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A computational model for structural
dynamics and reconfiguration of DNA
assemblies

Jae Young Lee 1, Heeyuen Koh2 & Do-Nyun Kim 1,2,3,4

Recent advances in constructing a structured DNA assembly whose config-
uration can be dynamically changed in response to external stimuli have
demanded the development of an efficient computational modeling approach
to expedite its design process. Here, we present a computational framework
capable of analyzing both equilibrium and non-equilibrium dynamics of
structured DNA assemblies at the molecular level. The framework employs
Langevin dynamics with structural and hydrodynamic finite element models
that describe mechanical, electrostatic, base stacking, and hydrodynamic
interactions. Equilibrium dynamic analysis for various problems confirms the
solution accuracy at a near-atomic resolution, comparable to molecular
dynamics simulations and experimental measurements. Furthermore, our
model successfully simulates a long-time-scale close-to-open-to-close dynamic
reconfiguration of the switch structure in response to changes in ion con-
centration. We expect that the proposed model will offer a versatile way of
designing responsive and reconfigurable DNA machines.

DNA self-assembly, since its conception1, has evolved into a versa-
tile and robust approach to constructing structures with precise
control over the shape and physical properties for various
applications2. The development of DNA origami3 has significantly
advanced the synthesis and design strategies for structured DNA
assemblies4–6. As a result, there has been a high demand for com-
putational models of self-assembled DNA structures to investigate
their folding mechanisms and underlying physics and to predict
their shape and properties in the design phase prior to experimental
synthesis. In particular, accurate and efficient analysis of the
dynamic properties of the DNA structures has become crucial due
to the rapidly growing need for structures that can dynamically
change their conformation and hence functional properties in
response to external stimuli.

The computational cost of all-atomicmolecular dynamics (MD)
simulations for analyzing origami-scale DNA structures, which
could require millions to billions of degrees of freedom in an ionic
solution7–10, is considerably high. Therefore, many coarse-grained

models have been proposed as efficient alternatives for their ana-
lysis. For example, oxDNA is a coarse-grained MD model that has
been widely adopted for investigating the structural properties11,
self-assembly12, and energy landscape of DNA structures13. A multi-
resolution approach, mrDNA, is another coarse-grained dynamics
model proposed to accelerate the prediction by linking different
coarse-graining scales14. Alternatively, structural models have been
developed by modeling molecular interactions between bases or
base-pairs using beam and spring finite elements with equivalent
mechanical properties. CanDo is the first structural model demon-
strating the capability to quickly predict the shape and mechanical
properties of lattice-based15 and lattice-free DNA origami
structures16,17. SNUPI is a more recent model achieving both accu-
racy and efficiency by employing a multiscale approach where the
intrinsic geometric and mechanical properties of DNA motifs were
systematically characterized using the MD simulations18–20. While
these structural models can provide results more quickly than other
coarse-grained models, they are limited to predicting the mean
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configuration with static stiffness values and equilibrium dynamic
properties.

In this study, we developed a computational framework for the
equilibrium and non-equilibrium dynamic analysis of DNA structures
(Fig. 1a). This framework combined the structural model of SNUPI for
DNA structures with a hydrodynamicmodel that considers the viscous
effect and random force of an ionic solution. A model for the base
stacking interaction was developed as well to simulate the reconfi-
guration of DNA structures in response to changes in ion concentra-
tion. The trajectory was calculated through a developed time-
integration scheme for the Langevin equation, enabling us to rapidly
obtain the dynamic trajectories of DNA structures withmolecular-level
precision. We verified the accuracy and efficiency of the proposed
model by investigating various dynamic characteristics of repre-
sentative DNA structures.

Results
Analysis framework
In the proposed framework, the dynamics of structured DNA assem-
blies in a solvent was described using Langevin dynamics simulations
where the thermal effect of the surrounding solventwasmodeled as an
external random force so as to reduce the size of the system sig-
nificantly (Supplementary Note 1). We started by assuming each base-
pair as a rigid block with six (three translational and three rotational)
degrees of freedom represented by a node and modeling the inter-
actions between nodes using finite elements (Fig. 1b). In this way, a
structured DNA assembly was converted into a set of structural and
hydrodynamic finite element models.

