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Molecular EPISTOP, a comprehensive multi-
omic analysis of blood from Tuberous
Sclerosis Complex infants age birth to
two years

A list of authors and their affiliations appears at the end of the paper

We present a comprehensive multi-omic analysis of the EPISTOP prospective
clinical trial of early intervention with vigabatrin for pre-symptomatic epilepsy
treatment in Tuberous Sclerosis Complex (TSC), in which 93 infants with TSC
were followed from birth to age 2 years, seeking biomarkers of epilepsy
development. Vigabatrin had profound effects on many metabolites, increas-
ing serum deoxycytidine monophosphate (dCMP) levels 52-fold. Most serum
proteins and metabolites, and blood RNA species showed significant change
with age. Thirty-nine proteins, metabolites, and genes showed significant dif-
ferences between age-matched control and TSC infants. Six also showed a
progressive difference in expression between control, TSC without epilepsy,
and TSC with epilepsy groups. A multivariate approach using enrollment
samples identified multiple 3-variable predictors of epilepsy, with the best
having a positive predictive value of 0.987. This rich dataset will enable further
discovery and analysis of developmental effects, and associations with seizure
development in TSC.

Tuberous sclerosis complex (TSC) is amultisystem disorder caused by
inactivating mutations in either TSC1 or TSC21,2. Tumors form in many
organs in TSC, following the two hit Knudson mechanism, including
the heart, brain, kidneys, skin, and lungs1,2. However, the predominant
morbidity in TSC infants and young children is due to severe and often
drug-resistant epilepsy, with infantile spasms and other seizures
occurring in 70–90% of TSC infants3,4. Neurodevelopmental comor-
bidities including intellectual disability and autism are also common in
TSC, are collectively called TSC-associated neuropsychiatric disorders
(TAND)5,6, and correlate with seizure severity and lack of effective
seizure control.

TSC is often diagnosed prenatally, because cardiac rhabdomyo-
mas are a cardinal feature of TSC, and are commonly observed on
fetal ultrasound2. This situation has enabled consideration of pre-
symptomatic antiseizure medication (ASM) for TSC infants, prior to
seizure onset, with the goal of prevention or at least diminution of

seizure severity, ideally leading to long-term seizure control and
improved neurocognitive outcome7.

EPISTOP (Long-Term, Prospective Study Evaluating Clinical and
Molecular Biomarkers of Epileptogenesis in a Genetic Model of
Epilepsy–Tuberous Sclerosis Complex, NCT02098759) was a con-
trolled multicenter study, in which the safety and efficacy of pre-
symptomatic ASM treatment with vigabatrin, introduced when focal
discharges more than 10% of the time or multifocal discharges were
seen on video-EEG, was comparedwith conventional ASM started after
the onset of seizures8. In 54 enrolled EPISTOP subjects, epileptiform
EEG abnormalities were identified before seizures. The time to the first
clinical seizure was significantly longer with presymptomatic than
conventional treatment, and at age 24 months, presymptomatic
treatment reduced the risk of clinical seizures (odds ratio (OR) = 0.21,
p =0.032), drug-resistant epilepsy (OR =0.23, p =0.022), and the
occurrence of infantile spasms (OR =0, p <0.001)8.
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In addition to the clinical trial, a key part of EPISTOP was to per-
form extensivemulti-omic analyses of subject samples with the goal of
identification of biomarkers associated with epilepsy development.
Blood samples were collected from subjects at serial time points
through age 2 years. Subject DNA samples were analyzed by both
whole genome sequencing, and targeted high read-depth sequencing
of TSC1/TSC2 to enable identification of mosaic mutations9. Serial
blood/serum samples were also analyzed for proteomics, metabo-
lomics, by RNA-Seq, and expression of 45 selected miRNA.

Here we report the results of this analysis, including examination
of age-dependent changes and effects of vigabatrin treatment. We
focusedon examination of associations between analyte levels and risk
of seizure development, development of drug-resistant epilepsy, and
ongoing seizures at age 2 years. An age-matched control population
was also sampled to enable comparison with controls.

Results
Sample collection and analyses performed
As part of EPISTOP, blood samples were collected longitudinally from
93 subjects with TSC, from birth until two years of age. Samples were
collected at serial time points, dependent upon EEG findings and
clinical events during the course of the study: 1) at enrollment; 2) at
time of detection of an abnormal epileptiform EEG; 3) at onset of
seizures (clinical or electrographic); 4) at 6 or 12 months of age, if no
abnormal epileptiform EEG or seizure was detected during the study;
5) at age 24 months (Supplementary Fig. 1a). Control samples from 58
age-matched children with various conditions but without TSC or
seizure history were also collected. Serum samples were analyzed for:
proteomics by mass spectrometry; 298 preselected water soluble
metabolites by mass spectrometry; and 45 miRNA species by Quanti-
tative reverse transcriptase PCR (RT-PCR). RNA was extracted from
total blood samples, and analyzed by RNA-Seq (Supplementary
Fig. 1b). Whole genome sequencing was performed to permit analysis
of single nucleotide polymorphisms (SNPs) potentially associatedwith
epilepsy. TSC1 and TSC2 deep sequencing in concert with whole gen-
ome sequencing enabled detection of heterozygous and mosaic
pathogenic variants9.

Four hundred and eighty-one protein groups were identified in
the proteomics analysis (at false discovery rate (FDR) < 1%). 63,677
RNAs were identified by RNA-Seq (Supplementary Data 1). For the
univariate analyses, RNAs and metabolites were retained for further
analysis only if non-zero values were seen in ≥ 50% samples; protein
groups if seen in≥ 70%. 20,579RNAs (13854protein coding genes, 3221
long noncoding, 2598 of other biotypes, including miRNAs, snRNAs,
pseudogenes, etc. and 906 RNAs that could not be assigned to any
biotype), 249 metabolites, and 340 protein groups were retained for
further analysis.

The intent of our analysis was to identify analytes that were asso-
ciatedwith epilepsy outcome in the EPISTOPpatient set.We considered
many ways of associating analytes with epilepsy outcomes, but first
assessed confounding effects that could lead to false associations.

Confounding effects in single dataset analysis
Several confounding effects were expected and identified. First, sam-
ple processing and analysis viamass spectrometry and sequencingwas
performed in batches, and batch effects were anticipated. Second,
vigabatrin (VGB) is known to impactmetabolite levels10,11. VGB therapy
was themain therapeutic intervention in the EPISTOP trial, such thatby
age 2 years, 89% of all subjects were taking VGB. Third, we anticipated
that multiple analytes would vary naturally from newborn to age 2
years, so that accounting for such effects was quite important to avoid
confounding by age.

Batch effects. Batch effects were observed in the metabolite dataset
(Supplementary Fig. 2a, b), but not in any of the other analyses.

Metabolite batch effects were corrected by a Z-score based correction
method (see Methods for details).

Vigabatrin effects on serum metabolites. VGB therapy clearly affec-
ted multiple metabolites, as shown by Principal Component Analysis
(PCA) (Fig. 1a). As age also influenced many metabolite levels, we
examined VGB effects in detail considering samples only from subjects
> 40 weeks of postnatal age, an age range in which age effects were
minimal. We compared samples from individuals who were receiving
VGB versus those who were not. Since 89% of EPISTOP subjects were
taking vigabatrin by age 2 years, we increased the non-VGB group by
addition of non TSC samples with similar ages (nmax VGB: 72; nmax non-
VGB: 28). 28 metabolites were found to be significantly different
(FDR <0.05, Wilcoxon rank sum test) (Supplementary Data 2). dCMP,
glutathione, glutathione-nega, aminoadipic acid, 4-aminobutyrate,
kynurenic acid and 5 others showed a >2.5-fold difference (Fig. 1c–h,
Supplementary Data 2). dCMP showed the greatest fold change of all
metabolites, being increased 52-fold in subjects taking VGB compared
with those that were not on VGB (Fig. 1g).

