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Learning few-shot imitation as cultural
transmission
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Cultural transmission is the domain-general social skill that allows agents to
acquire and use information from each other in real-timewith high fidelity and
recall. It can be thought of as the process that perpetuates fit variants in
cultural evolution. In humans, cultural evolution has led to the accumulation
and refinement of skills, tools and knowledge across generations.Weprovide a
method for generating cultural transmission in artificially intelligent agents, in
the form of few-shot imitation. Our agents succeed at real-time imitation of a
human in novel contexts without using any pre-collected human data. We
identify a surprisingly simple set of ingredients sufficient for generating cul-
tural transmission and develop an evaluation methodology for rigorously
assessing it. This paves the way for cultural evolution to play an algorithmic
role in the development of artificial general intelligence.

Intelligence can be defined as the ability to acquire new knowledge,
skills, and behaviours efficiently across a wide range of contexts1. Such
knowledge represents the faculty to execute sequences of actions that
achieve goals in appropriate contexts. Human intelligence is especially
dependent on our ability to acquire knowledge efficiently from other
humans. This knowledge is collectively known as culture, and the
transfer of knowledge from one individual to another is known as
cultural transmission. Cultural transmission is a formof social learning,
learning assisted by contact with other agents. It is specialised for the
acquisition of culture2 via high fidelity, consistent recall, and general-
isation to previously unseen situations.We refer to these properties as
robustness3. Robust cultural transmission is ubiquitous in everyday
human social interaction, particularly in novel contexts: copying a new
recipe as seen on TV, following the leader on a guided tour, showing a
colleague how the printer works, and so on.

We seek to generate an artificially intelligent agent capable of
robust real-time cultural transmission from human co-players in a rich
3D physical simulation. The motivations for this are threefold. First,
since cultural transmission is an ever-present feature of human social
behaviour, it is a skill that anartificially intelligent agent shouldpossess
to facilitate beneficial human-AI interaction. Second, cultural

transmission can be seen as the process that underlies the evolution of
culture4, arguably the fastest known intelligence-generating process5.
By exhibiting cultural transmission among embodied artificial agents
in a complex space of 3D interactive tasks, we extend previous litera-
ture on computational models of cultural transmission6 and cultural
evolution7 in the direction of using cultural evolution as an AI-
generating algorithm8,9. Third, rich 3Dphysical simulationswith sparse
reward pose hardexplorationproblems for artificial agents, yet human
behaviour in this setting is often highly informative and cheap in small
quantities. Cultural transmission provides an efficient means of
structured exploration in behaviour space.

We focus on a particular form of cultural transmission, known in
the psychology and neuroscience literature as observational learning10

or (few-shot) imitation11. In this field, imitation is defined to be the
copying of body movement. It is a particularly impressive form of
cultural transmission because it requires solving the challenging
“correspondence problem”12,13, instantaneously translating a sensory
observation of another agent’s motor behaviour into a motor repro-
duction of that behaviour oneself. In humans, imitation provides the
kind of high-fidelity cultural transmission needed for the cultural
evolution of tools and technology14,15. On the other hand, few-shot
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imitation is by nomeans the only form of cultural transmission16. Here,
we provide a recipe for learning a few-shot imitation ability tabula rasa.
Nevertheless, many of our methods are independent of the particular
setting of imitation. We want to know how the skill of cultural trans-
mission can develop when an artificial agent is learning from scratch,
analogous in the cognitive science literature to the combination of
phylogeny and ontogeny17,18.

Our artificial agent is parameterised by a neural network and we
use deep reinforcement learning (RL)19 to train the weights. After
training, the network is capable of few-shot, high-recall cultural
transmission within a “test” episode, across a wide range of previously
unseen tasks. Our approach contrasts with prior methods in which the
training itself is a process of cultural transmission, namely imitation
learning20–22 and policy distillation23,24. These prior methods are highly
effective on individual tasks, but they are not few-shot learners, require
privileged access to datasets of human demonstrations or a target
policy, and struggle to generalise to held-out tasks25. Our method
amortises imitation learning into a real-time capability based on a
single-stream of experience, which can be deployed on previously
unseen tasks with no further training. This is important for many real-
world applications, from construction sites to household robots, in
which human data collection is costly, the tasks have inherent varia-
tion, and privacy is at a premium.

The central novelty in this work is the application of agent-
environment co-adaptation26,27 to generate an agent capable of robust
real-time cultural transmission. To this end, we introduce a new open-
ended reinforcement learning environment, GoalCycle3D. In this
environment, the overall objective is to navigate between goal spheres
in the correct order to accrue reward, avoiding obstacles along the
way. The environment offers a rich diversity of task variants by virtue
of procedural generation, 3D rigid-body physics, and continuous first-
person sensorimotor control. Here, we explore more challenging
exploration problems and generalisation challenges than in previous
literature. We introduce a rigorous cultural transmission metric and
transplant a two-option paradigm from cognitive science28–30 to make
causal inference about information transfer from one individual to
another. This puts us on a firm footing fromwhich to establish state-of-
the-art generalisation and recall capabilities. Priorwork31–33 has usedRL
to generate test-time social learning, but these agents do not show
within-episode recall or across-task generalisation.

Via careful ablations, we identify a minimal sufficient “starter kit”
of training ingredients required for cultural transmission to emerge in
GoalCycle3D, namely function approximation, memory (M), the pre-
sence of an expert co-player (E), expert dropout (D), attentional bias
towards the expert (AL), and automatic domain randomisation (ADR).
We refer to this collection by the acronym MEDAL-ADR. Memory is
implemented as an LSTM network in the agent architecture. Our
expert co-players are hard-coded bots, and are dropped in and out
probabilistically during training episodes. This probabilistic dropout
provides the right experience for agents to learn to observe what a
useful demonstrator is doing and then remember and reproduce it
when the demonstrator is absent. Attentional bias towards the expert
is learned via an auxiliary loss to predict the position of the co-player.
ADR gradually expands the distribution of tasks on which an agent
trains, whilemaintaining a high cultural transmission capability. These
components are ablated in turn in “The role of memory, expert
demonstrations and attention loss” to “ADR for cultural transmission
in complex worlds”: only when all of them are acting in concert does
robust cultural transmission arise in complex worlds.

