segments tissue sections into niches. Spatial variations in local

cellular composition can be interpreted as space-dependent changes in the
weight of the four niches. Colors: local niche weight, as in c–d. f Cells located at
interface regions—here the inflammation × cancer interface—are automatically
identified as cells where the product of the weights of the inflammation and
cancer niches is high. g The cellular composition of each niche has a histo-
pathological interpretation: cancer, fibrotic/necrotic, inflammatory, and tertiary
lymphoid structure (TLS). h Community ecology-inspired niches capture tissue
cellular architecture more concisely than clustering-based niches. i. Community
ecology-inspired niches can address artifacts of clustering-based niches. j. The
same four niches explain both intra-tumor- and inter-patient-variation in the
cellular composition of tumors. k Niches generalize across breast cancer types
and explain inter-patient variation in the macroscopic cellular composition of
tumors. DC dendritic cell, Neu neutrophil, Mono monocyte, NK natural killer.
Source data are provided as a Source Data file.
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Sites are points positioned on axes that represent cellular com-
position. Because there are 17 cell types, 17 axes (dimensions) are
needed in principle. This creates a representation challenge as human
intuition is limited to 3 dimensions. However, two principles decrease
the number of axes required to interpret tissue architecture. First, the
abundance of certain cell types varies little across sites and thus con-
tributes little to tissue architecture so that the corresponding axes can
be neglected. Second, the abundance of cell types can correlate across
sites—for example, because the cells cooperate in performing a tissue
function—so that these cell types can be grouped into a single axis. The
axes that optimally capture site cellular composition can be determined
automatically by PCA, following the community ecology approach.

To interpret tissue architecture, it is important to set the radius of
sampling sites to an appropriate size. Sites need to be large enough to
capture local coordination in cellular composition and small enough to
avoid blurring this coordination across different niches. To determine
an appropriate radius, local coordination was quantified by the number
of axes—principal components (PCs)—needed to capture spatial varia-
tion in cellular composition. When sampling sites are too small, they
cover only one cell at a time: there is little covariance in the cellular
composition of sites, and many axes (PCs) are thus needed to capture
the cellular composition of sites. Increasing the radius of sites to
include neighboring cells reveals covariance structures so that a smaller
number of axes (PCs) is sufficient in capturing site cellular composition.

We found that 8 or more PCs are required to capture site cellular
compositionwhen the site radius is smaller than 10μm(~1 cell, Fig. 2b).
When sites have a 25μmradius, three PCs are enough to capture 82%of
the variance in site cellular composition (Fig. 2b, c). A site radius of
25μm implies that cellular coordination emerges at a length scale of
2–4 cells. Increasing the site radius beyond 25μm uncovered little
novel covariance. We thus set the sampling site radius to 25μm.

Scattering sites on three PCs revealed no clear clusters (Fig. 2c).
Instead, sites described a continuum with the shape of a 3D simplex: a
pyramid with a triangular basis. This observation has significance for
interpreting tissue architecture. Any point within a simplex can be
described as a weighted average of the endpoints that define the
simplex (Fig. 2d). Thus, observing that sites are constrained by the
geometry of a 3D simplex implies that local cellular composition of the
tissue is a mix (weighted average) of four histological niches, the
endpoints of the 3D simplex (Fig. 2d). Sites close to endpoints repre-
sent cores within the niches, whereas sites halfway between endpoints
localize at the interface between two niches (Fig. 2d). This interpreta-
tion generalizes the two-niches-and-interface interpretation of con-
tinua of site composition introduced in Fig. 1c tomore than twoniches.

Coloring sites according to their position in the simplex—the
contribution of the four niches to site cellular composition—segments
tissue sections into histological niches (Fig. 2e). In this niche view of
tissue architecture, spatial variation in cellular composition is
explained by a locally varying mix of the four niches (Fig. 2e, Supple-
mentary Fig. 2).

The simplex endpoints—and thus the niches—can be identified
automatically using hyperspectral unmixing algorithms from the field
of satellite imaging24 or by archetype analysis from machine
learning25,26. We used the latter algorithms in the present analysis
(Methods). The statistical significance of fitting a simplex to sites was
quantified using the t-ratio test27,28 (here p <0.001, n = 4000 sampling
sites, one-sided, t-ratio = 1.045 in original data, t-ratio 95% confidence
interval in shuffled data [1.21−1.56]).

To automatically delineate interface regions between any pair of
niches, we note that sites located at the interface between two niches
have high weights for both niches. Thus, multiplying the weights of
these niches specifically produces high scores for sites located at the
interface between the two niches (Fig. 2f). Sorting samples by
increasing the prevalence of tumor-immune interfaces (Methods)
recovered the mixed vs compartmentalized sample classification

proposed by Keren et al. as well as previously reported differences in
the immuno-signaling environment of mixed vs compartmentalized
samples (Supplementary Fig. 3a-b).

Examining the niches’ cellular composition allows us to interpret
the biology of each niche (Fig. 2g). The light blue niche is characterized
by a high density of cancer cells (Supplementary Fig. 4a). The black niche
features mostly macrophages and mesenchymal-like cells at low density
(Fig. 2g) and could thus represent the fibrotic, necrotic niche. In the red
niche, we find amix of CD68+ andMHCII+ macrophages (Supplementary
Fig. 4b), CD8 and CD4-T cells, and natural killer (NK) cells (Fig. 2g). A
regulatory T cell phenotype can be excluded for the CD4-T cells in this
niche as T regulatory cells were assigned their own cell type-based on co-
expression of CD4 and FOXP321 (Supplementary Fig. 4c). This combina-
tion of cell types suggests a type 1 inflammatory regionwhose function is
to trigger anti-cancer immunity4. The pink niche may represent the ter-
tiary lymphoid structure (TLS): we findMHCII+ and CD45RO+ B cells and
CD4-T cells (Fig. 2g, Supplementary Fig. 4d, e). MHCII and CD45RO are
both expressed by B cells activated by antigen recognition29,30.

We note that niches were determined by collecting 100 sites per
sample, so that the total area covered by sites represents 30% of the
image area. Sucha sampling intensity is sufficient to accurately identify
niches while speeding up computations (Supplementary Fig. 5a, b,
Methods).

While the four niches correspond to known histological areas from
breast pathology31, clustering-based niches often find a dozen histolo-
gical niches8,9,18. More clusters potentially allow a more accurate
description of tissue architecture, at the cost of increased complexity.
To determine if increasing the number of niches improves the accuracy
of tissue description, we quantified how accurately different numbers
of clustering- and community ecology-based niches captured site cel-
lular composition (Methods). We find that 4 community ecology-based
niches capture 82% of the inter-site variance in cellular composition
while 4 clustering-based niches capture 58% of the variance (Fig. 2h). To
describe tissue architecture as accurately as 4 community ecology-
based niches, >15 clustering-based niches are needed (Fig. 2h). Thus,
community ecology-inspired histological niches provide an accurate
yet concise description of tissue architecture.

The community ecology approach can also address artifacts of
clustering. For example, sites with similar cellular composition can be
assigned to different clusters (Fig. 2i), and a given cluster can contain
sites both in the niche core and at its interface (Fig. 2i).

Decreasing or increasing the number of niches from 4 niches
down to 2 niches or up to 7 niches causes niches to merge into more
coarse-grained niches or split into increasingly fine-grained sub-niches
(Supplementary Fig. 6a, b). While we used four niches here to balance
accuracy and conciseness, this balance can be tuned by adjusting the
number of the niches up or down to zoom in or out on the complexity
of tissue architecture.

The number of identifiable niches depends on their prevalence
and the amount of available tissue data. A power analysis based on
tissue simulations suggests that a single MIBI image is sufficient to
capture a niche that covers 3% of the tissue area or more (Methods,
Supplementary Fig. 7a, b). The probability of capturing a rare niche
scales as the product of niche prevalence times data size, so that
increasing the amount of data allows identifying rarer niches. For
example, the tissue area of 6 MIBI images allows the identification of
niches that occupy less than 1% of the tissue area (Supplemen-
tary Fig. 7b).

Niches identified by NIPMAP generalize across patients of dif-
ferent breast cancer types and connect the microscopic and
macroscopic levels of tumor architecture
The four niches are shared across tissue sections. Certain tissue sec-
tions make use of all niches (for example patient 35 in Fig. 2j) while
others use only a few niches (patient 4 for example, Fig. 2j).
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The observation that tissue sections from different cancer
patients are composed of the same niches allows for connecting the
microscopic cellular architecture of tumors—revealed by multiplex
histology—with their macroscopic cellular architecture—revealed by
non-spatial methods such as flow cytometry or single-cell mass cyto-
metry. If tumors from different patients are made of the same niches,
inter-patient variation in the macroscopic cellular composition of
tumors is expected to fall on a simplex whose endpoints represent the
four niches (Methods, Supplementary Note 1).

