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A statistical framework for differential
pseudotime analysis withmultiple single-cell
RNA-seq samples

Wenpin Hou 1,2, Zhicheng Ji1,3, Zeyu Chen4,5,6,7, E. John Wherry4,5,6,
Stephanie C. Hicks 1 & Hongkai Ji 1

Pseudotime analysis with single-cell RNA-sequencing (scRNA-seq) data has
been widely used to study dynamic gene regulatory programs along con-
tinuous biological processes. While many methods have been developed to
infer the pseudotemporal trajectories of cells within a biological sample, it
remains a challenge to compare pseudotemporal patterns with multiple
samples (or replicates) across different experimental conditions. Here, we
introduce Lamian, a comprehensive and statistically-rigorous computational
framework for differential multi-sample pseudotime analysis. Lamian can be
used to identify changes in a biological process associated with sample cov-
ariates, such as different biological conditions while adjusting for batch
effects, and todetect changes in gene expression, cell density, and topology of
a pseudotemporal trajectory. Unlike existing methods that ignore sample
variability, Lamian draws statistical inference after accounting for cross-
sample variability and hence substantially reduces sample-specific false dis-
coveries that are not generalizable to new samples. Using both real scRNA-
seq and simulation data, including an analysis of differential immune response
programs between COVID-19 patients with different disease severity levels, we
demonstrate the advantages of Lamian in decoding cellular gene expression
programs in continuous biological processes.

Single-cell RNA-sequencing (scRNA-seq) enables the dissection of
complex cellular programs at single-cell resolution in biological sam-
ples with heterogeneous cell compositions. When cells in a sample
come from a continuous biological process, computationally placing
the cells along a pseudotemporal trajectory based on their progres-
sively changing transcriptomes is a powerful approach to recon-
structing the dynamic gene expression programs of the underlying
biological process. This approach, also known as pseudotime

analysis1–3, is now widely used to study cell differentiation4–6, immune
responses7,8, disease development9–12, and many other biological sys-
tems with temporal dynamics. A systematic review and comparison of
these methods can be found in a recent benchmark study3. The
majority of existing methods were designed to infer gene expression
changes along the reconstructed trajectory within one biological
sample. However, scRNA-seq experiments today standardly generate
data with multiple biological samples across multiple conditions. For
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example, a number of COVID-19 studies generated scRNA-seq data
from multiple patients with differential disease severity levels13–19.
Therefore, there is an increasing demand for methods that can
simultaneously (i) take into account sample-to-sample variation and
(ii) identify changes in pseudotemporal trajectories across conditions.
To meet this demand, two challenges need to be addressed.

First, changes in pseudotemporal trajectories across conditions
can occur in multiple ways, including (i) topological differences, such
as a cell lineage along differentiation is lost (or added) in one sample
group compared to another group, (ii) changes in the proportion (or
density or abundance) of cells along a cell lineage across conditions,
and (iii) changes in the gene expression itself along pseudotime across
conditions. An ideal solution would address all three types of changes
in one comprehensive statistical framework.

Second, in order to separate changes of biological interest (e.g.
difference between treatment and control) from other biological or
technical noises, it is important to account for naturally occurring
sample-level variations, not of interest (e.g. sample-to-sample variation
within the treatment or control group), unwanted technical variations
(e.g. batch effects), and other uncertainties in the analysis (e.g.
uncertainties of the inferred trajectory and pseudotime).

However, there currently does not exist a comprehensive inte-
grative framework that identifies all three types of changes in pseu-
dotemporal trajectories (topology, cell density, and gene expression)
across experimental conditions with multiple samples per condition,
while also accounting for sample-level variability.

Although there exist pseudotime analysis methods to detect
changes in gene expression along pseudotime (e.g. Monocle20–22,
TSCAN23, Slingshot24), in cell abundance along pseudotime (e.g.
milo25, DAseq26), and in trajectory lineages (e.g. tradeSeq27), most
methods do not investigate changes across conditions. Almost all
methods ignore sample-to-sample variation by either only analyzing
cells from a single sample or treating cells from multiple samples as if
they were from a single sample. For the latter, cells from different
samples are usually integrated in a low-dimensional spaceby removing
both biological and technical differences among samples, and a tra-
jectory is then inferred to characterize dynamic cellular programs
along pseudotime, without considering variability among samples.

Phenopath28 and condiments29 are two pseudotime methods
capable of identifying changes across conditions. Condiments
assumes that each condition has one sample and therefore does not
consider sample-to-sample variation within each condition when each
condition has multiple replicates. Ignoring sample-level variability can
result in false discoveries not generalizable to new samples. Pheno-
path assumes gene expression changes linearly along pseudotime and
cannot deal with arbitrary differences between conditions which may
be non-linear functions of pseudotime. Moreover, it does not estimate
sample-level variance separately from cell-level variance. Thus, similar
to condiments, one cannot assess whether the observed difference
between conditions is real or expectedbychance basedon the random
sample-level variability within each condition. Although properly
accounting for the variation across samples is important in multi-
sample single-cell data, neither PhenoPath nor condiments canmeet
this need.

Pseudotime inference itself also has uncertainties. Recently,
PseudotimeDE30 has been proposed to account for pseudotime
reconstruction uncertainties in single-sample pseudotime analysis via
subsampling cells and permuting pseudotime. However, this approach
does not consider multiple samples and therefore does not char-
acterize variability and differences across samples.

To address these gaps, we introduce a comprehensive and inte-
grative statistical framework, referred to as Lamian, for differential
multi-sample pseudotime analysis. Lamian is named after a traditional
Chinese hand-pulled noodle. The name is chosen based on the simi-
larity between the process of making Lamian noodles and our

statistical model in which multi-sample single-cell data are described
using multiple smooth noodle-like functional curves (Fig. S1). Given
scRNA-seq data from multiple biological samples with known covari-
ates, such as age, sex, sample type, and disease status, Lamian can be
used to (1) construct pseudotemporal trajectories and evaluate the
uncertainty of the topologies, (2) evaluate changes in the topological
structure associated with sample covariates, (3) describe how gene
expression and cell density change along the pseudotime, and (4)
characterize how sample covariates modify the pseudotemporal
dynamics of gene expression and cell density. Importantly, when
identifying gene expression or cell density changes, Lamian accounts
for variability across biological samples. As a result, Lamian is able to
more appropriately control the false discovery rate (FDR)31 when
analyzing multi-sample data, a property not offered by other existing
methods.