Individually, these components aren’t complex, but together they
generate a powerful agent. We analyse the capabilities and limitations
of our agent’s cultural transmission abilities on three axes inspired by
the cognitive science of imitation, namely recall, generalisation, and
fidelity34–37. Recall assesses how well an agent can reproduce a
demonstration without an expert present. Generalisation measures

whether an agent can perform cultural transmission on held-out tasks.
Fidelity computes to what extent an agent’s choices closely match
those of the expert demonstrator. We find that cultural transmission
generalises outside the training distribution, and that agents recall
demonstrations within a single episode long after the expert has
departed. Introspecting the agent’s “brain”, we find strikingly inter-
pretable neurons responsible for encoding social information and goal
states.

Results
GoalCycle3D task space
We introduce GoalCycle3D, a 3D physical simulated task space built in
Unity38,39 which expands on the GoalCycle gridworld environment of
ref. 33. By anchoring our task dynamics to this previous literature and
translating it to a 3D space, our results naturally extend prior work to a
more naturalistic and realistic environment. The resulting richness is
an important direction for the eventual deployment of AI, highlighting
which algorithmic novelties are required to exceed the prior state-of-
the-art in a more realistic setting.

Similar to ref. 27, we decompose an agent’s task as the direct
product of a world, a game and a set of co-players. The world com-
prises the size and topography of the terrain and the locations of
objects. The game defines the reward dynamics for each player, which
in GoalCycle3D amounts to a correct ordering of goals. A co-player is
another interactive policy in the world, consuming observations and
producing actions. Each task can be viewed as a different Markov
decision process, thus presenting a distribution of environments for
reinforcement learning.

While the 3D task space yields significant richness, it also presents
opportunities for handcrafting which would reduce the generality of
our findings. To avoid this, wemake use of procedural generation over
a wide task space. More specifically, we generate worlds and games
uniformly at random for training, and test generalisation to held-out
“probe tasks” at evaluation time, including a held-out human co-player,
as described in “Probe Tasks”. This train-test split provides data that
enables overfitting to be ruled out, just as in supervised learning.

Worlds are parameterised by world size, terrain bumpiness and
obstacle density. The obstacles and terrain create navigational and
perception challenges for players. Players are positively rewarded for
visiting goal spheres in particular cyclic orders. To construct a game,
given a number of goals n, an order σ∈ Sn is sampled uniformly at
random.Thepositively rewarding orders for the game are thenfixed to
be {σ, σ−1} where σ−1 is the opposite direction of the order σ. An agent
has a chance 2

ðn�1Þ! of selecting a correct order at random at the start of
each episode. In all our training and evaluation we use n ≥ 4, so one is
alwaysmore likely to guess incorrectly. The positions and orders of the
goal spheres are randomly sampled at the start of each episode.

Players receive a reward of +1 for entering a goal in the correct
order, given the previous goals entered. The first goal entered in an
episode always confers a reward of +1. If a player enters an incorrect
goal, they receive a reward of −1 andmust now continue as if this were
the first goal they had entered. If a player re-enters the last goal they
left, they receive a reward of 0. The optimal policy is to divine a correct
order, by experimentation or observation of an expert, and then visit
the spheres in this cyclic order for the rest of the episode. Figure 1
summarises the GoalCycle3D task space.

Measuring cultural transmission
The term cultural transmission has a variety of definitions, reflecting
the diverse literature on the subject. For the purpose of clarity, we
adopt a specific definition in this paper, one that captures the key
features of few-shot imitation. Intuitively, the agent must improve its
performance upon witnessing an expert demonstration and maintain
that improvementwithin the same episode once the demonstrator has
departed. However, what seems like test-time cultural transmission
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might actually be cultural transmission during training, leading to
memorisation of fixed navigation routes. To address this, we measure
cultural transmission in held-out test tasks and with human expert
demonstrators40,41, similar to the familiar train-test dataset split in
supervised learning42.

Capturing this intuition, we define cultural transmission from
expert to agent to be the average of improvement in agent scorewhen
an expert is present and improvement in agent scorewhen that expert
has subsequently departed, normalised by the expert score, evaluated
on held-out tasks that have never before been experienced by the
agent.Mathematically, let Ebe the total score achievedby the expert in
an episode of a held-out task. Let Afull be the score of an agent with the
expert present for the full episode. Let Asolo be the score of the same
agent without the expert. Finally, letAhalf be the score of the agentwith
the expert present from the start to halfway into the episode. Our
metric of cultural transmission is

CT :=
1
2
Afull � Asolo

E
+
1
2
Ahalf � Asolo

E
: ð1Þ

A completely independent agent doesn’t use any information
from the expert. Therefore it has a value of CT near 0. A fully expert-
dependent agent has a value of CT near 0.75. An agent that follows
perfectly when the expert is present, but continues to achieve high
scores once the expert is absent has a value of CT near 1. This is the

desired behaviour of an agent from a cultural transmission perspec-
tive, since the knowledge about how to solve the task was transmitted
to, retained by and reproduced by the agent.

Cultural transmission is a bridge to adaptation
We first examine how reinforcement learning can generate cultural
transmission in a relatively simple setting, a 4-goal game in a
20 × 20m2 empty world. This is far from the most challenging task
space for our algorithm, but it has a simplicity that is useful for
developing our intuition. We find that an agent trained with memory
(M), expert dropout (ED), and an attention loss (AL) on tasks sampled
in this subspace experiences 4 distinct phases of training. The learning
pathway of the agent passes through a cultural transmission phase to
reach a policy that is capable of online adaptation, experimenting to
discover and exploit the correct cycle within a single episode. By
comparison, a vanilla RL baseline (M) is incapable of learning this few-
shot adaptation behaviour. In fact it completely fails to get any score
on the task (see “The role of memory, expert demonstrations and
attention loss”). Cultural transmission, then, is functioning as a bridge
to few-shot adaptation.

