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Learning low-rank latent mesoscale
structures in networks

Hanbaek Lyu 1 , Yacoub H. Kureh2, Joshua Vendrow3 &Mason A. Porter 2,4,5

Researchers in many fields use networks to represent interactions between
entities in complex systems. To study the large-scale behavior of complex
systems, it is useful to examine mesoscale structures in networks as building
blocks that influence such behavior. In this paper, we present an approach to
describe low-rank mesoscale structures in networks. We find that many real-
world networks possess a small set of latent motifs that effectively approx-
imate most subgraphs at a fixed mesoscale. Such low-rank mesoscale struc-
tures allow one to reconstruct networks by approximating subgraphs of a
network using combinations of latent motifs. Employing subgraph sampling
and nonnegative matrix factorization enables the discovery of these latent
motifs. The ability to encode and reconstruct networks using a small set of
latent motifs has many applications in network analysis, including network
comparison, network denoising, and edge inference.

It is often insightful to examine structures in networks1 at intermediate
scales (i.e., mesoscales) that lie between the microscale of nodes and
edges and the macroscale distributions of local network properties.
Researchers have considered subgraph patterns (i.e., the connection
patterns of subsets of nodes) asbuildingblocks of network structure at
various mesoscales2. In many studies of networks, researchers identify
motifs as k-node subgraph patterns (where k is typically between 3 and
5) of a network that are unexpectedly more common in that network
than in some random-graph null model3. In the past two decades, the
study of motifs has been important for the analysis of networked
systems in many areas, including biology4–8, sociology9,10, and
economics11,12. However, to the best of our knowledge, researchers
have not examined how to use such motifs (or related mesoscale
structures), after their discovery, as building blocks to reconstruct a
network. In the present paper, we provide this missing computational
framework to bridge inferred subgraph-based mesoscale structures
and the global structure of networks. To do this, we propose (1) an
algorithm for network dictionary learning (NDL) that learns latent
motifs from samples of certain random k-node subgraphs and (2) a
complementary algorithm for network denoising and reconstruction
(NDR) that approximates a given network as well as possible using the

learned latentmotifs.We alsoprovide a rigorous theoretical analysis of
the proposed algorithms. This analysis includes a proof that one can
accurately reconstruct a network if one has a dictionary of latent
motifs that can accurately approximate mesoscale structures of the
network. We compare our approach to related prior work13 in the
Methods section and in our Supplementary Information (SI).

Using our approach, we find that various real-world networks
(such as Facebook friendship networks, coronavirus andHomo sapiens
protein–protein interaction (PPI) networks, and an arXiv collaboration
network) have low-rank subgraph patterns, in the sense that one can
successfully approximate their k-node subgraph patterns by a weigh-
ted sum of a small number of latent motifs. The latent motifs of these
networks thereby reveal low-rank mesoscale structures of these net-
works. Our claim of the low-rank nature of such mesoscale structures
concerns the space of certain subgraph patterns, rather than the
embedding of an entire network into a low-dimensional Euclidean
space (as considered in spectral-embedding and graph-embedding
methods14,15). One cannot obtain such a low-dimensional graph
embedding for networks with small mean degrees and large clustering
coefficients16. Additionally, as we demonstrate in this paper, the ability
to encode a network using a set of latent motifs has a wide variety of
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applications in network analysis. These applications include network
comparison, network denoising, and edge inference.

Motivating application: Anomalous-subgraph detection
A common problem in network analysis is the detection of anomalous
subgraphs of a network (see Fig. 1)17. The connection pattern of an
anomalous subgraph distinguishes it from the rest of a network. This
anomalous-subgraph-detection problem has numerous high-impact
applications, including in security, finance, healthcare, and law
enforcement18,19. Various approaches, including both classical
techniques17 and modern deep-neural-network techniques20, have
been proposed to detect anomalous subgraphs.

Consider the following simple conceptual framework for
anomalous-subgraph detection: We learn normal subgraph patterns in
an observed network and then seek to detect subgraphs in the
observed network that deviate significantly from them.

By studying low-rank mesoscale structures in networks, we can
turn this high-level idea for anomalous-subgraph detection into a
concrete approach, which we now briefly summarize. First, we com-
pute latentmotifs (see Fig. 1d) of an observed network (see Fig. 1a) that
can successfully approximate the k-node subgraphs of the observed
network. A key observation is that these subgraphs should also
describe the normal subgraph patterns of the observed network (see
Fig. 1b). The rationale that underlies this observation is that the k-node
subgraphs of the observed network likely forma low-rank space, sowe
expect the latent motifs to be robust with respect to the addition of
anomalous edges (see Fig. 1c). Consequently, reconstructing the
observed network using its latent motifs yields a weighted network
(see Fig. 1e) in which edges with positive and small weights deviate
significantly from the normal subgraph patterns, which are captured
by the latent motifs. Therefore, such edges are likely to be anomalous.
The suspicious edges (see Fig. 1f) are the edges in the weighted
reconstruction that have positive weights that are less than a thresh-
old. One can determine the threshold using a small set of known true
edges and known anomalous edges. The suspicious edges match well
with the anomalous edges in Fig. 1c. See the SI for more details.

In the remainder of our paper, we carefully develop the three key
components of our approach: (1) effective sampling of k-node sub-
graphs; (2) reconstructing observed networks using candidate latent
motifs; and (3) computing latent motifs from observed networks. The
key idea of our work is to approximate sampled subgraphs by latent

motifs and then combine these approximations to construct a
weighted reconstructed network. We also present a variety of sup-
porting numerical experiments using several synthetic and real-world
networks.

Results
In this section, we describe our key ideas, key methods, and results of
several numerical experiments.

k-path motif sampling and latent motifs
Computing all k-node subgraphs of a network is computationally
expensive and is the main computational bottleneck of traditional
motif analysis3. Our approach, which bypasses this issue, is to learn
latent motifs by drawing random samples of a particular class of k-
node connected subgraphs. We consider random k-node subgraphs
that we obtain by uniformly randomly sampling a k-path from a
network and including all edges between the sampled nodes of the
network. A sequence x = (x1,…, xk) of k (not necessarily distinct)
nodes is a k-walk if xi and xi+1 are adjacent for all i∈ {1,…, k − 1}. A k-
walk is a k-path if all nodes in the walk are distinct (see Fig. 2).
Sampling a k-path serves two purposes: (1) it ensures that the sam-
pled k-node induced subgraph is connected with the minimum
number of imposed edges; and (2) it induces a natural node ordering
of the k-node induced subgraph. (Such an ordering is important for
computations that involve subgraphs.) By using a k-walk motif-
sampling algorithm of Lyu et al.21 in conjunction with rejection
sampling, one can sample a large number of k-paths and obtain their
associated induced subgraphs.

The k-node subgraphs that are induced by uniformly randomly
sampling k-paths from a network are the mesoscale structures that we
consider in the present paper. We use the term on-chain edges for the
edges of these subgraphs between nodes xi and xi+1 for i∈ {1,…, k − 1},
and we use the term off-chain edges for all other edges. It is the off-
chain edges that can differ across subgraphs and hence encode
meaningful information about a network. For k = 2, the subgraphs are
all isomorphic to a 2-path and hence have no off-chain edges. For k = 3,
the subgraphs can have a single off-chain edge, so they are isomorphic
either to a 2-path or to a 3-clique (i.e., a graph with three nodes and all
three possible edges between them). For larger values of k, the sub-
graphs canhave diverse connectionpatterns (see Fig. 2), depending on
the architecture of the original network.

Fig. 1 | Illustration of anomalous-subgraph detection using network recon-
struction. The (a) observed network consists of (b) the original network and (c)
anomalous edges, and we seek to detect the anomalous edges in the observed
network. In our approach, we first (d) determine a set of latent motifs and then (e)
use them to reconstruct the observed network. In the (f) weighted reconstruction

of the network, we identify the edges with positive but small weights as suspicious
edges.We compute the accuracy and the F-score for inferring the anomalous edges
in (c) as the suspicious edges in (f), where the F-score is the harmonic mean of the
precision and recall scores.
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We study the connection patterns of a random k-node subgraph
by decomposing it as a weighted sum of more elementary subgraph
patterns (possiblywith continuous-valued edgeweights), whichwecall
latent motifs (see Fig. 3a1–a3). To study mesoscale structures in net-
works, we investigate several questions. How many distinct latent
motifs does one need to successfully approximate all of these k-node
subgraphpatterns?What do they look like?Howdo these latentmotifs
differ for different networks?