Results
Lamian: a statistical framework for differential pseudotemporal
trajectory analysis in multiple samples
Lamian consists of four modules tackling different aspects of multi-
sample pseudotime analysis (Fig. 1). The input for Lamian includes (1)
a low-dimensional representation of cells, such as principal compo-
nents (PCs) or other low-dimensional embeddings of the scRNA-
seq data from multiple samples that have been harmonized into a
common space usingmethods such as Seurat32, Harmony33 or scVI34,

(2) the normalized scRNA-seq gene expression matrices, and (3)
sample-level metadata, such as covariate information corresponding
to samples’ biological groups, experimental conditions, and batch
indicators for batch effect correction. We assume that the data har-
monization is done by users and refer readers to a recent benchmark
study35 for guidelines on choosing the harmonization methods.
Advantages of Lamian compared to existing methods (Table S1)
include comprehensive solutions to evaluating tree topology uncer-
tainty and differential topology and identifying gene expression and
cell density changes associated with sample covariates while
accounting for sample-level variability.

Module 1 of Lamian uses the harmonized data to construct a
pseudotemporal trajectory and then quantifies the uncertainty of tree
branches using bootstrap resampling. First, cells from all samples are
jointly clustered (Fig. 1a), and the cluster-based minimum spanning
tree (cMST) approach described in TSCAN23 is used to construct a
pseudotemporal trajectory. The tree can have multiple branches,
allowing one to model multiple lineages of a dynamic process. Next,
after users specify a tree node as the start of pseudotime or marker
genes that should highly express at the start of pseudotime, Lamian
will automatically enumerate all pseudotemporal paths and branches.
Then, it evaluates the uncertainty of each branch by quantifying a
metric we refer to as the detection rate, which is defined as the prob-
ability that a tree branch can be detected in repeated bootstrap sam-
plings of cells (Fig. 1b). The advantages of using TSCAN to construct
pseudotime include (i) the scalability of its cMST approach to a large
number of cells (since the number of tree nodes in the spanning tree is
determined by cell cluster number instead of cell number) and repe-
ated bootstrap resamplings, (ii) the flexibility it provides to support
both automatic and manual trajectory construction23, and (iii) its
overall competitive performance in multiple previous benchmark
evaluations3,36.

Module 2 of Lamian first identifies variation in tree topology
across samples and then assesses if there are differential topological
changes associated with sample covariates (Fig. 1b). For each sample,
Lamian calculates the proportion of cells in each tree branch, referred
to as branch cell proportion. Because a zero or low proportion can
reflect the absence or depletion of a branch, changes in tree topology
can be described using branch cell proportion changes. With multiple
samples, Lamian characterizes the cross-sample variation of each
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branch by estimating the variance of the branch cell proportion across
samples. Furthermore, regressionmodels can befit to test whether the
branch cell proportion is associated with sample covariates. To facil-
itate convenient exploration of each individual branch, one can use a
binomial logistic regression to evaluate covariate-associated branch
cell proportion changes for each branch separately. Alternatively,
users can also use a multinomial logistic regression to analyze

covariate-associated changes of cell proportion ratios between bran-
ches by considering all branches jointly (Supplementary Notes). These
regression-basedmethods allow one to identify tree topology changes
between different conditions, for example in a case-control cohort,
accounting for sample-level variability. They are functions not pro-
vided by methods such as PhenoPath, condiments, and
PseudotimeDE.
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Given a path or branch along a pseudotemporal trajectory, the
scRNA-seq gene expression matrices from multiple samples, and
sample-level covariate information, Module 3 of Lamian identifies
differentially expressed (DE) genes using a functional mixed effects
model (Fig. 1c). There are two types of DE tests. First, the TDE test
evaluates whether a gene’s activity as a function of pseudotime t,
denoted as f(t), is a constant (H0: f(t) = c), with the goal to identify
genes whose activities change along pseudotime (H1: f(t) ≠ c). Here,
TDE refers to pseudotime differential expression. Second, the XDE test
evaluates for each gene whether the pseudotemporal activity f(t) is
associated with a sample-level covariate, such as whether f(t) is dif-
ferent between healthy and disease samples. Here, XDE refers to cov-
ariate X differential expression. Currently, existing pseudotime
methods, such as Monocle, Slingshot and TSCAN only detect TDE,
but not XDE. PhenoPath and condimentsmay detect XDE but do not
account for sample-level variability in multi-sample studies. Lamian is
an integrative framework to provide both TDE and XDE for multiple
sample analyses. For each XDE gene, Lamian further evaluates whe-
ther the sample covariate shifts the mean of f(t) (referred to as amean
shift) or changes the functional form of f(t) (referred to as a trend
difference) or both. Additionally, unsupervised clustering (k-means by
default, Louvain and Gaussian mixture model clustering are provided
as optional) is applied to DE genes to group and summarize major
differential gene patterns. In all DE tests, Lamian accounts for sample-
to-sample variation directly in itsmodel framework, whereas the other
methods do not. Consequently, Lamian is able to better control the
false discovery rate (FDR)31 compared to existing methods that ignore
sample-to-sample variation which leads to identifying false discoveries
that are not generalizable in new samples. By default, Lamian uses a
permutation approach to determine statistical significance of the DE
tests (Lamian.pm). This approach is more reliable but can be compu-
tationally slow. For fast computation, Lamian also provides an option
to determine significance using the chi-squared distribution as the
asymptotic null for the likelihood ratio statistics (Lamian.chisq). This
option is fast but less accurate. It can be usedwhen users want to run a
quick initial analysis while waiting for more rigorous results from
Lamian.pm, especially when dealing with a large dataset. Below
Lamian refers to Lamian.pm unless otherwise specified.

Similar to gene expression, Module 4 of Lamian tests whether
cells’ density along pseudotime is uniformly distributed or not (TCD
test), and if it is associated with a sample covariate (XCD test). This may
be used to study dynamic processes, such as cell expansion in immune
response or how disease changes the pseudotemporal cell density
pattern.

In all differential analyses, unwanted technical variations such as
batch effects or other confounding variables can be adjusted by
regressing them out in the Lamian regression model.

Lamian estimates tree topology stability and accurately detects
differential tree topology
We begin with illustrating Modules 1 and 2 of Lamian using a Human
Cell Atlas (HCA)37,38 10x Genomics scRNA-seq dataset, referred to as
HCA-BM, consisting of bonemarrow samples from8donors (4 females
and 4 males) and a total of 32,819 cells. Bone marrow contains

hematopoietic stem cells (HSCs) differentiating into different blood
cell types, creating a natural branching structure. This dataset along
with the existing biological knowledge about this system therefore can
be used to demonstrate and evaluate Lamian’s ability to analyze a
trajectory with branches.

