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Direct prediction of gas adsorption via
spatial atom interaction learning

JiyuCui 1,6, FangWu 2,3,4,6,WenZhang 2,6, LifengYang 1,3,6, JianboHu 1,3,
Yin Fang 2,3,5, Peng Ye 2,3,5, Qiang Zhang 2,3,5, Xian Suo 1,3, YimingMo 1,3,
Xili Cui 1,3, Huajun Chen 2,3,5 & Huabin Xing 1,3

Physisorption relying on crystalline porous materials offers prospective ave-
nues for sustainable separation processes, greenhouse gas capture, and
energy storage. However, the lack of end-to-end deep learning model for
adsorption prediction confines the rapid and precise screen of crystalline
porous materials. Here, we present DeepSorption, a spatial atom interaction
learning network that realizes accurate, fast, and direct structure-adsorption
prediction with only information of atomic coordinate and chemical element
types. The breakthrough in prediction is attributed to the awareness of global
structure and local spatial atom interactions endowed by the developed
Matformer, which provides the intuitive visualization of atomic-level thinking
and executing trajectory in crystalline porous materials prediction. Complete
adsorption curves prediction could be performed using DeepSorption with a
higher accuracy than Grand canonical Monte Carlo simulation and other
machine learning models, a 20-35% decline in the mean absolute error com-
pared to graph neural network CGCNN andmachine learningmodels based on
descriptors. Since the established direct associations between raw structure
and target functions are based on the understanding of the fundamental
chemistry of interatomic interactions, the deep learning network is rationally
universal in predicting the different physicochemical properties of various
crystalline materials.

Physisorption based on porous materials offers cost- and energy-
efficient alternatives toward promising solutions to global challenges
in carbon dioxide (CO2) capture

1,2, energy gas storage3, separation4–6

and etc, which consumes 10-15% of global energy consumption7. The
breakthrough of related technologies lies in the design and screening
of porous materials with specific adsorption properties, a critical
characteristic that determines the functions of porous materials8,9.
Crystalline porous materials, including metal-organic frameworks

(MOFs)10 or porous coordination polymers (PCPs)11,12, covalent-organic
frameworks (COFs)13, and zeolites14, can be rationally customized via
the selective self-assembly ofmolecular building blocks15, enabling the
possibility of a bottom-up design of porous materials with envisaged
functions. These materials have shown attractive potential in diverse
fields, such as adsorption16, membrane separation17, and catalysis18.
However, the discovery of porous materials is greatly hindered by the
problems of long experimental times, high costs of conventional trial-
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and-error paradigms, and the limited efficiency of high-throughput
simulation studies.

Machine learning affords a powerful approach for the rapid dis-
covery of materials with desired adsorption properties by learning the
knowledge of porous materials and their physisorption behaviors19–22.
However, the accurate prediction of adsorption performance still
remains a challenge due to the complex associations between raw
material structures and functional properties that require machine
learning models to understand the correlations among global atoms,
local atoms with different element definitions23–25. Researchers have
attempted to develop expert-engineered porous material descriptors
that can maximally cover the key structural information to improve
prediction accuracy25–28. However, since every piece of subtle struc-
tural information is crucial to the correct expression of adsorption
properties, the intrinsic drawback of raw structural information loss
and high computational cost during the descriptors generation and
processing inevitably cause error propagation21,27,29. Even for the most
commonly acknowledged structural descriptors, for example, largest
cavity diameter (LCD), the Pearson correlation coefficient between the
LCDandCO2 adsorption capacity isonly−0.14, via thepreliminary data
analysis of the gas adsorption performance of porous materials (Fig.
S1). End-to-end prediction is favorable for maintaining complete raw
structural information, and it has great potential for accurate
prediction30,31. However, three daunting challenges have yet to be

addressed to realize efficient direct structure-adsorption prediction:
(i) advanced models are needed for translating and transferring com-
plete raw structural information, including both chemical element
knowledge and spatial atomic arrangement; (ii) atomic-level informa-
tion needs to be exchanged for the accurate cognition of spatial
atomic interactions and good interpretability of the model; (iii) the
efficient utilization of knowledge fromfield experts is required to solve
the data hungry problem in solely data-driven deep learning models.