To test this prediction, we compared the macroscopic cellular
composition of 128 breast tumors measured by CyTOF32 with the
microscopic niches found in the multiplex histology data of 40 triple-
negative tumors from Keren et al.21. The macroscopic data of Wagner
et al.32 represents dissociated samples with a volume of 100mm3, 7
orders of magnitude larger than the microscopic sampling sites we
employed in analyzing the data from Keren et al.21

((25μm)3 = 1.6 × 10−5mm3). The data fromWagner et al.32 also originates
fromdifferent breast cancer types—ER+, PR+,Her2+, and triple-negative:
this allows testing if microscopic niches identified in the triple-negative
breast tumors of Keren et al.21 generalize across breast cancer types.

As predicted, inter-patient variation in macroscopic cellular
composition falls on a low-dimensional simplex bound by the four
microscopic niches (Fig. 2k). Cancer and fibrotic niches occupy their
own corner of the simplex, as expected. Unexpectedly, the TLS and
inflammatory niches share the same corner despite having different
cellular compositions (Fig. 2g). This is because the prevalence of the
TLS and inflammatory niches is macroscopically coupled in tumors
(Supplementary Note 2). The four niches also explain why certain
combinations of cell types are found in tumors and why others can
never be observed (Supplementary Note 3).

In summary, community ecology-based histological niches
emerge from the local cellular composition of tissues at a length scale
of 2–4 cells. Niches can be identified automatically by algorithms from
satellite image analysis and machine learning. They have a clear histo-
pathological interpretation and provide a concise yet accurate
description of tumor architecture that generalizes across patients,
tumor types, and the microscopic-macroscopic levels of tumor archi-
tecture. This suggests that community ecology-based niches can pro-
vide an objective foundation to interpret tissue architecture.

Niche-phenotype mapping identifies spatial phenotypes and
summarizes the phenotypic architecture of tissues
Having identified histological niches and segmented tissue sections
accordingly, we determined how niches and their interfaces are asso-
ciated with cellular phenotypes.

To do so, we took advantage of single-cell, spatial measurements
of 18 phenotypicmarkers alsoprofiled byKeren et al.21 alongside the 17
lineage markers used to determine cell types (Supplementary Fig. 8a).
We looked for phenotypicmarkers whose intensity associates with the
position of cells in a given niche or at a given interface. The position of
cells in a niche was quantified as the weight of that niche. Similarly, the
position of cells at an interface between two niches was quantified as
the product of the weights of these two niches.We then correlated the
niche/interface weight with the intensity of phenotypic markers
(Spearman’s rank order correlation coefficient ρ, p values: two-sided t
test, false discovery rates from Strimmer33, Methods).

Statistically significant niche-phenotypes associations (fdr < 1%,
ρ > 0.3) were ordered by cell types and visualized as a heatmap
(Fig. 3a). To explore these associations in a phenotype-centered rather
than in a cell type-centered manner, niche-phenotypes associations
can also be sorted by phenotypes (Supplementary Fig. 8b). Out of the
3040 possible niche-phenotypes associations in this dataset (16 cell
types × 19 phenotypic markers × 10 niches and interfaces), significant
associations were reported as a table which concisely summarizes the
phenotypic architecture of the tissue (Table 1).

Niche-phenotype mapping recovered expected spatial pheno-
types. For example, among B cells, the HLA-DR (MHCII) phenotype is
associated with the TLS niche while HLA-DR negative cells—pre-
sumably plasma cells—localize in other niches (Fig. 3b)4. Neutrophils
and tumor cells with an HLA-DR (MHCII) phenotype localized in the
inflammatory region (Fig. 3c, Table 1). While MHCII expression is
normally restricted to antigen-presenting cells of the immune
system4—dendritic cells,macrophages, B cells—MHCII+neutrophils are
emerging as actors in anti-tumor immunity34. MHCII expression in
tumor cells has also been reported previously and associates with
positive prognosis35.

In keratin-positive tumor cells, the MHCI marker associated with
the interface of cancer and inflammation niches (Fig. 3d, Supplemen-
tary Fig. 10). This suggests that MHCI expression in tumor cells could
determine the position of the cancer-inflammation interface. Alter-
natively, the proximity of the inflammatory niche could induce MHCI
in neighboring cancer cells or secrete MHCI as a soluble form ref. 36
(Supplementary Fig. 10).

Niche-phenotype mapping also highlighted unexpected spatial
phenotypes. CD45RO+ macrophages and dendritic cells localized in
the inflammatory niche (Fig. 3e, Supplementary Fig. 9). CD45, a com-
monly usedmarker of bonemarrow-derived immune cells, has several
splicing isoforms. The CD45RO isoform is a marker of activated and
memory T cells as well as activated B cells with highly mutated B-cell
receptors (BCR)29,30. In the context of macrophages, CD45RO was
previously reported to be the dominant CD45 isoform and to function
as a cell adhesion receptor that inhibits pro-inflammatory
macrophages37. The literature suggests that the CD45RO signal we
analyze here is specific to the CD45RO isoform (see Discussion).

Keratin 6, a highly abundant protein that forms intermediate
filaments in the cytoskeleton of epithelial cells38 was found in dendritic
cells of the inflammatory niche (Fig. 3f), perhaps because DCs first
migrate to the cancer niche where they take up Keratin 6, before re-
localizing to the inflammatory niche.

Neutrophils located at the interface of cancer and inflammatory
niches are positive for the immunosuppressivemarkers IDO and PD-L1
(Fig. 3a, g, Table 1). This suggests a potential role of neutrophils in
facilitating the immune escape of cancer cells.

Both niches and their interfaces structure spatial variation in
cellular phenotypes
NIPMAP can be used to explore fundamental questions regarding the
cellular and phenotypic architecture of tissues.

We illustrate this by examining the origin of phenotypic hetero-
geneity of the tumor microenvironment. This heterogeneity could
originate from the spatial context of cells, with local signaling cues
determining cellular phenotypes. Phenotypic heterogeneity could also
stem from cell-autonomous phenomena such as catching cells at dif-
ferent points of differentiation trajectories or from stochasticity in
adopting different phenotypes. Cell-autonomous and spatial contexts
can both contribute to phenotypic heterogeneity39–42.

Understanding the relative contribution of cell-autonomous
phenomena vs spatial context to phenotypic heterogeneity has prac-
tical implications for spatial and single-cell omics data analysis. If
spatial context drives phenotypes, phenotypes relevant to spatial tis-
sue architecture are expected to emerge in spatially-agnostic analyses
such as phenotypic clustering17. But spatially-agnostic methods are
expected to struggle at identifying spatial phenotypes if cell-
autonomous factors dominate phenotypic heterogeneity: in this
case, spatial approaches to spatial phenotype identification such as
NIPMAP are needed.

We find that niche-phenotype mapping and (spatially-agnostic)
phenotypic clusters identify shared as well as different phenotypic
markers (Fig. 4a for dendritic cells, other cell types in Supplementary
Fig. 8c–e). For example, in DCs, the CD45RO and Keratin 6 markers
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Fig. 3 | Niche-phenotype mapping identifies spatial phenotypes and sum-
marizes the phenotypic architecture of breast tumors. a Different cell types
have phenotypes (columns) with specific associations to the different histological
niches and their interfaces (rows). Shown are all phenotypes with a niche-
phenotype correlation of at least 0.3 and a false discovery rate of less than 1%.
b–g Niche-phenotype mapping reveals expected (b–d) and novel (e–g) niche-
phenotype associations, which are visualized by overlaying phenotypic marker
intensity (dot color) and tissue segmentation (background color). Cells of types
other than the type indicated in each panel are not shown for clarity. b B cells are

positive for HLA-DR in the tertiary lymphoid structure (TLS) niche. c Keratin-
positive tumor cells are positive forHLA-DR/MHCclass II in the inflammatoryniche.
d Keratin-positive tumor cells are positive for HLA class I at the interface of the
cancer and inflammatory niches. e CD45RO intensity in macrophages is associated
with the inflammatory niche. f Keratin 6 in dendritic cells is associated with the
inflammatoryniche.gPD-L1 intensity inneutrophils associatedwith the interface of
cancer and inflammatory niches. Marker intensity represents Z scored marker
abundance, as quantified in the original study21. Source data are provided as a
Source Data file.
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associate with the inflammatory niche and define phenotypic clusters
4 6 and 1. Yet, niche-phenotype mapping identifies an additional
marker, HLA class 1, not highlighted by phenotypic clustering. This
suggests that clustering can fail to highlight spatial markers, perhaps
because phenotypic clusters are not just driven by space but also by
cell-autonomous effects independent of spatial context. In support of
this hypothesis, phenotypic clustering highlights CD138 and HLA-DR,
both of which are poorly associated with space in DCs (Fig. 4a).