First, we construct the pseudotemporal trajectory and assess the
tree topology stability (Module 1). Applying TSCAN to the Seurat-
harmonized bone marrow data, we identified 6 cell clusters (Fig. 2a),
which form a minimum spanning tree with three branches, corre-
sponding to the three major lineages of HSC differentiation - myeloid,
erythroid, and lymphoid (Fig. 2b). We confirmed these lineages with
known marker genes (Figs. 2c, S2). Specifically, HSCs are mostly in
cluster 5, as indicated by high CD34 expression (Fig. 2c). By setting
cluster 5 as the origin, we obtained three pseudotemporal paths
(Fig. 2a: the path of cluster 5→ 1; 5→ 6→ 2; 5→ 3→ 4). Lamian uses
repeated bootstrap sampling of cells along the branches to calculate a
detection rate. In the HCA-BM data, these three branches can be
detected in 93.8% (5→ 1), 95.3% (5→ 6→ 2), and 61.5% (5→ 3→ 4) in all
bootstrap samples (or with a detection rate = 0.938, 0.953 and 0.615),
suggesting that they are real and can be reliably detected from data.
Note that although TSCAN is scalable to a large number of clusters as
tree nodes and can handle more complex tree structures, increasing
tree complexity can also introduce noise and producemany unreliable
brancheswith lowdetection rates (Fig. S3). Therefore,weproceedwith
the three branches here as their presence is robustly supported by the
available data and also consistent with known biology.

Next, we assess the variability in the branch cell proportions
across samples and between conditions (Module 2). Using all 8
donors, the branch cell proportion is 41.1%, 48.4%, and 10.5% for the
myeloid, erythroid, and lymphoid branches, respectively. Of note,
the proportions show variation across donors (proportion Mean
(SD) = 0.41 (0.10) for myeloid, 0.48 (0.11) for erythroid, 0.11 (0.01)
for lymphoid). Lamian allows one to assess if there is a statistically
significant difference in the tree topology (i.e. branch cell propor-
tion) between two sample groups. As an example, comparing the
branch cell proportion betweenmale and female donors in theHCA-
BM data by applying the binomial logistic regression to each branch
did not show significant differences along the myeloid, erythroid,
and lymphoid lineages (p-values = 0.35, 0.64, 0.94, respectively),
suggesting that there is no significant change in tree topology
between the two sexes (Fig. 2d). Using multinomial logistic regres-
sion showed similar results (p-values for odds ratios between male
and female = 0.20, 0.39 for myeloid and lymphoid, respectively,
using erythroid as the baseline since by default Lamian uses the
most abundant branch as the baseline category in multinomial
logistic regression).

To demonstrate the validity of Lamian’s topology stability and
differential topology analysis, we performed two sets of simulations. In
Simulation 1, we subsampled cells in the myeloid lineage in the HCA-
BM data to reduce the myeloid cell number while retaining all cells in
the erythroid and lymphoid lineages (Fig. 2e, f). As expected,
decreasing the number of cells decreased the detection rate for the
myeloid branch (Fig. 2g). For example, when 80% cells in the myeloid
lineage were reduced, the detection rate dropped to 0.106 (Fig. 2e, g).

Fig. 1 | Overview of Lamian : a statistical framework for differential pseudo-
temporal trajectory analysis with multiple samples. a Using integrated and
harmonized scRNA-seqdata acrossmultiple samples, Lamian first groups cells into
clusters.bClustered data is used to infer a pseudotemporal tree structure followed
by automatically enumerating all pseudotemporal branches (paths). The uncer-
tainty of tree branches are quantified using a detection rate in bootstrap resampling
framework (Module 1), followed by quantifying the variability of branches across
samples and identifying differences in the branching structure across conditions
(Module2). c For each tree branch (pseudotemporalpath),Lamian can identify two
types of differential expression (DE): DE along pseudotime (TDE) andDE associated

with sample covariates (XDE) (Module 3). Similarly, Lamian can also identify
changes in cell density along pseudotime (TCD) and associated with a sample
covariate (XCD) (Module 4). Gene’s or cell abundance’s pseudotemporal patterns
are modeled using the combinations of B-spline bases (Φs) to allow non-linear
patterns. The combination coefficients are decomposed into effects due to sample
covariates (Xsβ, where Xs is the design matrix) and variation among samples with
common covariate values (us). Cell-level data ys in sample s are generated from the
sample-level curve by adding cell-level random noise ϵs. See Methods and Sup-
plementary Notes for details.
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Hence, the detection rate provides a reasonable measure for quanti-
fying the certainty (or uncertainty) conveyed by the data about the
presence of a branch.

In Simulation 2, we reduced the number of cells in the myeloid
lineage in four out of the eight samples while retaining all cells in the
other two lineages (Fig. 2f). As the number of cells decreased, the
detection rate of the myeloid branch again decreased, but at a much
slower rate compared to Simulation 1 (Fig. 2g). We found that condi-
tional on the branch being detected, our differential topology tests
(Module 2) were able to detect differences in the branch cell propor-
tion between the two groups of samples in this simulation scenario.
Most importantly, they controlled the probability of false positives
(type I error rate) when there were no differences (i.e. removing no
cells or 0% of cells) and also had increasing statistical power to detect
true positives as we increased the percent of cells removed in half of
the samples (Fig. 2h).

Lamian comprehensively detects differential pseudotemporal
gene expression and cell density
We next illustrate how Lamian adjusts for sample-to-sample variation
to identify differential gene expression (Module 3: TDE and XDE tests)

and differential cell density (Module 4: TCD and XCD tests) along
pseudotime using the eight samples in the HCA-BM dataset.

First, we ask which genes are varying along pseudotime (Module
3: TDE test). We reasoned that a proper TDE analysis should be able to
identify transcriptional programs associated with lineage specifica-
tion. Applying the TDE test with a 5% FDR cutoff, Lamian identified
8475, 7454 and 8953 TDE genes for the myeloid, erythroid, and lym-
phoid lineage, respectively (Fig. 3a–c). Among the TDEs, we found
known lineage markers corresponding to each lineage, such as CD14
for myeloid, HBB and GATA1 for erythroid, and CD3D, CD19, CD27 for
lymphoid. Hence, TDE genes canbe used to identify branch lineages in
the tree topology. Unsupervised clustering of TDE genes and gene
ontology (GO) analysis revealed the dynamic transcriptional programs
associated with each lineage (Fig. 3a–c, Fig. S4). For example, as HSCs
differentiate to the erythroid lineage, the TDE genes with increasing
expression along pseudotime are enriched in red blood cell-related
functions such as oxygen transport, whereas genes with functions in
other lineages (e.g. CD8-positive, alpha-beta T cell activation, regula-
tion of B cell receptor signaling pathway) show decreasing expression
suggesting that they are increasingly suppressed (Fig. S4c, d). Mean-
while, for the lymphoid lineage, the TDE genes with increasing
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Fig. 2 | Lamian estimates tree topology stability (Module 1) and tests differ-
ential tree topology between sexes (Module 2) in the HCA bone marrow
data37,38. a Inferred tree topology using eight integrated scRNA-seq bone marrow
samples displayed in the first two principal components (PCs). Dots are cells
colored by cluster labels (k = 6). b Similar to (a), but cells are colored by pseudo-
time. The estimated detection rates (d/r) are shown for three tree branches cor-
responding to three lineages of hematopoietic stem cell (HSC) differentiation.
c Similar to (a), but cells are colored by the expression of lineage-specific marker
genes.dHeatmap of sample-level branch cell proportion (Prop, the number of cells
in each branch divided by the total number of cells in a sample). The barplot shows
the mean (pink bar) ± SD (blue bars) of the branch cell proportion across
n = 8 samples for each lineage. Cell proportions are displayed as dots and heatmap.