Low-rank network reconstruction using latent motifs
We illustrate our procedure to reconstruct observed networks using
latent motifs in Fig. 3. Suppose that we have a network G = (V, E) and
two collections,W = {L1,…,Lr} andW′ = {L0

1,…,L0
r} of latentmotifs.We

refer to such collections as network dictionaries. How can one deter-
mine which of the networkdictionaries better describes themesoscale
structure ofG? One can sample a large number of k-node subgraphs Ai

of G and, for each Ai, independently, determine the nonnegative linear
combination of latent motifs that yields the closest approximation Âi.
By comparing the subgraphs Ai with their corresponding approxima-
tions Âi, one candemonstrate howwell the latentmotifs in thenetwork

dictionary W approximate the k-node subgraph patterns of G (see
Fig. 3a1–a3).

For applications such as anomalous-subgraph detection, it is
helpful to construct a weighted networkGrecons with the same node set
V that approximates G as well as possible using the network dictionary
W. The network Grecons is a rank-r mesoscale reconstruction of G. If
Grecons is close to G, we conclude that the latent motifs in W success-
fully capture the structure of k-node subgraphs of G and that G has
rank-r subgraph patterns that are prescribed by the latent motifs inW.
We interpret the edge weights in Grecons as measures of confidence in
the corresponding edges of G with respect to W. For example, we
interpret the edge e with the smallest weight in Grecons as the most
outlying edge with respect to the latent motifs inW (see Fig. 1e, f). We
can threshold the weighted edges of Grecons at some fixed value
θ∈ [0, 1] to obtain an undirected reconstructed network Grecons(θ)
with binary edgeweights (which are either 0 or 1).We can then directly
compare Grecons(θ) to the original unweighted network G.

Our network denoising and reconstruction (NDR) algorithm (see
AlgorithmNDR in the SI) works as follows.We seek to build a weighted
network Grecons using the node set V and a weighted adjacency matrix

Fig. 2 | Examples of 20-node subgraphs that are induced by uniformly sampled
20-paths fromvarious networks. In each subgraph, the sampled 20-path consists
of the red edges. The networks are CALTECH and UCLA Facebook networks, an
Erdős–Rényi (ER) random graph (ER1), a Barabási–Albert (BA) random graph (BA2),

a Watts–Strogatz (WS) small-world network (WS2), and a stochastic-block-model
(SBM) network (SBM1). See the Methods section for more details about these
networks.

Fig. 3 | An illustration of our low-rank network-reconstruction process using
latent motifs. Given (a1) an observed network and a set of latent motifs L1,…,Lr ,
we repeatedly sample a k-path and approximate (a2) the induced subgraph of the
nodes in that path by (a3) a nonnegative linear combination of the latent motifs
L1,…,Lr . We then compute the weighted reconstruction in (a4) by taking the edge
weight between each unordered node pair {x, y} to be the mean of the recon-
structed weights of {x, y} from all sampled subgraphs that include both x and y. We
measure the accuracy of the reconstruction of theweightednetwork by calculating
the Jaccard index (i.e., 1 minus the Jaccard distance) in (31) in the SI. We then obtain

(a5) an unweighted (i.e., binary) reconstructed network by thresholding the edge
weights in (a4) with a threshold 0.5. That is, we retain edges whose weights are at
least 0.5 and we remove all other edges. We measure the accuracy of the recon-
struction of the binary network by calculating the Jaccard index between the ori-
ginal network’s edge set and the associated reconstructed network’s edge set. The
same network-reconstruction process using (b1) a single latent motif L0

1, which is
the k-path, yields (b2) weighted and (b3) binary reconstructions with lower
accuracies than those in (a4) and (a5), respectively.
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Arecons : V
2 ! R. This network best approximates the observed net-

workG, given that the subgraphs of Grecons are generated by the latent
motifs inW. First, we uniformly randomly sample a large number T of
k-paths x1,…, xT: {1,…, k} ! V in G. We then determine the k × k
unweighted matrices Ax1

,…,AxT
with entries Axt

ði,jÞ=AðxtðiÞ,xtðjÞÞ,
which equals 1 if nodes xt(i) and xt(j) are adjacent in the network and
equals 0 otherwise. These are the adjacency matrices of the induced
subgraphs of the nodes of the k-paths thatwe sample (see Fig. 3a2).We
then approximate each Axt

by a nonnegative linear combination Âxt
of

the latent motifs inW (see Fig. 3a3). We then compute Arecons(x, y) for
each x, y∈V as the mean of Âxt

ða,bÞ for all t∈ {1,…, T} and all a, b∈
{1,…, k} such that xt(a) = x and xt(b) = y (see Fig. 3a4). We provide
theoretical guarantees and error bounds for our NDR algorithm in the
SI (see Algorithm NDR).

Consider reconstructing a networkG using a single latentmotifL0
1

that is a k-path. We begin with the case k = 2, such that each subgraph
that we sample is a 2-path. The sampled 2-paths are approximated
perfectly by L0

1 (see Fig. 3b1). A 2-path that one chooses uniformly at
random has an equal probability of sampling each edge of G, so
Grecons =G. Therefore, we conclude that, at scale k = 2, one can per-
fectly reconstruct G by using the 2-path latent motif L0

1. However, for
k ≥ 3, the graphGrecons can differ significantly fromG, as approximating
the observed subgraphs by a single k-path misses all of the off-chain
edges (see Fig. 3b1–b3). To properly describe the k-node subgraph
patterns of G, one may needmore than one latent motif with off-chain
edges (see Fig. 3a3). We give more details in Appendix D of the SI.

Dictionary learning and latent motifs
How does one compute latent motifs from a given network?
Dictionary-learning algorithms are machine-learning techniques that
learn interpretable latent structures of complex data sets. They are
employed regularly in the data analysis of text and images22–24.
Dictionary-learning algorithms usually consist of two steps. First, one
samples a large number of structured subsets of a data set (e.g., square
patches of an image or collections of a few sentences of a text); we

refer to such a subset as a mesoscale patch of a data set. Second, one
finds a set of basis elements such that taking a nonnegative linear
combination of them can successfully approximate each of the sam-
pled mesoscale patches. Such a set of basis elements is called a dic-
tionary, and one can interpret each basis element as a latent structure
of the data set.

As an example, consider the artwork image in Fig. 4a. We first
uniformly randomly sample 10000 square patches with 21 × 21 pixels
and vectorize them to obtain a 212 × 10000 matrix X. The choice of
vectorization Rk × k ! Rk2

is arbitrary; we use the column-wise vec-
torization in Algorithm A4 in the SI. We then use a nonnegative matrix
factorization (NMF)25 algorithm to find an approximate factorization
X ≈WH, whereW and H are nonnegative matrices of sizes 212 × 25 and
25 × 10,000, respectively. Reshaping the columns of W into image
patches of size 21 × 21 yields an image dictionary that describes latent
shapes of the image.

Our network dictionary learning (NDL) algorithm to compute a
network dictionary of latent motifs is based on a similar idea. As
mesoscale patches of a network, we use the k × k binary (i.e.,
unweighted) matrices that encode connection patterns between the
nodes that form a uniformly random k-path. After obtaining suffi-
ciently many mesoscale patches of a network (e.g., by using a motif-
sampling algorithm21 with rejection sampling), we apply a dictionary-
learning algorithm (e.g., NMF25) to obtain latent motifs of the network.
A latent motif is a k-node weighted network with nodes {1,…, k} and
edges that have weights between 0 and 1. As with subgraphs more
generally, we use the term on-chain edges for the edges of a latent
motif between nodes i and i + 1 for i∈ {1,…, k − 1}; we use the term off-
chain edges for all other edges. We give more background about our
NDL algorithm in the Methods section and provide a complete
implementation of our approach in Algorithm NDL in the SI. We give
theoretical guarantees for Algorithm NDL in Theorems F.4 and F.7 in
the SI.

In Fig. 4, we compare 25 latent motifs with k = 21 nodes of Face-
book friendship networks (which were collected on one day in fall

Fig. 4 | Illustration of mesoscale structures that we learn from images and
networks. In each experiment in this figure, we form a matrix X of size d × n by
samplingnmesoscale patches of size d = 21 × 21 from the corresponding object. For
the image in (a), the columns ofX are square patcheswith 21 × 21 pixels. In (b, c), we
show portions of the adjacencymatrices of the two networks. We take the columns
of X to be the k × k adjacencymatrices of the connected subgraphs that are induced
by a path of k = 21 nodes, where a k-node path consists of k distinct nodes x1,…, xk
such that xi and xi+1 are adjacent for all i∈ {1,…, k − 1}. Using nonnegative matrix
factorization (NMF), we compute an approximate factorization X ≈WH into non-
negative matrices W and H, whereW is called a network dictionary and has r = 25
columns. Because of this factorization,we can approximate any sampledmesoscale

patches (i.e., the columns of X) of an object by a nonnegative linear combination
of the columns of W, which we interpret as latent shapes for the image and
as latent motifs (i.e., subgraphs) for the networks. The columns of H give the
coefficients in these linear combinations. The network dictionaries of latent
motifs that we learn from the (b) UCLA and (c) CALTECH Facebook networks
have distinctive social structures. In the adjacency matrix of the UCLA network,
we show only the first 3000 nodes (according to the node labeling in the data
set). The image in (a) is from the collection Die Graphik Ernst Ludwig