Here DeepSorption, a data-driven network with a built-in expert
knowledge co-learning (KCL) module, was designed for fast and end-
to-end predictions directly from the coordinates and elements of
atoms to the adsorption properties of porous materials (Fig. 1) and it
achieved the best prediction results on multiple data sets. The dis-
tinctive architecture of the network lies in the developed Matformer
model that serves as a high-fidelity interpretation of the overall
structural information of porous materials, including the atomic spa-
tial arrangement and chemical element information. Moreover, the
Multi-scale Atom-attention (MSA) mechanism within the model rea-
lizes the accurate, efficient cognition of interactions between atoms at
different scales, and enables the visualization of the potential atomic
interactions hidden in the encoding layers. The KCL module reduces
the reliance of the end-to-end network onmassive training data, and is
beneficial for improving the accuracy of adsorption property predic-
tion. DeepSorption far outperforms other available networks in
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Fig. 1 | Representation of DeepSorption network. a The scheme of crystalline
porous materials (SIFSIX-1-Cu), guest molecules (carbon dioxide) and physisorp-
tion process. b The inputs of DeepSorption, including atom coordinates and ele-
ment types. cThe architecture ofMatformer, including 3Dposition encoding layer,
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forward neural network (FNN). d The outputs of DeepSorption, including gas
adsorption isotherms and co-learning expert’s knowledge. e The scheme of Multi-
scale Atom-attention for calculating the interaction between atompairs in different
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adsorption uptake predictions with lowest root mean squared errors
(RMSE) and highest correlation coefficients both in CO2 and acetylene
(C2H2) prediction, which is essential for identifying efficient adsor-
bents for CO2 capture and C2H2 separation.

Results
Designing and constructing the deep learning network
Crystalline porous materials could exhibit predesigned skeletons and
nanopores through the atomically precise integration of organic units,
inorganic units or combinations. Physisorption reveals the different
priority locations of guestmolecules within nanopores that aremainly
governed by interatomic interactions by exploring the potential
adsorption sites and space (Fig. 1a). Here, the original data of crystal-
line materials, including atom coordinates and element types, are
directly used as the input of DeepSorption (Fig. 1b), preventing infor-
mation loss caused by using processed expert knowledge descriptors
as input. Given that the characteristic of the process by which atoms
form frames is inherently similar to that of natural language, different
arranged atoms (words) construct the specifically defined framework
(sentence), a home-made Matformer inspired by natural language
processing32 is employed to process crystalline material data. The
encoding of 3D atomic coordinates and the corresponding element
types utilizes 3D position encoding block and Chemical element
encoding block (Fig.1c). 3D position encoding is an absolute position
encoding approach that endows the model with both local and global
structure-aware abilities. Chemical element encoding block is initi-
alized via chemical element knowledge graph (Fig. S2), which is built
from periodic table and summarizes the most fundamental chemical
properties of elements andmicroscopic associations among elements.

The key innovation in Matformer lies in Multi-scale Atom-atten-
tion (MSA) for understanding the interactions between different
defined atoms in a spatial arrangement (Fig. 1e). Through exchanging
information between atom pairs in different distances, MSA facilitates
Matformer with the intuition to judge the interatomic interaction at
different scales. In detail, MSA computes the atomic distance based on
the input atomic coordinates, and the contribution of the atomic