e Tree topology and detection rates after randomly removing x = 80% cells on the
myeloid lineage (branch 5→ 1) as an illustration of simulation. f Simulations are
conductedby either removing certain percentageof cells (x-axis) along themyeloid
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the samples (simulation 2: right). g Lamian-reported the detection rate of the
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smaller than the significance cutoff 0.05 in the simulations (y-axis) is shown as a
function of the reduced cell percentage (x-axis). Source data are provided as a
Source Data file.
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expression along pseudotime are enriched in T lineage commitment,
whereas genes with decreasing expression lack enrichment of
lymphocyte-specific functions (Fig. S4e, f).

Next, we tested whether there are differential gene expression
patterns along pseudotime associated with sex as a covariate (Module
3: XDE test). Currently, which genes are sex-associated XDE genes in

this system is not completely known. However, we reasoned that if
there is no sex-associated XDE gene, then any XDE gene reported
by the algorithm would be noise, and a priori one would not expect
genes that are random noise to be associated with sex chromosomes.
On the other hand, if XDE genes reported by Lamian in a genome-wide
analysis are found to be enriched in sex chromosomes, it would

Fig. 3 | Lamian supports comprehensive analysis of differential expression
(Module 3: TDE and XDE tests) and cell density (Module 4: TCD and XCD tests)
along pseudotime in the HCA bone marrow data. a–c Heatmap of model-fitted
expression values for TDE genes (rows, FDR<0.05) along pseudotime for HSC to
myeloid (a), erythroid (b), and lymphoid (c) differentiation lineages. Rows are k-
means clustered. d Heatmaps of Lamian-detected XDE genes between male and
female along the myeloid lineage (rows, FDR <0.05). Only 38/43 XDE genes with
either significant mean shift or trend difference (10 meanSig, 16 trendSig, 12 both-
Sig) are shown. The other XDE genes (otherSig: both FDRtrend and FDRmean≥0.05)
are not included. The six heatmaps from the left to right correspond to raw nor-
malized gene expression alongpseudotime for each sex (left twoheatmaps),model
fitted gene expression along pseudotime in each sex (middle two heatmaps), trend

difference and mean shift between female and male along pseudotime (right two
heatmaps). Genes from chromosomes X and Y are labeled. e Example XDE (and
non-XDE) gene expression along the myeloid lineage with significant mean shift
(meanSig), trend difference (trendSig), and both (bothSig). The fitted curve for each
sample is also shown. f The model-fitted cell density pseudotemporal patterns in
myeloid lineage (one curve per sample) along with Lamian TCD test p-value (one-
sided p < 2.22 × 10−308, n = 8 samples, log-likelihood ratio (LLR) = 207.18). g Similar
to (f) but curves are colored by sex and the Lamian XCD test p-value (one-sided
p=0.677, n = 8, LLR= 2.86) is shown. Results in the erythroid and lymphoid lineages
can be found in Fig. S5 (Module 3: XDE tests) and Fig. S6 (Module 4: TCD and XCD
tests). Source data are provided as a Source Data file.
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suggest that sex-associated XDE genes exist and the algorithm is able
to detect true XDE signals. For each gene, Lamian reports three FDRs:
(1) FDRoverall corresponds to testing if a gene is XDE (overall test), (2)
FDRtrend corresponds to testing if an XDE gene has significant trend
difference associated with the sample covariate (trend test), and (3)
FDRmean corresponds to testing if an XDE gene has significant mean
shift associated with the covariate (mean test). In addition, there are
two other categories: both mean and trend differences (bothSig), or
neither mean or trend differences (otherSig). Using the XDE test,
Lamian identified 43, 32 and 29 genes (overall test) with significant
differences (at the 5% FDRoverall cutoff) betweenmale and female along
the myeloid (Fig. 3d), erythroid (Fig. S5a), and lymphoid (Fig. S5b)
lineages, respectively. Next, Lamian further annotated the XDE genes
into the gene patterns described above. For the myeloid lineage, this
results in 10 genes withmean shift only, 16 genes with trend difference
only, and 12 genes with significant changes both in mean and trend
(Fig. 3d,e). Among the XDE genes, 33% (N=14) are from chromosomeX
and Y, representing a significant enrichment in sex chromosomes
(Fig. 3d, permutation test p-value = 0.0036 for chromosome X and
p =0.000 for chromosomeY, seeMethods). Notably, among the genes
that show significant mean shift (with or without trend difference), 12
genes have higher mean expression in males and they consist of 8
genes onYchromosomeand4genes on autosomes. Likewise, 10genes
have higher mean in females and they consist of 3 genes on X chro-
mosome and 7 genes on autosomes (Fig. 3d). Unsupervised clustering
of XDE genes revealed cascades of their dynamic transcriptional pro-
grams. For example, among genes with trend difference only, the
difference in SHISA5 expression between female andmale was positive
at the beginning and negative at the end of the pseudotime, whereas
the difference in DUSP11was negative at the beginning and positive at
the end (Fig. 3d). Analyses of the erythroid and lymphoid lineages
yielded similar results (Fig. S5). Among the XDE genes, a number of
them have been reported to have functions related to hematopoietic
stem and progenitor cells (e.g. ALS239, DDX3Y40, ZFX41). Our analysis
here suggests that their functional activities may be sex-dependent.