This raises the question of the relative contribution of cell-
autonomous phenomena and spatial context to the phenotypic het-
erogeneity of the tumor microenvironment.

If cell-autonomous effects dominate phenotypic heterogeneity,
phenotypic clusters are expected to show poor association to space:
clustering cells by phenotypic markers without regard to spatial con-
text will produce clusters that poorly predict a cell’s niche (Fig. 4b)
Conversely, phenotypic clusterswill predict the niche if spatial context
determines phenotypic heterogeneity (Fig. 4c).

To test this, we examined how tightly phenotypic clusters
associatewith spatial context. As anupper bound for howprecisely the
marker panel andmarker quantification can position cells in space, we
use a linear predictor of a cell’s niche from phenotypic marker inten-
sities (area under the curve =0.89 in predicting which DCs located in
the inflammatory niche, Fig. 4d).

In dendritic cells, we find that one phenotypic cluster predicts the
inflammatory niche as accurately as the linear model (Fig. 4d). Other
DCclusters predict the location of DCs inother niches (Supplementary
Fig. 8c). These observations generalize to other cell types (Supple-
mentary Fig. 8d, e).

This suggests that the phenotypic heterogeneity of the tumor
microenvironment is driven both by the spatial context—niche or
interface—in which cells find themselves and by cell-autonomous
effects,with spatial context playing abigger role thancell-autonomous
effects.

Another fundamental question of tissue architecture is whether
niches contribute more to structuring phenotypic heterogeneity than
interfaces.

To find out, we quantified how much a given niche or interface
associates with phenotypic heterogeneity by summing the squared
correlations of all phenotypes of all cell types for that niche or inter-
face (the rows of the matrix in Fig. 3a). If niches structure phenotypic
heterogeneity more than interfaces, the 4 niches are expected to have
a larger sum of squared correlations compared to the six interfaces
(Fig. 4e). Conversely, if interfaces structure phenotypic heterogeneity
more than niches, the interfaces are expected to have a larger sum of
squared correlations (Fig. 4e).

We find that both niches and interfaces can have a large sum of
squared correlations (Fig. 4e). The inflammatory and fibrotic niches as
well as the inflammatory-cancer and inflammatory-fibrotic interfaces
contribute most to phenotypic heterogeneity in the context of the
present phenotypic marker panel. This suggests that phenotypic het-
erogeneity is structured by both niches and interfaces. Interfaces thus
represent histological areas in which cells adopt specific phenotypes,
different from the niches that meet at the interface. For example,
phospho-S6+ Tregs and phospho-S6+macrophages are specific to the
cancer-inflammatory interface while CD45RO+ B cells specifically
located at the TLS-inflammatory interface.

NIPMAP identifies the cellular and phenotypic architecture of
developing lung profiled by in situ RNA sequencing
So far, we applied NIPMAP to spatial profiling of tumor tissues at the
protein level. However healthy tissues and RNA profiling data can also
be interpreted with NIPMAP. We illustrate this by applying NIPMAP on
single-cell, spatial RNA profiling of healthy embryonic human lungs by
In Situ Sequencing (ISS, Fig. 5a)43,44.

Similar to tumors, we find that covariance structure in local cel-
lular composition emerges in siteswith a 25μmradius (Supplementary
Fig. 11a). Four PCs are sufficient to capture 85% of the spatial variation
in the cellular composition of the tissue.

Spatial variation in the cellular composition of the developing
lung fits a simplex with five endpoints (Supplementary Fig. 11b), sug-
gesting 5 niches (p =0.001, n = 20, 000 sites, one-sided t-ratio test,
t-ratio statistic = 1.496 in original data, t-ratio 95% confidence interval
in shuffled data [1.59 − 2.07]). A 5-end-point simplex is a four-
dimensional geometrical object which makes it difficult to visualize.
To address this, we projected sites on the faces of the simplex
(Methods). Examining the distribution of projected sites on the faces
of the simplex, we observed sites close to all 5-endpoints, supporting
the existence of all 5 niches (Supplementary Fig. 11b).

Quantifying the cellular composition of each niche suggested (1)
epithelial, (2) parenchymal, (3) smooth muscle, and (4) vessel niches,
as well as (5) ductal and alveolar (liquid-filled) space (Fig. 5b, c). In well-
formed ducts, we observed that the epithelium separates the ductal
space from the smooth muscle niche (Fig. 5b, d), as expected. The
vessel niche does not associate with the alveolar space nor the epi-
thelial niche (Fig. 5b, Supplementary Fig. 11b), as expected at this stage
of development (week 13)44.

Table 1 | NIPMAP concisely summarizes the cellular and
phenotypic architecture of tissue samples as a table of
niches/interfaces and associated cellular phenotypes

niche cell phenotype

cancer H3K9ac+ keratin-positive tumor

CD63+ B

fibrotic CD138+ NK

Mesenchymal-like

Macrophages

CD8-T

inflammatory H3K27me3+ CD8-T

CD45RO+H3K27me3+H3K9ac+HLAclass
1+ IDO+ Macrophages

HLA-DR+ keratin-positive tumor

CD45RO+H3K27me3+H3K9ac+HLAclass
1+ HLA-DR+ Neutrophils

CD45RO+ HLA class 1+ Keratin 6+ DC

CD45RO+ HLA class 1+ HLA-DR+

Endothelial

CD45RO+ HLA class 1+ HLA-DR+

Mesenchymal-like

HLA class 1+ B

CD4-T

TLS HLA-DR+ B

HLA-DR+ CD4-T

CD8-T

inflammatory × cancer HLA class 1+ keratin-positive tumor

phospho-S6+ Macrophages

IDO+ PD-L1+ phospho-S6+ Neutrophils

H3K27me3+ H3K9ac+ phospho-S6+ Tregs

H3K9ac+ HLA class 1+ phospho-
S6+ Tumor

inflammatory × fibrotic IDO+ keratin-positive tumor

HLA-DR+Tumor

TLS × inflammatory CD45RO+ B

The table reports the niche-phenotype associations with a correlation of at least 0.3 and a false
discovery rate of at most 1%, as shown in Fig. 3a.
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As in tumors, we find that niches structure phenotypic archi-
tecture (Fig. 5e, Supplementary Fig. 11c). For example, localization in
the vessel niche of arterial cells and pericytes correlated with expres-
sion of JAG1 (Fig. 5f) whose functions in endothelial development were
previously reported45. The platelet-derived growth factor A (PDGFA)
ligand and receptor respectively are associated with the vascular vs
parenchymal context of pericytes (Fig. 5e, Supplementary Fig. 11d, e).

To test the robustness of the identified niches with respect to cell
type granularity, we repeated niche identification using the 73 cell
types proposed by Sountoulidis et al.44 instead of the 32 coarser-
grained cell types of Fig. 5. Increasing the number of cell types, we find
five niches with cellular composition and spatial distribution similar to
those found with 32 cell types (Supplementary Fig. 12). This suggests
that niches show a degree of robustness to cell type granularity.

Thus NIPMAP generalizes to spatial RNA profiling data and heal-
thy tissues.

Discussion
Multiplex histology produces rich datasets in the form of the location
of 10,000–1,000,000 cells, dozens of cell types, and dozens to thou-
sands of phenotypic markers. 100,000+ images of phenotype inter-
actions can be produced from a single sample, which leads to a
combinatorial challenge in visualizing and interpreting the data. To
address this, we introduce NIPMAP, adapting methods from commu-
nity ecology and satellite image analysis to multiplex histology data in
order to (a) identify the histological niches underlying spatial tissue

architecture and (b) summarize how histological niches and their
interfaces structure cellular phenotypes.

Applying NIPMAP to multiplex histology data from healthy and
disease samples reveals that the local cellular composition of tissues
has the low-dimensional geometric structure of a simplex. The end-
points and halfway points of the simplex represent histological niches
and their interfaces. Niches match known histo-pathological areas and
provide a concise yet accurate summary of tissue architecture.

In the context of breast tumors, these niches generalize across
patients and tumor types and connect the microscopic and macro-
scopic levels of cellular architecture. Individual phenotypic markers
are mapped on these niches to identify spatial phenotypes and sum-
marize how phenotypes integrate into histological niches and their
interfaces. Analyzing how phenotypes associate with niches and their
interfaces suggests that spatial context and cell-autonomous effects
both determine phenotypes, with the former having a larger influence
than the latter. Phenotypic heterogeneity is structured both by niches
and their interfaces, with interfaces being home to specific cellular
phenotypes.