Kirchners bis 1924, von Gustav Schiefler Band I bis 1916 (Accession
Number 2007.141.9, Ernst Ludwig Kirchner, 1926). We use the image with per-
mission from the National Gallery of Art in Washington, DC, USA.
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2005) from UCLA and Caltech26,27. We denote the UCLA network by
UCLA and the Caltech network by CALTECH. Each node of one of these
networks is a Facebook account of an individual, and each edge
encodes a Facebook friendship between two individuals. The latent
motifs reveal striking differences between these networks in the con-
nection patterns of the subgraphs that are induced by k-paths with
k = 21. For example, the latent motifs in UCLA’s dictionary (see Fig. 4b)
have sparse off-chain connections with a few clusters, whereas
CALTECH’s dictionary (see Fig. 4c) has relatively dense off-chain con-
nections. Most of CALTECH’s latent motifs have hub nodes (which are
adjacent to many other nodes in the latent motif) or communities28,29

with six or more nodes. We give community-size statistics in Supple-
mentary Fig. 2. An important property of k-node latent motifs is that
any network structure (e.g., hub nodes, communities, and so on) in the
latent motifs must also exist in actual k-node subgraphs. We observe
both hubs and communities in the subgraphs of CALTECH in Fig. 2. By
contrast,mostofUCLA’s latentmotifs donot have such structures, as is
also the case for the subgraphs of UCLA in Fig. 2.

Because k-node latentmotifs encode basic connection patterns of
k nodes that are atmost k − 1 edges apart, one can interpret k as a scale
parameter. Latent motifs that one learns from the same network for
different values of k reveal different mesoscale structures. For more
details, see Supplementary Fig. 3.

Example networks
We demonstrate our approach using 16 example networks; 8 of them
are real-world networks and 8 of them synthetic networks. The 8 real-
world networks are CORONAVIRUS PPI (for which we use the short-
hand CORONAVIRUS)30–32 and HOMO SAPIENS PPI (for whichwe use the
shorthand H. SAPIENS)15,30; Facebook networks from CALTECH, UCLA,
HARVARD, and MIT26,27; SNAP FACEBOOK (for which we use the short-
hand SNAP FB)15,33; and ARXIV ASTRO-PH (for which we use the
shorthand ARXIV)15,34. The first network is a protein–protein interac-
tion (PPI) network of proteins that are related to the coronaviruses that
cause Coronavirus disease 2019 (COVID-19), Severe Acute Respiratory
Syndrome (SARS), andMiddle EasternRespiratory Syndrome (MERS)31.

The second network is a PPI network of proteins that are related to
Homo sapiens30. The third network is a 2012 Facebook network that
was collected from participants of a survey33. The fourth network is a
collaboration network of coauthorships of papers that were posted in
the astrophysics category of the arXiv preprint server. The last four
real-world networks are 2005 Facebook networks from four uni-
versities from the FACEBOOK100 data set27. In each Facebook network,
nodes represent user accounts and edges encode Facebook friend-
ships between these accounts.

For the eight synthetic networks, we generate two instantiations
each of Erdős–Rényi (ER) G(N, p) networks35, Watts–Strogatz (WS)
networks36, Barabási–Albert (BA) networks37, and stochastic-block-
model (SBM) networks38. These four random-graph models are well-
studied and are common choices for testing network methods and
models1. Each of the ER networks has 5000 nodes, and we indepen-
dently connect each pair of nodes with probabilities p = 0.01 (in the
network thatwe callER1) andp =0.02 (inER2). For theWSnetworks,we
use rewiring probabilities p =0.05 (in WS1) and p =0.1 (in WS2) and start
froma 5000-node ring network inwhich eachnode is adjacent to its 50
nearest neighbors. For the BA networks, we use m = 25 (in BA1) and
m = 50 (in BA2), where m denotes the number of edges of each new
node when it connects (via linear preferential attachment) to the
existing network, which we grow from an initial network ofm isolated
nodes (i.e., none of them are adjacent to any other node) until it has
5000 nodes. The SBM networks SBM1 and SBM2 have three planted
1000-node communities; two nodes in the i0th and the j0th commu-
nities are connected by an edge independently with probability 0.5 if
i0 = j0 (i.e., if they are in the same community) and with prob-
abilities 0.001 for SBM1 and 0.1 for SBM2 if i0 ≠ j0 (i.e., if they are in
different communities). See the Methods section for more details.

Network-reconstruction experiments
An important observation is that one can reconstruct a given network
using an arbitrary network dictionary, including ones that one learns
from an entirely different network. Such a cross-reconstruction allows
one to quantitatively compare the learned mesoscale structures of

Fig. 5 | Network-reconstruction experiments. We show the self-reconstruction
and cross-reconstruction accuracies of several real-world and synthetic networks
versus the edge threshold θ and the number r of latent motifs in a network dic-
tionary. The label X← Y indicates that we reconstruct network X using a network
dictionary that we learn from network Y. The reconstruction process produces a
weighted network that we turn into an unweighted network by thresholding
the edge weights at a threshold value θ; we keep only edges whose weights are
strictly larger than θ. We measure reconstruction accuracy by calculating the

Jaccard index between an original network’s edge set and an associated recon-
structed network’s edge set. In (a), we plot accuracies versus θ (with the number of
latent motifs fixed at r = 25), where X is one of five real-world networks (two PPI
networks, two Facebook networks, and one collaboration network). In (b–e), we
reconstruct each of the four Facebook networks using network dictionaries with
r∈ {9, 16, 25, 36, 64, 81, 100} latent motifs that we learn from one of eight networks
(with the threshold value fixed at θ =0.4).
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different networks. In Fig. 5, we show the results of several network-
reconstruction experiments using a variety of real-world networks and
synthetic networks. We label each subplot of Fig. 5 with X← Y to indi-
cate that we are reconstructing network X by approximating mesos-
cale patches of X using a network dictionary that we learn from
network Y. We perform these experiments for various values of the
edge threshold θ∈ [0, 1] and r∈ {9, 16, 25, 36, 49, 81, 100} latentmotifs
in a single dictionary. Eachnetwork dictionary inFig. 5 has k = 21 nodes,
for which the dimension of the space of all possiblemesoscale patches
(i.e., the adjacency matrices of the induced subgraphs) is
21
2

� �
� 20= 190. We measure the reconstruction accuracy by calcu-

lating the Jaccard index between the original network’s edge set and
the reconstructed network’s edge set. That is, tomeasure the similarity
of two edge sets, we calculate the number of edges in the intersection
of these sets divided by the number of edges in the union of these sets.
This gives a measure of reconstruction accuracy; if the Jaccard index
equals 1, the reconstructed network is precisely the same as the ori-
ginal network. We obtain the same qualitative results as in Fig. 5 if we
instead measure similarity using the Rand index39.

In Fig. 5a, we plot the accuracy of the self-reconstruction X← X
versus the threshold θ (with r = 25 latent motifs), where X is one of the
real-world networks CORONAVIRUS, H. SAPIENS, SNAP FB, CALTECH,
and ARXIV. The accuracies for CORONAVIRUS, H. SAPIENS, and CAL-
TECH peak above 95%when θ ≈0.4; the accuracies for ARXIV and SNAP
FB peak above 88% and 70%, respectively, for θ ≈0.6. We choose
θ =0.4 for the cross-reconstruction experiments for the Facebook
networks CALTECH, HARVARD, MIT, and UCLA in Fig. 5b, c. These four
Facebook networks have self-reconstruction accuracies above 80% for
r = 25 motifs with the threshold θ =0.4. The total number of dimen-
sions when usingmesoscale patches at scale k = 21 is 190, so this result
suggests that all eight of these real-world networks have low-rank
mesoscale structures at scale k = 21.

We gain further insights into our self-reconstruction experiments
by comparing the degree distributions and the mean local clustering
coefficients of the original and the unweighted reconstructed networks
with thresholdθ =0.4 (see Fig. 6). Themean local clustering coefficients
of all reconstructed networks are similar to those of the corresponding
original networks. In Fig. 6a, we show that the degree distributions of
the reconstructed networks for CALTECH with r∈ {9, 16, 25, 64} latent
motifs converge toward that of the original network as we increase r.

Reconstructing CALTECH with larger values of r appears to increase
accuracy by including nodes with a larger degree than is possible for
smaller values of r. In other words, low-rank reconstructions (i.e., those
with small values of r) of CALTECH seem to recover only a small number
of the edges of each node, even though it is able to achieve a large
reconstruction accuracy (e.g., over 81% for r =9).