Finally, we tested for changes in cell density both along the pseu-
dotime (Module 4: TCD test) and whether these patterns were asso-
ciatedwith sex as a sample covariate (Module 4: XCD test). TheTCD test
shows that cell density changed significantly along all three lineages
(myeloid: Fig. 3f; erythroid: Fig. S6a; and lymphoid: Fig. S6c) (allp-values
after adjusting for multiple testing are < 2.22 × 10−308), although it is
unclear whether the cell density change was due to technical sampling
bias (e.g. certain cell types are easier to sample) or real biology. We
askedwhether the cell density changes were correlatedwith changes of
cell cycle along pseudotime but did not find clear correlation (Fig. S7).
In the XCD test, we did not find significant differences in cell density
along pseudotime between male and female (myeloid: Fig. 3g; ery-
throid: Fig. S6b; and lymphoid: Fig. S6d).

Lamian is more powerful than existing methods to detect dif-
ferences while controlling the FDR by accounting for sample-
level variation
In this section, we demonstrate that Lamian is more powerful than
existing methods to detect gene expression differences that are
associated with a covariate (Module 3: XDE test). Robustly comparing
methods requires datasets with a sufficiently large number of known
differential and non-differential genes to serve as the ground truth.
Unfortunately, such datasets are not widely available. To address this,
we combine simulations with the real HCA-BM data for method eva-
luation. The HCA-BM dataset is unique in that its male and female
samples allow a between-sex comparison. Since there are many sex
chromosome genes, the enrichment of sex-associated XDE genes in
sex chromosomes can provide an objective and relatively robust
benchmark to compare different methods. Thus, the HCA-BM data is
used in this article for both method demonstration and evaluation. In

supplementary data, we also demonstrate how incorporating the the
sample-to-sample variation into the differential gene expression test
along pseudotime (Module 3: TDE test) leads to less false discoveries
compared to existing methods that also perform TDE detection.

ForXDEanalysis,we comparedLamianwithlimma42,Monocle221,
tradeSeq27, Phenopath28, and condiments29. For Lamian, we also
compared two ways to compute p-values and FDR: Lamian.pm
(default) and Lamian.chisq. As limma is designed to detect differential
mean gene expression, we pooled all cells on a pseudotemporal path
or branch to create a pseudobulk expression profile (i.e. the average
expression across cells for a gene) for each sample. In this way, limma
uses the pseudobulk data to detect mean differences between two
sample groups. tradeSeq (which is used by Slingshot) is a method
originally developed for comparing different branches of a pseudo-
temporal trajectory within a single sample. Here, we tailored the
function to compare the same branch in a pseudotemporal trajectory
between two samples. Since tradeSeq and condiments do not con-
sider cross-sample variability, cells from replicate samples were
pooled and treated as if they came from a single sample for both
methods. Phenopath was run by specifying each cell’s sample origin
and sample group label and exporting sample group-associated genes.
Monocle2 does not directly handle XDE analysis, but we tailored its
model and created a new function “monocle2TrajTestCorr” to allow
XDE detection in our data (see Methods).

First, we created a null data set based on the HCA-BM data
(Methods). Briefly, we first randomly partitioned the eight HCA-BM
samples into two groups and removed the group differences to create
a dataset where we do not expect any XDE genes between the two
groups (Fig. 4a). When Lamian (Lamian.pm) was applied to detect
groupdifferences, noXDEgeneswere reported at 5%FDRcutoff. Using
the same cutoff, Lamian.chisq reported 62 XDE genes. By contrast,
other methods reported 7846 (monocle2TrajTestCorr), 8783 (trade-
SeqPatternTest), 7259 (tradeSeqEarlyDETest), 5822 (trade-
SeqDiffEndTest), 7400 (PhenoPath, max.iter = 500, without setting
max.iter the program cannot provide results), and 8753 (condiments)
differential genes, which are all false positives. Similar to Lamian,
limma reported no XDE genes. However, as will be shown below,
limma can only detect differences in mean expression and cannot
detect trend differences in pseudotemporal patterns.

Building upon the null data set above, we then introduced in silico
spike-in differential signals with varying strengths and pseudo-
temporal patterns between the two sample groups to a random set of
genes (details in Methods). In this way, we know which genes are XDE
genes and whether they have mean shift, trend difference, or both
(Fig. 4b). Next, we applied Lamian to identify XDE genes and clustered
genes based on their differential patterns using the default k-means
clustering (Fig. 4c, d). Using Gaussian mixture model and Louvain
clustering yielded similar results (Figs. S8, S9). We compared Lamian
XDE genes with XDE analysis from other methods. For all three tests
(overall test, trend test,mean test), and across all signal strength levels,
the real FDR was smaller than the FDR reported by Lamian(La-
mian.pm), demonstrating that Lamian was able to conservatively
estimate FDR (Fig. 4e, g). Lamian.chisq also provided reasonable FDR
estimates but it slightly underestimated the real FDR. The other
methods do not report separate FDRs for mean and trend differences.
TradeSeq can be run to detect different types of DE: earlyDETest
identifies genes that show expression difference in early pseudotime;
patternTest identifies genes that show expression difference along all
pseudotime that are equally-spaced; diffEndTest compare the average
expression at the end stage of pseudotime. It assigns an FDR for each
test. Each of the other methods reports an overall FDR for each gene
(see Methods). Unlike Lamian, all existing methods underestimated
the real FDR: the difference between the real FDR and their reported
FDR was positive in most cases (Fig. 4e). We also stratified XDE genes
into three groups - mean shift only, trend difference only, and both
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mean and trend differences - based on their true states. Within each
stratum, the FDRoverall reported by Lamian conservatively estimated
the real FDR, whereas the other methods underestimated the real
FDR (Fig. 4e).

We further compared the statistical power of detecting differ-
ences in temporal gene expression associated with sample-level cov-
ariates via the sensitivity-realFDR curve and the area under the curve

(AUC) (Fig. 4f, h). The power of detecting XDE genes by Lamian
increased with increasing signal strength, both for detecting XDE
genes overall or for detecting a specific class of XDE genes (Fig. 4f). For
detecting all XDEgenes (overall test), all competingmethods had lower
power compared to Lamian (Fig. 4f). Within Lamian, Lamian.pm
slightly outperformed Lamian.chisq. In the remaining methods,
monocle2TrajTestCorr was among the top but it failed to control FDR.
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When XDE genes are stratified, limma had comparable power to
Lamian for detectingXDEgeneswithmean shift (i.e.mean shift only or
both mean and trend differences) but had zero power to detect genes
with trend difference only. TradeSeq and condiments both had
lower power than Lamian in all XDE gene categories (Fig. 4f).