The VGB effect on selected metabolites was corrected using a
Z-score based method (see Methods for details). Following this cor-
rection, PCA showed no difference according to VGB use (Fig. 1b), and
all metabolites showed a similar distribution in those treated without
or with VGB (Fig. 1c–h).

Developmental effects on analytes. Multiple serum proteins are
known to be highly developmentally regulated, including alpha feto-
protein, which undergoes a decline of approximately 10,000-fold
during the weeks after birth12. Our longitudinal study design, newborn
to age 2 years, enabled the detection of both expected and many
unexpected age dependent changes in serum proteins, serum meta-
bolites, and RNA expression. To facilitate analysis of these effects, we
divided our population into age tertiles, 0–10weeks, 11–40weeks, and
> 40 weeks postnatal age.

There was a strong association between age and the first PCA
component for both protein groups and metabolites (Fig. 2a, b).
However, an association between age and the first two components
of the PCA was not readily seen for the RNA data; rather an associa-
tion was seen with the 3rd, 4th, and 5th components (Fig. 2c).
In addition, the majority of metabolites, protein groups, and RNA
species showed either a positive or negative correlation with age as a
continuous variable (Spearman’s rank correlation coefficient,
Fig. 2d). One such protein group (tenascin) and one metabolite
(ethanolamine) that showed major changes with age are shown in
Fig. 2e, f as an example.

Kruskal-Wallis analysis (FDR <0.05) showed that the majority of
analytes had a significant associationwith age in the 3 group age-tertile
comparison: 285 out of 340 (84%) protein groups, 169 out of 249 (69%)
metabolites, and 10,506 out of 20,579 (51%) RNAs (Supplementary
Fig. 3a–c, Supplementary Data 3).

In the case of protein groups, hemoglobin subunits (alpha, beta,
gamma-1 and gamma-2) showed fold changes >38, with higher levels
detected in the youngest age group, consistent with hemolysis of red
blood cells in blood drawing from infants. As expected, alpha-
fetoprotein showed a fold change of approximately 181 with incon-
sistent detection (close to the detection limit of the mass spectro-
meter) in the two older age groups (>11 weeks of age) (Supplementary
Fig. 4). Overall 147 protein groups showed fold changes > 1.5. Tenascin,
C4b-binding protein alpha chain, collagen alpha-1(V) chain, collagen
alpha-1(I) chain, complement component C1q receptor, and collagen
alpha-1(III) chain all exhibited fold changes >7 between the youngest
age group and the middle or oldest age group (Supplementary Fig. 4).

64 metabolites showed median fold changes > 1.5 comparing
samples from age <10 weeks to > 40 weeks. The largest fold changes
were detected in ethanolamine (fold change = 4.1) and leucine-
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isoleucine levels (fold change = 4.4), which decreased with increasing
age, and shikimate levels (fold change = 4.7), which increased with
increasing age. Four other metabolites exhibited fold changes > 3
(Supplementary Fig. 5).

2512 of 10506 (24%) age regulated RNAs exhibited fold changes >
1.5. Fetal hemoglobin genesHBG1 andHBG2 showed reductions of 41.1-
fold and 23.4-fold, respectively, an expected developmental event,
while KCNG1 showed a major increase (42.5-fold), and EVA1A a major
reduction (8.8-fold), comparing the youngest to the oldest age group
(Supplementary Fig. 6). XIST, a long non-coding RNA involved in X
chromosome inactivation13, showed marked differences in expression
according to sex, as expected (Supplementary Fig. 6). It also appeared

to be differentially expressed by age, due to an imbalance in sex dis-
tribution by age.

Hierarchical clustering of age group median Z-scores that were
found to be differentially expressed with age in the Kruskal-Wallis
analysis (FDR <0.05) was used to identify similar patterns of expres-
sion changes among protein groups, metabolites, and RNA species
(Supplementary Fig. 3a–c). Based on visual inspection and tuning,
different clusters with similar changes in levels with age were defined
for protein groups (6 clusters), metabolites (6), and RNAs (8),
respectively (Supplementary Fig. 3a–c, Supplementary Data 3).

To assess if these clusters of age-dependent analyte changes
were due to common pathways or developmental processes
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Fig. 1 | Vigabatrin (VGB) effects on metabolites. a,b PCA plots of metabolomics
demonstrating Vigabatrin (VGB) effect before (a) and after correction (b) are
shown. cdefgh. Correction for effects of VGB. Plots for kynurenic acid (c), 4 ami-
nobutyrate (d), glutathione (e), glutathione-nega (f), dCMP (g), and aminoadipic
acid (h) before and after correction for VGB exposure are shown (nmax VGB = 72;
nmax no VGB= 28; FDR <0.05, Wilcoxon rank sum test). Samples from subjects of

age > 40 weeks are shown. The box plot’s central line denotes the median, and its
lower and upper boundaries indicate the 25th and 75th percentiles of the data,
respectively. The whiskers represent the highest and the lowest values no further
than 1.5 times the IQR. All data points are shown. Source data are provided as a
Source Data file.
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occurringwith age, clusters of analytes were assessed for enrichment
in Gene Ontology (GO), KEGG, and Reactome gene sets (Supple-
mentary Data 4a, b). Protein cluster group 2 showed the greatest
declinewith age, andwas enriched for genes involved in extracellular
matrix organization and structure in all three gene sets (Supple-
mentary Data 4a). Protein group cluster 3, in which protein levels
decreased less strongly over time, was enriched for genes involved in
carbohydrate metabolic process by GO gene set analysis (Supple-
mentary Data 4a). Protein group clusters 4 and 6, in which protein
levels steadily increased with age, were both enriched for genes
involved in complement and coagulation (Supplementary Fig. 3a,
Supplementary Data 4a).

Noneof themetabolite age clusters showed enrichment for any of
the Reactome terms which we tested (Supplementary Fig. 3b).

In contrast to the protein and metabolite datasets, there was no
strong correlation between gene expression and age. Since it is known
that there is significant variation in the fraction of white blood cell
types in humanblood according to age frombirth to age 2 years14–16, we
considered the possibility that some of the variation in expression
might be due to variation in the relative numbers of different white

blood cell types. However, age appeared to be aminor factor affecting
gene expression (Fig. 2c). Nonetheless, CIBERSORT17 was used to
analyze RNAseq data to determine the relative proportions of white
blood cell types in each sample. Correlation between the relative
proportion of various leukocyte populations was with the first 10
principal components (PC) of the RNA-Seq data (Supplementary
Fig. 7a). PC1 of the RNA data showed a positive correlation with the
proportion of activated NK cells and regulatory T-cells. The neutrophil
proportion correlated strongly negatively with PC2, while B cell and
various T cell proportions correlated positively. Several PCs showed
some degree of correlation with age, though not PC1 or PC2. The
proportion of both monocytes and CD4 naive T-cells declined sig-
nificantly with age, while the neutrophil fraction more strongly
increased with age through two years (Supplementary Fig. 7b).