We now consider cross-reconstruction accuracies X← Y in
Fig. 5b–e, where X is one of the Facebook networks CALTECH, HAR-
VARD, MIT, and UCLA and Y (with Y ≠ X) is one of these four networks or
one of the four synthetic networks ER2, WS2, BA2, and SBM2. From the
cross-reconstruction accuracies and examination of the network
structures of the latent motifs (see Appendix A.4 of the SI) in Fig. 4
(also see Supplementary Figs. 3, 8, 10, and 11), we draw a few conclu-
sions at scale k = 21. First, the mesoscale structure of CALTECH is dis-
tinct from those of HARVARD, UCLA, and MIT. This is consistent with
prior studies of these networks27,40. Second, CALTECH’s mesoscale
structures at scale k = 21 are higher-dimensional than those of the
other three universities’ Facebook networks. Third, CALTECH has a lot
more communities with at least 10 nodes than the other three uni-
versities’ Facebook networks (also see Supplementary Figs. 2 and 3).
Fourth, the BA network BA2 captures the mesoscale structure of MIT,
HARVARD, and UCLA at scale k = 21 better than the synthetic networks
that we generate from the ER, WS, and SBM models. However, for all
r∈ {9, 15, 25, 49}, the network SBM2 captures the mesoscale structures
of CALTECH better than all other networks in Fig. 5b except for
CALTECH itself. See Appendix E.5 of the SI for further discussion.

We also comment briefly about the cross-reconstruction experi-
ments in Fig. 5 that use latent motifs that we learn from ER networks.
For instance, when reconstructing MIT, HARVARD, and UCLA using
latent motifs that we learn from ER2, we obtain a reconstruction
accuracy of at least 72%. This may seem unreasonable at first glance
because the latent motifs that we learn from ER2 should not have any
information about the Facebook networks. However, all of these net-
works are sparse (with edge densities of at most 0.02) and we are
sampling subgraphs using k-paths. The k-node subgraphs that are
induced by uniformly random k-paths in these sparse networks have
only a few off-chain edges (see Fig. 2). For example, the k-node sub-
graphs that we sample from the sparse ER network ER2 tend to have k-
node paths and a few extra off-chain edges (see Fig. 2). A similarly
sparse or sparser network, such as UCLA (whose edge density is about
0.0036) has similar subgraph patterns (despite the fact that, unlike the

Fig. 6 | Comparison of the degree distributions and the mean local clustering
coefficients of the original and reconstructed networks. We show the degree
distributions as histograms, and we use the acronymmlcc in the legends to denote
the mean local clustering coefficient. For network reconstruction, we use r latent
motifs at scale k = 21 for the five networks in Fig. 5a. In (a), we use the unweighted
reconstructed networks for CALTECH with r∈ {9, 16, 25, 64} latent motifs that we
used to compute the self-reconstruction accuracies in Fig. 5b. As we increase r, the

mean local clustering coefficient increases towards its value in the original network
and the degree distributions of the reconstructed networks converge to that of the
original network. By increasing r, we are able to include nodes with progressively
larger degrees in the latent motifs. In (b–e), we show the mean local clustering
coefficients and degree distributions of the unweighted reconstructed networks
for CORONAVIRUS, H. SAPIENS, SNAP FB, and ARXIV with r = 25 latent motifs that
we used to compute the self-reconstruction accuracies in Fig. 5b–e.
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subgraphs of an ER network, the off-chain edges are not independent).
This is the reason that we can reconstruct some networks with high
accuracy by using latent motifs that we learn from a completely
unrelated network.

One learns latent motifs by maximizing the accuracy of recon-
structions of mesoscale patches using them, rather than by max-
imizing the network-reconstruction accuracy. In Fig. 7a–d, we
illustrate that self-reconstructions of mesoscale patches are more
accurate than cross-reconstructions of mesoscale patches. However,
because network reconstruction involves taking the mean of the
reconstructed weights of an edge from multiple mesoscale patches
that include that edge, an accurate reconstruction of mesoscale
patches need not always entail accurate network reconstruction. In
Fig. 5, we see that the self-reconstruction X← X is more accurate than
the cross-reconstructions X← Y for Y ≠ X for almost all choices of
networks X and Y and the parameter r. The two exceptions are
(X, Y, r) = (MIT, HARVARD, 25) and (X, Y, r) = (MIT, UCLA, 25), although
the cross-reconstruction accuracies in these cases are at most 2%
larger than the self-reconstruction accuracy.

The above discussion suggests an important question: If a net-
work dictionary is effective at approximating themesoscale patches of
a network, what reconstruction accuracy does one expect? In the
present paper, we state and prove a theorem (see Theorem 1) that
answers this question. Specifically, we prove mathematically that a
Jaccard reconstruction error (see (31) in the SI) of a weighted recon-
structed network (i.e., without thresholding edgeweights as in Fig. 5) is
upper-bounded by the mean error of approximating the mesoscale
patches (i.e., k-node subgraphs) of a network by the k-path latent
motifs divided by 2(k − 1).

Theorem 1. Consider a network G and a network dictionary W of k-
node latent motifs, and let Grecons;W denote the weighted recon-
structed network that we obtain using our NDR algorithm. The Jaccard
distance JD between G and Grecons;W satisfies the bound

JDðG,Grecons;W Þ≤ 1
2ðk � 1ÞEx k Ax � Âx;W k1

h i
, ð1Þ

where x is a uniformly random k-path of G, the matrix Ax is the k × k
adjacency matrix of the subgraph that is induced by the node set of x,
and Âx;W is the best nonnegative linear approximation of Ax that we
obtain using the latent motifs in the network dictionaryW.

See Appendix F.3 andTheoremF.4 in the SI for precise statements
of Theorem 1 and the relevant definitions.

Our NDL algorithm (see Algorithm NDL in the SI) finds a network
dictionary that approximately minimizes the upper bound in the
inequality (1). (See TheoremNDL in the SI.) Using an arbitrary network
dictionary is likely to yield larger values of the upper bound. Therefore,
according to Theorem 1, it is likely to yield a less accurate weighted
reconstructed network. For instance, for a network dictionary that
consists of a single k-path, the aforementioned upper bound is the
meannumber of off-chain edges in themesoscale patches of a network
divided by k − 1. (See the inequality (1).) For an ER network with
expected edge density p, this upper bound equals kp/2 in expectation.
At scale k = 20 for ER2, this value is 0.5. Consequently, we expect a
reconstruction accuracy of at least 50%when reconstructing ER2 using
latent motifs (such as the ones from UCLA in Fig. 4) that have large on-
chain entries and small off-chain entries. Substituting the edge density
of UCLA for p, we expect a reconstruction accuracy of at least 94%.
However, according to Theorem 1, the lower bound of the recon-
struction accuracy that we obtain using latent motifs of UCLA is about
80%. Therefore, when we use latent motifs from UCLA, we expect to
obtain many more off-chain edges in mesoscale patches than what we
expect when using latent motifs from an ER network with the same
edge density. We plot the lower bound of the reconstruction accuracy
in Fig. 7a–d for the parameters in Fig. 5b–e (i.e., k = 21 and
r∈ {6, 16, 25, 36, 49, 64, 81, 100}). The lower bounds for the self-
reconstructions are not too far from the actual reconstruction
accuracies for the unweighted reconstructed networks in Fig. 5b–e
(they arewithin 20% forCALTECH and UCLA andwithin 10% for MIT and
HARVARD for all r), but we observe much larger accuracy gaps for the
cross-reconstruction experiments. (For example, there is at least a 50%
difference for UCLA← CALTECH.) This indicates that, even when using
latent motifs that are not very efficient at approximating mesoscale
patches, one can obtain unweighted reconstructions that are sig-
nificantly more accurate than those that are guaranteed by the theo-
retically proven bounds.

Network-denoising experiments
We consider the following network-denoising problem (which is clo-
sely related to the anomalous-subgraph-detection problem in Fig. 1).
Suppose that we are given an observed network Gobs = (V, Eobs) with a
node set V and edge set Eobs and that we are asked to find an unknown
network Gtrue = (V, Etrue) with the same node set V but a possibly

Fig. 7 | Lower bounds on the Jaccard reconstruction accuracy for the cross-
reconstruction experiments in Fig. 5. Subtracting both sides of the inequality (1)
from 1 implies that the Jaccard reconstruction accuracy 1 − JD(G,Grecons;W) is lower-
bounded by 1� 1

2ðk�1ÞEx k Ax � Âx;W k1
h i

. This lower bound also measures the

accuracy of reconstructing mesoscale patches of G using latent motifs inW. In
(a–d), we plot this lower bound for the same parameters as in Fig. 5b–e (i.e., k = 21
and r∈ {6, 16, 25, 36, 49, 64, 81, 100}).
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different edge set Etrue. We interpret Gobs as a corrupted version of a
true network Gtrue that we observe with some uncertainty. To simplify
the setting, we consider two types of network denoising. In the first
type of network denoising, we consider additive noise18,19,41. We sup-
pose that Gobs is a corrupted version of Gtrue that includes false edges
(i.e., Eobs⊇ Etrue), and we seek to classify all edges of Gobs as positives
(i.e., edges ofGtrue) or negatives (i.e., false edges ofGobs or equivalently
nonedges of Gtrue). This network-denoising setting is identical to the
anomalous-subgraph-detection problem in Fig. 1, except that now we
label the false edges as negatives. We interpreted them as positives
when we computed the F-score (i.e., the harmonic mean of the preci-
sion and recall scores) in Fig. 1f. In the second type of network
denoising, we consider subtractive noise (which is often called edge
prediction42–46). We assume that Gobs is a partially observed version of
Gtrue (i.e., Eobs is a proper subset of Etrue), and we seek to classify
nonedges of Gobs into positives (i.e., nonedges of Gtrue) and negatives
(i.e., edges of Gtrue). There are many more positives than negatives
because Gtrue is sparse (i.e., the edge density is low), so we restrict the
classification task to a subset Enonedge of Eobs that includes all negatives
and an equal number of positives. We will shortly discuss how we
choose Enonedge.