In addition to our simulation studies, we compared different
methods using the real HCA-BM dataset to detect sex differences
(Fig. S10). For themyeloid lineage, limma detected 5 XDE genes and all
of them were found by Lamian. Lamian reported an additional 38
genes not found by limma (25 with trend difference, 9 with mean shift
only) (Fig. S10a). XDE genes found by Lamian but not limma showed
significant enrichment in sex chromosomes (Fisher’s exact test
p−values: chrX0.023, chrY 1.05 × 10−12), suggesting that these genes are
indeed sex related. TradeSeq, condiments, PhenoPath and mono-
cle2TrajTestCorr reported 3677, 4226, 10661 and 10502 XDE genes,
respectively. However, a closer examination of their results indicates
that a subset of these genes are false positives (Figs. 4j, S11). For
example, BCLAF1 was reported as XDE by condiments. For this gene,
when cells from replicate samples were treated as if they were from
one sample, the fitted gene expression curve along pseudotime are
different between male and female, which explains why condiments
reported the gene asXDE. However, when the gene expression curve is
fitted within each sample, the variation among replicate samples is
much bigger than the difference between male and female and hence
there is no real statistically significant sex difference (Fig. 4j). In con-
trast,RCHY1wasanXDEgene reportedbyLamianbut not condiments,
the sex difference is clear even after accounting for sample variability
(Fig. 4j). Overall, XDE genes reported by Lamian and limma showed
the most significant overlap with both chromosome X and chromo-
some Y (Fig. 4i). The performance of Lamian on the other two lineages
was similar (Fig. S12). Indeed, only Lamian and limma showed sig-
nificant overlap with both sex chromosomes in all three lineages.
Additionally, Lamian also showed the largest overlap with genes
escaping X-chromosome inactivation (XCI), further demonstrating its
top performance in detecting sex-associated XDE (Fig. S13). Collec-
tively, our analyses demonstrate that Lamian is better able to detect
XDE genes compared to the other existing methods.

In addition to detecting differentially expressed genes along
pseudotime that are associated with a sample covariate, Lamian can
also detect differentially expressed genes along pseudotime without
any covariate information (Module 3: TDE test). In this case, there are
existing methods, such as Monocle, Slingshot, tradeSeq, TSCAN
and PseudotimeDE that perform a similar test. However, unlike these
existing methods, Lamian incorporates sample-to-sample variability
into the statistical estimation framework. Using simulated data with
multiple samples, we found that Lamian, compared to existing
methods, controls the FDR, while also maintaining strong statistical
power for TDE detection (Supplementary Notes, Fig. S14).

Finally, similar to DE analysis, our evaluation also shows that
Lamian can accurately detectTCDandXCDwith awell-controlled type
I error rate and high statistical power (Supplementary Notes, Fig. S15).

Lamian analysis of COVID-19 scRNA-seq data identifies differ-
ential CD8T cell transcriptional programs during a critical stage
of disease severity transition
To further demonstrate and evaluate Lamian’s ability to detect dif-
ferences associated with sample covariates along a continuous pro-
cess, we applied Lamian to a COVID-19 peripheral bloodmononuclear
cell (PBMC) 10x Genomics scRNA-seq dataset obtained from a recent
study43. The COVID-19 disease severity of a patient may progress from
mild to moderate to severe. It was reported that the mild to moderate
transition is a critical stage with rapid immune landscape changes that
may determine the trajectory of disease progression43. CD8+ T cell
activation is an important component of COVID-19 patients’ immune
response to the infection. By analyzing scRNA-seq data from 66 mild
and 48 moderate COVID-19 patients, we examined the CD8+ T cell
activation program in these patients and asked how it changes during
the mild-to-moderate disease severity transition. The relatively large
sample size of this dataset also allowed us to partition samples into
non-overlapping subsets and systematically benchmark different
methods’ ability to detect XDE genes by evaluating the detection
consistency between different sample subsets.

First, we constructed a pseudotemporal trajectory using a total of
55,953 naive and CD8+ T cells identified from the harmonized PBMC
scRNA-seq data (Fig. 5a, Methods). The trajectory contains only one
path without branch, thus we skip evaluating the tree branch uncer-
tainty and differential topology. TCD analysis shows statistically sig-
nificant changes in cell density along the trajectory (Fig. 5d,
p < 2.22 × 10−308). It is unclear whether the cell density change here was
due to technical sampling bias or has any biological meaning, but the
density change was not correlated with cell cycle (Fig. S7). Applying
TDE test, Lamian identified 2195 TDE genes which were grouped into
five clusters (Fig. 5b). Examination of these genes’ dynamic expression
patterns show that the inferred pseudotemporal trajectory reflects the
CD8+ T cell activation process. For example, known naive/memory T
cell associated genes including TCF7, SELL and IL7R were found in
cluster 1 (Fig. 5b, c). Genes in this cluster showed decreasing expres-
sion along pseudotime, consistent with the loss of quiescent char-
acteristics over the activation process. Genes such as JUNB andCD7 are
responsible in the induction of differentiation into effectors and thus
catch up expression shortly in cluster 2. Genes in cluster 2 also include
early activation marker CD69, GZMK and AP-1 family members (e.g.
JUNB, JUN), suggesting that this cluster plays a role in the cell fate
switch from effector memory T cells to terminal effector T cell phase.
By contrast, genes in clusters 4 and 5 both show increasing expression
along pseudotime, with cluster 5 reaching its peak expression later
than cluster 4. We found that genes encoding functional effector
molecules such as CCL5 and IFNG are enriched in cluster 4, and cluster
5 is enriched in both functional activation features such as GZMB,
TBX21 and CX3CR1 and terminal differentiation gene features such as
GNLY, CD244 and CD38 (Fig. 5c).

We next investigated differences in the CD8+ T cell activation
program between mild and moderate patients. The analysis of cell

Fig. 4 | Evaluation of the FDR control and statistical power for detecting dif-
ferential genes associated with sample covariate (XDE). a An example null gene
where no differential signals are expected along the trajectory between two sample
groups (n = 4 for each group). Curves aremodel-fitted gene expression patterns for
each sample (left) or sample group (right). b Examples of non-differential (non-
XDE) genes and differential (XDE) genes. Each dot represents a cell. Curves
represent sample-level model-fitted patterns. c Heatmaps in four white-bar-
separated panels to show the expression patterns of significant genes (rows) by
cells (columns) ordered by pseudotime. gs:“gold standard”. limmaPb: limma
pseudobulk method. d Model-fitted temporal patterns of group 1 and 0 averaged
across each gene cluster. e, f Performance evaluation of all methods in five spike-in
signal strengths settings (x-axis: 0.5, 1, 2, 3, and 4). e FDR control performance
comparison among Lamian.pm, Lamian.chisq, and other existing methods. FDR