Differences in the neutrophil vs. lymphocyte fractionwith agewas
reflected in the RNA cluster analysis, which grouped genes into eight
clusters. Several of these clusters (1, 2, 3, 6) were enriched for genes
related to neutrophil or immune function (Supplementary Data 4b,
Supplementary Fig. 3c), consistent with maturation of the immune
system with age.
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Fig. 2 | Developmental effects on the proteomic, metabolite and
transcriptomic data. a–c PCA of each analyte set colored by age groups.
d Spearman’s Rank correlation coefficient of each analyte with age, before age
correction and colored by p value. Each dot represents one analyte. 187 (75%)
metabolites, 286 (62%) protein groups, and 8585 (42%) RNAs showed a significant
correlation with age (FDR<0.05). A two-sided correlation test using Spearman’s
method was executed, and the results were adjusted for multiple comparisons
using the Benjamini-Hochberg procedure. The box’smiddle linemarks themedian,

its edges represent the 25th and 75th percentiles, and whiskers extend to data
points within 1.5*IQR. ef. Plots of two individual analytes according to age, prior to
correction. Protein group tenascin (e), Ethanolamine (f) significantly correlated
with age (p <0.001). The line is drawn to visualize the trend in the data, repre-
senting the linear regressionfit, while the surrounding shaded area denotes the 95%
confidence intervals (CI). Spearman’s Rank correlation coefficients (R) and p values
obtained by two-sided Spearman’s correlation test are indicated. Source data are
provided as a Source Data file.
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Association between clinical features and analytes
To enable a search for associations between analytes and clinical
events in the EPISTOP cohort, it was necessary to correct for the strong
developmental effects on many analytes. Two independent methods
were used: 1) a linearmixedmodel (LMM) approach; and 2) calculating
the Z-score for each analyte within each age group, and then Z-score
reversal using the standard deviation andmedian for all samples. Both
methods were applied independently, and to be conservative, we
report only associations that were significant after FDR correction by
each of these two methods. One example of age-based correction by
each of the two methods is shown for C4b-binding protein α-chain
(Supplementary Fig. 2c).

We sought to identify associations between analytes and a broad
set of clinical features, including: I. diagnostic status, TSC vs. control; II.
presenceof clinical or electrographic seizures vs. no seizures at timeof
sample collection; III. presence of abnormal epileptiform EEG vs. nor-
mal EEG at time of sample collection; IV. drug-resistant epilepsy vs.
seizure free or drug controlled epilepsy at age 24months; V. history of
clinical or electrographic seizures vs. no detected seizures during the
EPISTOP project using analytes determined at age 24 months (Va) or
analytes determined at enrollment (Vb).

(I) Comparisons betweennonTSC control samples (nmax = 52) and
TSC samples (nmax = 126) without prior treatment and no seizure his-
tory, of any age (including samples from individuals that showed
abnormal EEGs at sample draw) identified 39 significant associations:
three protein groups (catalase, collagen alpha-2(I), Peroxiredoxin-2),
and two metabolites (aminoimidazole carboxamide ribonucleotide,
leucine-isoleucine), all five higher in TSC c/w control; and 34 RNAs (25
higher in TSC subjects) (FDR <0.05, fold change > 1.5, Supplementary
Data 5, Supplementary Fig. 8). Although these differences were sta-
tistically significant, no analyte had levels that could reliably distin-
guish the control group from the TSC group.

Gene set enrichment analysis of the 25 genes with higher expres-
sion in the TSC subjects identified multiple enriched gene sets using
each of the GO, KEGG, and Reactome gene sets, many of which related
to ribosomestructure and function (SupplementaryData6). In contrast,
the 9 genes whose expression was lower in the TSC subjects than
controls were enriched in gene sets related to receptor tyrosine kinase
and phosphoinositide 3-kinase activity (Supplementary Data 6). These
observations may reflect the consequences of haplo-insufficiency for
either TSC1 or TSC2 in the blood cells fromwhich the RNAwas derived,
as complete loss of either TSC1 or TSC2 is known to strongly increase
ribosome biogenesis while suppressing upstream receptor tyrosine
kinase and phosphoinositide 3-kinase signaling18.

(II) Comparison of samples drawn at the time of, or shortly after,
first seizure occurrence (nmax = 86) versus samples from seizure free
individuals (nmax = 95) showed no significant differences in protein
groups, metabolites, or RNAs.

(III) Similarly, comparison of samples drawn at the time of
abnormal EEG detection (nmax = 45) versus those from subjects with
normal EEG (nmax = 65) showed no significant differences in any
analyte.

(IV) Comparison of samples from EPISTOP subjects with drug-
resistant epilepsy at age 24m (nmax = 41) vs. those who were seizure
free or drug controlled at age 24m (nmax = 43) led to identification of
one protein group, Collagen alpha-1(XI) chain that was significantly
higher in those with drug-resistant epilepsy, and one metabolite,
Hydroxyphenylacetic acid that was significantly lower in those with
drug-resistant epilepsy (Fig. 3). Again, although these differences
were statistically significant, neither could distinguish a sample from
an individual with drug-resistant epilepsy vs. seizure-free or drug
controlled.

(Va) Comparison of samples drawn at age 24m from EPISTOP
subjects with seizure history (nmax = 59) vs. subjects without seizure
history (nmax = 9) vs. subjects without seizure history but pre-

symptomatically treated with VGB (nmax = 14) showed no differences
for any analyte. Because of the small sample size of groups 2 and 3 we
repeated this analysis combining these twogroups, and therewere still
no analytes with significant differences identified.

(Vb) Comparison of analytes determined on samples drawn at
enrollment into EPISTOP, comparing subjects who subsequently
developed clinical or electrographic seizures vs. subjects who never
developed seizures, was analyzed in detail. To enhance the sensitivity
of this analysis, we compared three groups: (group 1) non-TSC control;
(group 2) TSC subjects who never developed epilepsy during the two
year course of the study; and (group 3) TSC subjects who did develop
epilepsy. Initially we performed this comparison under the stringent
conditions of excluding subjects from group 2 that never developed
clinical or electrographic seizures, but had been treated pre-
symptomatically with vigabatrin per trial protocol; and excluding
subjects from groups 2 and 3 who had an abnormal EEG (but not
seizures) at the time of enrollment. With these conditions, there were
34, 9, and31 (nmax) samples in groups 1, 2, and3, respectively.Using the
Kruskal-Wallis Rank Sum test, one protein group, Periostin, one
metabolite, glucose-6-phosphate, and four RNAs (ATP5ME, NDUFA1,
BHLHA15, CARD16) were significantly different among the three groups
(FDR <0.05; fold change > 1.5 comparing group 1 to either group2or 3;
Table 1, Fig. 4).

We repeated this analysis under less stringent conditions, inwhich
group 2 included subjects who never developed seizures but had
received pre-symptomatic vigabatrin, per study protocol; and TSC
subjects with an abnormal EEG at enrollment were included in both
groups 2 and 3. Under these conditions, max group sizes were 34, 24,
and 59 respectively. Nine protein groups, five metabolites, and 48
genes showed significant differences in levels (FDR<0.05; fold change
> 1.5, comparing group 1 with either group 2 or 3; Kruskal-Wallis Rank
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Fig. 3 | Analytes whose expression at age 24 months was associated with
resistant epilepsy. Collagen alpha-1(XI) chain (a) and Hydroxyphenylacetic acid
(b) are shown, with sample values corrected by two independent methods. These
were the only two analytes significantly different in comparison of EPISTOP sub-
jects with refractory epilepsy (nmax = 41) vs. those without at age 24months (nmax =
43) (Wilcoxon rank sum test; FDR<0.05; fold change > 1.5). Themedian is indicated
by the center line of thebox, the edges show the 25th and75thpercentiles, whiskers
reach to values within 1.5*IQR. All data points are shown. Source data are provided
as a Source Data file.
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Sum test) (Supplementary Data 7). The single protein group, single
metabolite, and four RNAs that were identified in the more stringent
analysis were also identified in this less stringent analysis.

Eight of nine protein groups were increased in the TSC epilepsy
group compared to controls, of which six were also upregulated in the
TSC no epilepsy group. These protein groups were enriched in ten GO,
nine KEGG, and 11 Reactome gene sets, of diverse types, but showed
some consistency with gene sets involving collagen and extracellular
matrix structure (Supplementary Data 8a). Only one protein group,
Plasma protease C1 inhibitor, was increased in the control group. For
the five metabolites, all of which were upregulated in the TSC epilepsy
group, there was no significant enrichment in any pathway.