Given a true network Gtrue = (V, Etrue), we generate an observed
(i.e., corrupted) network Gobs = (V, Eobs) as follows. In the additive-
noise setting, we create two types of corrupted networks. We create
the first type of corrupted network by adding false edges in a struc-
tured way by generating them using the WS model. We consider the
networks CALTECH, SNAP FB, ARXIV, CORONAVIRUS, and H.
SAPIENS. We select 100 nodes for four of the networks (the exception
is that we use 500 nodes for H. SAPIENS) uniformly at random and
generate 1000 new edges (we generate 30000 new edges for H.
SAPIENS) according to the WS model. In this corrupting WS network,
eachnode in a ring of 100 nodes is adjacent to its 20 nearest neighbors
and we uniformly randomly choose 30% of the edges to rewire. When
rewiring an edge, we choose one of its two ends with equal probability
of each, andweattach this end to anodeof thenetwork thatwechoose
uniformly at random.We then add these newly generated edges to the
original network. We refer to this noise type as +WS. We create the

second type of corrupted network by choosing 5% of the nodes uni-
formly at random and adding an edge between each pair of chosen
nodes with independent probability 0.3. We refer to this noise type
as +ER. In the subtractive-noise setting, we obtain Gobs from Gtrue by
removing half of the existing edges, which we choose uniformly at
random, such that the remaining network is connected. We refer to
this noise type as −ER.

For each observed network Gobs, we apply NDL at scale k = 21 with
r∈ {2, 25} to learn a network dictionary Wobs. We construct another
network dictionary �Wobs by removing the on-chain edges from all of
the latent motifs in Wobs. (For further discussion, see the Methods
section.) This gives a total of four network dictionaries, corresponding
to the two values of r andwhether or notwe keep the on-chain edges of
the latentmotifs.With each of the networkdictionaries, weuseNDR to
reconstruct a network Grecons by approximating mesoscale patches of
Gobs using latentmotifs inWobs. (We computeGreconswithout using any
information about Gtrue.) We anticipate that the reconstructed net-
work Grecons is similar to its corresponding original (i.e., uncorrupted)
network Gtrue. The reconstruction algorithm outputs a weighted net-
work Grecons, where the weight of each edge is our confidence that the
edge is a true edge of that network. For denoising subtractive
(respectively, additive) noise, we classify each nonedge (respectively,
each edge) of a corrupted network as positive if its weight in Grecons is
strictly larger than some threshold θ and as negative otherwise. By
varying θ, we construct a receiver-operating characteristic (ROC) curve
that consists of points whose horizontal and vertical coordinates are
the false-positive rates and true-positive rates, respectively. For
denoising the −ER (respectively, +ERand +WS) noise, one can also infer
an optimal value of θ for a 50% training set of nonedges (respectively,
edges) of Gwith known labels and then use this value of θ to compute
classification measures such as accuracy and precision.

In Fig. 8, we compare the performance of our network-denoising
approach to the performance of several existing approaches using the
real-world networks CALTECH, SNAP FB, ARXIV, CORONAVIRUS, and H.
SAPIENS. We use four classical approaches (the JACCARD INDEX, PRE-

FERENTIAL ATTACHMENT, the ADAMIC–ADAR INDEX, and a SPECTRAL EMBEDDING)43,47

and twomore recentmethods (DEEPWALK
14 and NODE2VEC15) that are based

Fig. 8 | Applications of our NDLandNDRalgorithms tonetwork denoisingwith
additive and subtractive noise on a variety of real-world networks. In our
experiments with subtractive noise, we corrupt a network by removing 50% of its
edges uniformly at random. We seek to classify the nonedges of the corrupted
network as true edges (i.e., removed edges) and false edges (i.e., nonedges of the
original network), respectively. In our experiments with additive noise, we corrupt
a network by uniformly randomly adding 50% of the number of its edges (i.e., 1000
random edges) for all but one network (we add 30000 random edges for H.
SAPIENS) thatwegenerateusing theWSmodel.We seek to classify the edgesof the
resulting corrupted network as true edges (i.e., original edges) and false edges (i.e.,

added edges). To perform classification for a network, we first use NDL to learn
latent motifs from a corrupted network and then reconstruct the network using
NDR to assign a confidence value to each potential edge. We then use these con-
fidence values to infer the correct labeling of potential edges of the uncorrupted
network. Importantly, we never use information from the original networks to
denoise the corrupted networks. For each network, we report the areas under the
curves (AUCs) of the receiver-operating characteristic (ROC) curves, which plot
false-positive rates on the horizontal axis and true-positive rates on the vertical axis.
See Supplementary Figs. 5–7 for the values of other binary-classificationmeasures.
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on network embeddings. Let N(x) denote the set of neighbors of node
x of a network. For the JACCARD INDEX, PREFERENTIAL ATTACHMENT, and the
ADAMIC–ADAR INDEX, the confidence score (which plays the same role as
an edge weight in a reconstructed network) that the nodes x and y are
adjacent via a true edge is ∣N(x)∩N(y)∣/∣N(x)∪N(y)∣, ∣N(x)∣ ⋅ ∣N(y)∣, andP

z2NðxÞ\NðyÞ1= ln jNðzÞj, respectively.
We now discuss how we choose the set Enonedge of nonedges of

Gobs for our subtractive-noise experiments. First, we note that it is
unlikely that many edges in the set Edeleted of deleted edges are
between two small-degree nodes. If we simply choose Enonedge as a
uniformly random subset of the set of all nonedges of Gobs with a
given size ∣Edeleted∣, then it is likely that we will choose many
nonedges between small-degree nodes. Consequently, the resulting
classification problem is easy for existing methods, such as the JAC-
CARD INDEX and PREFERENTIAL ATTACHMENT, that are based on node degrees.
For example, consider a star network with five leaves (i.e., degree-1
nodes). In this network, a uniformly randomly chosen nonedge is
always attached to two degree-1 nodes, but a uniformly randomly
chosen edge is always attached to one degree-5 node (i.e., the center
node) and one degree-1 node. In our experiments, to reduce the size-
biasing of node degrees, we choose each nonedge of Enonedge with a
probability that is proportional to the product of the degrees of the
two associated nodes.

We show results in the form of means of the areas under the
curves (AUCs) of the ROC curves for five independent runs of each
approach. In Fig. 8, we see that our approach performs competitively
in all of our experiments, particularly for denoising additive noise (i.e.,
anomalous-subgraphdetection). For example, whenwe add 1000 false
edges that we generate from the WS model to CORONAVIRUS (which
has 2463 true edges), our approach yields an AUC of 0.94. We obtain
the second best AUC (it is only 0.61) using PREFERENTIAL ATTACHMENT. For
noise of type +ER, we add 804 false edges to CORONAVIRUS; our
approach achieves the best AUC (it is 0.97) and SPECTRAL EMBEDDING

achieves the second best AUC (it is 0.66).
In Fig. 5a, we saw that we can use a small number of latent motifs

to reconstruct the social and PPI networks in our denoising experi-
ments in Fig. 8. Because NDL learns a small number of latent motifs
that are able to successfully give an approximate basis for all mesos-
cale patches, these motifs should not be affected significantly by false
edges between the nodes of a small subset of the entire node set.
Consequently, the latent motifs in Wobs that we learn from the
observed network Gobs may still be effective at approximating
mesoscale patches of the true network Gtrue, so the network Grecons

that we reconstruct using Gobs and Wobs may be similar to Gtrue.

Discussion
We now highlight key conclusions, ideas, and limitations of our work.
We first summarize our main results, discuss their importance, and
briefly indicate relevant ideas for future studies. We then highlight key
limitations and related salient points.