difference is the difference between the area under the realFDR ~ reportedFDR
curve and the diagonal line as illustrated in (g). Plots in the 2nd row shows the
comparison when gold-standard genes are stratified into trend, mean, and both
trend andmean differences. f Similar to (e) but compares the power using the area
under sensitivity ~ realFDR curve as illustrated in (h). i, j are about HCA bone
marrow data. i Overlap (dot) between XDE genes reported by different methods
and sex chromosome genes as a gold standard, along with permutation test null
distribution (violin plot) of the overlap and p-values (one-sided, 104 permutations,
see Fig. S12a). j Purple-yellow plots display the patterns output by pooling all cells
fromall samples in each groupbycondimentswhile the green-brownplots display
those output by Lamian which fits sample-specific patterns. Source data are pro-
vided as a Source Data file.
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density using XCD test shows that the abundance of activated effector
T cells is significantly increased inmoderate compared tomild disease
(p = 1.38 × 10−61, Fig. 5d). The analysis of gene expression usingXDE test
identifies 1315 XDEgenes, whichweregrouped into 14 clusters (Fig. 5e).
The first 12 clusters contain genes with pseudotemporal trend differ-
ences (including bothSig and trendSig), and their trend differences
follow 6 major patterns (Fig. 5f, e.g. cluster 2a and 2b have the same

trend difference pattern, but cluster 2a has no significant mean shift
whereas cluster 2b has significant mean shift). The last 2 clusters
contain genes withmean shift only. In cluster 1, TBET (TBX21) and ZEB2
are major transcription factors (TF) for CD8 T cell effector
responses44–47 and drive IFNG production. Genes in this cluster tend to
have lower expression inmoderate patients compared tomildpatients
and the magnitude of difference increases along the pseudotime
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(Fig. 5e, f), suggesting thatmild patients have amore robust functional
effector CD8 T cell response. In cluster 6 (incl. 6a and 6b), several
interferon stimulated genes such as IFI6 and ISG15 as well as terminal
differentiation transcription factor BLIMP-1 (encoded by PRDM1)48

become increasingly more upregulated in moderate patients com-
pared to mild patients along pseudotime, suggesting that a stronger
inflammation in moderate patients drives CD8 T cell termination.
Together, these data indicate that compared to mild disease, CD8
T cells in moderate COVID-19 patients are programmed to be less
functional effector-like and more terminally differentiated. This is
consistent with previous observation that comparing to the COVID-19-
recovered donors, ongoing disease patients show a more TEMRA dif-
ferentiation with less T-bet+ functional effector CD8 T cells49.

We further compared Lamian with the other XDE detection
methods. We first randomly partitioned the COVID samples into two
sets and detected XDE genes between mild and moderate samples
within each set. We then examined the proportion of overlap between
the two XDE gene lists. By applying Lamian.pm and Lamian.chisq, we
achieved the highest overlap proportion between the two partitioned
data sets. Phenopath failed to run on this data within one week and
with 400GB memory. Among the remaining methods, condiments
performed slightly better than the other methods, followed by
monocle2TrajTestCorr, limma, and tradeSeq, but all methods per-
formed worse than Lamian (Fig. 5g). This suggests that XDE genes
identified by Lamian are most reproducible when analyzing different
sets of samples. A closer examination of the sample-level pseudo-
temporal curves shows that XDE genes detected by the othermethods
contain a large number of false positives. Take condiments, the top
performer in the remaining methods, as an example. Condiments
reported 3809 genes, including 2622 that were not detected by
Lamian. The sample-level curves show thatmanyof such genesdid not
show clear group differences after accounting for sample-level varia-
bility (Fig. 5i). Lamian reported 1315 XDE genes, including 128 that
were solely detected by Lamian. For these genes, group differences
cannot be explained only by the sample-level variation (Fig. 5j).

Collectively, our analyses demonstrate that Lamian provides a
powerful tool for identifying differences associated with covariates
that the other methods do not offer. The COVID analysis also
demonstrates how one can use multi-sample differential pseudotime
analysis to understand dynamic gene expression programs in a
disease.

Lamian analysis of tuberculosis data demonstrates efficiency in
handling large datasets while adjusting for batch effects
To demonstrate and evaluate Lamian ’s ability to analyze large data-
sets and detect differences associated with sample covariates while
adjusting for potential confounders such as batch effects, we analyzed
an atlas-size dataset consisting of 337,191 memory T cells from 184
donors (100 females and 84 males) in a tuberculosis (TB) progression
cohort50 (Fig. 6a, b). This dataset has recently been used for demon-
strating co-varying neighborhood analysis and biologicallymeaningful
cell abundance differences between males and females were reported

along the second principal component of the co-varying neighbor-
hood abundance matrix (NAM-PC2)51. Consistent with that study, we
provided NAM-PC2 as cells’ pseudotime and conducted differential
analysis (Fig. 6a). Samples in this dataset are profiled in multiple bat-
ches (Fig. 6b). We added batch indicators to the Lamian regression
model to account for batch effects.

TCD analysis shows that the cell density changed significantly
along the trajectory (Fig. 6c), but the density change was not corre-
lated with cell cycle (Fig. S7). Like previous examples, while the cell
density change here could reflect real biology, we cannot rule out the
possibility that it is due to technical sampling bias. TDE analysis shows
that geneswith expression elevated in themiddle range of pseudotime
(cluster 2) are enriched in regulation of T cell activation, and the genes
with strong upregulation in the later stage of pseudotime (clusters 5)
are enriched in gene ontology terms such as “immune response -
activating cell surface receptor signaling pathway”, suggesting that the
pseudotime reflects a T cell activationprocess (Fig. S16a, b). Consistent
with this, typical effector transcription factors, such as ZEB2, TBX21, as
well as other effector genes such asGZM family members and PRF1, all
show a clear increasing pattern over the pseudotime (Fig. S16a).

Consistent with previous report51, XCD test revealed significant
cell abundance changes between males and females along the pseu-
dotime. T cells from females were more enriched towards naive status
(early pseudotime) compared to T cells from males. By contrast, male
cells were more enriched towards terminal activation status (late
pseudotime) (Fig. 6c).