The training cultural transmission metric shows four distinct
phases over the training run, each corresponding to a distinct social
learning behaviour of the agent (see Fig. 2). In phase 1 (red), the agent
starts to familiarise itself with the task, learns representations, loco-
motion, and explores, withoutmuch improvement in score. In phase 2

Fig. 1 | GoalCycle3D. A 3D physical simulated task space.Each task contains pro-
cedurally generated terrain, obstacles, and goal spheres, with parameters randomly
sampledon task creation. Eachagent is independently rewarded for visiting goals in
a particular cyclic order, also randomly sampledon task creation. The correct order
is not provided to the agent, so anagentmust deduce the rewarding order either by

experimentation or via cultural transmission from an expert. Our task space pre-
sents navigational challenges of open-ended complexity, parameterised by world
size, obstacle density, terrain bumpiness and a number of goals. Our agent
observes the world using LIDAR (see Supplementary Movie 30).
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(blue), with sufficient experience and representations shaped by the
attention loss, the agent learns its first social learning skill of following
the expert bot to solve the task. The training cultural transmission
metric increases to 0.75, which suggests pure following.

In phase 3 (yellow), the agent learns the more advanced social
learning skill that we call cultural transmission. It remembers the
rewarding cycle while the expert bot is present and retrieves that
information to continue to solve the taskwhen the bot is absent. This is
evident in a training cultural transmission metric approaching 1 and a
continued increase in agent score.

Lastly, in phase 4 (purple), the agent is able to solve the task
independent of the expert bot. This is indicated by the training cultural
transmissionmetric fallingback towards0while the score continues to
increase. The agent has learned a memory-based policy that can
achieve high scores with or without the bot present. More precisely,
MEDAL displays an “experimentation” behaviour in this phase, which
involves using hypothesis-testing to infer the correct cycle without
reference to the bot, followed by exploiting that correct cycle more
efficiently than the bot does (see SupplementaryMovies 1–4). The bot

is not quite optimal because for ease of programming it is hard-coded
topass through the centre of each correct goal sphere,whereas reward
can be accrued by simply touching the sphere. Note by comparison
with Fig. 3a that this experimentation behaviour does not emerge in
the absence of prior social learning abilities.

In other words, few-shot imitation creates the right prior for few-
shot adaptation to emerge, which remarkably leads to improvement
over the original demonstrator’s policy. Note that, social learning by
itself is not enough to generate experimentation automatically, further
innovation by reinforcement learning, on top of the culturally trans-
mitted prior, is necessary for the agent to exceed the capabilities of its
expert partner. Our agent stands on the shoulders of giants, and then
riffs to climb yet higher.

The role of memory, expert demonstrations and attention loss
Wehave shown that ourMEDAL agent is capableof learning a test-time
cultural transmission ability. Now, we show that the set of ingredients
is minimal, by demonstrating the absence of cultural transmission
when any one of them is removed. In every experiment, MEDAL and its

Fig. 2 | TrainingwithoutADR.Training cultural transmission (left) and agent score
(right) for training without ADR on 4-goal in a small empty world. Colours indicate
four distinct phases of agent behaviour from left to right: (1) (red) startup and

exploration, (2) (blue) learning to follow, (3) (yellow) learning to remember, (4)
(purple) becoming independent from expert.

Fig. 3 | Ablations of MEDAL ingredients. Score (left), training cultural transmis-
sion (CT, centre), and evaluation CT on empty world 5-goal probe tasks (right) over
the course of training. aComparingMEDALwith three ablated agents, each trained
without one crucial ingredient: without an expert (M―), memory (–EDAL), or
attention loss (MED—). b Ablating the effect of expert dropout, comparing no

dropout (ME—AL) with expert dropout (MEDAL).We report themean performance
for each across 10 initialisation seeds for agent parameters and task procedural
generation. We also include the expert’s score andMEDAL’s best seed for scale and
upper-bound comparisons. The shaded area on the graphs is one standard
deviation.
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ablated cousins were trained on procedurally generated 5-goal,
20 × 20 worlds with no vertical obstacles and horizontal obstacles of
density 0.0001m−2, and evaluatedon the emptyworld 5-goal probes in
“Probe tasks”. We use a variety of different dropout schemes,
depending on the ablation. M—- is trained with full dropout (expert is
never present), ME–AL is trained with no dropout (expert is always
present) and all other agents are trained with probabilistic dropout.

Figure 3a shows that memory (M), the presence of an expert (E),
and our attention loss (AL) are important ingredients for the learning
of cultural transmission. In the absence of these the agent achieves 0
score and therefore also doesn’t pick up any reward-influencing social
cues from the expert (if present), accounting for a mean CT of 0.

First, we consider the M—- ablation. By removing expert demon-
strations and, consequently, all dependent components, the dropout
(D) and attention loss (AL), the agent must learn to determine the
correct goal ordering by itself in every episode. The MPO agent’s
exploration strategy is not sufficiently structured to deduce the
underlying conceptual structure of the task space, so the agent simply
learns a “risk-averse” behaviour of avoiding goal spheres altogether
(see Supplementary Movie 5).

Next, we analyse the –EDAL ablation. Without memory, our agent
cannot form connections to previously seen cues, be they social,
behavioural, or environmental. When replacing the LSTM with an
equally sized MLP (keeping the same activation functions and biases,
but removing any recurrent connections), our agent’s ability to regis-
ter and remember a solution is reduced to zero.

Lastly, we turn to the MED– ablation. Having an expert at hand is
futile if the agent cannot recognise and pay attention to it. When we
turn off the attention loss, the resulting agent treats other agents as
noisy background information, attempting to learn as if it were alone.
Vanilla reinforcement learning benefits from social cues to bootstrap
knowledge about the task structure; the attention loss encourages it to
recognise social cues. Note that the attention loss, like all auxiliary
losses to shape neural representations, is only required at training
time. This means that our agent can be deployed with no privileged
sensory information at test time, relying solely on its LIDAR.