In the structural model, we derived the internal force vector and
mass matrix based on the formulation of SNUPI18, characterizing the
mechanical and electrostatic interactions of DNA helices at the
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Fig. 1 | Computational framework for the dynamic analysis of structured DNA
assemblies. a Schematic representationof the framework. The proposed approach
combines a structural model for DNA structures based on mechanical and elec-
trostatic forces with a hydrodynamic model that considers the viscous effect and
random force of the ionic solution. b Overview of modeling. Each base-pair was
defined as a nodewith three translational and three rotational degrees of freedom,
and the connections between nodes were modeled as finite elements. The internal
force vector was obtained from the coordinates of the nodes and the geometry and

properties of structural and electrostatic connections. The mass matrix was gen-
erated using the information on the mass of base sequences and the structural
connection. The friction matrix was constructed using the generalized Rotne-
Prager-Yamakawa mobility matrix21 to consider the effect of viscosity and random
thermal force on the structure in the solvent. The dynamic trajectory was com-
puted through a developed time-integrating scheme, allowing us to rapidly obtain
trajectories of DNA structures with molecular-level precision.

Article https://doi.org/10.1038/s41467-023-42873-4

Nature Communications |         (2023) 14:7079 2



molecular level (Supplementary Note 2). The internal force vector was
constructedusing thenodal coordinates andelementproperties of the
finite element models in order to apply net mechanical and electro-
static forces. Themass matrix was generated using information on the
mass of base sequences and the structural connection.

In the hydrodynamic model, we assumed the Stokes flow of
viscous, linear, and incompressible fluids, considering the length
scale of structured DNA assemblies. The generalized Rotne-Prager-
Yamakawa mobility matrix21 was employed to construct the friction
matrix where six translational and rotational degrees of freedom for
each node were considered as in the structural model (Supple-
mentary Note 3). This mobility matrix accounted for the damping of
a DNA structure with a complex shape through the superposition of
identical spherical particles with a hydrodynamic radius assigned to
each node. Then, the inverse of the mobility matrix provided the
friction matrix under the linearity of the Stokes flow, quantifying
the effect of the viscosity and random thermal force acting on the
structure in the solvent.

The governing equations for Langevin dynamics were solved to
obtain the trajectories of the DNA structure by using a direct time
integration algorithm that we developed. Half-time stepping and
Simpson’s rule were introduced in the calculation of the internal force
vector based on the Grønbech-Jensen Farago scheme22 (Supplemen-
tary Note 4). Its application to representative linear problems (thermal
diffusion in a flat potential and thermal harmonic oscillator) confirmed
significantly improved numerical stability and performance compared
to the original Grønbech-Jensen Farago scheme, enabling us to use a
larger step size in time integration and hence to simulate more effi-
ciently. To rapidly reach an equilibrium configuration, the dynamic
analysis often began from a statically obtained configuration by
minimizing the energy of structural and electrostatic potentials. The
overall flow of the proposed analysis framework is described in Sup-
plementary Fig. 1.

Global shape
To validate the proposed analysis framework, we first investigated the
mean shape of ten DNA wireframe structures in equilibrium. They
included six triangular, two square, and two hexagonal structures,
categorized into two types of edges: two-helix bundle (DX)23 and
6-helix bundle (6HB)24. The dynamic simulations began from statically
predicted energy-minimum configurations and were performed 500-
ns-long simulations for them (Fig. 2). As expected, the structures with
stiffer 6HB edges showed smaller means and variances in the root-
mean-square deviation (RMSD) values than thosewith softer DX edges
(Fig. 2a and Supplementary Table 1). The RMSD profiles further indi-
cated that square and hexagonal structures with DX edges were flex-
ible enough to reach another energy-minimum configuration more
easily during the dynamic simulations, deviating slightly from the
initial configuration obtained from static energy minimization (Sup-
plementary Figs. 2 and 3).