Expression of 16 genes was increased in TSC epilepsy subjects
compared to controls, while 26 were decreased in that comparison
(Supplementary Data 7). There was apparent enrichment of the 16
genes in multiple gene sets for these genes, which showed limited
consistency for electron transport, respiratory chain, and mitochon-
drial activity; while the 26 genes were enriched in diverse pathways
without apparent consistency (Supplementary Data S8b).

Integrative predictive models of seizure development in TSC
As noted, a primary goal of this analysis of the EPISTOP cohort was to
identify predictive biomarkers of epilepsy development. In addition to
the above analysis, we performed an integrative approach, using
results from all initial on-study samples to develop a predictive clas-
sifier for seizure development (Supplementary Fig. 1a). For this ana-
lysis, we also included SNP data for SNPs previously associated with
epilepsy development in the general population (n = 86, see methods,
Supplementary Data 11), as well as levels of 45 miRNAs determined for
139 subjects (93 TSC, 46 Control) in 324 serum samples (see Methods,
Supplementary Data 10). Due to the large number of analytes
(>20,000, considering RNA species), an initial filtering step was per-
formed, inwhich only those analytes showing anArea-under-the-curve
(AUC) > 0.6 for association with epilepsy development in univariate
analysis were retained. In addition, a maximum of 30 analytes, those
with highest AUC values, from each data type were included. Thus 126
analytes were considered for predictive classifier analysis.

Logistic regression was used to examine all potential combina-
tions of variables, for their ability to predict epilepsy development,
using an arbitrary decision boundary for each model. The Matthews
Correlation Coefficient (MCC)19 was used as a metric for the quality of
each classifier with the observed data. A maximum of three variables
per predictor were considered so that in total ~330,000 1-, 2- and
3-variablemodels were evaluated. ThemeanMCC among all classifiers
was 0.4; 295 classifiers had MCC values > 0.70; 5 had values >0.80. A
permutation test was used to assess the quality of the predictor using
randomized data (Supplementary Fig. 9). Based on the threshold
defined by the permutation test, 100 models were considered statis-
tically significant; these had mean MCC values between 0.733 and
0.873. The ten best classifiers and their evaluation metrics (Table 2),
and the complete list of statistically significant classifiers (Supple-
mentary Data 9A) are shown. Twenty-two analytes/characteristics
appeared in > 4 of the top 100 classifiers (Supplementary Data 9B),
including a SNP on chromosome 16 seen in 55 classifiers, and serum
carnitine levels seen in 26 classifiers, for which lower levels at study
entry were associated with seizure risk (Table 3).

The strongest predictor was a 3-variable classifier consisting of
miR-130a-3p, CECR7 and RADX (Fig. 5a). Seizure-free EPISTOP subjects
had lower normalized expression of miR-130a-3p (<5M) and RADX
expression (<0.5 CPM), compared to those with seizures. CECR7 had a
more minor effect on seizure prediction, although no patient without
seizure had a CECR7 level <0.5 CPM. This classifier had a mean test
MCC of 0.873, and strong positive predictive power (PPV =0.987).

Using the two variables most frequently seen in the classifiers,
SNP rs1046276 T/C, and serum carnitine, a 2-variable classifier wasTa
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generated. Nine of 10 patients who were seizure-free were homo-
zygous for C at rs1046276 and had high normalized levels of carnitine
(>1). The mean test MCC for this classifier was 0.79, with mean PPV =
0.97, and mean negative predictive value (NPV) of 0.82 (Fig. 5b).

Discussion
Prior studies examining multiomic changes in children have focused
primarily on the first week of life20–22. An elegant integrated study on
infants fromTheGambia and PapuaNewGuinea demonstrated several
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Fig. 4 | Analytes associated with epilepsy and/or TSC. a, protein groups;
b,metabolites; and c,mRNA species thatwere significantlydifferent (Kruskal-Wallis
Rank Sum test (FDR <0.05; fold change > 1.5) in the comparison of group 1 with
either group 2 or group 3 of three groups: (1) non-TSC control (nmax = 34); (2) TSC
subjects who never developed epilepsy during the two year course of the study

(nmax = 9); and (3) TSC subjects who did develop epilepsy (nmax = 31). Themedian is
indicated by the center line of the box, the edges show the 25th and 75th percen-
tiles, whiskers reach to values within 1.5*IQR. All data points are shown. Source data
are provided as a Source Data file.

Table 2 | Top 10 predictive classifiers for seizure development based on the Matthew Correlation Coefficient (MCC) metric

Features n total LR threshold MCC
test mean

MMCE
test mean

PPV
test mean

NPV
test mean

p-value

hsa-miR-130a-3p +CECR7 + RADX 57 0.321 0.873 0.039 0.987 0.019

hsa-miR-130a-3p + RADX + rs951997 A/G chr2 223567016 56 0.285 0.839 0.046 0.973 0.892 0.025

hsa-miR-130a-3p + RADX + rs16944 A/G chr2 113594867 56 0.205 0.836 0.045 0.968 0.918 0.025

PARM1 + rs1046276 T/C chr16 30914626 + rs951997 A/G chr2
223567016

61 0.632 0.807 0.053 0.973 0.862 0.031

MIR4539 + rs1046276 T/C chr16 30914626 + rs211037 C/T chr5
161528280

61 0.423 0.802 0.051 0.965 0.9 0.032

CORO2B+ RADX + rs16944 A/G chr2 113594867 61 0.711 0.796 0.052 0.971 0.033

ENSG00000266408 + rs1046276 T/C chr16 30914626 + r211037 C/T
chr5 161528280

61 0.487 0.794 0.051 0.961 0.914 0.034

LINC00689 + LINC02576 + rs211037 C/T chr5 161528280 61 0.317 0.791 0.054 0.967 0.034

carnitine + rs1046276 T/C chr16 30914626 62 0.645 0.79 0.069 0.968 0.821 0.035

TSC1 + LINC00689 + LINC02576 62 0.539 0.79 0.064 0.96 0.034

Note: Using only the initial on-study samples; nmax Seizures = 54; nmax no seizures = 11. The p value was determined through a one-sided permutation test.
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pathways that were operative during development from newborn to
age 1 week, particularly interferon signaling, the complement cascade,
and neutrophil activity20. Genes with decreasing expression (in leu-
kocytes) during the first week of life were enriched for those involved
in cellular responses to stress, detoxification of reactive oxygen, and
heme biosynthesis and iron uptake. Genes with increasing expression
during the first week were involved in interferon signaling, Toll-like-
receptor (TLR), negative regulation of Retinoic Acid Inducible Gene I
(RIG-I) and complement activation20. Metabolomic differences detec-
ted during this age interval involved pathways related to plasma ster-
oids and carbohydrates20.

We have significantly extended these studies, by expanding the
age range examined from birth to age 2 years. In fact, these prior
studies examined a perinatal time interval that was not available to us
for the vast majority of our samples.

Although many medications undoubtedly have important effects
onmetabolite levels, our findings on the effects of vigabatrin on serum
metabolites in infants and children are striking (Fig. 1, Supplementary
Data 2). Twenty-eight of 249 (11%) of metabolites showed a significant
change in subjects on vigabatrin; 11 showed a >2.5-fold change; and
dCMP showed a huge 52-fold increase in EPISTOP subjects on VGB
(Fig. 1). Prior studies have focused on breakdown products of VGB and
effects on brain metabolites10,11. VGB is well-recognized as the most
effective ASM for treatment of TSC-associated seizures23,24. Hence it
was selected as the intervention in this trial to attempt to prevent
epilepsy. However, VGB is associated with a wide variety of side-
effects, the most feared of which is vigabatrin-associated visual field
loss25–27. The frequency and significance of this visual field loss is
controversial28,29, but it is reported to occur as a characteristic pattern
of progressive centripetal loss. The possibility that one of these
metabolic derangements induced by VGB contributes to either its
therapeutic benefit or vigabatrin-associated visual field loss deserves
further investigation.