Expert dropout enables within-episode memorisation
To isolate the importance of expert dropout, we compare our MEDAL
agent (in which the expert intermittently drops in and out) with the
previous state-of-the-art method ME-AL (in which the expert is always
present). We use the same procedural generation and evaluation set-
ting as in the previous section. Studying Fig. 3b, we see that the
addition of expert dropout to the previous state of the art leads to
better CT. MEDAL achieves higher CT both during training and when
evaluated on empty world 5-goal probe tasks. This is because dropout
encourages the learning of within-episode memorisation, a capability
that was absent from previous agents33 and which confers a higher
cultural transmission score (see also “Agents recall expert demon-
strations with high fidelity”).

ADR for cultural transmission in complex worlds
As we have seen, learning cultural transmission in a fixed task dis-
tribution acts as a gateway for learning few-shot adaptation. While this
is undeniably useful in its own right, it begs the question: how can an
agent learn to transmit cultural information in more complex tasks?
ADR is a method of expanding the task distribution across training
time tomaintain it in the “Goldilocks zone” for cultural transmission. It
gradually increases the complexity of the training worlds in an open-
ended procedurally generated space (parameterised by 7
hyperparameters).

Figure 4a shows an example expansion of the randomisation
ranges for all parameters for the duration of an experiment. Training
CT is maintained between the boundary update thresholds 0.75 and
0.85. We see an initial start-up phase of ~100 hours when social

learning first emerges in a small, simple set of tasks. Once training CT
exceeds 0.75, all randomisation ranges began to expand. Different
parameters expand at different times, indicating when the agent has
mastered different skills such as jumping over horizontal obstacles or
navigating bumpy terrain. For intuition about the meaning of the
parameter values, see Supplementary Movies 6–9.

To understand the importance of ADR for generating cultural
transmission in complex worlds, we ablate the automatic (A) and
domain randomisation (DR) components of MEDAL-ADR (for para-
meter values, see Supplementary Table D.1). The MEDAL agent is
trained on worlds as complicated as the end point of the ADR curri-
culum. The MEDAL-DR agent is trained on a uniformly sampled dis-
tribution between the minimal and maximal complexities of the ADR
curriculum (i.e., no automatic adaptation of the curriculum). In Fig. 4b
we observe that ADR is crucial for the generation of cultural trans-
mission in complex worlds, with MEDAL-ADR achieving significantly
higher scores and cultural transmission than both MEDAL-DR
and MEDAL.

Agents recall expert demonstrations with high fidelity
Todemonstrate the recall capabilities of our best-performing agent,we
quantify its performance across a set of tasks where the expert drops
out. The intuition here is that if our agent is able to recall information
well, then its score will remain high for many timesteps even after the
expert has dropped out. However, if the agent is simply following the
expert or has poor recall, then its score will instead drop immediately
close to zero. Toour knowledge,within-episode recall of a third-person
demonstration has not previously been shown to arise from reinfor-
cement learning. This is an important discovery, since the recent his-
tory of AI research has demonstrated the increased flexibility and
generality of learned behaviours over pre-programmed ones. What’s
more, third-person recall within an episode amortises imitation onto a
timescale of seconds and does not require perspective matching
between co-players. As such, we achieve the fast adaptation benefits of
previous first-person few-shot imitation works (e.g., refs. 22,43,44) but
as a general-purpose emergent property from third-person RL rather
than via a special-purpose first-person imitation algorithm.

For each task, we evaluate the score of the agent across ten con-
tiguous 900-step trials, comprising an episode of experience for the
agent. In the first trial, the expert is present alongside the agent, and
thus the agent can infer the optimal path from the expert. From the
next trial onwards the expert is dropped out and therefore the agent
must continue to solve the task alone. The world, agent, and game are
not reset between trial boundaries; we use the term “trial” to refer to
the bucketing of score accumulated by each player within the time
window. We consider recall from two different experts, a scripted bot
and a human player. For both, we use theworlds from the 4-goal probe
tasks (see “Automatic domain randomisation”).

Figure 5 compares the recall abilities of our agent trained with
expert dropout (MEDAL-ADR) and without (ME-AL, similar to the prior
state of the art33). Notably, after the expert has dropped out, we see
that our MEDAL-ADR agent is able to continue solving the task for the
first trial while the ablatedME-AL agent cannot.MEDAL-ADRmaintains
a good performance for several trials after the expert has dropped out,
despite the fact that the agent only experienced 1800-step episodes
during training. From this, we conclude that our agent exhibits strong
within-episode recall.

Evidence of causality. To show causal information transfer from the
expert to the agent in real time, we can adopt a standardmethod from
the social learning literature. In the “two-action task”28–30 subjects are
required to solve a task with two alternative solutions. Half of the
subjects observe a demonstration of one solution while the others
observe a demonstration of the alternative solution. If subjects dis-
proportionately use the observed solution, this is evidence that

Article https://doi.org/10.1038/s41467-023-42875-2

Nature Communications |         (2023) 14:7536 5



supports imitation. This experimental approach is widely used in the
field of social learning; we use it here as a behavioural analysis tool for
artificial agents for the first time. Using the tasks from our game space
analysis, we record the preference of the agent in pairs of episodes
where the expert demonstrates the optimal cycles σ and σ−1. The pre-
ference is computed as the percentage of correct complete cycles that
an agent completes that match the direction of the expert cycle.
Evaluating this over 1000 trials, we find that the agent’s preference
matched the demonstrated option 100% of the time, i.e., in every
completed cycle of every one of the 1000 trials.

Trajectory plots further reveal the correlation between expert and
agent behaviour (see Fig. 6). By comparing trajectories under different

conditions, we can again argue that cultural transmission of informa-
tion from expert to agent is causal. The agent cannot solve the task
when the bot is notplaced in the environment (Fig. 6a).When thebot is
placed in the environment, the agent is able to successfully reach each
goal and then continue executing the demonstrated trajectory after
the bot drops out (Fig. 6b). However, if an incorrect trajectory is shown
by the expert, the agent still continues to execute the wrong trajec-
tory (Fig. 6c).