Errors in cellular segmentation and lateral signal spill-over can
lead to mis-assigning cell types and phenotypes, potentially leading to
false positives or false negatives during niche-phenotype mapping46

(see the p53 marker in Supplementary Fig. 10 for example). Even in
perfectly segmented tissues, marker signal can be mis-attributed: a
marker can associate with cells of a given type within a given niche not
because cells of that type express the marker but instead because the

Fig. 4 | Niche-phenotypemapping reveals two fundamental propertiesof tissue
phenotypic architecture. a–d The spatial context of cells is a stronger determi-
nant of phenotype than cell-autonomous effects. Dendritic cells are illustrated here
and other cell types appear in Supplementary Fig. 8d, e. b Niche-phenotype map-
ping (left) and (spatially-agnostic) phenotypic clusters (right) identify common
phenotypic markers—CD45RO, Keratin 6—but also divergent markers—HLA class 1,
HLA-DR, CD138. b If cell-autonomous effects determine phenotypes more than
spatial context, spatial context will poorly associate with phenotypes. Thus, phe-
notypic clusters—which are built independently of spatial context—will predict a
cell’s niche as poorly as a random predictor. The sensitivity and specificity of
phenotypic clusters are computed using cluster membership as a predictor of
nichemembership. c If the spatial niche context of a cell is themain determinant of
phenotypes, phenotypeswill strongly associatewithniches. Thus, the nicheof a cell

can be predicted from a cell’s phenotypic cluster. d The data supports the
hypothesis that the spatial context of cells is a stronger determinant of phenotype
than cell-autonomous effects. e Both niches and their interfaces structure the
spatial architecture of phenotypes. The contribution of a niche or interface to
phenotypic architecture is quantified by summing the squared correlations of all
phenotypes with that niche (rows of the matrix shown in Fig. 3a). Squared corre-
lations are expected to be higher for niches and lower for interfaces in a scenario
where niches structure phenotypic architecture (left). Conversely, under the
hypothesis that phenotypic architecture is structured by interfaces, squared cor-
relations will be higher for interfaces and lower for niches (middle). The data shows
that both niches and interfaces have high squared correlations and thus contribute
to phenotypic architecture (right). TLS: tertiary lymphoid structure. Source data
are provided as a Source Data file.
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marker is systematically present in that niche, perhaps as a soluble
form or as a constituent of the extra-cellular matrix (see the CD138
marker in Supplementary Fig. 9 for example). NIPMAP is designed as
the final layer of the multiplex histology data processing stack. It does
not attempt to correct cellular segmentation, cell type assignment, or
signal attribution errors: these issues need to be addressed in the
corresponding layers. These issues are recognized in the multiplex
histology field and ongoing methodological research is seeking to
address them46–50. The statistical methodology employed by NIPMAP
provides a degree of robustness to segmentation, cell type and signal
attribution errors because niche-phenotype associations are only
captured if they occur systematically across cells. Despite that, and
until a definitivemethodological solution to cellular segmentation, cell
type assignment or signal attribution errors is established, spatial
phenotypes highlighted by NIPMAP need to be confirmed by over-
laying cellular segmentation with the spatial signal distribution of the
corresponding phenotypic marker (Supplementary Figs. 9, 10).

NIPMAP identifies novel spatial phenotypes to the best of our
knowledge, such as an association between CD45RO and the locali-
zation of macrophages in the inflammatory niche of triple-negative
breast tumors. CD45 is a hematopoietic marker that can be expressed
as different isoforms CD45RA, CD45RB, and CD45RC depending on
alternative splicing of its three exons A, B, and C. The CD45RO isoform
lacks the A, B, and C exons. The different isoforms are associated with
specific phenotypes, at least in the context of lymphocytes cells29,30.
Thus, quantifying the CD45 isoforms specifically is a prerequisite to

interpret the observation that CD45RO+ macrophages localize in the
inflammatory niche of triple-negative tumors. The existing literature
suggests that the CD45RO antibody (UCHL1 clone, Biolegend) used in
theMIBI study we re-analyzed here21 is specific to the CD45RO isoform
of CD45. The UCHL1 clone has been used to specifically quantify
CD45RO since the 1980s51–54. An early flow cytometry study in T cells
found that the abundance of CD45RA and CD45RO abundance—as
quantified by UCHL1—correlate negatively, consistent with the speci-
ficity of UCHL1 to the CD45RO isoform52. Profiling CD45RO by means
of the UCHL1 clone alongside CD45RA (by means of the 2H4, F8-11-13,
or HI100 clones) is routinely used to discriminate between memory
and naive T cells52,54. In addition, the risk of non-specific quantification
of CD45 isoforms in macrophages is mitigated by western blot, flow
cytometry and full-length RNA-seq observations that bone marrow-
derived macrophages from the spleen, white adipose tissue, liver, and
the peritoneal cavity lack the CD45RA, RB and RC isoforms and thus
specifically express the CD45RO isoform37. Theseobservations suggest
that macrophages specifically upregulate the CD45RO isoform in the
inflammatory niche of triple-negative breast tumors.

When performing single-cell analyses, a decision needs to be
made regarding the granularity of cell types. For example, T cells could
be lumped together with other immune cells or be assigned a more
granular type such as Th17 CD4+ T cell. Alternatively, cell typing could
have intermediate granularity - such as CD4-T cells—and com-
plemented by phenotypes—such as Th17. This raises the question of
how cell type granularity impacts niche identification. In general, one
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expects optimal niche identification when analyzing cell types at a
range of intermediate granularities and poor niche identification when
the cell types are insufficiently granular or toogranular. This is because
insufficient granularity can prevent observing the cell types that
characterize a given niche: for example, a vascular niche characterized
by pericytes and endothelial cells cannot be identified if cells are
coarsely grouped into epithelial vs non-epithelial. Conversely, too
granular cell types–for example if each cell has its own type - prevent
identifying recurrent patterns in the local cell type composition of
tissues to reveal its niches. In the context of the ISS data of Sountou-
lidis et al.44, ourfindings suggest that the niches identified are robust to
the exact number of cell types used.

To interpret spatial phenotypes, markers need to be separated
into (1) markers of cell type and (2) markers of phenotypes, for
exclusive use during niche identification and niche-phenotype map-
ping respectively. This is because using a given marker both for cell
typing and phenotyping would necessarily identify the phenotype in
the niches where the cell type is present, thus biasing niche-phenotype
mapping. Both datasets used here comply with this separation. The
MIBI data fromKeren et al. used 17 lineagemarkers to define cell types
and another 18 functional markers to identify phenotypes21. The ISS
data of Sountoulidis et al.44 used 72 lineage markers to identify cell
types and profiled a distinct set of 75 genes from the WNT, SHH,
NOTCH, andRTKpathways44whichweusedhere in niche-phenotyping
mapping.

NIPMAP can complement existing methods to analyze multiplex
histology data. For example, cellular spatial enrichment analysis aims
at identifying spatial interactions by looking for pairs of cell types that
colocalize more often than expected by random chance, defined by
shuffling cell positionswithin a givenniche21. By providing anapproach
to identify niches automatically, NIPMAP could facilitate cellular spa-
tial enrichment analysis. Other spatial analyses such as proximity
analysis and nearest neighbor analysis could benefit from NIPMAP’s
niche identification in the same way.

To cluster-based methods aimed at identifying discrete cellular
structures in multiplex histology data such as community detection
based on spatial cellular networks and cellular neighborhood
analysis17,18, NIPMAP adds two principles. The first is that the number
and identity of histological niches can be determined by exploiting the
simplex geometry of local cellular composition. The second is that the
simplex geometry provides a criterion to distinguish niches from
interfaces and automatically identify interfaces without parameter
tuning. Identifying interface regions is of high interest to tissue biol-
ogy. In cancer, for example, understandingwhy immune cells from the
inflammatory niche fail to penetrate the cancer niche can suggest
therapeutic interventions to remove blocks to anti-tumor immunity6.

Here we illustrated NIPMAP on spatial data fromMIBI7, a protein-
based approach, and ISS43, an RNA-based method. Beyond these two
technologies, NIPMAP is designed to be applicable to other spatial
methods with single-cell resolution such as Imaging CyTOF, Codex,
CycIF, 4i, MERFISH, and more10–13.