element type is simultaneously considered. The hyper-parameter
attention distance bars are 5 Å, 8 Å, 12 Å and infinite, corresponding to
bond/motif detection, adsorption site and surface decisions, pore
structure detection, and global structure awareness, respectively
(Fig. 1e). Interactions between atom pairs at different attention dis-
tance scales could be pointedly processed by the appointed units in
Matformer, and the processed information, such as key atoms/space,
would be integrated to reveal physisorption behavior of guest mole-
cules. With regard to the data-hungry drawbacks occurred in direct
data-driven learning, the strategy of knowledge co-learning (KCL) is
employed (Fig. 2), and the descriptors of crystalline porous materials
are set as auxiliary tasks (Fig. 1d). The results show that KCL could
facilitates the convergence of the model in the structure-adsorption
space establishment assisted by the expert knowledge derived from
the auxiliary tasks, which is beneficial for improving the prediction
accuracy of adsorption properties. It is noteworthy that the output of
expert knowledge is only neededduringmodel training, but leaving no
interference with the prediction process, guaranteeing the rapid pre-
diction speed. DeepSorption well inherits the advantages of time
efficiency, decreased errorpropagationof end-to-endmethod, and the
data efficiency of the expert-knowledge-driven learning
method (Fig. 2).

Model performance and validation
To train DeepSorption (Matformer+KCL) deep learning network, the
data of crystalline materials collected in the CoREMOF database33

(including over 11,000 MOFs and 77 kinds of elements) and hMOF
database34 (including over 300,000 MOFs and 16 kinds of elements)
were used. CO2 capture is crucial to alleviate global warming, facil-
itating carbon conversion and utilization, and developing efficient
carbon capture technologies are subjected to the discovery of adsor-
bents with high CO2 and low N2 capacity

34,35.
Thus, CO2 and N2 are used as tested gases in this work, and the

predicted gas uptake is consistent with the true values in all tasks,
including CoREMOF-CO2 (Fig. 3a), hMOF-CO2 (Fig. 3b) and hMOF-N2

(Fig. S3). DeepSorption shows much smaller and more distributed
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centralized absolute errors on the CoREMOF-CO2 task than the other
models, and the mean absolute error (MAE) of DeepSorption (14.39
cm3 g−1) decreased by 23–52% compared with those of Long Short-
Term Memory (LSTM: 20.00 cm3 g−1), Crystal Graph Convolutional
Neural Network (CGCNN: 18.94 cm3 g−1), Expert-knowledge-driven
learning models (GEO_MLP: 21.78 cm3 g−1, RAC_MLP: 18.64 cm3 g−1,
MBTR_MLP: 21.54 cm3 g−1, SOAP_MLP: 30.05 cm3 g−1) (Fig. 3c). More-
over, higher coefficient of determination (R2) values and lowerRMSEof
co-learning knowledge tasks of LCD, pore limiting diameter (PLD),
density (D), accessible surface area (ASA), void fraction (VF), accessible
volume (AV) are also realized (Fig. 3d and Fig. S3). The improved
prediction accuracy of physisorption associated parameters is attrib-
uted to the global structure awareness ability of Matformer. On aver-
age, for the CoREMOF-CO2, hMOF-CO2 and hMOF-N2 tasks, KCL
contributes to a 13% decrease in RMSE and an 18% increase in R2. These
results not only indicate that DeepSorption, like human scientists,
could well learn and utilize expert knowledge, but also explain why
data-driven knowledge co-leaning models can achieve a better learn-
ing effect compared to the solely data-driven learning methods. In
contrast to the classic EKDL model and graph neural networks,
DeepSorption always exhibits the highest R2 value and the lowestMAE
value (Fig. 3e, f). The R2 value of the predicted CO2 adsorption uptake
in the CoREMOF dataset is over 0.70, which is increased by 38–113%
than those of EKDL models (Fig. 3e and Table S1). Compared with the
graph neural network CGCNN, the performance is also significantly
improved, from 0.48 to 0.70 of R2 (Fig. 3e). The great advancement in
prediction accuracy of DeepSorption is attributed to the unique

advantages of the designed network that realizes the complete inter-
pretation of original structural information and the comprehensive
understanding of spatial atom interactions. For CGCNN, this insuffi-
ciency was attributed to the poor global structure awareness char-
acteristic of graph neural network itself. As shown in Fig. S15, the
strategy of graph neural network is to strengthen the information of
atomic elements by calculating the neighbor atoms via using the spa-
tial coordinate information. However, the information of atomic spa-
tial coordinatewouldbe lost in the subsequent information interaction
process, which is not conducive to predict adsorption properties that
are sensitive to the global spatial structure information.