Agents generalise across a wide task space
To demonstrate the generalisation capabilities of our agents, we
quantify their performance over a distribution of procedurally

Fig. 5 | Agent recall. Score of MEDAL-ADR andME-AL agents across trials since the
expert dropped out. a Experts are scripted bots. b Experts are human trajectories.
SupplementaryMovie 10 showsMEDAL-ADR’s recall from a bot demonstration in a

3600-step (4 trial) episode. Supplementary Movie 31 shows MEDAL-ADR’s recall
from a human demonstration in an 1800-step (2 trial) episode.

Fig. 4 | Analysis of ADR parameter expansion and ablation of ADR ingredients.
a The expansion of parameter ranges over training for one representative seed in
MEDAL-ADR training. b Score (left), training Cultural Transmission (CT, centre),
and evaluation CT on complex world probe tasks (right) over the course of training
for the automatic (A) anddomain randomisation (DR) ablations ofMEDAL-ADR.We

report the mean performance for each across 10 initialisation seeds for agent
parameters and task procedural generation. We also include the expert’s score and
the best MEDAL-ADR seed for scale and upper bound comparisons. The shaded
area on the graphs is one standard deviation.
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generated tasks, varying the underlying physical world and the over-
lying goalcycle game. We analyse both “in-distribution” and “out-of-
distribution” generalisation, with respect to the distribution of para-
meters seen in training (see Supplementary Table C.2). Out-of-
distribution values are calculated as ±20% of the min/max in-
distribution ADR values where possible, and indicated by cross-
hatched bars in all figures.

In every task, an expert bot is present for the first 900 steps, and is
dropped out for the remaining 900 steps. We define the normalised
score as the agent’s score in 1800 steps divided by the expert’s score in
900 steps. An agent who can perfectly follow but cannot remember
will score 1. An agent which can perfectly follow and can perfectly
remember will score 2. Values in between correspond to increasing
levels of cultural transmission.

World space. The space of worlds is parameterised by the size and
bumpiness of the terrain (terrain complexity) and the density of
obstacles (obstacle complexity). To quantify generalisation over each
parameter in this space, we generate tasks with worlds sampled uni-
formly from the chosen parameter while setting the other parameters
at their lowest in-distribution value. Games are then uniformly sam-
pled across the possible number of crossings for 5 goals.

From Fig. 7a, we conclude that MEDAL-ADR generalises well
across the space of worlds, demonstrating both following and
remembering across the majority of the parameter variations con-
sidered, including when the world is out-of-distribution.

Game space. The space of games is defined by the number of goals in
the world as well as the number of crossings contained in the correct
navigation path between them. To quantify generalisation over this
space, we generate tasks across the range of feasible “N-goal M-
crossing” games in a flat empty world.

Figure 7b shows our agent’s ability to generalise across games,
including those outside of its training distribution. Notably, MEDAL-
ADR can perfectly remember all numbers of crossings for the in-
distribution 5-goal game. We also see impressive out-of-distribution
generalisation, with our agent exhibiting strong remembering, both in
4-goal and 0-crossing 6-goal games. Even in complex 6-goal games
with many crossings, our agent can still perfectly follow.

Introspecting the agent’s brain
Deep learning models are not necessarily readily interpretable. On the
other hand, interpretability is often desirable or even pre-requisite for
deploying AI systems in the real world. Here, we demonstrate that our
model is interpretable at the neural level. Training agents to imitate via
meta-reinforcement learning embeds the logic for a state-machine
capable of approximately Bayes-optimal cultural transmission into the
neural network’sweights45. By inspecting a trained agent’smemory, we
find clearly interpretable individual neurons. These neurons have
specialised roles required for solving a new task online via cultural
transmission, a subset of the sufficient statistics which drive the state-
machine46. One, dubbed the social neuron, encapsulates the notion of
agency; the other, called the goal neuron, captures the periodicity of
the task.

To identify the social neuron, we use linear probing47,48, a well-
known and powerful method for understanding intermediate layers of
a deep neural network.We train an attention-based classifier to classify
the presence or absence of an expert co-player based on the memory
state of the agent. The neuron with the maximum attention weight is
defined to be a social neuron, and its activation crisply encodes the
presence or absence of the expert in the world (Fig. 8a). Figure 8b
shows a stark difference in prediction accuracy for expert presence
between differently ablated agents. This suggests that the attention
loss (AL) is at least partly responsible for incentivising the construction
of “socially-aware” representations.

To identify the goal neuron we inspect the variance of memory
neural activations across anepisode,finding aneuronwhoseactivation
is highly correlated with the entry of an agent into a goal sphere.
Figure 8c shows that this neuron fires when the agent enters and
remains within a goal sphere. Interestingly, it is not the presence or the
following of an expert that determines the spikes, nor the observation
of a positive reward. Appendix D.3 contains full details of ourmethods
and results.

Discussion
In this work, we have viewed robust cultural transmission as a “cog-
nitive gadget”2. That is to say, it may be learned purely from individual
reward49, requiring only that the environment contains knowledgeable
co-players, and that the agent has a minimal sufficient number of

Fig. 6 | Evidence of causality. Trajectory plots for MEDAL-ADR agent for a single
episode. a The bot is absent for the whole episode. b The bot shows a correct
trajectory in the first half of the episode and then drops out. c The bot shows an
incorrect trajectory in the first half of the episode and then dropsout. The coloured

parts of the lines correspond to the colour of the goal sphere the agent and expert
have entered and the × s correspond to when the agent entered the incorrect goal.
Here, position refers to the agent’s position along the z-axis. Supplementary
Movies 11–13 correspond to each plot respectively.
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representational and experiential biases. All of these ingredients have
analogues inhumanand animal cognition. Better workingmemory (M)
is known to correlate with improved fluid intelligence in humans50 and
the ability to solve novel reasoning problems51, including by
imitation52. The progressive increase in duration of expert dropout
(ED)mirrors thedevelopment of secure attachment in humans53, and is
important for the learning of imitation in animals54. Humans, along
withmany animals, have an in-built attentional bias towards biological
motion55,56, mirroring our attention loss (AL). Among animals, social
learning is known to be preferred over asocial learning in uncertain or

varying ecological contexts57,58, environment properties we create
via ADR.