In the present paper, we introduced a mesoscale network
structure, which we call latent motifs, that consists of k-node sub-
graphs that are building blocks of the connected k-node subgraphs
of a network. In contrast to ordinary motifs3, which refer to over-
represented k-node subgraphs (especially for small k) of a network,
nonnegative linear combinations of our latent motifs approximate k-
node subgraphs that are induced by uniformly random k-paths of a
network. We also established algorithmically and theoretically that
one can accurately approximate a network if one has a dictionary of
latent motifs that can accurately approximate mesoscale structures
of the network.

Our computational experiments in Fig. 4 (see also Supplemen-
tary Fig. 3) demonstrated that latent motifs can have distinctive
network structures. Our computational experiments in Figs. 5 and 8
illustrated that various social, collaboration, and PPI networks have

low-rank48 mesoscale structures, in the sense that a few latent motifs
(e.g., r = 25 of them, but see Fig. 5 for other choices of r) that we learn
using NDL are able to reconstruct, infer, and denoise the edges of a
network using our NDR algorithm. We hypothesize that such low-
rank mesoscale structures are a common feature of networks
beyond the examined social, collaboration, and PPI networks. As we
have illustrated in our paper, one can leverage mesoscale structures
to perform important tasks, such as network denoising, so it is
important in future studies to explore the level of generality of our
insights.

In our work, we examined latent motifs in ordinary graphs.
However, notions of motifs have been developed for several more
general types of networks, including temporal networks (in which
nodes, edges, and edgeweights can changewith time)49 andmultilayer
networks (in which, e.g., nodes can be adjacent to each other via
multiple types of relationships)50. We have not examined latent motifs
in such network structures, and it is worthwhile to extend our
approach and algorithms to these situations.

To help readers interpret and use our methods in a scientifically
correct matter, it is important to highlight key limitations and related
salient points. We discuss these points in the next several paragraphs.

First, it is possible for two sets of latent motifs to be equally
effective at reconstructing the same network. Therefore, although one
can interpret the structures in latent motifs as mesoscale structures of
a network, one cannot conclude that other mesoscale structures
(which are not in a given set of latent motifs) do not also occur in the
network.

Second, our NDL algorithm approximately computes a network
dictionary that successfully reconstructs the mesoscale patches of a
network. It does not compute a network dictionary to reconstruct a
network itself. Although our theoretical bound on the reconstruction
error (see Theorem 1) implies that such a network dictionary should
also be effective at reconstructing networks, it is still necessary to
empirically verify the actual efficacy of doing so.

Third, our theoretical bound on the reconstruction error illus-
trates that it is possible to successfully reconstruct a very sparse net-
work using latent motifs that one learns from a radically different but
similarly sparse network at a given scale k (see Fig. 5e). To better
distinguish distinct sparse networks from each other, one can use a
scale k that is large enough so that k-node mesoscale patches have
many off-chain edges and latent motifs at that scale are sufficiently
different for different networks. For example, see the latent motifs at
scale k = 51 in Supplementary Figs. 8–11. Naturally, using a larger scale k
increases the computational cost of our approach.

Fourth, although our method for network denoising is competi-
tive (especially for anomalous-subgraph detection), it does not always
outperform all existing methods, and some of those methods are
much simpler than ours. For instance, for edge-prediction tasks, it
seems that our method is often more conservative than the other
examined methods at detecting unobserved edges. (See Supplemen-
tary Figs. 5–7.) Therefore, we recommend using our method in con-
junction with existing methods for such tasks.

Methods
We briefly discuss our algorithms for network dictionary learning
(NDL) and network denoising and reconstruction (NDR). We also
provide a detailed description of our real-world and synthetic
networks.

We restrict our present discussion to networks that one can
represent as a graph G = (V, E) with a node set V and an edge set E
withoutdirected edges ormulti-edges (but possiblywith self-edges). In
the SI, we give an extended discussion that applies to more general
types of networks. Specifically, in that discussion, we no longer restrict
edges tohavebinaryweights; instead, theweights canhave continuous
nonnegative values. See Appendix A.1 of the SI.
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Motif sampling and mesoscale patches of networks
The connected k-node subgraphs of a network are natural candidates
for the network’s mesoscale patches. These subgraphs have k nodes
that inherit their adjacency structures from the original networks from
which we obtain them. It is convenient to consider the k × k adjacency
matrices of these subgraphs, as we can then perform computations on
the space of subgraphs. However, to do this, we need to address two
issues. First, because the same k-node subgraph can have multiple
(specifically, k!) different representations as an adjacency matrix
(depending on the ordering of its nodes), we need an unambiguous
way to choose an ordering of its nodes. Second, because most real-
world networks are sparse1, independently choosing a set of k nodes
from anetworkmay yield only a few edges and thusmayoften result in
a disconnected subgraph. Therefore, we need an efficient sampling
algorithm to guarantee that we obtain connected k-node subgraphs
when we sample from sparse networks.

We employ an approach that is based onmotif sampling21 both to
choose an ordering of the nodes of a k-node subgraph and to ensure
that we sample connected subgraphs from sparse networks. The key
idea is to consider the random k-node subgraph that we obtain by
sampling a copy of a template subgraph uniformly at random from a
network. (We sample the nodes uniformly at randomand include all of
the network’s edges between those sampled nodes.) We suppose that
such a template is a k-path. A sequence x = (x1,…, xk) of k (not neces-
sarily distinct) nodes is a k-walk if xi and xi+1 are adjacent for all
i∈ {1,…, k − 1}. A k-walk is a k-path if all nodes in the walk are distinct
(see Fig. 2). For each k-path x = (x1,…, xk), we define the corresponding
mesoscale patch of a network to be the k × k matrix Ax such that
Ax(i, j) = 1 if nodes xi and xj are adjacent and Ax(i, j) = 0 if they are not
adjacent. This is the adjacency matrix of the k-node subgraph of the
network with nodes x1,…, xk. One can use one of the Markov-chain
Monte Carlo (MCMC) motif-sampling algorithms of Lyu et al.21 to
efficiently and uniformly randomly sample a k-walk from a sparse
network. By only accepting samples in which the k-walk has k distinct
nodes (i.e., so that it is k-path), we efficiently sample a uniformly ran-
dom k-path fromanetwork, as long ask is not too large. If k is too large,
one has to reject toomany samples of k-walks that are not k-paths. The
expected number of rejected samples is approximately the number of
k-walks divided by the number of k-paths. The number of k-walks on a
network grows monotonically with k, but the number of k-paths can
decrease with k. (See Appendix B of the SI for a detailed discussion.)
Consequently, by repeatedly sampling k-paths x, we obtain a data set
of mesoscale patches Ax of a network.

Algorithm for network dictionary learning (NDL)
We now present the basic structure of the algorithm that we employ
for network dictionary learning (NDL)13. Suppose that we compute all
possible k-paths x1,…, xM and their corresponding mesoscale patches
Axt

(which are k × k binary matrices), with t∈ {1,…,M}, of a network.
We column-wise vectorize (i.e., we place the second column under-
neath the first column and so on; see Algorithm A4 in the SI) each of
these k × kmesoscale patches to obtain a k2 ×M datamatrix X. We then
apply nonnegative matrix factorization (NMF)25 to obtain a k2 × r non-
negative matrixW for some fixed integer r ≥ 1 to yield an approximate
factorization X ≈WH for some nonnegative matrix H. From this pro-
cedure, we approximate each column of X by a nonnegative linear
combination of the r columns of W; its coefficients are the entries of
the corresponding column of H. If we let Li be the k × kmatrix that we
obtain by reshaping the ith column ofW (using Algorithm A5 in the SI),
then L1,…,Lr are the learned latent motifs; they form a network
dictionary. The set of these latent motifs is an approximate basis (but
not a subset) of the set {Ax1

,…,AxM
} of mesoscale patches. For

instance, latent motifs have entries that take continuous values
between 0 and 1, but mesoscale patches have binary entries. We can
regard each Li as the k-node weighted network with node set {1,…, k}

andweighted adjacencymatrixLi. See Fig. 4 for an illustration of latent
motifs as weighted networks.

The scheme in the paragraph above requires us to store all pos-
siblemesoscale patches of a network, entailing amemory requirement
that is at least of order k2M, where M denotes the total number of
mesoscale patches of a network. Because M scales with the size (i.e.,
the number of nodes) of the network from which we sample sub-
graphs, we need unbounded memory to handle arbitrarily large net-
works. To address this issue, Algorithm NDL implements the above
scheme in the setting of online learning, in which subsets (so-called
minibatches) of data arrive in a sequential manner and one does not
store previous subsets of the data before processing new subsets.
Specifically, at each iteration t∈ {1, 2,…, T}, we process a sample
matrix Xt that is smaller than the full matrix X and includes only N≪M
mesoscale patches, where one can take N to be independent of the
network size. Instead of using a standard NMF algorithm for a fixed
matrix51, we employ an online NMF algorithm13,52 that one can use on
sequences of matrices. The intermediate dictionary matrices Wt that
we obtain by factoring the sample matrix Xt typically improve as we
iterate13,52. In Algorithm NDL in the SI, we give a complete imple-
mentation of the NDL algorithm.