For further clarifications on the KCL (knowledge co-learning)
procedure, we tested using only a subset of descriptors as KCL and
analyzed the effect enhancement of different subsets (Table S10).
According to the correlation coefficient between the structure
descriptors andCO2 adsorption,we selected the following sets of tasks
([AD], [AD, LCD], [AD, LCD, PLD], [AD, LCD, PLD, AV], [AD, LCD, PLD,
AV, ASA], [AD, LCD, PLD, AV, ASA, D], [AD, LCD, PLD, AV, ASA, D, VF]).
And we found that the model achieved the best prediction results
when using four descriptors (LCD, PLD, AV and ASA), slightly higher
than the prediction results when using all six descriptors (R2: 0.708 vs
0.701, MSE: 419 vs 429). We also found that the difference between
results of using no auxiliary tasks and incorporating any auxiliary tasks
was huge. Through the following comparative experiments, it is
speculated that the difference is caused by the fact that the physical
structure descriptors as auxiliary tasks can activate the position-
encoding module which takes absolute coordinates as the input.
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To examine the sensitivity of DeepSorption toward the training-
validation-test set randomsplit of theprediction results, weperformed
10 different random divisions of the CO2 adsorption data in CoREMOF
dataset (Table S12) and found that the results are less affected by the
division of the dataset, withR2 between0.672–0.712 andMAEbetween
13.598−15.150 cm3 g−1, proving the robustness of the model.

The ability to predict out-of-distribution data is challenging and is
an important indicator of the model’s generalizability. Elements that
occur less than one in a thousand times are defined as rare elements
(As, Rh, Sb, Te, Ir, Pb, Np and Pu). As shown in Fig. S29 we have com-
pared the predicted and true values of the CO2 adsorption capacity of
theMOFcontaining the rare elements in the test set. DeepSorption still
showed the best prediction performance (R2: 0.28), better than the
other comparison models, CGCNN (R2: -0.23) RAC_MLP (R2: -0.15) and
GEO_MLP (R2: 0.09). We attribute this good out-of-distribution pre-
diction to the use of the Chemical Element Knowledge Graph for ele-
ment coding in MatFormer. The Chemical Element Knowledge Graph
codingmethod gives each element a vector representation containing
chemical element information by learning and correlating the inter-
relationships between the properties of the elements. The vector
representations are learnt based on Chemical Element Knowledge
Graph and is independent to the training data of gas adsorption pre-
diction, so that even if materials contain elements in the test data that
do not appear in the training data or appear only a few times, the
model can still give relatively accurate adsorption predictions since
the out-of-distribution elements also have information-rich vector
representations.

We further examined the performance of DeepSorption model at
a wide range of conditions, including carbon dioxide (2.5 bar and
298K), methane (35 bar and 298K) and hydrogen (100bar and 77K)
adsorption capacity prediction tasks. As presented in Fig. S30 and
Table S13, DeepSorption model still showed better prediction perfor-
mance compared with other models, and we also found that R2 of
adsorption prediction tasks of high pressure was generally higher than
those of low pressure. The R2 of the three tasks of CO2 (2.5 bar and

298K), CH4 (35 bar and 298K) and H2 (100bar and 77K) adsorption
reached 0.96, 0.98 and 0.99 respectively via DeepSorption models,
which may attribute to the fact that the adsorption capacity is mainly
determined by the surface area and pore volume of thematerial under
high pressure. This phenomenon can also be drawn from the better
prediction effect of GEO_MLP onH2 (100 bar and 77K) task (R2: 0.994),
than CGCNN (R2: 0.872), since the latter is not good at capturing the
overall spatial structure of materials.