We can characterise our approach to generating cultural trans-
mission as memory-based meta-learning59,60. After training, our agent
can infer the expert’s policy online using only a single stream of
experience. This approach has several benefits for real-world deploy-
ment. Imagine deploying a robot in a kitchen. Onewould hope that the
robot would adapt quickly online if the spoons are moved, or if a new
chef turns up with different skills. Moreover, one might have privacy
concerns about relaying large quantities of data to a central server for

Fig. 7 | Task space generalisation. a A slice through the world space allows us to
disentangle MEDAL-ADR’s generalisation capability across different world space
parameters. b MEDAL-ADR generalises across the game space, demonstrating
remembering capability both inside and outside the training distribution. We

report the mean performance across 50 initialisation seeds for a and 20 initialisa-
tion seeds for b. The error bars on the graphs represent 95% confidence intervals.
SupplementaryMovies 14–20demonstrate generalisationover theworld space and
game space.
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training. Our agent adapts to human cultural data on-the-fly andwithin
its local memory, and thus is both robust and privacy-preserving.

From a safety perspective, our trained agent as an artefact has a
case of objectivemisgeneralisation61, whichwe see in Fig. 6c. The agent
happily follows an incorrect demonstration and even reproduces that
incorrect path once the expert has dropped out. This is unsurprising
since the agent has only encountered near-perfect experts in training.
To address this, an agent could be trained with a variety of experts,
including noisy experts and experts with objectives that are different
from the agent’s. With such experience, an agent should meta-learn a
selective social learning strategy62,63, deciding what knowledge to infer
from which experts, and when to rely on independent exploration.

We identify three limitations with our evaluation approach.
Firstly, we did not test cultural transmission from a range of humans,
but rather with a single player from within the study team. Therefore
we cannotmake statistically significant claims about robustness across
a human population. Secondly, the diversity of reasonable human
behaviour is constrained by our navigation task. To gain more insight
into generalisable cultural transmission, we need tasks with greater
strategic breadth and depth. Lastly, we do not distinguish whether our
trained agents memorise a geographical path, or whether they mem-
orise an abstraction over the correct sphereordering. Todisambiguate
this, one could change the geographical location of goal spheres at the
moment of expert dropout but leave the ordering the same.

It is natural to ask whether our MEDAL-ADR recipe is sufficient
more generally, outside the GoalCycle3D task space. The answer is a
qualified “no”. In our favour, GoalCycle3D is already a large, proce-
durally generated task space. Moreover it can be seen as the naviga-
tional representative for an even bigger class of tasks: those which
require a repeated sequence of strategic choices, such as cooking,
wayfinding, and problem solving. It is reasonable to expect that similar
methods would work well in other representative environments from
this class of tasks. However, there are environmental affordances that
we necessarily assume for our method, including expert visibility,
dropout and procedural generation. If these are impossible to create
or approximate in an environment, then our method cannot be

applied.More subtly there are silent assumptions: thatfinding an initial
reward is relatively easy, there is no fine-motor control necessary, the
timescale for an episode is relatively short, there are no irreversi-
bilities, the goals are all visible, the rewarding order remains constant
throughout an episode. We hope that future studies will relax each of
these requirements, creating new challenges for research.

Is a more minimal “starter kit” possible in a different task space?
Let usfirst assume thatwe remainwithin the frameworkof deepRL.We
know that the MEAL variant33 does not learn a within-episode recall
ability, even in a gridworld, so expert dropout is likely to be essential.
Clearly, the memory component is necessary for successful meta-
learning, which leaves attention loss and ADR. The necessity of
attention loss is a function of the relevant salience of the expert with
respect to the rest of the environment. In a sufficiently simple envir-
onment, or with a sufficiently powerful learning algorithm, this loss
might becomesuperfluous.However, drawing an analogywith humans
suggests that an attention bias might be an important and general
built-in shortcut to social learning: infants display such a bias from a
very young age64. As we have seen, ADR is not a pre-requisite for cul-
tural transmission to emerge, but rather a technique for maintaining
this behaviour during open-ended learning. As machine learning
algorithms become increasingly powerful, we expect that such unsu-
pervised environment design algorithms65 will become a ubiquitous
tool for avoiding overfitting and maintaining within-episode adapta-
tion. Of course, if we remove the assumption of the deep RL frame-
work, it is quite possible that entirely different “starter kits” for cultural
transmission exist: our work may stand as a lighthouse on a much
longer research journey.

There are a wealth of natural extensions to this work, towards the
goal of generating open-ended cultural evolution. Firstly, it would be
interesting to bootstrap agent cultural capabilities from scratch using
generational training66, as opposed to relying on hand-coded expert
bots as co-players. Distillation is already known to create a ratchet
effect across generations27, and cultural transmission can be viewed as
amortised distillation, so we would expect this approach to generate
efficient open-ended learning. Secondly, humans imitate over abstract

Fig. 8 | Introspection of Agent’s Brain. a Activations for MEDAL-ADR’s social
neuron. bWe report the accuracy of three linear probingmodels trained to predict
the expert’s presencebasedon thebelief statesof three agents (MED—,MEDAL, and
MEDAL-ADR). We make two causal interventions (in green and purple) and a con-
trol check (in red) on theoriginal test set (yellow).We report themeanperformance

across 10 different initialisation seeds. The small standard deviation error bars
suggest a broad consensus across the 10 runs on which neurons encode social
information. c Spikes in the goal neuron’s activations correlate with the time the
agent remains inside a goal (illustrated by coloured shading). The goal neuron was
identified using a variance analysis, rather than the linear probing method in b.
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representations of the task at hand, including beliefs, desires and
intentions. Whether co-adaptation of training experience can lead to
such “theory of mind” in artificial agents remains an open question.
This approach would complement explicit model-based methods
adopted inpriorwork (e.g., refs. 67,68). Finally, cultural transmission is
a necessary condition for generating cultural evolutionbutmayormay
not be sufficient (see ref. 69 for a discussion). Earlier in the discussion,
we argued that appropriate randomisation over experts may generate
selective social learning. One might also ask for variation in behaviour
space to power the evolutionary system. Fortunately, there are a
variety of off-the-shelf techniques for generating diverse policies70,71.
Bringing all of these components together, it would be fascinating to
validate or falsify the hypothesis that cultural evolution in a population
of agents may lead to the accumulation of behaviours that solve an
ever-wider array of human-relevant real-world problems.