Similar to how community ecology defines ecological niches
based on local species covariance, local covariance between cell types
is exploited by NIPMAP to identify histological niches. This approach
requires assigning a type to each cell based on marker intensities and
prior knowledge, with two potential downsides. First, niches identifi-
able in this way could be limited by previously known cell types. Sec-
ond, assigning types to individual cells frommarker intensities is time-
consuming and not guaranteed to be error-free due to segmentation
errors, signal misattribution, non-specific antibody binding, auto-
fluorescence, molecular exchanges between cells, and more. To
address this, it would be desirable for niche identification to be based
not on the types of cells but instead on marker intensities of local
tissue regions prior to segmentation into cells. Preliminary exploration
of this question in the context of theMIBI data of Keren et al.21 suggests

that niches can potentially be identified without assigning predefined
types to cells, resulting in similar niches as cell type-based niche
identification (Supplementary Note 4). Future research can further
develop this methodology.

In the future, the cellular and phenotypic architecture identified
by NIPMAP could support efforts aimed at understanding how healthy
tissues maintain function despite the need for constant cellular turn-
over55 and interpreting the spatial dynamics of niches during histolo-
gical processes such as development, tissue repair or disease
progression44,56,57.

Methods
Ethics statement
MIBI data of TNBC of Keren et al.21: all the MIBI samples came from
archival tissue blocks housed in the Stanford Pathology tissue bank
that were sourced from primary surgical resections. Since no material
was acquired prospectively for the study, acquiringMIBI data on these
samples was not deemed human subjects research, and requirements
for an ethical permit were waived by the institutional review board.

Fetal lung ISS data of Sountoulidis et al.44: ethical permit was
obtained by the authors of the initial study from the Swedish National
Board of Health and Welfare. The analysis was approved by the
Swedish Ethical Review Authority (2018/769-31). The clinical staff of
the initial study acquired informed written consent from the donor.

CyTOF data of Wagner et al.32: tissue were collected after obtain-
ing written informed consent from patients at the University Hospital
Basel (Switzerland), the University Hospital Zurich (Switzerland), and
in collaboration with the Patient’s Tumor Bank of Hope (PATH, Ger-
many) at the breast cancer centers at St. Johannes Hospital Dortmund
and Institute of Pathology at Josefshaus (Germany) and the University
HospitalGiessen andMarburg,Marburg site (Germany). The collection
was approved by the EthicsCommittee Northwest/Central Switzerland
(#2016-00067), the Ethics Committee Zurich (#2016-00215), and the
Faculty of Medicine Ethics Committee at Friedrich-Wilhelms-
University Bonn (#255/06).

Wedidnot carryout sex/gender analysis for two reasons. First, the
experimental unit of our study is cells and groups of cells, not human
individuals. Second, the aim of our study introduce a computational
method that detects spatial patterns of cellular organization in tissue.
Such patterns of cellular organization are a hallmark of multi-cellular
organisms, including humans, across biological (sex, age) and social
groups (genders, ethnicity). Examining if and how specific details in
these spatial patterns vary across biological and social groups is
beyond the scope of the present study.

NIPMAP methodology overview
Sites are sampled from the tissue and their composition in terms of
(predetermined) cell types is estimated with a Gaussian kernel. The
main co-variance axes of cellular composition are identified by PCs
analysis. Archetype analysis is used to fit a simplex to site cellular
composition and thereby identify histological niches. From these
niches, the original tissue is spatially segmented into niches and
interface regions. Niches and interfaces are associated with pheno-
typic markers by correlation analysis to (1) summarize tissue pheno-
typic architecture and (2) identify salient spatial phenotypes.

Processing the MIBI data from Keren et al
From the website of the Angelo lab, we obtained processed MIBI data
for 36 proteinmarkers from41 TNBCpatient samples: intensity values,
segmented images, and patient data. The 41 samples represented
patients aged 26-91 (mean 54.2 years). While gender information was
not included, samples areexpected tobe femalebecause 99%of breast
tumor patients are female.

The segmented data (cellData.csv) contained (x, y) coordinates of
eachcell and its type (out of 17 cell types) as determinedby the authors
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of the study. Following the authors of Keren et al.21, patient 30 was
excluded from the analysis.

Quantifying cell type density in sites with a Gaussian kernel
Each tissue slide is a 2-dimensional spacewith cells of a determined cell
type as points of coordinates (x, y). We positioned 100 sampling sites
randomly on each slide, by drawing the centers from a uniform dis-
tribution. In contrast to common practice, sites are not positioned on
cells but uniformly across the tissue section. Doing so has the advan-
tage that sites are representative of tissue architecture and unbiased
by spatial variation in cellular density.

We generated 4000 sites, 100 sites for each of the 40 slides.
To quantify the abundance of cells of different types at each site,

rather than counting cells with a circle of radius r, we used a Gaussian
kernel density estimation to decrease counting noise: if a cell is slightly
outside the circle of radius r, it is not counting with the first strategy.
Counts are thus sensitive to slight changes in the position of the center
of the circle. Gaussian kernel density estimation addresses this by
weighting cell counts by their distance to the center in a smooth
fashion. The weight g of a cell of position x (with x a vector) to the site
of center sk is defined as

gðx,sk Þ=
1

2πr
e�

1
2

ksk�xk
r

� �2
ð1Þ

We summed up the density values for each cell type.
We performed PCA, centered and unscaled using the ade4 pack-

age of the data analysis software R20.
In positioning sites, we excluded areas of the slides located within

distance r from the image edge, in order to decrease edge effects.
We explored a broad range of width r values to examine the

robustness of tumor architecture (Fig. 2b). We found that r = 25 μm is
the minimal radius allowing to capture cellular architecture (Fig. 2b).
This suggests that tumor micro-architecture emerges on a scale of
2-4 cells.

Archetype analysis
Archetype analysis25 aims to fit a d-dimensional simplex as tightly as
possible to n data points x. The simplex has p endpoints bk 2
Rd ,k = 1,:::,p which represent the endpoints, also known as
archetypes26. By definition, each point x within the simplex can be
written as a weighted average of the endpoints

x =
Xp
k = 1

αkbk ð2Þ

with the weights α constrained by 0 ≤ αk ≤ 1 and
Pp

k = 1 αk = 1. We used
the tumor samples projectedonto the 3 first PCs as input for archetype
analysis. We used the Archetypal Analysis python package58, with the
parameters: n_archetypes = 4, tolerance = 0.001, max_iter = 200, ran-
dom_state = 0, C =0.0001, initialize = ’random’, redundancy_try = 30.
The output of this algorithm contains a dataset of αk weights for each
tumor sample and the coordinates of the endpoints bk in the reduced
space of 3 PCs.

We set the number of endpoints using elbow criteria on the
fraction of variance in the local cellular composition explained by a
different number of endpoints.When varying the number of endpoints
p, the number d of PCs used for fitting the simplex was always d = p − 1
because p−1 dimensions are generally needed to describe a simplex
with p endpoints.

Assessing the robustness of niches to sampling intensity
In order to robustly identify niches while optimizing computation
time, we performed an error analysis as a function of the sampling
intensity—defined as the ratio of the total area of sites to the tissue area

—to test how deeply tissues need to be sampled so as to control for
niche cellular composition error.

To minimize the sampling error, we first over-sampled the tissue
by collecting a number of sites such that the total area covered 1000%
of the tissue area. Over-sampling the tissue minimizes the sampling
error because, even when sampling at 100% intensity, random posi-
tioning of sites may leave certain tissue areas uncovered by any site.
Sites sampled at 1000% intensity were used to determine reference
niches for the MIBI dataset of Keren et al.21.

We then sampled sites such that the total area covered 300%,
100%, 30%, 10%, 3%, and 1% of the tissue area. At each sampling
intensity, sites were sampled 100 times and niches were computed,
producing 100 sets of four niches per sampling intensity. The niche
estimation error was computed as the RMSE to the reference niches in
terms of cellular composition.We plotted the rootmean squared error
averaged over the 100 repeats at each sampling intensity (Supple-
mentary Fig. 5a).

A 30% sampling intensity—which we used in analyzing the MIBI
data of Keren et al.21—identified niches with small enough an error to
robustly characterize the biology of each niche (Supplementary
Fig. 5b) while speeding up computations. If computation time is not an
issue,we recommendsampling anumber of sites equivalent to 100%of
the tissue area or more, as the error is slightly smaller compared to
sampling 30%.