The superiority of DeepSorption is further validated on the col-
lected experimental C2H2 (EXPMOF-C2H2) as well as CO2 (EXPMOF-
CO2) adsorption isotherms. C2H2 adsorption is essential to its safe
storage, as well as the key technology for the production of polymer-
grade ethylene36. A low RMSE is obtained using leave-one-out valida-
tionon the experimentaldata,whereR2 reaches0.86 for EXPMOF-C2H2

and 0.87 for EXPMOF-CO2 (Fig. 4a and b). Given the easy occurrence of
severe deviations in the adsorption property prediction of porous
materials with strong interaction sites, three tasks that involves typical
strong polar sites, SIFSIX-2-Cu-i37 with anion sites, Zn-MOF-7438 with
open metal sites, and ZJNU−103 with amino functional groups
(Fig. 4c–e) are performed. It is noteworthy that DeepSorption still
shows highly consistent values with the experimental ones, and
moreover theprediction ofC2H2 andCO2 adsorption isotherms from0
to 1 bar could be completed within seconds using only one 3090 RTX
GPU. Despite a longer computing time (tens of hours), the adsorption
prediction performance of molecular simulation is still unsatisfactory
in the lowpressure adsorption zone (Fig. 4c–e). DeepSorption alsowell
outperforms other exiting learning approaches for adsorption prop-
erties prediction, and its improvement is fully demonstrated in the
case of known SIFSIX-2-Cu-i featuredwith steepC2H2 adsorption curve
(Fig. 4c). Since the adsorption isotherms of C2H2 and other strong
polar gases under low pressure are incline to be governed by the host-
guest interactions, such as hydrogen bonding interactions between
SiF6

2− andC2H2 inSIFSIX-2-Cu-i, insteadof the pore volume and surface
area, its accurate predictions require the model to gain insight into
spatial interaction learning. By contrast, CGCNN and EKDL that are
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Fig. 4 | Predictionperformance ofDeepSorption on experimental dataset (EXP-
MOF). a, b The correlations between true adsorption uptake and predicted
adsorption uptake fromDeepSorption network on EXPMOF-C2H2 (a) and EXPMOF-
CO2 (b) tasks on test sets through leave-one-out validation. c–e The experimental
and predicted adsorption isotherms via different machine learning algorithms, red

for DeepSorption, green for EKDL (Expert-knowledge-driven learning model), blue
for CGCNN (Crystal Graph Convolutional Neural Network) and yellow for Grand
canonical Monte Carlo molecular simulation of SIFSIX-2-Cu-i with SiF6

2−anions (c),
Zn-MOF-74 with open metal sites (d), and ZJNU−103 (e) with amino functional
groups.
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insensitive to either spatial information or elemental chemical infor-
mation, are incapable to well evaluate interatomic interactions and fail
to accurately predict steep adsorption curves. The accurate and
highly-efficient prediction based on DeepSorption is believed to lar-
gely accelerate the discovery of crystalline porous materials with
specific adsorption properties.