Largerwireframe structures designed tofit within a circle of 25 nm
radius maintained their planar shapes well (Fig. 2b). Those with DX
edges were slightly distorted with the out-of-plane undulation due to
their inherent flexibility. The predicted distributions of interior angles
closely matched the experimentally measured angle distributions24

(Fig. 2c). Nevertheless, the measured angle for the triangle with DX
edges exhibited higher variation than the predicted one, potentially
attributed to a high probability of structural fractures or fragments
observed in micrographs24 (Supplementary Table 2). We also calcu-
lated the out-of-plane angles of four small triangular structures, which
are difficult to be quantified in experiments, for comparison with MD
simulation results24 (Fig. 2d, e). Our model could reproduce MD
simulation results quite well, particularly for the structures with 6HB
edges (Supplementary Table 3). Similar to larger wireframe structures,
triangles with softer DX edges exhibited higher out-of-plane angles, as

also indicated by high root-mean-square fluctuation (RMSF) values at
their vertices (Supplementary Fig. 4).

The overall predicted shapes of variouswireframe structureswere
parallel to the reported cryo-EMdata25,26, although the structural edges
were slightly more crooked than the experimental measurements
(Fig. 2f). This was pronounced in the three-dimensional structureswith
DX edges (Supplementary Fig. 5) compared to the planar structures
with 6HB edges (Supplementary Fig. 6), which indicates the higher
rigidity of 6HB edges thanDX ones.Moreover, structures with vertices
connecting three or more edges through single-stranded DNA exhib-
ited greater distortion attributable to the local stress when compared
to the cryo-EM maps, suggesting a need for further investigation and
modeling of complex junctions with multiple single-stranded DNAs.

In addition, we conducted simulations of transformable struc-
tures using modular dynamic units27 (Supplementary Fig. 7), as well as
reversible structures employing the transition between single-
stranded and double-stranded DNA28 (Supplementary Fig. 8). The
structural transformations observed through dynamic simulations
showed good agreement with previous reports, thereby validating the
accuracy of the proposed model.

Structural features at multiple levels
We further evaluated the performance of our model by analyzing the
structural features of the pointer design at multiple levels whose high-
resolution structure was determined experimentally using cryo-
electron microscopy (cryo-EM)29. Its overall dimension and right-
handed distortion about the helical axis could be accurately predicted
with the model (Fig. 3a). The mean configuration obtained from the
dynamic analysis was closer to the experimental structure with the
RMSD of 12 Å than the one predicted by the static approach18 resulting
in the RMSD of 15 Å (Fig. 3b).

The principal component analysis (PCA) on the simulated trajec-
tories (Supplementary Note 5) could successfully reveal the low-fre-
quency, large-amplitude breathing motion30 of the pointer structure
(Fig. 3c). It appeared in the first mode and was coupled with structural
rotation in a helical direction (Supplementary Fig. 9). The estimated
breathing frequencywas 2.35 GHz,whichwas lower than the structural
vibrationsobserved in smallDNAmotifs (16 to 150base-pairs)with 300
to 600 GHz31,32 (Supplementary Table 4). This breathing motion could
be predicted using the normal mode analysis (NMA) in a vacuum as
well, but an unreasonably small frequency of 1.83MHz was predicted
(Fig. 3d). The mode shapes obtained from NMA were similar to those
from PCA (Supplementary Fig. 10), but the natural frequencies were
overestimated particularly for high-frequency modes, as the effect of
solvent damping was not considered.