Algorithm for network denoising and reconstruction (NDR)
Suppose that we have an image patch γ of size k × k pixels and a set of
basis images β1,…, βr of the same size. We can reconstruct the image γ
using the basis images β1,…, βr by finding nonnegative coefficients
a1,…, ar such that the linear combination γ̂ =a1β1 + � � � + ar βr is as close
as possible to γ. The basis images determine what shapes and colors of
the original image to capture in the reconstruction γ̂. In the standard
pipeline for image denoising and reconstruction22,23,53, one assumes
that the size k × k of the image patches is much smaller than the size of
the full image γ. One can then sample a large number of k × k over-
lapping patches γ1,…, γM of the image γ and obtain the best linear
approximations γ̂1,…, γ̂M of them using the basis images β1,…, βr.
Because the k × k patches γ1,…, γM overlap, each pixel (I, J) of γ can
occur inmultiple instances of γ1,…, γM. Therefore, we take themean of
the corresponding values in themesoscale reconstructions γ̂1,…, γ̂M as
the value of the pixel (I, J) in the reconstruction γ̂.

As an illustration, we reconstruct the color image in Fig. 9a in two
ways to yield the images in Fig. 9b, c. In Fig. 9d, we show a dictionary
with 25 basis images of size 21 × 21 pixels. We uniformly randomly
choose the color of each pixel from all possible colors (which we
represent as vectors in [0, 256]3 for red–green–blue (RGB) weights).
The basis images do not include any information about the original
image in Fig. 9a, so the linear approximation of the 21 × 21 mesoscale
patches of the image in Fig. 9a using the basis images in Fig. 9dmay be
inaccurate. However, when we reconstruct the entire image from
Fig. 9a using the basis images in Fig. 9d, we do observe some basic
geometric information of the original image. In Fig. 9b, we show the
image that results from this reconstruction. Importantly, the image
reconstruction in Fig. 9b uses both the basis images and the original
image that one seeks to reconstruct. Unfortunately, the colors have
averaged out and become neutral, so the reconstructed image is
monochrome. Using a smaller (e.g., 5 × 5) randomly generated (with
each pixel again taking an independently and uniformly chosen color)
basis-image set for reconstruction results in a monochrome (but
sharper) reconstructed image. Notably, one can learn the basis images
in Fig. 9e from the image in Fig. 9f using nonnegative matrix factor-
ization (NMF)25. The image in Fig. 9f is in black andwhite, so the images
in Fig. 9e are also in black and white. The corresponding reconstruc-
tion in Fig. 9c has nicely captured shapes of the original image,
although we have lost the color information of the original image in
Fig. 9a and the reconstruction in Fig. 9c is thus in black and white.

A network analogue of the above patch-based image reconstruc-
tion proceeds as follows. Given a network G = (V, E) and latent motifs
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L1,…,Lr (which we do not necessarily compute fromG; see Fig. 9), we
obtain a weighted network Grecons using the same node set V and a
weighted adjacency matrix Arecons : V

2 ! R. To do this, we first use a
MCMCmotif-sampling algorithm of Lyu et al.21 with rejection sampling
to sample a large number T of k-paths x1,…, xT: {1,…, k}! V of G. (For
details, see Algorithm IM in the SI.) We then determine the corre-
sponding mesoscale patches Ax1

,…,AxT
of G. We approximate each

mesoscale patch Axt
, which is a k × k unweighted matrix, by a non-

negative linear combination Âxt
of the latent motifs Li. We seek to

replace each Axt
by Âxt

to construct the weighted adjacency matrix
Arecons. Todo this,wedefineArecons(x, y) for each x, y∈V as themeanof
Âxt

ða,bÞ over all t∈ {1,…, T} and all a, b∈ {1,…, k} such that xt(a) = x
and xt(b) = y. We state this network-reconstruction algorithmprecisely
in Algorithm NDR in the SI. See Appendix D of the SI for more details.

A comparison of our work to the prior research by Lyu et al.13

Recently, Lyu et al.13 proposed a preliminary approach for the algo-
rithms that we study in the present paper — the NDL algorithm with k-
walk sampling and the NDR algorithm for network-reconstruction
tasks — as an application to showcase a theoretical result about the
convergence of online NMF for data samples that are not indepen-
dently and identically distributed (IID)13,Thm.1. A notable limitationof the
NDL algorithm in Lyu et al.13 is that one cannot interpret the elements
of a network dictionary as latent motifs and one thus cannot associate
themdirectlywithmesoscale structures of a network. Additionally, Lyu
et al.13 did not include any theoretical analysis of either the con-
vergence or the correctness of network reconstruction, so it is unclear

from that work whether or not one can reconstruct a network using the
low-rank mesoscale structures that are encoded in a network dic-
tionary. Moreover, one cannot use the NDR algorithm of Lyu et al.13 to
denoise additive noise unless one knows in advance that the noise is
additive (rather than subtractive) beforedenoising (see Lyu et al.13,Rmk.4).
In the present paper, we build substantially on the research by Lyu
et al.13 and provide a much more complete computational and theore-
tical framework to analyze low-rank mesoscale structures in networks.
In particular, we overcome all of the aforementioned limitations. In
Supplementary Table 1, we summarize the key differences between our
work and Lyu et al.13.

The most significant theoretical advance of the present paper is a
relationship between the reconstruction error and the error from
approximating mesoscale patches by latent motifs, with an explicit
dependence on the number k of nodes in subgraphs. We state this
result in TheoremF.10(iii) in the SI. Informally, TheoremF.10(iii) states
that one can accurately reconstruct a network if one has a dictionary of
latent motifs that can accurately approximate the mesoscale patches
of a network. In Theorem 1, we stated this theoretical result in an
informal mathematical style. See Theorem F.10 in the SI for a mathe-
matically precise statement of this theorem. In Fig. 7, we showed
supporting numerical experiments. To prove Theorem F.10(iii), we
show that the sequence of weighted adjacency matrices of the
reconstructed networks converges as the number of iterations that
one uses for network reconstruction tends to infinity and that the
limiting weighted adjacency matrix has an explicit formula. We state
and prove these results in Theorem F.10(i,ii).

Fig. 9 | Illustration of image reconstruction using two image dictionaries. The
(a) image Woman with a Parasol - Madame Monet and Her Son (Claude Monet,
1875). In (b, c), we show reconstructions of the image. The image in (b) is a
reconstruction of the image in (a) using the dictionary with 25 basis images of size
21 × 21 pixels in (d). We uniformly randomly choose the color of each pixel from all
possible colors (which we represent as vectors in [0, 256]3 for red–green–blue

(RGB) weights). The image in (c) is a reconstruction of the image in (a) using the
dictionary with 25 basis images of size 21 × 21 pixels in (e). We learn this basis from
the image in (f) using NMF. The image in (f) is from the collection Die Graphik

Ernst Ludwig Kirchners bis 1924, von Gustav Schiefler Band I bis 1916

(Accession Number 2007.141.9, Ernst Ludwig Kirchner, 1926).We use the images in
(a, f) with permission from the National Gallery of Art in Washington, DC, USA.
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We now elaborate on the use of k-path sampling in our NDL
algorithm to ensure that one can interpret the network-dictionary
elements as latent motifs. The NDL algorithm of Lyu et al.13 uses a k-
walkmotif-sampling algorithm of Lyu et al.21. That algorithm samples a
sequence of k nodes (which are not necessarily distinct) in which the
ith node is adjacent to the (i + 1)th node for all i∈ {1,…, k − 1}. The k-
walks that sample k × k subgraph adjacency matrices can have over-
lapping nodes, so someof the k × k adjacencymatrices can correspond
to subgraphs with fewer than k nodes. If a network has a large number
of such subgraphs, then the k-node latent motifs that one learns from
the set of subgraph adjacency matrices can have misleading patterns
that may not exist in any k-node subgraph of the network. This situa-
tion occurs in the network CORONAVIRUS PPI, where one obtains
clusters of large-degree nodes from the learned latent motifs if one
uses k-walk sampling. This misleading result arises from k-walks visit-
ing the same large-degree node many times, rather than because k
distinct nodes of the network actually have such subgraph patterns
(see Fig. 10). To resolve this issue, during the dictionary-learning
phase, we combineMCMC k-walk sampling with rejection sampling so
that we use only k-walks with k distinct nodes (i.e., we use k-paths).
Consequently, we learn k-node latent motifs only from k × k adjacency
matrices that correspond to k-node subgraphs of a network. This
guarantees that any network structure (e.g., large-degree nodes,
communities, and so on) in the latent motifs must also exist in the
network at scale k.