Chemical insights at the atomic level
The interpretability of models has been a long-term concern in the
field of ‘AI for science’. MSA mechanism endows DeepSorption with
the logical thinking of atomic-level interactions, enabling the intuitive
visualization of the execution trajectory, which is essential to deepen
the understand about the learning process of the network. SIFSIX−1-
Cu, one of the benchmark C2H2 adsorbents36, serves as an example
(Fig. 5a). The relationship between priority attention atoms is pre-
sented in Fig. 5, and the high priority atom pairs in different attention
distance scale are highlighted with lines. At the 5 Å scale bar, Deep-
Sorption mainly focuses on the interactions between neighboring
atoms, such as Cu···N, N···C and F···H, to search for the importantmotif
and bond (Fig. 5a). At 8 Å scale bar, the local structural characteristics
of the material are focused on by evaluating the interactions between
F, Si atoms on the SIFSIX2− anions and H, C atoms on the organic
ligands, to explore the potential adsorption sites and pore surface for
gas accommodation. The deep insight into MOFs with different
structures also indicates that the adjacent pairs of atoms with large
electronegativity differences as the potential polar adsorption sites are
preferentially concerned within small scale bars, such as Cu···O in
HKUST-139 and Zn···O in UTSA-7440 (Fig. S31 and S32). At 12 Å scale bar,
the interactions between atoms on the surface of the pore channel

begin to be considered, which implies that themodel tries to learn and
calculate expert knowledge information, such as pore diameter, pore
volume and surface area (Fig. 5b). As revealed in SIFSIX-1-Cu, Deep-
Sorption notonly focuses on theC···C andC···H atompairs on the sides
of square channels for PLD measurement, but also the interaction of
F···C and F···H atom pairs on the diagonal of square channels to mea-
sureLCD.At the infinite scale bar, interactions betweenheavy atomsSi,
Cu anddistant atoms are highlighted, which are beneficial formodel to
understand and extract the overall topology and global structure
information of the crystallinematerials. In addition, inMOFswith open
metal sites, such as MFM-18841, MOF-50542, HKUST-139 and UTSA-7440,
(Figs. S33 and S34), most of the attentioned atom pairs are related to
unsaturated metal sites Cu or Zn at all atom-attention distance scale
bars, which verified that DeepSorption has possessed the ability to
judge the critical important binding sites to give the accurate gas
adsorption isotherms.

Discussion
DeepSorption presents the spatial atom interaction learning network
that realizes the accurate and fast prediction of complex adsorption
properties of crystalline porous materials with benchmark prediction
accuracy. Benefiting from the Multi-scale Atom-attention mechanism,
DeepSorption is able to perform an accurate evaluation of interactions
between atoms to achieve physisorption behavior prediction and offer
an intuitive visualization of the thinking and executing trajectory
which has not been realized in the existing networks for adsorption
prediction. The remarkable advancement in the prediction of complex
physicochemical properties highlights the importance of the global
structure awareness, the coupling transfer and interaction of the

Fig. 5 | 3D attention visualization. a The 3D attention maps of SIFSIX−1-Cu at
different attention distance scale bars, including 5 Å, 8 Å, 12 Å, and infinite. b The
structure of SIFSIX−1-Cu, including bond, motif, pore size and adsorption surface

(LCD: largest cavity diameter, PLD: pore limiting diameter). (Color code: C, Gray-
50%; Si, Cyan; H, Gray-25%; N, Blue; Cu, Green; F, Pink; The attention between atom
pairs, Red).
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atomic-level spatial structure information and the chemical element
information. The spatial atom interaction learning network reveals the
intrinsic chemistry that determines the expressed function of crystal-
line porous materials, and is a promising powerful tool for the pre-
diction of various physicochemical and surface properties of other
crystalline materials with accessible atomic coordinates, such as per-
ovskite and crystalline catalysts.

Methods
DeepSorption network
DeepSorption network is mainly composed of Matformer and KCL
modules. During training of DeepSorption network, the cartesian
three-dimensional coordinates and corresponding element types of
atoms in crystalline porous materials are input. In order to assign a
representation to each atom in crystalline porous materials, three-
dimensional coordinate information and element type information of
atoms are first encoded through 3D position encoding layer and
Chemical element encoding layer respectively, and the spatial and
element information are then added up to get the atomic repre-
sentation. The obtained atomic representation in the crystalline por-
ousmaterials are transferred and interacted among atoms through the
Multi-scale Atom-attention layer (MSA) in Matformer model. After the
computation of Matformer module with six layers, DeepSorption
outputs the predicted value of adsorption capacity as the target task
and expert knowledge (largest cavity diameter, pore limiting diameter,
density, accessible surface area, void fraction, accessible volume) as
the auxiliary tasks simultaneously based on the KCL module. More
details of DeepSorption network are available in supporting
information.