We found that a striking number of all analytes examined showed
significant changes in levels going from newborn to age 2 years
(Fig. 2d, e, f). Dividing the EPISTOP and control population into three
tertiles (postnatal age ≤ 10 weeks, 11-40 weeks, and > 40 weeks), the
majority of protein groups, metabolites, and expressed genes showed
significant changes with age. Hierarchical clustering of protein groups,
metabolites, and expressed genes indicated that these expression
changes occurred in similar patterns within these analyte types (Sup-
plementary Fig. 3), and showed enrichment in multiple gene sets,
suggesting that underlying global developmental processes were
driving these changes in expression for each analyte class.

Changes in leukocyte percent and total number are known to
occur during the age of birth to two years14–16. Total leukocyte counts
are higher in newborns, with relative high levels of monocytes and
lymphocytes. Proportions of monocytes and lymphocytes decline
through age 2 years, and the relative proportion of neutrophils
increases during this interval. We observed these same changes with
age in the EPISTOP cohort, with a specific decline in naïve CD4 +T cells
and monocytes, as assessed using CIBERSORT and the RNA-Seq data
(Supplementary Fig. 7a, b). Principal component analysis of the
expression data showed many strong associations between leukocyte
subsets determined by CIBERSORT and the different principal com-
ponents (Supplementary Fig. 7a), likely reflecting variability in leuko-
cyte fractions in different samples due to variable clinical conditions
(recent infections, vaccinations, environmental exposures, diet, etc.).

Comparisons between non-TSC controls and TSC samples at a
range of ages identified three protein groups, two metabolites, and
34 gene RNAswhose levels were significantly different between these
two populations. As noted, although statistically significant, no ana-
lyte showed differences that could reliably distinguish a sample from
one group versus the other. Gene set enrichment analysis of the 9
genes whose expression was lower in the TSC subjects than theTa
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controls showed that genes were enriched for receptor tyrosine
kinase and phosphoinositide 3-kinase functions. Since the TSC sub-
jects would have a single allele loss of TSC1 or TSC2 in general, this
may fit with a reduction in the activity of these pathways due to a
negative feedback loop18,30.

It is somewhat disappointing to note the lack of significant dif-
ferences in any analyte considering samples drawn at timeof seizureor
aEEG compared to those who were seizure-free. Although alterations
in any of the analyte classes might have been predicted, metabolomic
differences reflecting effects of seizures or aEEG were anticipated but
were not seen. Thismay be due in part to timing issues such that blood
samples for analysis were not always drawn on the same day as diag-
nosis of seizure/aEEG, due to central review and interpretation of EEGs,
delaying recognition of seizures/aEEG in some instances, as well as
blood-brain barrier effects.

Collagen alpha-1(XI) protein group was significantly higher in
those with resistant epilepsy at age 2 years; while hydroxyphenylacetic
acid was significantly lower in those with resistant epilepsy at that age.
Col11a1 is a marker of early-born pyramidal neurons6, and it is possible
that its serum marker reflects increased pyramidal neuron develop-
ment in TSC patients with resistant epilepsy. Hydroxyphenylacetic
acid levels in cerebrospinal fluid have been reported to be lower in
both schizophrenic and epileptic patients31, potentially explaining its
reduced levels in TSC patients with drug-resistant epilepsy.

A primary goal of this analysis was to identify biomarkers that
could be assessed at birth, and might be associated with seizure
development in TSC infants. A reliable biomarker of this kind could be
developed into a test whichmight be applied to TSCnewborns, to help
to identify those TSC infants at high risk of seizure development, and
in whom pre-symptomatic use of vigabatrin or other interventions
might be taken. To enhance the sensitivity of this analysis, we com-
pared three different groups: control, TSC no epilepsy, and TSC epi-
lepsy groups, finding 6 analytes that were significantly different
(Table 1, Fig. 4). Periostin levels were higher in the TSC epilepsy group
than the other two groups, and it is known as a biomarker of asthma
severity32, though not previously identified in the context of TSC.
ATP5ME and NDUFA1 showed higher expression in blood RNA of the
TSC epilepsy group compared with the other two groups, and encode
mitochondrial components important for mitochondrial energy pro-
duction. Their increase in both TSC without seizures and more so in
TSC with seizures (Fig. 4) suggests the possibility that TSC alone and
with seizures enhances a need for mitochondrial energy production in

blood cells. The other two genes associated with TSC and epilepsy
were BHLHA15, a basic-loop-helix transcription factor and CARD16, an
inhibitor of apoptosis; both of uncertain relevance to TSC pathogen-
esis. However, none of these six markers absolutely discriminated
between those developing seizures and those who did not.

A second effort to identify analyte differences that were asso-
ciated with seizure development was a multivariate approach using
logistic regression, resulting in many (100) 3-variable predictors of
seizure development (Table 2, Supplementary Data 9), with the best
having a mean test MCC of 0.873 with PPV of 0.987 (Fig. 5a).

We recognize the limitation of the size of this patient dataset, in
that only 93 subjects with TSCwere studied, and only 65were available
for seizure association analysis, since many had received pre-
symptomatic vigabatrin. In addition, additional follow-up beyond 2
years will be valuable, and is ongoing at this time. Hence we view all of
these observations as exploratory and tentative, and hope that a
replication populationmaybe studied for validation in the near future.

Methods
Full details on the EPISTOP subjects and the prospective clinical trial in
which they participated have been reported8. Briefly, this study was
part of the EPISTOP project (Long-Term, Prospective Study Evaluating
Clinical and Molecular Biomarkers of Epileptogenesis in a Genetic
Model of Epilepsy–Tuberous Sclerosis Complex, ClinicalTrials.gov
NCT02098759). It was carried out fromMarch 2014 toOctober 2018 at
9 sites in Europe and 1 site in Australia. The study was approved by
local ethics committees at all study sites, and caregivers of all partici-
pants signed informed consent before enrollment. It adhered to the
International Conference on Harmonization Guidelines for Good
Clinical Practice and the Declaration of Helsinki.

Blood samples were collected from 93 TSC EPISTOP subjects, 297
different samples in total, and 58 control hospitalized infants without
TSC from whom a single sample was collected. Serial samples were
collected from TSC subjects in a manner depicted in Supplementary
Fig. 1. Blood samples were collected at recruitment into the study, age
range birth to age fourmonths. EPISTOP TSC subjects weremonitored
intensively as part of this trial, including serial EEG monitoring for
abnormal activity. When an abnormal EEG was detected a second
blood sample was drawn. Another blood sample was collected when
either a clinical seizure or subclinical seizure was identified. If no sei-
zure was observed during the first 6 months to 12 months, a blood
sample was drawn at one of these timepoints. All TSC subjects had a

Fig. 5 | Results of integrative predictive epilepsy analysis. a 3D plot of three-
variable model consisting of miR-130a-3p, CECR7 and RADX (mean test MCC=
0.873). Low level of miR-130a-3p (<5M normalized Unit) and RADX expression
(<0.5 CPM) corresponds with seizure-free status. b The two-variable model

consisting of carnitine and rs1046276 T/C (mean testMCC=0.79). Homozygote for
C at position rs1046276 T/C in combination with high levels of carnitine is asso-
ciated with remaining seizure free at age 2 years. Source data are provided as a
Source Data file.
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last blood sample drawn at age 24months, the end of the study. Due to
delays in recognition of abnormal EEGs or caregiver’s report of sei-
zures, those samples were often collected 1–2 weeks following those
clinical events. The metadata available for each sample included but
was not limited to: TSC mutation type, family history of TSC, epilepsy
in the family, presence of seizures (clinical or subclinical), presence of
tubers, presence of radial migration lines, white matter abnormalities,
gender, grouping (observational or randomized study arm), treatment
type (conservative or preventative), infantile spasms, drug-resistant
epilepsy (defined as either: 1) ongoing seizures despite the adminis-
tration of 2 ASM with appropriate doses; or 2) special treatment (epi-
lepsy surgery, ketogenic diet, ACTH)), treatment sequence, vigabatrin
treatment, and presence of autism spectrum disorder (ASD) and/or
developmental delay (DD) by psychological examination.