We do not view ourMEDAL-ADRmethod as a directmodel for the
development of cultural transmission in humans. However, the time is
ripe for such research. The experimental (e.g., refs. 72,73) and theo-
retical (e.g., refs. 2,74) fields are already well-developed, and this work
provides plausibleAImodelling techniques.Neuroscience anddeepRL
have already mutually benefited from collaborations with a modelling
flavour75, and the precedent has been set for MARL as amodelling tool
in social cognition76,77. One could imagine experiments comparing the
various ablated models of MEDAL-ADR with the behaviour of children
at different stages of ontogeny, or with the behaviour of non-human
animals, were one to design appropriate tasks that control for the
various sensorimotor differences between AIs, humans and animals.
Alternatively, one might consider a line of experiments that investi-
gated cultural accumulation across several “generations” of humans
and AIs in a laboratory environment, drawing comparisons between
the different populations, or analysing the effects of mixing human
and AI participants in a population. We look forward to fruitful inter-
disciplinary interaction between the fields of AI and cultural evolu-
tionary psychology in the future.

Methods
In our work, cultural transmission emerges from reinforcement
learning augmented with a minimal sufficient set of ingredients,
measured on held-out probe tasks. Together the ingredients are
referred to as MEDAL-ADR, and are summarised in Fig. 9. The com-
ponentsmodulate reinforcement learning on three distinct timescales.
Within the agent’s neural architecture, a memory module (M) builds a
belief-state representation of the task frame-by-frame. During training,
an attention loss (AL) shapes the neural representation towards paying
attention to co-players. This loss is not required at test time. Zooming
out to the timescale of an episode, the experience stream of the agent
contains an expert co-player (E) which drops in and out (D) probabil-
istically. Finally, across training, the distribution of tasks experienced
in different episodes by the agent is non-stationary. ADR creates a

curriculum of tasks designed to promote and maintain cultural trans-
mission over an ever-wider task space. Our probe tasks can be thought
of as a held-out “test set” for evaluating the generalisation capabilities
of agents trained with RL. We now discuss each methodological con-
tribution in detail.

Reinforcement learning
We train our agent via distributed deep reinforcement learning (RL)
using a state-of-the-art learning algorithm: maximum a posteriori
policy optimisation (MPO)78. MPO is an actor-critic, model-free, con-
tinuous action-space deep reinforcement learning algorithm. Instead
of using gradients from the Q-function, it leverages samples to com-
pare different actions in a particular state, updating the policy to
ensure that better (according to the currentQ-function) actions have a
higher probability of being sampled. As with other actor-critic algo-
rithms,MPOalternates betweenpolicy improvementwhichupdates the
policy (π) using a fixedQ-function and policy evaluationwhich updates
the estimate of the Q-function.

If our agent learns a cultural transmission policy, it is only by
observing an expert agent in the world and correlating improved
expected return with the ability to reproduce the other agent’s beha-
viour. If that cultural transmission policy is robust, then RL must have
favoured imitation with high fidelity, which generalises across a range
of physical contexts, and where transmitted behaviours are recalled
after the demonstrator has departed. For further details of the RL
formalism and MPO algorithm, see Appendices C.1 and C.2. Our agent
is trained using a large-scale distributed training framework, described
in Appendix C.3. Details of the hyperparameters used for learning are
reported in Appendix C.4.

Memory (M)
The encoded observation is fed to a single-layer recurrent neural
network (RNN)with an LSTMcore79 of size 512. This RNN is unrolled for
800 steps during training. The output of the LSTM, which we refer to
as the belief, is passed to a policy, value and auxiliary prediction head.
The policy and value heads together implement the MPO algorithm,
while the prediction head implements the attention loss described in
“Attention Loss (AL)”. The AVATAR sensor observation is used as a
prediction target for this loss.

Expert dropout (ED)
Cultural transmission requires the acquisition of new behaviours from
others. For anagent to robustlydemonstrate cultural transmission, it is
not sufficient to imitate instantaneously; the agent must also inter-
nalise this information, and later recall it in order to display the
transmitted behaviour. We introduce expert dropout as a mechanism
both to test for and to train for this recall ability.

At each timestep in an episode, the expert is rendered visible or
hidden from the agent. Given a difficult exploration task that the agent

Fig. 9 | Ingredients of MEDAL-ADR. The minimal sufficient ingredients that comprise our methods, grouped by the timescale on which they operate.
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cannot solve through solo exploration, we can measure its ability to
recall information gathered through cultural transmission by obser-
ving whether or not it is able to solve the task during the contiguous
steps in which the expert is hidden. During training, we apply expert
dropout in an automatic curriculum to encourage this recall ability, as
described in “Automatic domain randomisation”.

Mathematically, we formulate expert dropout as follows. Let et 2
Z2 be the state of expert dropout at timestep t. State 0 corresponds to
the expert being hidden at time t, by which we mean it will not be
detected in any player’s observation. State 1 corresponds to the expert
being visible at time t. An expert dropout scheme is characterised by
the state transition functions et+1 = f(et, t). We define the following
schemes:

No dropout. f (et, t) = 1 for all t.

Full dropout. f (et, t) = 0 for all t.