Classifying tumor samples into mixed vs compartmentalized
using niche weights
To associate NIPMAP’s niche segmentation with the previously pro-
posed mixed vs compartmentalized classification of tumor archi-
tecture of Keren et al.21, we sorted samples according to the
contribution of tumor-immune interfaces relative to the total pre-
valence of immune niches, following the methodology described by
Keren et al.21. More specifically, for each sample, the NIPMAP mixing
scorem was computed as

m=
<α3ðα1 +α2Þ>
<α1> + <α2>

, ð3Þ

where α1, α2, α3 represent the weight of the TLS, inflammatory, and
cancer niches, respectively, at a given site, and averaging is performed
over sites. The NIPMAP mixing score matched the mixed vs compart-
mentalized classification of Keren et al. for 37 out of the 40 samples
(Supplementary Fig. 3a). We then tested whether the findings of Keren
et al. on the association betweenmixed vs compartmentalized samples
(reported in Fig. 5B, E, H of the original study) and the immuno-
signaling environment could be reproduced using the NIPMAPmixing
score. All three associations reported by Keren et al. could be
reproduced using the NIPMAP mixing score (Supplementary Fig. 3b).
Cold samples were excluded from the analysis, following the exclusion
criteria of Keren et al.

Comparing the spatial variation in cellular composition cap-
tured by different numbers of community ecology- and
clustering-based niches
Wecompared howNIPMAP and clustering captured spatial variation in
the composition of m cell types across 4000 sites sampled from 40
triple-negative breast tumors analyzed by MIBI.

Iterating over the number of niches (p = 2,…, 17 niches), NIPMAP
was performed using p − 1 PCs U 2 Rm,p�1 to find p niches
bj 2 Rp�1,j = 1, . . . ,p. We collect all niches bj into a matrix B 2 Rp�1,p.

The percentage of variance in cellular composition explained by
NIPMAP niches was computed as follows. For each site k, we compute
the niche weights αk 2 Rp that best fit the site’s cellular composition
ck − c0≃UBαk, where c0 is the average cellular composition of sites (we
performed centered PCA). The difference between the site’s best-fitted
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cellular composition UBαk + c0 and the observed site composition ck is
defined as the error ϵk = ck − c0 −UBαk. 100% − the ratio of the squared
error to the total sum of squares of site cellular is the fraction of
explained variance by the niches, 100%�Pi,kϵ

2
ik=
P

i,kðcik � ci0Þ2,
where i = 1, …, m represents the cell type.

To determine how k-means clustering captures the spatial variation
in cellular composition, we perform clustering to find p niches bj 2 Rm

in the cellular abundance of our 4000 sites. The fraction of variance
explained by p niches—the clusters—was computed as 100%− the ratio
of the within-clusters sum of squares to the total sum of squares of the
site composition data, 100%�Pi,kðcik � biνðkÞÞ2=

P
i,kðcik � ci0Þ2, where

ν(k) is the cluster j to which site k belongs.
We note that NIPMAP’s simplex model requires slightly more free

parameters compared to k-means clustering, which helps increase the
percentage of explained variance.We note that the goal of this analysis
is not to find the best trade-off between the number of parameters and
goodness of fit, but rather to identify a data structure that summarizes
phenotypic spatial architecture in a concise fashion, using a small
number of niches that fit well within the cognitive limitations of the
humans.

Power analysis of the probability to capture a rare niche
To study the power of NIPMAP to capture a rare niche, we simulated
tissue data in which the prevalence of one niche varied while the
prevalence of the remaining niches was set to be equal to each other.
As a rare niche is expected to be more difficult to identify with little
tissue data, we also varied the amount of tissue data in the simulation.

An existing approach to simulate tissue data59 requires spatial co-
occurrence statistics of cells of different types as an input. Tuning co-
occurrence statistics so as to (a) specify the number and cellular
composition of niches and (b) vary the abundance of a specific niche
while keeping the other niches constant is not trivial. To address this,
we designed a tissue simulation approach that can accommodate
these two requirements, as follows.

We first simulated the spatial distribution of niche weights α(x, y),
where αi is the weight of niche i at position (x, y) of the tissue, and
∑iαi = 1. Simulated tissues should show continuous regions in which a
given niche dominates, with smooth spatial transition into the con-
tiguous niche. Drawing upon classical mathematical models of spatial
patterns60, we reasoned that a reaction-diffusion system in which
niches compete locally with each other and diffusion enforces
smoothness of niche weights in space could simulate realistic spatial
distributions of niche weights.

Experimenting with different reaction-diffusion systems lead to
the following equation:

dαiðx,yÞ
dt

=βαi
α4
i

α5
i +K

5 �
1
2K

 !
+D

∂2αi

∂x2
+
∂2αi

∂y2

 !
ð4Þ

where we set β = 1/day.
The positive term in the first bracket represents cooperative

logistic growth.When theweightαiof niche i is close to0, there is near-
zero niche growth. There is a step-like increase in growth as αi
approaches K, which rapidly saturates around 1, due to the high
exponent of αi (power of 5). By setting K = 1/nwhere n is the number of
niches, we can thus establish growth dynamics in which only one niche
wins at each location (x, y).

The negative term in the first bracket of the equation prevents
niche weights from growing to infinity, by ensuring that there are two
stable fixed points in the absence of diffusion (that is when D≔0):
αi =0—niche i is absent at (x, y)—and αi≃ 2K—niche i is present at (x, y).

The secondbracket adds diffusion, to enforce smooth variation in
niche weights with respect to space. We set the spatial domain in both
x and y to [0, L] with L = 800μm, the size of a MIBI image, using
periodic boundary conditions.

We simulated this system numerically on a 50× 50 lattice, that is
dx = dy = L/50= 16μm until convergence using R’s ode.2D solver from
the deSolve library. At convergence, theαs were normalized to sumup
to 1 at each position (x, y). We used n = 4 niches due to practical rele-
vance to our re-analysis of the MIBI data of Keren et al.21. Setting
D = 40μm2/day produced niches whose spatial architecture resembles
that of MIBI data (Supplementary Fig. 7a).

We define the prevalence of niche i as L−2∫αi(x, y)dxdy. To simulate
tissues in which one niche is more rare—less prevalent—than the others,
we altered the initial condition α0(x, y). We randomly initialized α0(x, y)
so that, at each (x, y), the weight of one niche was 1 and the weight of all
other niches was 0. To simulate tissues in which niche 1 was less pre-
valent than other niches, we varied the probability f that α1(x, y) was 1.
The probability that αi(x, y) = 1 for the other niches i≠ 1 was set to be
equal. This resulted in initial conditions α0(x, y) in which the prevalence
of niche 1 was f and the prevalence of niche 2, 3 and 4 was (1− f)/(n− 1).

As expected, tissues represented by the initial condition α0(x, y)
were unrealistic and unstructured: niches showedno spatial contiguity
as niche weights varied abruptly from 0 to 1 from one location of the
lattice to the next. Simulating the reaction-diffusion dynamics of α(x,
y) defined by Equation (4) to convergence caused niches to compete
locally and laterally in space and thereby to establish contiguous areas
in which a given niche dominated (Supplementary Fig. 7a).

Varying f in the initial condition α0(x, y) from 0.04 to 0.25 in 9
logarithmic steps and simulating the system to convergence generated
9 tissues α(x, y) in the form of matrices 50x50xn in which the pre-
valenceof niche 1 ranged from0.24% to30.4% (Supplementary Fig. 7a).

From these nine simulated tissues α(x, y), we simulated multiplex
histology data. Multiplex histology data has the form of a table X with
ns rows representing sites and columns representing the local abun-
dance of the different cell types.

To simulate this table X for a given niche prevalence and a given
number of MIBI images ni (amount of tissue data), we first computed
the number of sites ns needed to cover the area of the ni images,
ns = niL2/(πr2), where r = 25μm is the radius of the site. Simulating sites
from more tissue images is equivalent to collecting more sites from a
given tissue image in the present scenario that different tissue images
are made of the same niches.

We positioned ns sites in the tissue by sampling their position (x,
y) from a uniform distribution between 0 and L. For each site, we
determined the local niche weights α(x, y) by linear interpolation, to
generate a matrix A of sites (rows) × niches (columns). We simulated
local cellular densities as X = BA, where B is the matrix of niche cellular
composition, whose rows represent cell types and columns represent
niches. For realism, the cellular composition of the niches
B= b1,b2,b3,b4

� �
was set to the four niches and 17 cell types of theMIBI

data of Keren et al.21.
We passed X to NIPMAP to estimate 4 niches b̂i,i= 1, . . . ,4. We

computed the RMSE ϵ on the estimated cellular composition of niche 1
from

ϵ2 =
1
17

min
i

jjb̂i � b1jj2 ð5Þ

where 17 is the number of cell types. Themin operator ensures that the
estimated niche closest to niche 1 is used to compute the error. This is
necessary because niche indices are arbitrary in NIPMAP so that b1

doesn’t necessarily match b̂1.
We repeated this procedure 100 times for each niche prevalence

and number of images ni. Inspecting the estimated niche composition B̂
as a function of the estimation error ϵ suggested that a threshold
ϵ<4.5 × 10−4 distinguishes simulations in which niche 1 was accurately
captured from simulations in which niche 1 failed to be captured. Thus,
we estimated the probability to identify the rare niche 1 as the fraction of
these 100 simulations for which ϵ <4.5 × 10−4 (Supplementary Fig. 7b).
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Identifying interface regions
Sites located at interface regions have high weights for more than one
niche. Thus, to find sites at the interface of two niches, we compute the
product of the niches’ weight and look for sites where this product is
high (Fig. 2f).