We then scrutinized the local geometry between successive base-
pairs in the pointer structure. Six rigid-body parameters for base-pair
steps in the 3DNA definition33, including three translations (shift, slide,
and rise) and three rotations (tilt, roll, and twist), weremeasured for all
base-pairs in the structures obtained using the static analysis, dynamic
analysis, and cryo-EM (Fig. 3e). The statically determined parameters
were similar to the experimental ones on average, but they showed
much narrower distributions. The distributions of these parameters
obtained using the proposed dynamic analysis, on the other hand,
were well matched with the experimental ones. Similar trends were
observed for the parameters of interhelical crossovers (Fig. 3f). Unlike
the sharper distributions of crossover parameters obtained in the
static analysis, dynamically determined ones exhibited distributions
similar to the experiment29 and MD simulation14. Our model predicted
smaller variances, particularly in the twist of crossovers (gamma),
probably because our model assumed base-pairs remained intact but
they could be broken at the crossover sites in reality or MD simula-
tions. In the experimental cryo-EM structure29, approximately 18% of
base-pairs at crossover sites were broken, suggesting the softening of
crossovers with deformation (Supplementary Fig. 11).
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Dynamic characteristics in equilibrium
We studied themodel capability in predicting the equilibriumdynamic
properties by analyzing the 12-helix-bundle (12HB) structure (Fig. 4a
and Supplementary Fig. 12). We performed 60-ns-long simulations
using the proposed method, as well as oxDNA11 and mrDNA14 models,
and their results were compared with the MD34 and NMA results18. The
RMSD values converged within the first 20 ns for all simulations
(Fig. 4b). The root-mean-square fluctuation (RMSF) amplitudes
(Fig. 4c) and two (Pearson and generalized) correlation maps35 at the
base-pair level were evaluated using the final 20-ns-long trajectories

(Fig. 4d, e). For NMA, the lowest 200 normal modes were used to
calculate these quantities.

All approaches could predict the thermal fluctuation amplitudes
at the base-pair level quite accurately (Fig. 4c). The overlap coefficients
calculated by~xMD � ~x= ~xMD

�� �� ~x�� ��, where~xMD and~x represent vectorized
RMSF values obtained from the MD and other methods, respectively,
were 0.98 for the proposed approach, 0.97 for NMA, and 0.96 for
oxDNA and mrDNA. The overall distribution of fluctuational ampli-
tudes was similar among the methods although oxDNA predicted
slightly larger amplitudes.
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On the other hand, DNA structures exhibit a variety of con-
formational changes, which include complexmotion between local
base-pairs. The understanding of their correlatedmotions could be
important to relate a DNA structure and function like proteins35,36

or design functional structures. Therefore, we evaluated the
accuracy in correlated motions between the proposed and other
models and MD simulations. Notably, the proposed method pre-
dicted the correlationmaps most similar to the MD results. It could
reproduce the primary pattern of Pearson correlation coefficients

in the map (upper triangular part of the map in Fig. 4d), which
measure a linear, directional relationship of molecular motions
based on the normalized covariancematrix of thermal fluctuations.
In addition, our method captured longer-range correlations
observed in theMD results better compared to other methods. The
root-mean-square error (RMSE) of Pearson correlation coefficients
for the proposed method with respect to MD was the smallest
(0.186), followed by 0.212 for NMA and 0.213 for oxDNA. This
directional correlation was not well captured by mrDNA with the
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biggest RMSE of 0.320. Similar results were obtained for the gen-
eralized correlation coefficients, which measure nonlinearly cor-
related motions based on the mutual information (lower triangular
part of the map in Fig. 4d). Longer-range interactions could be
better predicted by the proposed method with the smallest RMSE
of 0.136. NMA and oxDNA tended to underestimate the generalized
correlation overall, with strong peaks between nearby base-pairs.
In contrast, mrDNA overestimated it with the biggest RMSE
of 0.247.

Ion responsive reconfiguration
To demonstrate the capability of the proposed approach, we aimed to
analyze the ion-responsive reconfiguration of the switch design37

(Fig. 5a). It consists of two arms pivoted at the center and joined by
sixteen stacking bonds to form a closed configuration. Close-to-open
reconfiguration can be triggered by lowering the salt concentration,
which increases the repulsive electrostatic force between helices. To
simulate this reconfiguration using the proposed method, it was cru-
cial to characterize and model the base stacking interaction properly.
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Toward this end, we performed an all-atom MD simulation of the
switch design for 283 ns, gradually lowering the magnesium ion con-
centration from 25mM in the closed configuration to 15, 10, and 5mM
(Supplementary Table 5). Due to the excessively high computational
cost of the MD simulation, the maximum opening angle of 50°
between two arms observed in the experiment37 could not be reached,
and only the initiation of the opening (up to the angle of 5°) was
obtained (Fig. 5b). Nevertheless, we could observe highly dynamical
interactions between two base-pairs at the sixteen stacking sites
enabling us to model the stacking interaction. From the MD trajec-
tories, the potential of mean force (PMF) was first obtained as a
function of stacking distance (Fig. 5c, Supplementary Figs. 13 and 14).
We employed the Morse potential to model the stacking interaction,
including the effect of bond breaking, and its parameters were deter-
mined by fitting the PMF data (Supplementary Note 6). The stacking

free energy and effective region were estimated to be 42.2 pNnm
(6.08 kcal) and 25 Å, respectively, parallel to previous studies38,39.
Finally, this stacking interactionmodel was implemented using a finite
element (stacking element), which imposed the forces on two stacking
nodes by calculating the gradient of stacking energy (Fig. 5d).