Data sets
We use the following eight real-world networks:
(1) CALTECH: This connected network, which is part of the FACE-

BOOK100 data set27 (and which was studied previously as part of
the FACEBOOK5 data set26), has 762 nodes and 16651 edges. The
nodes represent user accounts in the Facebook network of
Caltech on one day in fall 2005, and the edges encode Facebook
friendships between these accounts.

(2) MIT: This connected network, which is part of the FACEBOOK100
data set27, has 6402 nodes and 251230 edges. The nodes repre-
sent user accounts in the Facebook network of MIT on one day

in fall 2005, and the edges encode Facebook friendships
between these accounts.

(3) UCLA: This connected network, which is part of the FACEBOOK100
data set27, has 20453 nodes and 747604 edges. The nodes
represent user accounts in the Facebook network of UCLA on
oneday in fall 2005, and the edges encode Facebook friendships
between these accounts.

(4) HARVARD: This connected network, which is part of the FACE-
BOOK100 data set27, has 15086 nodes and 824595 edges. The
nodes represent user accounts in the Facebook network of
Harvard on one day in fall 2005, and the edges represent Face-
book friendships between these accounts.

(5) SNAP FACEBOOK (with the shorthand SNAP FB)33: This connected
network has 4039 nodes and 88234 edges. This network is a
Facebook network that was used as an example in a study of
edge inference15. The nodes represent user accounts in the
Facebook network on one day in 2012, and the edges represent
Facebook friendships between these accounts.

(6) ARXIV ASTRO-PH (with the shorthand ARXIV)15,34: This network
has 18722 nodes and 198110 edges. Its largest connected com-
ponent has 17903 nodes and 197031 edges.We use the complete
network in our experiments. This network is a collaboration
network between authors of astrophysics papers that were
posted on the arXiv preprint server. The nodes represent sci-
entists and the edges indicate coauthorship relationships. This
network has 60 self-edges; these edges encode single-author
papers.

(7) CORONAVIRUS PPI (with the shorthand CORONAVIRUS): This
connected network is curated by theBiogrid.org30–32 from 142
publications and preprints. It has 1536 proteins that are related
to coronaviruses and 2463 protein–protein interactions (in the
form of physical contacts) between them. This network is the
largest connected component of the coronavirus PPI network
that we downloaded on 24 July 2020; in total, there are 1555
proteins and 2481 interactions. Of the 2481 interactions, 1536 are
for SARS-CoV-2 and were reported by 44 publications and
preprints; the rest are related to coronaviruses that cause Severe

Fig. 10 | Improved interpretability of latentmotifs over Lyuet al.13.Wecompare
subgraphs ofCORONAVIRUSPPI that are inducedbynodesets thatwe sampleusing
(a) uniformly random k-paths and (b) uniformly random k-walks with k = 10. We
also compare the network dictionary with r = 9 latent motifs of CORONAVIRUS PPI

that we determine using (c) the NDL algorithm (see Algorithm NDL in the SI) in the
present paper to (d) the network dictionary that we determine using the NDL
algorithmof Lyu et al.13.We also show theweighted adjacencymatrices of the latent

motifs. The 10-walks on the network tend to visit the same nodes many times.
Consequently, one cannot regard the 10 × 10mesoscale patches that correspond to
those walks as the adjacency matrices of k-node subgraphs of the network. Addi-
tionally, the networks in the network dictionary in (d) have clusters of several large-
degree nodes, even though the original network does not possess such mesoscale
structures.
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Acute Respiratory Syndrome (SARS) or Middle Eastern Respira-
tory Syndrome (MERS).

(8) HOMO SAPIENS PPI (with the shorthand H. SAPIENS)15,30,54: This
network has 24407 nodes and 390420 edges. Its largest con-
nected component has 24379 nodes and 390397 edges. We use
the complete network in our experiments. The nodes represent
proteins in the organism Homo sapiens, and the edges encode
physical interactions between these proteins.

We use the following eight synthetic networks:
(9) ER1 and ER2: An Erdős–Rényi (ER) network1,35, which we denote

by ER(n, p), is a random-graph model. The parameter n is the
number of nodes and the parameter p is the independent,
homogeneous probability that eachpair of distinct nodes has an
edge between them. The network ER1 is an individual graph that
wedraw fromER(5000, 0.01), andER2 is an individual graph that
we draw from ER(5000, 0.02).

(10) WS1 and WS2: A Watts–Strogatz (WS) network, which we denote
byWS(n, k, p), is a random-graphmodel to study the small-world
phenomenon1,36. In the version of WS networks that we use, we
start with an n-node ring network in which each node is adjacent
to its k nearest neighbors. With independent probability p, we
then remove and rewire each edge so that it connects a pair of
distinctnodes thatwe choose uniformly at random.The network
WS1 is an individual graph that we draw fromWS(5000, 50, 0.05),
and WS2 is an individual graph that we draw from
WS(5000, 50, 0.10).

(11) BA1 and BA2: A Barabási–Albert (BA) network, which we denote
by BA(n, n0), is a random-graphmodel with a linear preferential-
attachmentmechanism1,37. In the version of BAnetworks that we
use, we start with n0 isolated nodes andwe introduce newnodes
with n0 new edges each that attach preferentially (with a
probability that is proportional to node degree) to existing
nodes until weobtain a networkwithnnodes. ThenetworkBA1 is
an individual graph that we draw from BA(5000, 25), and BA2 is
an individual graph that we draw from BA(5000, 50).

(12) SBM1 and SBM2: We use stochastic-block-model (SBM) networks
in which each block is an ER network38. Fix disjoint, finite sets
C1,…,Ck0

and a k0 × k0 matrix Bwhose entries are real numbers
between 0 and 1. An SBM network, which we denote by
SBM(C1,…,Ck0

, B), has the node set V =C1 ∪…∪Ck0
. For each

unordered node pair {x, y}, there is an edge between x and ywith
independent probability B[i0, j0], with indices i0, j0∈ {1,…, k0}
such that x 2 Ci0

and y 2 Cj0
. If k0 = 1 and B has a constant p in all

entries, this SBM specializes to the Erdős–Rényi (ER) random-
graph model ER(n, p) with n = ∣C1∣. The networks SBM1 and SBM2
are individual graphs that we draw from SBM(C1,…,Ck0

, B) with
∣C1∣ = ∣C2∣ = ∣C3∣ = 1000, where B is the 3 × 3 matrix whose
diagonal entries are 0.5 in both cases and whose off-diagonal
entries are 0.001 for SBM1 and 0.1 for SBM2. Both networks have
3000 nodes; SBM1 has 752450 edges and SBM2 has
1049365 edges.

Types of noise
We now describe the three types of noise in our network-denoising
experiments. (See Fig. 8 and Supplementary Fig. 4.) These noise types
are as follows:
(1) (Noise type: −ER) Given a network G = (V, E), we choose a span-

ning tree of G (such a tree includes all nodes of G) uniformly at
random fromall possible spanning trees. Let E0 denote the set of
edges ofG that are not in the edge set of that spanning tree. We
then obtain a corrupted network G0 by uniformly randomly
removing half of the edges in E0 from G. Note that G0 is guar-
anteed to be connected.

(2) (Noise type: +ER) Given a network G = (V, E), we uniformly ran-
domly choose a set E2 of pairs of nonadjacent nodes of G of size
∣E2∣ = ⌊∣E∣/2⌋, where ⌊ ⋅ ⌋ denotes the floor function. The cor-
rupted network is G0 = ðV ,E ∪ E2Þ; note that 50% of the edges of
G0 are new.

(3) (Noise type: +WS) Given a network G = (V, E), fix integers
n0∈ {1,…, ∣V∣} and k∈ {1,…, n0}, and fix a real number p∈ [0, 1].
We uniformly randomly choose a subset V0⊆V (with ∣V0∣ = n0)
of the nodes of G. We generate a network H = (V0, E3) from the
Watts–Strogatz model WS(n0, k0, p) using the node set V0. We
then obtain the corrupted network G0 = ðV ,E ∪ E3Þ, which has
∣E3∣ = n0⌊k/2⌋ new edges. When G is CALTECH, SNAP FB, ARXIV,
or CORONAVIRUS, we use the parameters n0 = 100, k = 20, and
p = 0.3. In this case, G0 has 1000 new edges. When G is H.
SAPIENS, weuse theparametersn0 = 500, k = 120, andp = 0.3. In
this case, G0 has 30000 new edges.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedata sets thatwe generated in thepresent study are available in the
repository https://github.com/HanbaekLyu/NDL_paper. In the Meth-
ods section (see the subsection Data sets), we give references for the
examined real-world networks.

Code availability
Our code for our algorithms and simulations is publicly available in the
repository https://github.com/HanbaekLyu/NDL_paper. A permanant
DOI for the repository is available at https://zenodo.org/badge/
latestdoi/301965967. We also provide user-friendly versions of our
algorithms at https://github.com/jvendrow/Network-Dictionary-
Learning as a PYTHON package NDLEARN.
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