Interface regions can be defined in two ways. Under one defini-
tion, interfaces are found at the contact of two niches. To find these
interfaces, wemultiply the weights of pairs of niches. In this definition,
interfaces are influenced by local cellular density. For example, a low
concentration of immune cells next to cancer cells wouldnotqualify as
an immune-cancer interface because a low concentration denotes
fibrotic regions (Supplementary Fig. 4f).

To identify interfaces between immune and cancer cells based
only on cellular composition and independently of cellular density,
we can exclude the contribution of the niche of low cellular density
(here the fibrotic niche) by setting its weight to 0 at all sites and re-
normalizing the weights of the other niches to sum up to 1. The
benefit of this definition is that the interface regions identified
through this process fit better with a visual impression, as the visual
impression is guided more by cell types (colors) than cellular density
(Fig. 2a, f).

Processing and analysis of CyTOF data from Wagner et al.
Wedownloaded the summarized version of the CyTOF experiments of
Wagner et al.32. The data table contains cellular proportions of cell
types identifiedby 73markers in 144 breast tumor samples. The cohort
included 144 female patients, aged 29-93 (mean 62.8 years) and 1 male
patient. The sample from the male patient was excluded from the
analysis.

Cellular composition was organized in hierarchies, for example,
the proportion of live cells among all cells, the proportion of cells of
the M (myeloid) cluster among live cells, the proportion of M1 cells
among the M cluster, and so on.

Wagner et al.32 assigned cell types—tumor-associated macro-
phages, CD4+ T regulatory cells—to cell clusters (leaf nodes)—M01,
T01, and so on.We took over these cellular assignments fromFig. 2D-L
ofWagner et al.32 in order to compute the relative composition of each
tumor in terms of 12 cell types, chosen to be as similar as possible to
the cell types profiled by Keren et al.21: cancer cells, fibroblasts,
endothelial cells, CD4-T cells, CD8T cells, NK cells, dendritic cells,
macrophages, B cells, plasma B cells, healthy tissue, other immune
cells. One sample contained less than 50% live cells and was thus
removed, keeping 143 samples for the analysis.

We performed PCA, centered and unscaled using the ade4 pack-
age of the data analysis software R20. Unscaled PCA was used because
all features have the same units (fractional abundance is unit-less). We
explored other transformations such as scaling by the standard
deviation and log-transformation. Scaling by the standard deviation
destroyed much of the covariance structure expected from breast
tumor biology, presumably by amplifying sampling noise in low-
abundance cell types. Log-transformation resulted in similar niches to
the ones presented in the present article but produced curved sim-
plexes which require developing new algorithms in order to fit the
simplex to the data.

Showing that inter-patient variation in macroscopic cellular
architecture of tumors is constrained by a simplex whose end-
points are the microscopic niches
If inter-patient variation in the macroscopic cellular architecture of
tumors is explained bypatient-specific usage of universal niches, inter-
patient variation in tumor cellular compositionmust be constrainedby
a simplex whose endpoints are the microscopic niches.

To see why, let αj(x) be the local weight of niche j at location x of
the tumor. All the weights can be collected into a vector α, with Σjαj = 1
and αj >0. We collect the cellular composition of each niche into a

matrix Bwhose entries bij indicate the density of cell type i in niche j, in
units of inverse volume (1/μm3). With this notation, the local cellular
composition c(x) at location x of the tumor is

cðxÞ=BαðxÞ ð6Þ

The macroscopic cellular composition of the tumor is then
obtainedby integrating themicroscopic cellular composition c(x) over
the tumor volume V

C =
1
V

Z
V
BαðxÞdx =B 1

V

Z
V
αðxÞdx =Bθ ð7Þ

Here, one can show that all θj are positive and sumup to one. First,
since αi ≥0,

θi =
1
V

Z
V
αiðxÞdx ≥0: ð8Þ

Second,

X
i

θi =
X
i

1
V

Z
V
αiðxÞdx =

1
V

Z
V

X
i

αiðxÞdx =
1
V

Z
V
1dx = 1: ð9Þ

Therefore, themacroscopic cellular composition of tumorC is the
weighted average of the niches B. Macroscopic tumor composition
must be bounded by a simplex.

In silico dissection of healthy tissue. Direct comparison of micro-
scopic niches and macroscopic cellular composition data is not pos-
sible because the tumor samples of Wagner et al.32 partially include
healthy tissue from the tumor margin whereas healthy tissue was not
imaged in the samples of Keren et al.21. To enable a comparison of the
two datasets, we mathematically dissect healthy tissue out of the
tumor samples.

After projection onto n−1 PCs vi, a CyTOF tumor sample C (vector
of proportions of 12 shared cell types) can be written as

C � μ=
X3
i= 1

uivi +
Xn�1

i=4

uivi ð10Þ

where μ is the vector of average proportions of each cell type and ui
represents the contribution of PC i to sample C. We then rewrite the
first term as a weighted average of four endpoints (cancer, immunity,
healthy, fibrotic) computed by archetype analysis in the space of the
first 3 PCs to obtain

C � μ=
X4
j = 1

θjbj +
Xn�1

i=4

uivi ð11Þ

wherebj is the jth endpoint. To dissect the healthy endpoint (endpoint
3), we remove its contribution from the weighted averages:

~γ =
θ1

θ1 +θ2 +θ4
;

θ2
θ1 +θ2 +θ4

;
θ4

θ1 +θ2 +θ4

� �
ð12Þ

Finally, we compute cellular proportions ~Cd after dissecting the heal-
thy endpoint as

Cd =
X
j

γjbj +
Xn�1

i =4

uivi +μ ð13Þ

For 15 out of the 143 CyTOF samples, the weight of the healthy end-
point was >50%, suggesting that healthy tissue dominated the cellular
composition of these samples. These samples were discarded from
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further analysis because the lowerweight of the non-healthy endpoints
risked increasing the dissection error.

Mappingcell types across twodatasets. The cell types profiled in the
CyTOF data of Wagner et al.32 and MIBI data of Keren et al.21 overlap
only partially: while some cell types are common to both datasets—
CD8T cells for example—other cell types were either only profiled in
one dataset, or profiled at a different level of specificity—all B cells vs
distinguishing B and plasma cells, all CD4 cells vs distinguishing CD4
cells andTregs. This creates a challenge in comparing the twodatasets.
To address this, we mapped cell types across the two datasets to
compute cellular composition based on cell types common to both
datasets.

To do so, we created an incidence matrix G of dimensions m × n
withm cell types from MIBI data as rows and n cell types from CyTOF
as columns. The entries of the G matrix are set to 0 if the corre-
sponding cell types from the two datasets are different and to 1 if they
are identical. A column or a row can have more than one 1 if the MIBI
and CyTOF datasets differ in their granularity for the corresponding
cell type. This incidencematrix can be represented as a bipartite graph
(Supplementary Fig. 7c).

From G, we then derive two matrices Gk, Gw that allow projecting
cell proportions from the initial MIBI Xk and CyTOF data Xk (respec-
tively) onto the shared sets of cell types Yk = XkGk and Yw = XwGw by
matrix multiplication.

To compute the projection matrix Gk for the MIBI data, we initi-
alize Gk≔G. We then sum up all the rows of G. Rows where the sum is
larger than 1 represent MIBI cell types that map to multiple, more
granular CyTOF cell types. For these rows, we keep all columns with 0s
and the first column with 1 in order to keep only the least granular cell
type of the two datasets. The kept column is then named according to
the row. To compute the projection matrix Gw, we perform the same
procedure, reversing rows and columns.

Applying this procedure associates cell types of the MIBI and
CyTOF datasets as indicated in Table 2.

Hierarchical clustering of cell phenotypes and spatial specificity
of phenotypes
To compare phenotypic clustering to the spatial phenotypes identified
by NIPMAP, hierarchical clustering was performed on the intensity of
18 phenotypic markers previously classified as functional markers as
opposed to lineage markers61.