Using the model enriched with base stacking interactions, we
performed a 21.4-μs-long Langevin dynamics simulation of the switch
structure in order to simulate close-to-open-to-close dynamic recon-
figurations (Fig. 6a). It began from the closed configuration at 25mM
of Mg2+, and its conformational changes with respect to the salt con-
centration could be successfully predicted. The switch structure
remained in its closed configuration until the ion concentration was
decreased to 10mM, but started to open at 5mM, similar to the
deformation tendency observed in our MD simulation. Its opening
angle reached approximately 50° in agreement with the experiment
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potential ofmean force (PMF)was obtained by analyzing theMD trajectories of the

stacking distance between two base-pairs at sixteen stacking sites. The parameters
of theMorse potential were adjusted to fit theMD results. The stacking free energy
and effective region were estimated to be 42.2 pNnm and 25 Å, respectively.
d Conversion of stacking interactions into structural finite elements. The stacking
potential was converted into a finite element (stacking element) where the internal
force exerted on two stacking nodes was generated by the gradient of stacking
energy.
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when 5mM of Mg2+ wasmaintained and came back to 0° of the closed
state as the ion concentration increased again to 25mM(Fig. 6b). Since
the structural reconfiguration of the switch design was almost rigid-
body motion, the mechanical energy in the structure did not vary
significantly (Fig. 6c). According to the stacking and electrostatic
energy profiles, it took some time for the bases at the sixteen stacking
sites to be fully unstacked and restacked in response to the change in
the ion concentration (Supplementary Fig. 15). During the opening
process, the six bases at one end of the structure were unstacked first
almost immediately after the ion concentration was lowered to 5mM,
followed by the unstacking of the remaining ten bases after 2 μs

(Supplementary Fig. 16). During closing, the latter ten bases were
stacked first at 25mM, followed by the stacking of the other six bases.

Furthermore, we compared the geometric parameters at the base-
pair level from the molecular trajectories obtained using the MD
simulation and the proposed method. The overall distributions of six
geometric parameters obtained using our method were closely mat-
ched with those from the MD simulation for all connections between
successive base-pairs, including base-pair steps and inter-helical and
intra-helical steps at crossover sites (Fig. 6d). Our model predicted
narrower distributions of the rotational parameters particularly for
base-pairs at crossover sites as base-pair breakages were notmodeled.
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concentration increased. c Energy trajectories. The mechanical energy remains
constant since rigid-body motion mainly governs the reconfiguration, while the
base stacking energy shows a time delay with respect to the electrostatic energy.
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Similar results were also obtained when characterizing these para-
meters at a specific ion concentration (Supplementary Figs. 17–20).
RMSF (Supplementary Figs. 21–24) and correlation maps (Supple-
mentary Figs. 25–28) showed good agreement with MD results except
for the case of 5mM of Mg2+ in which the open state could not be
reached in MD simulations. These results demonstrated the capability
of the proposed model to accurately capture the long-time-scale
dynamics and structural information at molecular resolution. It is also
noteworthy that the proposed method could generate dynamic tra-
jectories with a sampling speed of 36 ns per hour using a single
workstationwhile that of0.22 ns per hourwasonlypossible for theMD
simulation even using a supercomputer with 24,000 CPU cores (Sup-
plementary Table 6).