Aliquots of serum samples were processed for proteomic analysis
as follows. Sampleswere thawedand centrifuged for 10minat 16,000x
g at 4 °C. 320 µLMARSbuffer A (Agilent Technologies)were added to a
Cellulose Acetate spin filter (0.22 µm, Agilent Technologies). 80 µL of
the centrifuged serum sample was transferred to the MARS buffer A
filled spin filters and the mixture centrifuged for 3min at 16,000x g at
4 °C. The filtrate was transferred into a HPLC vial and stored at 4 °C
until affinity chromatography depletion.

Affinity chromatographywas performed usingMARS 14 depletion
columns (Agilent Technologies; Cat: 5188-6558) on an 1100 Agilent
HPLC system following the manufacturer’s instructions. Flowthrough
and bound fraction were collected and precipitation of proteins per-
formed overnight at 4 °C using Trichloro-acetic acid (TCA). Precipitate
was washed twice using 90% Acetone (v/v), air dried and suspended in
50 µL 8M Urea and frozen at −20 °C.

Protein concentration was measured using Bradford assay. 10 µg
of protein were reduced with 4.4mM tris(2-carboxyethyl)phosphine
(TCEP) at room temperature and afterwards alkylated for 30min in the
dark with 5.9mM iodacetamide. 2 µL of Lys-C (0.1 µg/µL; Wako Che-
micals) was added to themixture and a predigestion performed for 2 h
at 37 °C. The mixture was then diluted with 56 µL 50mM triethy-
lammonium bicarbonate and trypsin digestion started using 2.5 µL
trypsin (0.04 µg/µL; Promega) at 37 °C overnight. 2.5 µL fresh trypsin
(0.04 µg/µL) was added the next day. After further 4 h of incubation at
37 °C, digested samples were frozen at −20 °C until acidification with
5 µL 20% (v/v) formic acid and LCMS-analysis.

2 µg of serumpeptides were analyzed via LCMS on a Dionex 3000
Ultimate HPLC System (Thermo Scientific) coupled to an Orbitrap XL
mass spectrometer (Thermo Scientific) in a data-dependent acquisi-
tion mode. Injected peptides were washed on a temperature-
controlled (5 °C) µ-precolumn (C18 PepMap 100, 5 µm, 100 Ȧ;
Thermo Scientific) with a flow rate of 25 µL/min using a loading buffer
composition 0.5% formic acid and 0.5% acetonitrile in ddH2O. After
4min peptides were eluted over an analytical reversed-phase column
(ReproSil-Pur 120, C18-AQ, 3μm500×0.075mm;Dr.MaischGmbH) at
450 nL/min (Buffer A: 0.1% formic acid in ddH2O; Buffer B: 0.1% formic
acid in acetonitrile) using the following gradient: 1–26% B in 149min,
26% to 46% B in 74min, 46–90% B in 1min, holding 90% B for 11min,
90–1%B in0.5min andholding 1%B for 11.5min. To reduce the amount
of carryover between each sample, an injection of 10 µL 80% acetoni-
trile and a 30minute wash run was performed using the following
gradient: 1% to 90% B in11 min, holding 90% B for 5min, 90–1% B in
1min, holding at 1% B 9min.

The Orbitrap XL was run in positive mode in a data-dependent
acquisitionmanner. A full scan (375–1600m/z) in the orbitrap analyzer
at a resolution of 30,000 (maximum injection time 100ms, AGC target
value 106) was followed by up to 10 MSMS in the ion trap analyzer
(minimal intensity threshold 10,000 counts, Isolation width 2.5m/z,
normalized collision energy CID 2.5 eV, maximum ion injection time
25ms, AGC target value 104). Charge state screening was enabled and
only precursors with a charge state of 2 and higher were allowed for

data dependent fragmentation. Additionally dynamic exclusion was
enabled with a repeat count of 2 in 30 s before exclusion of the pre-
cursor (± 5 ppm) for 900 sec. Early expiration was allowed to remove
precursors from the exclusion list after an expiration count of 7 full
scans with a signal-to-noise ratio of lower than 3.

To assure quality over the processing pipeline in each batch of
processed samples a serumpool derived fromvarious female andmale
subjects with andwithout diagnosed TSCbetween the age of 3months
and 3 years of age was also processed as described above. These
control samples were measured in a randomized manner in between
every 5–10 samples.

Raw files were processed using MaxQuant software (version
1.6.1.0)33,34 with the following settings: carbamidomethyl of cysteine as
fixed modification; variable modification of methionine oxidation and
deamidation of glutamine and asparagine; match between runs was
enabledwith amatching window of 2min and an alignment window of
20min; peptide spectrum match FDR, as well as peptide and protein
FDR were set at 1%, LFQ with a minimum ratio count of 1. Peptide
spectrum matches were analyzed against the MaxQuant contamina-
tion database and a fasta file consisting of only reviewed entries from
Homo sapiens (Uniprot, downloaded 3rd September 2018). Down-
stream processing was performed in Excel, Perseus35 software and R.

Blood samples for transcriptomic analysis and processing were
collected and stored in PAXgene tubes. The total RNA was isolated
using the PAXgene blood RNA kit in accordance with the manu-
facturer’s guidelines (Qiagen). Librarypreparation and sequencingwas
completed at GenomeScan (Leiden, the Netherlands). Sequencing
libraries were prepared using the NEBNext Ultra Directional RNA
Library prep Kit for Illumina (New England Biolabs) in accordancewith
the manufacturer’s guidelines. Globin mRNA was removed using Invi-
trogen’s Globin clear kit (Waltham) and mRNA was isolated from total
RNA using oligo-dTmagnetic beads. After fragmentation of themRNA
cDNA synthesis was performed. Sequencing adapters were then liga-
ted to the cDNA fragments, and the resultant product was subject to
PCR amplification. Clustering and DNA sequencing was performed
using the Illumina HiSeq 4000. All samples were subjected to paired-
end sequencing with a read length of 151 nucleotides.

Processing of the raw RNA-seq was carried out by GenomeScan
using custom in-house scripts. Read quality was assessed using an in-
house QC v1 tool and Trimmomatic v0.30 was used to filter out reads
of low quality and any contaminating adapter sequencers36. The reads
that passed the quality control steps were then aligned to the homo
sapiens reference genome (GRCh37) using Tophat v 2.0.1437. Next,
featureCounts from the Subread package was used to calculate the
number of reads that aligned to each gene producing an unnormalized
gene count matrix38. The unnormalized count matrix was then nor-
malized for library size using the trimmed mean of M-values (TMM)
and then converted to count per million values using edgeR39. The
median number of reads per sample that aligned to known genes was
45 (IQR: 36–74) million reads. Samples with less than 15 million reads
aligning to known genes, and one low-quality sample, were discarded.