MSA
Multi-scale Atom-attention (MSA), a scale-aware multi-head attention
mechanism (Fig. S4), is designed to recognize the interactions between
atoms at different scales. Its input is a sequence of atom vectors, and
the output is a sequence of updated atom vectors in the same order as
the input. For each attention head, we assign a visible distance τs to
make atomswithin τs visible to eachother during attention calculation
in this head. With the input atom representation sequence
ðx1,x2,x3, . . . ,xi, . . . ,xNÞ, each head of MSA first generates a key, value
and query based on each atom vector xi:

qi = fQ xi

� �
ð1Þ

ki = fK xi

� �
ð2Þ

vi = fV vi
� � ð3Þ

whereqi, ki, vi are query, key and value vectorwith dimensiondk . Then
an attention score is calculated based on the similarity between query
qi to key of atomswhose distance to atom i iswithin τs. Specifically, the
attention that the atom i pays to j can be formulated as:

aτs
ij =

qik
T
j � 1fdij<τsgffiffiffiffiffiffi

dk

p ð4Þ

where dij = jjpi � pjjj2 is the Euclidean distance between atom i and j,

1fdij<τsg is the indicator function that makes the score between two

atoms beyond distance τs to 0, and 1ffiffiffiffi
dk

p is a scaling factor. The output

vector of atom i at this attention head is:

zτsi =
XN

j = 1

σðaτs
ij Þvj ð5Þ

here σ denotes the softmax function. For each attention head, we
specify distinct distances to enable themodel to capture knowledge at
different scales. Then vectors of atom i from different heads are con-
catenated resulting a multi-scale vector zi, followed by a feed-forward
network to map it to dimension dmodel .

KCL
Knowledge co-learning (KCL), a module of DeepSorption network, is
utilized to guide the model to better and faster converge during
training by learning to predict target tasks and auxiliary tasks closely
related to target tasks synchronously. The selection of auxiliary tasks
commonly depends on the expert knowledge in the field. It is worth
mentioning that the expert knowledge only needs to be used as a data
label during model training. The prediction of crystalline porous
adsorbents does not require expert knowledge, only the coordinates
and corresponding element types of atoms in crystalline porous
adsorbents are required as input (Fig. 2c). In this way, the simplicity
and speed of the prediction process will not be damaged. Expert
knowledge such as pore size and pore volumeused in this study can be
obtained by high-throughput calculation using automated high-
throughput analysis software Zeo + +43. Zeo + + uses crystal structure
information files of crystalline porous materials as input, which can
calculate the expert knowledge of materials at high throughput with-
out manual annotation by chemical experts. Zeo + + are based on the
Voronoi decomposition, which for a given arrangement of atoms in a
periodic domain provides a graph representation of the void space44.
After having the representations of crystalline porous materials
fzigi = 1,...,N , we feed them into a fully connected layer to conduct
prediction.