Discussion
We demonstrated that the proposed computational modeling
approach could accurately infer the dynamic properties of struc-
tured DNA assemblies. The efficient analysis was achieved by
describing mechanical, hydrodynamic, electrostatic, and base
stacking interactions using finite element models in the Langevin
dynamics framework. Notably, the ion-mediated transient response
of the switch structure for reconfiguration could be simulated
successfully using the proposed method, which was inaccessible
with the MD simulation. This work can pave the way for investi-
gating complex structural dynamics and enabling the rational
design of dynamic molecular machines such as DNA-based
rotors40,41. Our model also has potential for further development
toward models for diffusion and hydrodynamics of structured DNA
assemblies by introducing an external flow field42,43. While the cur-
rent model was tested for dynamic analysis of monomeric struc-
tures, it would be possible to extend its capability to simulate the
assembly and disassembly process of supramolecular polymeric
structures44,45. Also, the reconfiguration process controlled by other
types of stimuli such as chemo-mechanical reconfiguration by DNA
binding molecules46,47 could be simulated if a model for con-
formational changes in DNA double helices by their binders would
be incorporated into the proposed computational framework.

Methods
Dynamic analysis framework
We considered the Langevin dynamics equation (Supplementary
Note 1) as M _V

t
=Ft � ZtVt +Rt and _U

t
=Vt , where Ut and Vt are the

coordinate and velocity vectors at a simulation time (t), respectively,
connected by the time derivatives, M is a time-independent diagonal
massmatrix, Ft and Zt are the internal force vector and frictionmatrix,
respectively, andRt is a random force vector. Based on the dissipation-
fluctuation theorem, the random force vector was assumed to be
Gaussian distributed with the statistical properties as Rt� �

=0 and
RtRτ� �

=2kBTZ
tδ t � τð Þ, where kB is the Boltzmann constant, and T is

the absolute temperature of the heat bath as 300K.
In the structural model, to construct the mass matrix (M) and

internal force vector (Ft), we employed SNUPI18 as the multiscale
approach to construct the finite element assembly of DNA structures
using molecular-level properties (Supplementary Note 2). The struc-
tural connections of a DNA structure were categorized into base-pair
steps (intrahelical ones), crossover steps (interhelical ones), and end-
to-end connection of single-stranded DNA. We used their intrinsic
geometry andmechanical properties characterized throughmolecular
dynamics simulations18,19,48. Themassmatrix was constructed from the
structure information and sequence-dependent mass values49.

In the hydrodynamic model, we constructed the friction matrix
(Zt) using the generalized Rotne-Prager-Yamakawa mobility matrix
(Ξt)21, which provided six degrees of freedom for each node, similar to
the structural model (Supplementary Note 3). Assuming the Stokes
flow surrounding DNA structures, the friction matrix (Zt) can be

calculated by inverting the mobility matrix as Zt = Ξt� ��1
. The positive

definiteness of themobilitymatrixwasguaranteed. The hydrodynamic
radius of each node was assumed to be σ = 1.1 nm, and the dynamic
viscosity of water was set to η = 890 μΝ s/m2 at 300K from the pre-
vious studies50,51.

The temporal trajectory of the coordinate and velocity vectors
was numerically updated by performing time integration as
½Ut ,Vt � ! ½Ut +Δt ,Vt +Δt �, where Δt is the time interval (Supplementary
Note 4 and Supplementary Figs. 29 and 30). We modified the
Grønbech-Jensen Farago scheme22 by introducing half-time stepping
and Simpson’s rule in calculating internal force. In general, the time
interval was set to 5 ps, and the internal force vector was updated at
every time step, while the friction matrix, which had a little change
between time steps, was updated at intervals of 1000 to 10000 rela-
tively slowly. For time scaling, the time interval or simulated timewere
used to real values without introducing a scaling factor as like all-
atomic MD. Initial velocities of nodes with mass mi were randomly
generated using Gaussian distribution with zero mean and deviation
of kBT=mi.

Using the dynamic trajectory, principal component analysis (PCA)
was performed (Supplementary Note 5). Assuming the quasi-harmonic
energy52, the principal modes are derived using the fluctuation matrix
as σ= x� xh ið Þ x� xh ið ÞT

D E
, wherex is the position trajectory of nodes

and the angle bracket represents the time average. Themass-weighted
fluctuation matrix (Σ) is then calculated using the mass matrix as
Σ=M1=2σM1=2. The eigenmodes of the structure are derived by per-
forming normal mode analysis as ΣΦ=ΦΛ, whereΦ and Λ are the set
of eigenvectors and eigenvalues, respectively. The natural frequency is

finally computed as ωi = kBT=Λi

� �1=2 and mode shapes is given

by Δxi = M1=2
� ��1

ϕi.