Marker intensities were Z-scored within each cell type to facilitate
the visualizationofphenotypic clusters and assessmarker significance.
Hierarchical clustering was performed on Z-scored intensities of all 18
phenotypic markers, in 3 cell types (dendritic cells, NK cells, and
neutrophils) using euclidean distance and Ward linkage. To serve as a
well-controlled comparison to the 10 niches and interfaces found by
NIPMAP, 10 phenotypic clusters were determined for each cell type by
cutting the hierarchical clustering dendrogram at the height needed to
split the dendrogram into 10 groups using R’s cutree function (den-
dextend package).

To quantify how phenotypic heterogeneity associates with space,
we tested how accurately eachphenotypic cluster predicted the niche of
a given cell. We considered that a given cell was located in a given niche
if the weight of that niche was at least 0.5. By tabulating how often
cluster membership matched niche location, we computed the sensi-
tivity and specificity of each cluster in predicting the different niches.

Phenotypic clusters are identified without regard to the niche
location of cells. We thus asked whether a combined analysis of niche
location and phenotypic markers could identify better predictors of
the niche location of cells. To do so, we trained linear predictors of the
niche weight of each cell based on the intensity of all 18 phenotypic
markers. Changing the cut-off on the predicted niche weight beyond
which a cell was considered to localize in that niche, we computed how

different niche weight cut-offs achieved different sensitivities and
specificities (ROC curves).

Quantifying the niche weights of individual cells
To associate cell phenotypes and niches (see next section), the niche
weights of each cell need to be determined.

The niche and interface weights are computed for all cells of the
dataset, by centering sites on each cell of the dataset. The cellular
composition c of each site is determined and the contributions of the
different niches to each site α is computed as described above (Eqn. 6)
by solving the matrix equation c =Bα, with B, a matrix of the cellular
composition of the different niches.

We solve for α, ∑αi = 1 by quadratic programming using the
qpsolvers Python library with the default solver “quadprog". Cells
labeled as Unidentified were discarded from the analysis.

Identifying niche-phenotype associations
To identify associations between phenotypic markers and niches in a
given cell type, we iterate over markers, niches, and cell types.

For each marker-niche-cell type triplet, we compute Spearman’s
rank correlation ρ between marker intensity and niche weight in indi-
vidual cells of the dataset. Here, a niche can be an individual niche i
(quantified as αi) or an interface region between two niches i and j
(quantified as αiαj). We only consider combinations of cell types and
niches for which there was at least one example of a cell of that type
located mostly in this niche (αi > 1/2). For interfaces, the maximal
weight of each niche is 1/2 (not 1 as in niches): thus we only consider
combinations of cell types and interfaces i, j forwhich therewas at least
one example of a cell of that type with αiαj > 1/2(1/2)2 = 1/8. In the
heatmap visualization of niche-phenotypes associations, the ρ corre-
lation of the marker-niche-cell type triplets that do not meet this cri-
teria is set to 0.

Statistical significance is quantified as a p-value using a two-sided
asymptotic t test approximation. The calculation is repeated for all
combinations of phenotypic markers of all cell types, and all niches/
interfaces.

To correct for multiple testing and focus analysis on the clearest
niche-phenotype associations, we compute the false discovery rate33

Table 2 | Cell types from the MIBI data of Keren et al.21 and
CyTOF data of Wagner et al.32 were aligned to compare the
two datasets

shared cell type cell type from CyTOF data cell type from MIBI data

DC DC DC

Endothelial Endothelial cells Endothelial

Macrophages Macrophages Macrophages

Mesenchymal-like Other Mesenchymal-like

Fibroblasts Unidentified

CD4-T CD4+T CD4+T

Tregs

Cancer Epithelial cells Tumor

keratin-positive tumor

NK NK NK

B B cells B

Plasma cells

Other immune Other immune Neutrophils

Mono/Neu

CD3+T/CD4-T

DC/Mono

Other immune

CD8T CD8+T CD8+T
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and keep only q-values smaller than 0.01. We also require the Spear-
man correlation to be at least 0.3, a threshold beyond which visual
intuition confirms niche-phenotype associations.

We considered higher-order interfaces between niches (three
niches and more) but chose not to report them here because niche-
phenotype associations were weaker compared to niches and their
pairwise interfaces.

In the analysis of the MIBI data of Keren et al.21, to prevent false
positives in niche-phenotype associations due to spatial signal bleed-
over of cancer cell markers to neighboring cells, we filtered out the
Keratin 6 and beta-catenin markers in niches dominated by cancer
cells, that is the cancer niche and interfaces with the cancer niche.We
also filtered out the p53 marker in Tregs of the cancer niche speci-
fically because overlaying the cell segmentation mask and the
p53 signal suggested spatial spill-over in Tregs of the cancer niche
(Supplementary Fig. 10). We kept the p53marker in the analysis so as
to potentially capture the p53 phenotype in other cell types and
other niches, as p53 localized away from cell membranes in most
cells (Supplementary Fig. 10), consistent with its known pattern of
nuclear accumulation upon DNA damage and other stresses62. We
were left with 55 cell type and phenotype markers with significant
spatial associations.

To summarize the heatmap of niche-phenotype associations into
a tissue architecture table (Table 1, Fig. 5e), we iterate over all niches
and interfaces. For each of these, we collect cells with phenotypic
associations with q < 1% and ρ >0.3.

To reduce redundancy in reporting phenotypic associations and
clarify the niche vs interface specificity of phenotypic markers, we
remove phenotypic markers from a niche if that niche has an interface
with a larger ρ. Conversely, we remove phenotypic markers from an
interface if that interface borders a niche with a larger ρ.

In each niche/interface, we also report cell types without specific
niche-phenotype associations that are robustlypresent in the niche. To
identify these cell types, we consider the 1% sites with the highest
weight for that niche. For each cell type, we then compute the mean
and standard deviation in the abundance of that cell type. Cell types
whosemean abundance is at least one standard deviation away from0
abundance are reported in that niche.

Processing and analysis of in situ sequencing data from
Sountoulidis et al.
The pcw13 embryonic human lung dataset from Sountoulidis et al.44

was communicated to us by the authors in the form of a table where
rows represent the cells of the dataset and columns represent the x-
and y-position of the cells, the cells’ type, and RNA quantification
(molecular counts) of 89 phenotypic markers. The data can be
downloaded from the dedicated github repository (see Data and
Code Availability). The data can be visualized interactively on
TissUUmap63.

The authors clustered single-cell gene expression profiles to
determine the type of individual cells in the dataset. The 73 initial
cell types were simplified into 32 cell types to facilitate inter-
preting the spatial architecture of the lung tissue (Supplemen-
tary Data 1).

We performed niche identification on the 100,006 cells from the
dataset, using the same approach used for the 40 tumor samples of
Keren et al.21 above. To accommodate the larger tissue size
(6500μm×6500μm) compared to the MIBI data (800μm×800μm),
20,000 sites were generated, so that the total area of sites represented
100% of the tissue area. Computation time was not a limiting factor in
this dataset becauseweperformed fewer follow-up analyses compared
to the MIBI data of Keren et al.21. Niche-phenotype mapping was then
performed on an 800μm×800μm region of the tissue illustrated
in Fig. 5a.

Visualizing projection of sites on the faces of high-dimensional
simplexes
To visualize how a simplex fits the cellular composition of sites
when more than 3 dimensions are needed to capture site cellular
composition, we visualize the distribution of sites onto the faces
of the simplex.

To do so, we iterate through all the faces of the simplex, defined
by all combinations of three endpoints i, j, k.

We exclude sites located farthest from the face, as the projection
of sites located far from a face provides little insight regarding how
well the simplex’s face fits these sites. To do so, we only keep sites for
which the combined weight of the endpoints that define the face is at
least 50%.

From the coordinates of these endpoints in PC-space, we deter-
mine an orthonormal basis for the three endpoints of the face and
position the endpoints on that basis: i at (0, 0), endpoint j at (xj, yj) and
endpoint k at (xk, yk). Then, the position p of sites on the face is
determined from niche weights α as p = αi(0, 0) + αj(xj, yj) + αk(xk, yk).

Statistics and reproducibility
Statistics are reported with p value, sample size, and bilaterality in the
context of their use in the article. For reproducibility, full R/python
code, including random seed, input data files, and documentation can
be found on the companion github repository of this manuscript64.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data to reproduce the analyses can be downloaded at https://
github.com/jhausserlab/NIPMAP64. Source data are provided with
this paper.

Code availability
The NIPMAP software package and the code to reproduce the analyses
can be downloaded at https://github.com/jhausserlab/NIPMAP64.
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