Training details
To train DeepSorption, we use the crystallinematerials collected in the
CoREMOF, hMOF, EXPMOF-CO2 and EXPMOF-C2H2 datasets. We split
the CoREMOF and hMOF datasets with a ratio for train/validation/test
as 0.7:0.15:0.15. For CoREMOF, we simultaneously predict the follow-
ing 7 targets: LCD, PLD, D, ASA, VF, AV and ADCO2 (adsorption uptake
of CO2). For hMOF, the following 7 targets are predicted at the same
time: ADCO2, ADN2 (adsorption uptake of N2), LCD, PLD, D, VF and ASA.
We use leave-one-out method to evaluate the performance of our
model in EXPMOF-CO2 and EXPMOF-C2H2 datasets. In details, when
predicting the adsorption performance of material X (X refers to any
material in the EXPMOF database) in the test set, any adsorption data
of material X will not appear in the training set for model training. For
EXPMOF-CO2, we predict the following targets at the same time:
adsorption uptakes of CO2 at different pressures (0.01–0.92 bar,
spaced at 0.1 bar), LCD, PLD, D, ASA and AV. For EXPMOF-C2H2, we
predict the following targets at the same time: adsorption uptakes of
C2H2 at different pressures (0.06–0.95 bar, spaced at 0.1 bar), LCD,
PLD, D, ASA and AV. In details DeepSorption is trained tominimize the
MSE loss, which is the mean of the squared errors between true and
predicted values on training data.We evaluate the performance of our
model on test dataset.

3D attention visualization of DeepSorption
With the help of the Multi-scale Atom-attention mechanism, the
interpretability at multiple scales is clearly presented in this study,
weights are extracted from Multi-scale Atom-attention layers. Atom
pair interactions with higher weight ranking are displayed by con-
necting lines to show the atomic interactions that themodel paysmore
attention to in the predicting process. Taking 5 Å distance scale bar as
an example, we first draw the structure of crystalline porous material
by using atomic coordinate information and chemical element type
information. Then, the Atom-attention weight parameters for each
atom pair of Matformer with distance bar of 5 Å are extracted and
sorted from largest to smallest. The top 20 atomic pairs in weight
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order of each layer of Matformer in the distance bar of 5 Å are high-
lighted with red lines.

Dataset
CoREMOF, hMOF and EXPMOF datasets were used in this study. hMOF
dataset includes over 300,000 hypothetical MOFs containing 16 ele-
ments, which are built with rigid organic and inorganic struts called
secondary building units (SBU)s. hMOF dataset includes 3D Cartesian
coordinates and the corresponding element types of MOFs, and cor-
responding adsorption performances of carbon dioxide (CO2), nitro-
gen (N2) determined by Grand canonical Monte Carlo (GCMC)
simulations, and their corresponding expert knowledge, including
LCD, PLD, D, ASA, and VF. CoREMOF (Computation-Ready, Experi-
mental MOF33) dataset includes over 11,000 computation-ready,
experimental three-dimensional metal-organic frameworks (MOFs)
that contains more than 77 elements. The dataset contains 3D Carte-
sian coordinates and the corresponding element types of MOFs, and
the corresponding adsorption performance of carbon dioxide (CO2)
determined by Grand canonical Monte Carlo (GCMC) simulations45,
and their corresponding expert knowledge, including LCD, PLD, D,
ASA, VF and AV (Fig. S3). It is worth mentioning that the expert
knowledge is only needed during training process, but is not required
in the prediction of crystalline porous adsorbents. The EXPMOF
dataset constructed by ourselves is composed of EXPMOF-CO2 and
EXPMOF-C2H2. The adsorption data of EXPMOF dataset is from
experiments. The 3D Cartesian coordinates and the corresponding
element types of crystals are collected from reported literature or our
lab. EXPMOF-CO2 contains 112 data, and EXPMOF-C2H2 contains 140
data. In more details, adsorption isotherms are extracted from the
figures of literature and then are interpolated for data alignment. The
expert knowledge of MOFs, including LCD, PLD, D, ASA, and AV, are
calculated using Zeo + + programs.

Full algorithm details
Full explanations and details of deep learning model algorithm and
hyper-parameter details (includingMatformer and LSTM) are available
in supporting information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
main text and the Supplementary Information. The data that support
the findings of this study are available in https://doi.org/10.5281/
zenodo.769971946. Source data are provided with this paper.

Code availability
The code repository is stored at https://doi.org/10.5281/zenodo.
769971946 and https://github.com/DeepSorption/DeepSorption1.0.
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