Deconvolution of the bulk RNA-sequencing was performed using
CIBERSORTx17. The CIBERSORTx module “Cell Fractions” was used to
enumerate the proportions of distinct cell subpopulations in the bulk
RNA-Seq profile. This is performed by providing a matrix that has
signature genes derived from either single-cell transcriptomes or
sorted cell populations. For the deconvolution of the EPISTOP RNA-
Seq the publicly available LM22 signature matrix was used. LM22 is a
signature genes file consisting of 547 genes that accurately distinguish
22 mature human hematopoietic populations and activation states,
including sevenTcell types, naïve andmemoryB cells, plasmacells,NK
cells, and myeloid subsets.

miRNA PCR array analysis was performed on 45 miRNAs (Supple-
mentary Data 1, 10). The 45 miRNAs were chosen based on small RNA-
seq data from a subset of the serum samples, or possible relevance to
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epilepsy, seizures or cognitive functioning according to literature40–44.
RNA was isolated from serum samples using the miRNeasy Serum/
Plasma kit (Qiagen). cDNA was synthesized using the miRCURY LNA
SYBRGreenPCRKit andmiRNA levelsweredeterminedusingmiRCURY
LNA miRNA Custom PCR panels (Qiagen). Plates were run on a Roche
LightCycler 480 thermocycler (Roche Applied Science). Quantification
of data was performed using the computer program LinRegPCR45 in
which linear regressionon theLog (fluorescence) per cycle numberdata
is applied to determine the amplification efficiency per sample. Inter-
plate variability was normalized using the inter-plate calibrator assay
(UniSp3 IPC) according to the manufacturers’ guidelines. The starting
concentration of each product was divided by the starting concentra-
tions of two ‘spike-in’miRNAs (cel-miR39 and UniSp6) that were added
during RNA isolation and cDNA synthesis, respectively, to protect
against technical variation and to normalize expression patterns.

Targeted metabolite analysis of serum samples was performed as
described46. Briefly, 100 µL of isolated serumwas stored at−80 °Cuntil
processing; sampleswere thawed at4 °C and spikedwith 10 µMalanine
D3 and succinic acid D4 and then centrifuged for 10min at 14,000x g.
The supernatant was then added to −80 °C cooled methanol to result
in an 80% (vol/vol) methanol solution, gently shaken, and incubated
overnight at −80 °C. Samples were then centrifuged for 10min at
14,000x g (twice if separate liquid phaseswere observed). Supernatant
was collected and stored at −80 °C before being lyophilized under no
heat for 3–4 h. Pellets were then suspended in 20 µLHPLC gradewater,
centrifuged at 14,000x g for 10min, and 5 µL of supernatant submitted
for mass spectrometry analysis coupled to liquid chromatography.

Samples were analyzed using a hybrid 6500 QTRAP triple quad-
rupole mass spectrometer (AB/SCIEX) coupled to a Prominence UFLC
HPLC system (Shimadzu) via selected reaction monitoring (SRM) of a
total of 298 endogenous water-soluble metabolites for steady-state
analyses of samples. Some metabolites were targeted in both positive
and negative ion mode for a total of 307 SRM transitions using posi-
tive/negative ion polarity switching. ESI voltage was +4950 V in posi-
tive ion mode and –4500V in negative ion mode. The dwell time was
3ms per SRM transition and the total cycle time was 1.55 seconds.
Approximately 10–14 data points were acquired per detected meta-
bolite. Samples were delivered to the mass spectrometer via hydro-
philic interaction chromatography (HILIC) using a 4.6mm i.d x 10 cm
Amide XBridge column (Waters) at 400μL/min. Gradients were run
starting from85%buffer B (HPLCgrade acetonitrile) to 42%B from0 to
5min; 42%B to 0%B from 5 to 16min; 0%Bwas held from 16 to 24min;
0% B to 85% B from 24 to 25min; 85% B was held for 7min to re-
equilibrate the column. Buffer A was composed of 20mM ammonium
hydroxide/20mM ammonium acetate (pH = 9.0) in 95:5 water:-
acetonitrile. Peak areas from the total ion current for each metabolite
SRM transition were integrated using MultiQuant v3.0 software (AB/
SCIEX) and used as the basis for quantitative analysis. All metabolites
with >50% missing values across all 357 samples were dropped from
analysis, leaving a total of 249 metabolites for further consideration.
Repeated measurements for some of the control samples were per-
formed as a quality check between acquisition batches.

To remove observed batch and Vigabatrin effects in the meta-
bolite data set a correction was applied. Individual samples were
annotatedwith their respective batchnumber andwhether the subject
was on vigabatrin. A Z-score correction of samples from individual
batcheswas performedon log2-transformedpeak area values followed
by un-Z-scoring using the standard deviation and mean of all samples
prior to Z-scoring. VGB correction was then performed separately.

Age correction was applied using two different Methods: A
Z-score un-Z-score method, and a Linear Mixed Models approach. For
the Z-score un-Z-score method, samples were divided into three ter-
tiles of age groups: 0–10 weeks, 11–40 weeks, >40 weeks of age.
Z-scoring of log2 transformed intensity/integrated peak area/count
values was performed in individual age groups and followed by un-Z-

scoring using the mean and standard deviation of all applicable sam-
ples prior to Z-scoring. Linear Mixed Models (LMM) was also used,
since there were repeated measurements on the same subject over
time. The LMMapproach permits characterization of time trends both
within and between subjects. The formula for the LMMmodel for the
i-th subject is as follow:

Yi =Xi β+Zi ui + εi

Where:
Yi - vector of responses, here – measured intensity/peak area/

counts
β - fixed effects (time-variant), constant across individuals; here –

the age at the moment of sampling,
ui - random effect (time-invariant), grouping factor; here –

patient’s code.
We estimated the random and fixed effects using lme4 and

lmerTest packages in R. We have treated the patient’s code as a ran-
dom effect and the age as a fixed effect with the application of the
following formula:

lmerTest :: lmerðintensity∼ sample age w+ ð1jcodeÞÞ ð1Þ

By transforming the equation, we can derive a formula for inten-
sity correction, depending on the sampling time and accounting for
inter-patient variability:

icorr = i� ageð Þt * a� bID ð2Þ

where:
i - intensity
t - time of sampling
a – fixed effect for each week of age
b - model intercept (random effect for each patient)
ID - patient’s ID
The assessment of developmental patterns in analytes involved

several steps. The first step was to apply the Kruskal-Wallis Rank Sum
test, alongside Dunn’s post hoc test and Benjamini-Hochberg correc-
tion for multiple comparisons for each analyte and age category. Then
for analyteswith statistically significant differences among age groups,
normalization was performed on all values for each molecule using
Z-score standardization. To group molecules demonstrating similar
patterns, the medians of standardized values were used as input for
hierarchical clustering analysis. The process of hierarchical clustering
using the Complete linkage method was executed on a dissimilarity
matrix derived from Euclidean distance calculations.

For two-group comparisons, first, we verified the t-test assump-
tions: data normality using the Shapiro-Wilk test and variance homo-
geneity with F-test. If both criteria were met, we applied the t-test;
otherwise, we applied the Wilcoxon rank sum test. Both tests were set
as two-tailed. In caseof three-group comparisons,we implemented the
Kruskal-Wallis Rank Sum test followed by Dunn’s post hoc test. We
applied correction for multiple comparisons inside each test hypoth-
esis using Benjamini-Hochberg procedure.

The median fold change between groups was calculated for each
comparison to extract the variables with the highest clinical usability.
Only variables with amedian fold change greater than 1.5 (either up- or
downregulated) between tested groups and p-value FDR lower than
0.05 were considered significant and presented in the results section.
Due to differences in valid values for each individual analyte tested,
sample sizes (n) changed depending on missingness.