Molecular dynamics simulations
We performed all-atom molecular dynamics (MD) simulations using
the program NAMD53 with the CHARMM36 force-field for nucleic
acids54. The DNA structures were explicitly solvated using the TIP3P
water model55 and ionized using sodium (Na+), magnesium (Mg2+), and
chloride (Cl-) molecules in the cubic cell with periodic boundary con-
ditions. The short-range electrostatic and Lennard-Jones potentials
employed a cutoff of 10 Å, and its switching function was active above
8Å. The long-range electrostatic interactionswere calculated using the
particle-mesh-Ewald method56 with a 1 Å grid spacing.

For the switch structure37, an idealized atomic structure was
generated from the caDNAno57 design using the export function of
SNUPI18. In the ionization process, magnesium–hexahydrate com-
plexes were randomly placed near the structure due to slow
diffusion58. To prevent the dissociation of these complexes, harmonic
restraints were placed between the magnesium atom and the oxygen
atoms, with the spring constant of 10 kcal/mol Å2. The initial con-
centration of Mg2+ was set to 25mM. The atomic system was prepared
using the visual molecular dynamics (VMD)59.

After constructing the initial system of the switch structure, the
atomic potential energy was minimized using 5,000 static steps. In the
dynamic simulations, we employed a time step of 2 fs and maintained
pressure and temperature using the Nosé–Hoover Langevin piston and
Langevin thermostat, respectively, for all non-hydrogen atoms with a
damping constant of 1 ps−1. During the thermalization process, the
temperature was gradually increased by 1K every 500 steps until
reaching 300K, while the pressure was maintained at 1 bar. All pro-
duction runs were performed in the isobaric–isothermal (NPT) ensem-
ble at 1 bar and 300K. After the production simulation with 25mM
Mg2+, the magnesium concentration was gradually reduced to 15, 10,
and 5mM, and the system size was increased to over tenmillion atoms.

We considered the stacking interaction between distant two base-
pairs (Supplementary Note 6). The Morse potential function was used
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to model the stacked and unstacked base-pairs60,61 given by
ΠSK rð Þ= ε½½1� expð�aðr � r0ÞÞ�2 � ε, where r is the distance, ε repre-
sents the energy parameter for dissociation of stacking, a denotes the
shape parameter, and r0 is the equilibrium distance. To fit the model
parameters, we used the potential of mean force (PMF) obtained from
theMDsimulations asΠPMF rð Þ= � kBT log g rð Þ½ �, where g rð Þ represents
the radial distribution function of the stacking distances. The resulting
parameters from the MD simulations were ε = 42.79 pNnm,
a = 2.668 nm−1, and r0 = 0.3742 nm.

OxDNA simulations
To simulate the 12HB structure, we employed the standalone GPU-
enabled oxDNA2 model60. The ionic solution condition was set to Na+

0.5M, which was reasonable to mimic the experimental conditions of
DNA origami with magnesium11. The simulations were performed for
60 ns with a time step of 15 fs using a Langevin thermostat at 300K.
The velocity and angular momentum of each node were refreshed
every 103 time steps.

MrDNA simulations
To examine the fluctuation and correlation of 12HB structure in equi-
librium, we performed the simulation using the GPU-enabled mrDNA
model14, which introduced a multi-resolution approach to accelerate
dynamic simulations. Starting from an idealized configuration, the
structure was simulated at a coarse resolution (five base-pairs per
bead) for 20 ns using a time step of 200 fs. Subsequently, a successive
simulation was performed at a fine resolution (two beads per base-
pair) for 40 ns using a time step of 50 fs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data are included in the article, the supplementary information, and
the source data file. Source data are provided with this paper.

Code availability
The proposed framework is provided through SNUPI (Structured
NUcleic acids Programming Interface)62, which is available at https://
github.com/SSDL-SNU/SNUPI.
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