Half dropout. For episodes of length N timesteps,

f ðet , tÞ=
1 t ≤ bN=2c
0 t > bN=2c

�
: ð2Þ

Probabilistic dropout. Given transition probability p∈ [0, 1],

f ðet , tÞ=
et + 1mod2 withprobabilityp

et withprobability 1� p

8><
>: : ð3Þ

Attention loss (AL)
To use social information, agents need to notice that there are other
players in the world that have similar abilities and intentions as
themselves33,68. Agents observe the environment without receiving
other players’ explicit actions or observations, which we view as pri-
vileged information. Therefore, we propose an attention loss that
encourages the agent’s belief to represent information about the
current relative position of other players in the world. We use “atten-
tion” here in the biological sense, identifying what is important, in
particular, that agents should pay attention to their co-players. Similar
to previous work (e.g., ref. 80), we use a privileged AVATAR sensor as a
prediction target, but not as an input to the neural network, so it is not
required at test time.

Starting from the belief, we concatenate the agent’s current
action, pass this through two MLP layers of size 32 and 64 with relu
activations, and finally predict the egocentric relative position of other
players in the world at the current timestep. The objective is to mini-
mise the ℓ1 distance between the ground truth and predicted relative
positions. The attention loss is set to zero when the agent is alone (for
instance, when the expert has dropped out).

Automatic domain randomisation
An important ingredient for the development of cultural transmission
in agents is the ability to train over a diverse set of tasks. Without
diversity, an agent can simply learn to memorise an optimal route. It
will pay no attention to an expert at test-time and its behaviour will not
transfer to distinct, held-out tasks. This diverse set of tasks must be
adapted according to the current ability of the agent. In humans, this
corresponds to Vygotsky’s concept of a dynamic Zone of Proximal
Development (ZPD)81. This is defined to be the difference between a
child’s “actual development level as determined by independent pro-
blem solving” and “potential development as determined through
problem solving under adult guidance or in collaboration with more
capable peers”. We also refer to the ZPD by the more colloquial term
“Goldilocks zone”, one where the difficulty of the task is not too easy
nor too hard, but just right for the agent.

We use ADR82 tomaintain task diversity in the Goldilocks zone for
learning a test-time cultural transmission ability. To apply ADR, each
task must be parameterised by a set of d parameters, denoted by
λ 2 Rd . InGoalCycle3D, these parameters may be related to the world,
such as terrain size or tree density, the game, such as number of goals,
or the co-players, such as bot speed.

Each set of task parameters λ are drawn from a distribution Pϕ(Λ)
over the (d−1)-dimensional standard simplex, parameterised by a
vector ϕ. We use a product of uniform distributions with 2d para-
meters and joint cumulative density function

PϕðλÞ=
Yd
i = 1

1

ϕH
i � ϕL

i

, ð4Þ

defined over the standard simplex given by

λ : λi 2 ϕL
i ,ϕ

H
i

� �
for i 2 f1, . . . ,dg, λ 2 Rd

n o
: ð5Þ

Roughly speaking, the simplex boundariesϕL
i orϕ

H
i are expanded

if the training cultural transmissionmetric exceeds an upper threshold

Fig. 10 | Worlds and games used as probe tasks. a Empty world, 4-goal games.
b Empty world, 5-goal games. c Complex world, 4/5-goal games. These cover a
representative range of crossings and colour combinations. The empty world
probe tasks have terrain of size 20× 20m2, while the complex world probe tasks
have terrain of size 32 × 32m2. The complexworld probes require clear examples of

jumping behaviours and navigation around vertical obstacles. The human move-
ment pattern in all probes is always goal-directed and near-optimal, but clearly
different from a scripted bot, taking some time to get situated in the first few
seconds and not taking an identical path on repeated cycles, for instance. See
Supplementary Movies 21–29.
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and contracted if the training cultural transmissionmetric dropsbelow
a lower threshold. This maintains the task distribution in the Goldi-
locks zone for learning cultural transmission. For more details, see
Appendix C.5.

Probe tasks
To better understand and compare the performance of our agents
under specific conditions, we test them throughout training on a set of
“probe tasks”. These tasks are hand picked and held out from the
training distribution (i.e., they are not used to update any neural net-
work weights). The worlds and games used in our probe tasks are
shown in Fig. 10.

Importantly, these tasks are not chosen based on agent perfor-
mance. Instead, they are chosen to represent a wide space of possible
worlds, games, and co-players. For example, we desire cultural trans-
mission both in worlds devoid of any obstacles and in worlds that are
densely covered. Consequently, we included both in our set of probe
tasks. We save checkpoints of agents throughout training at regular
intervals and evaluate each checkpoint on the probe tasks. This yields a
held-out measure of cultural transmission at different points during
training, and is a consistent measure to compare across independent
training runs.

While we seek to generate agents capable of robust real-time
cultural transmission from human co-players, it is infeasible to mea-
sure this during training at the scale necessary for conducting effective
research. Thereforewe create “humanproxy” expert co-players for use
in our probe tasks as follows. A member of the team plays each task
alone and with privileged information about the optimal cycle. For
each task, we record the trajectory taken by the human as they
demonstrate the correct path. We then replay this trajectory to gen-
erate an expert co-player in probe tasks, disabling the human proxy’s
collision mesh to ensure that the human trajectory cannot be inter-
fered with by the agent under test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data for this studywas generated via aUnity-based simulation38,39, with
no additional external data sources. Source data for main text figures
are provided with this paper, excluding Figs. 6 and 8c, for which ana-
lysis data was generated on-the-fly and not logged. Supplementary
movies are provided with this paper. Source data are provided with
this paper.

Code availability
We are unable to release the code for this work as it was developed in a
proprietary context. We are happy to answer specific questions con-
cerning re-implementation: please contact reverett@deepmind.com.
An open-source implementation of the MPO algorithm is available at
https://github.com/deepmind/acme/tree/master/acme/agents/jax/
mpo. An open-source implementation of the 2D variant of GoalCycle is
available at https://github.com/kandouss/marlgrid/blob/master/
marlgrid/envs/goalcycle.py. For data analysis, we used the following
freely available packages: numpy v1.25.2, pandas v1.5.3, mat-
plotlib v3.6.1, seaborn v0.12.2, scipy v1.9.3.
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