All calculations were performed using R (v. 4.1.0), with the
packages tidyverse (general analysis), stats (statistical tests and hier-
archical clustering), gplots (for heatmaps preparation), factoextra (for
PCA analysis), ggsci (Figure color palette), ggdist (raincloud plots).
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Pathway enrichment analysis was performed in R using packages
biomaRt47,48, ReactomePA49 and clusterProfiler50,51. In case of metabo-
lites, the relationship betweenmetabolites and pathways was obtained
from the Reactomewebsite52 and pathway enrichmentwas assessedby
performing a hypergeometric test.

Classifier analysis was performed as follows. Initial on-study sub-
ject samples (median age: 4.7 weeks, Q1-Q3: 2.1–8.0 weeks) were ana-
lyzed by multivariable analysis. Epilepsy status was assessed at age 2
years, the end of the study. Patients who developed clinical or sub-
clinical seizures by age 2 years had status of seizures present, else their
status was seizure-free.

Seven subjects were excluded from this analysis due to occur-
rence of subclinical seizures at the time of study entry. 14 additional
subjects were excluded because they had received Vigabatrin on a pre-
symptomatic basis, and never developed seizures. Additionally, for 7
patients no comparable sample was available for inclusion. Hence, a
total of 65 samples were analyzed, 54 from patients who developed
seizures during the 2 year follow-upperiod, and 11whodid not. Sample
size fluctuated due to missing data. Multiple data types were included
in this analysis: Proteomics, metabolomics, transcriptomics, miRNA
data, genotype information for 86 SNPs (Supplementary Data 1), TSC
mutation status, and clinical data.

The 86 SNPs were selected based on review of published genetic
association studies (reviewperformedusingPubMed literaturedatabase
inApril toMay2019). SelectedSNPshad tohave anallele associatedwith
predisposition to epilepsy of any kind: focal or generalized epilepsy
(including absence and juvenile myoclonic epilepsy), infantile spasms,
or febrile and other types of seizures (Supplementary Data 11). The
association finding had to be made in: (i) at least one genome-wide
association study (GWAS), genome-wide meta-analysis association ana-
lysis, genome-wide mega-analysis association study, or candidate SNPs
meta-analysis association study; or (ii) at least two independent candi-
date SNP association studies (Supplementary Data 11). SNPs were
selected fromstudies performed inpopulations of any ethnicity,withno
limits on population allele frequency or predicted risk effect, but had to
be statistically significant. SNP genotypes were extracted from the EPI-
STOPWGSdata9, andwere classified into two categories, either (i)major
allele homozygote or (ii) heterozygote or minor allele homozygote.

For the classifier analysis each dataset was processed in the fol-
lowing way: first, constant features (columns with constant values
spread across the whole dataset, or, with variance equal to zero) were
excluded. Next, each variable was standardized (transformed to
common scale), so the final values in each column had zero-mean and
unit variance. More extensive filtering was used for the RNA-Seq
dataset, since there were ~63,000 initial values. In the first filtering
step, only genes with more than three reads in at least 75% of samples
were retained. In the second step, a 2-foldmedian change between the
seizure and no-seizure groups was required. Together, these filters
reduced the number of RNA species under consideration to 267.

Analytes were selected for inclusion in the classifier analysis using
univariate Area-under-the curve (AUC) metric to assess the ability of
each variable to predict seizure appearance. Analytes had to meet an
AUC threshold > 0.6 to be retained. In addition, no more than 30
analytes of each type could be selected, and they were down-sampled
for inclusion based on AUC rank. This led to retention of 126 variables
for inclusion in the classification algorithm from all analyte categories.

We used a logistic regression binary classification algorithm to
generate a three-variable predictor of seizure development.

ln
p

1� p

� �
=β0 +β1x1 +β2x2 +β3x3 ð3Þ

Where:
p – expected probability,
x1,..,3 – independent variables,

β0,…,3 – regression coefficients.
Logistic regression models the probability of an event

(here: seizure development). If the calculated probability is higher
than a defined threshold value, then the classifier predicts that
patientwill develop seizures (positive class). Otherwise the algorithm
predicts that there will be no seizures (negative class). The prob-
ability threshold between positive and negative class was adjusted
for each classifier separately due to high size imbalance between
the classes.

The 126 analyte variables were combined into 1-, 2- and
3-predictor models. Over 330 thousand combinations were assessed
for their association with seizure occurrence.

To validate ourfindings,weused theMonte-Carlo cross-validation
method (repeated random subsampling). Each model was scored 100
times with the split of 2/3 in the training set and 1/3 in the test set with
stratification to maintain the positive/negative case ratio in both sets.
The goodness of fit with observed outcome was evaluated with Mat-
thews Correlation Coefficient19:

MCC=TP � TN� FP � FNðTP+FPÞ � ðTP+FNÞ � ðTN+FPÞ � ðTN+FNÞ ,
ð4Þ

Where:
MCC - Matthews Correlation Coefficient,
TP – true positives; samples correctly classified as positive

(patients with seizures classified correctly),
TN – true negatives; samples correctly classified as negative

(patients with seizures labelled as no seizures),
FP – false positives; samples incorrectly classified as positive

(patients without seizures classified as with seizures),
FN - false negatives; samples incorrectly classified as negative

(patients without seizures classified correctly).
Matthews Correlation Coefficient ranges from −1 (complete dis-

agreement between prediction and observation) to 1 (complete
agreement), with 0 meaning lack of correlation.

As the final metric for each classifier we chose the mean test MCC
value obtained from Monte-Carlo cross-validation technique. Addi-
tionally, for each model, we present mean misclassification error
(MMCE), positive predictive value (PPV) and negative predictive value
(NPV).Missing values in the negative predictive value are related to the
lownumber of negative examples in the test dataset. Due to the limited
number of negative examples (nmax for no seizures group = 12), the
classifier sometimes incorrectly labeled all cases as positives, which
caused the lack of true/false negatives (patients without seizures) in
the formula for NPV calculation.

Due to the lack of an independent dataset for validation, we
validated our results with a permutation test. To calculate the sam-
pling distribution under the null hypothesis, we permuted the out-
come variable (seizure status) and repeated thewhole experiment 30
times – starting from feature selection to a model evaluation with
subsampling (subsampling was done 50 times for each model to
reduce the computation time). This resulted in about 16 million
models. The test-statistic was set to the mean test MCC. The sig-
nificance level was set at 0.05. A p value represents the fraction of
models with random treatment allocation where the mean test MCC
was equal or higher than in the models created for original data.
Based on the permutation results, the calculated test statistics for
this experiment had to exceed themeanMCC test equal to 0.73 to be
considered significant.

The volumeof data collected in the EPISTOPproject consisted of
about 33 TB. The experiment was designed in an R environment
(version 4.1.0) using tidyverse, mlr, parallel and plotly packages
(among all). We used packrat for package version control.
The dedicated computing server consisted of 40 cores, 216 GB RAM
and an additional 216 TB for data storage. Complete code for the
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project is stored in the Github repository (https://github.com/
JagGlo/molecular_EPISTOP).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw RNA-Seq data generated for this study are held at the Eur-
opean Genome-phenome Archive (EGA) under the accession number:
EGAS00001007264. Access to this data is controlled by a data access
committee. Please email JDM at james.mills@ucl.ac.uk or DJK at
dk@rics.bwh.harvard.edu for further information. All other large data
files have been combined into supplemental Data files S1A and S1B,
which has been placed in our github repository alongwith the code for
doing this analysis (https://github.com/JagGlo/molecular_EPISTOP),
which has https://doi.org/10.5281/zenodo.838982653. Source data are
provided with this paper.

Code availability
The code developed for and utilized in this study is openly available,
and can be accessed at the Github repository (https://github.com/
JagGlo/molecular_EPISTOP; https://doi.org/10.5281/zenodo.838982653).
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