XDE analysis between male and female identified 1120 sex-
associated differential genes grouped into 14 clusters (Fig. 6d,
S16c). Among them, 12 clusters had trend differences or both trend
differences and mean shifts. The trend differences of these 12
clusters can be further grouped into 6 patterns. For example, pat-
tern 4 (clusters 4a, 4b) were more highly expressed in males than
females and their difference has an overall increasing and then
decreasing trend (Fig. S16c). These genes were enriched in proteins
targeting ER andmembrane (Fig. S16d). By contrast, genes in cluster
1 were more highly expressed in females compared to males along
pseudotime, and the absolute difference between female and male
first increased and then decreased (Fig. S16c). These genes were
enriched in gene ontology terms including lymphocyte activation,
leukocyte activation and other immune-activation-related features
(Fig. S16d), suggesting that T cells from the female group have a
stronger T cell response to the disease. The data also suggest that
the induction of these genes happens earlier in females along the T
cell activation pseudotime. Furthermore, key T cell activation
transcription factors, such as ID2 and STAT5B, were involved in this
activation process, along with other functional effector molecules
such as GZMA, CCL5 and GZMK (Fig. 6d). These molecular-level
discoveries are consistent with the phenotype of female patients
infected with TB having a higher TH1 response feature compared to
male patients52. On the other hand, the increased abundance of
naive T cells in females compared to males (Fig. 6c) could poten-
tially provide a compensating mechanism to control the total

Fig. 5 | Lamian analysis of COVID-19 samples identifies differential genes rela-
ted toT-cell activationand inflammationbetweenmildandmoderatepatients.
a Principal component plot of CD8+ T cells colored by pseudotime which reflects
theT cell activationprocess.bHeatmap showing theoriginal (left) andmodel-fitted
(right) expression of TDE genes along the T cell activation pseudotime. c Example
TDE genes from different TDE clusters shown in (b). Dots are cells. Curves are
samples' pseudotemporal patterns fitted by Lamian. d Pseudotemporal pattern of
the cell density for each sample representedby a curve. P-values (one-sided) ofTCD
and XCD tests indicate significant change along pseudotime and significant dif-
ference between mild and moderate samples (n = 114). e Heatmaps showing the
pseudotemporal expression patterns of XDE genes (rows). Cells (columns) from
moderate and mild patients are plotted separately and ordered by pseudotime.

White bars are used to separate original temporal gene expression, model-fitted
temporal gene expression, group trend difference (moderate group minus mild
group), and groupmean shift. Example genes related to immune and inflammation
processes are marked. f Each XDE gene cluster in (e) is shown with the averaged
group difference (left: black) and two example genes. For each example gene, the
curves represent its pseudotemporal pattern for each sample. g Samples are ran-
domlypartitioned into twodatasets. For eachmethod, the proportionof topNXDE
genes that overlap between the two datasets (y-axis) is shown as a function ofN (x-
axis). h A Venn diagram showing the number of XDE genes reported by condi-

ments and Lamian. i–j Example genes that are reported only by condiments (i) or
Lamian (j). Each gene has two plots: sample-level patterns, and group-level pat-
terns fitted by the method. Source data are provided as a Source Data file.
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amount of functional immune activation in vivo, via reducing the
number of responding cells in females when the per cell effector
function is high.

To compare with the other XDE methods, We randomly parti-
tioned the samples into two sets, detected XDE genes between female
and male samples within each set, and examined the proportion of
overlap between the two XDE gene lists. Phenopath, tradeSeq and
condiments failed to run on this atlas-size data. Among the remaining

methods, XDE gene rankings produced by Lamian.pm were most
reproducible, followed by Lamian.chisq and monocle2TrajTestCorr
(Fig. 6e, f). XDE genes reported by Lamian and limma showed sig-
nificant overlap with the sex chromosome (X and Y) genes and largest
overlap with the genes escaping X-chromosome inactivation, whereas
monocle2TrajTestCorr did not (Figs. 6g, S17).

Finally, we compared Lamian results with and without adjusting
for batch effects by examining the consistency of XDE genes between

Fig. 6 | Lamian analysis of 184 tuberculosis (TB) samples identifies differential
pseudotemporal genes and cell density between male and female while con-
trolling for batch effects. a UMAP51 showing cells color-coded by pseudotime
constructedusingNAMPC2.b Study design showing sample batches. cCell density
distribution along pseudotime for each sample (curve) (TCD test p < 2.22 × 10−308,
XCD test p = 8.9 × 10−6, both are one-sided). d Heatmaps showing the expression
patterns of sex-associated XDE genes (rows) in cells (columns) ordered by pseu-
dotime. White bars are used to separate original expression, model-fitted expres-
sion, group trend difference (maleminus female), and groupmean shift. e Samples
are randomlypartitioned into twodatasets. For eachmethod, theproportion of top
NXDEgenes thatoverlapbetween the twodatasets (y-axis) is shown asa functionof
N (x-axis). f Average overlap in (e) (i.e. area under the curve divided by the x-axis

length). g Overlap between XDE genes reported by different methods and sex
chromosome genes, along with p-values in permutation test (one-sided, 104 per-
mutations). Methods without outputs within 1 week and 400GB are not shown in
(e–g). h Proportion of XDE genes that overlap between two partitions of data, with
versus without batch correction. The TB dataset was split into two: one contains
one batch, and the other one contains all remaining batches (only use the batches
with ≥2 samples in both sexes). For the one with multiple batches, Lamian is run
with and without batch correction. The data split was repeated 12 times. Each
boxplot shows the distribution (center: median; bounds of box: 1st and 3rd quar-
tiles; bounds of whiskers: data pointswithin 1.5 IQR from the box;minima;maxima)
of overlap in the n = 12 splits. Source data are provided as a Source Data file.
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separate partitions of samples. Adjusting for batch effects improved
the analysis, yielding more reproducible XDE genes (Fig. 6h).

Computational efficiency
Lamian is computationally tractable. For analyzing the HCA bone
marrow dataset with 32,819 cells and 8 samples, Lamian.pm took
4.2 hours to run the whole pipeline (0.1h for trajectory variability, 2.7 h
for XDE detection and 1.4h for TDE detection, 0.01h for cell density
test) on a computer cluster with 25 CPUs (2.5 GHz CPU and atmost 163
GB RAM combining all CPUs). Lamian.chisq is more efficient and only
took 0.5 h and 6.2GB RAM. For analyzing 39,512 CD8 T cells in the
COVID dataset with 114 samples, Lamian.pm and Lamian.chisq took 37
and 2.9 hours and 285 and 5 GB RAM, respectively, to run the whole
analysis pipeline. For atlas-size data (more than 105 cells), Lamian uses
HDF5 file format to store and analyze the data to increase the com-
putational efficiency. For the TB dataset with 337,191 cells from
184 samples, Lamian.pm can finish the analysis with 114.1 h and 243 GB
memory, and Lamian.chisq took 15.8 h and 5.1 GB memory. As the TB
analysis only involved Lamian modules 3 and 4, we additionally
benchmarked modules 1 and 2 using synthetic data and found that
they are also scalable to atlas level data (Fig. 18a, b). XDE analysis is the
most time-consuming andmemory-intensive component of the whole
analysis. For this component, Fig. S18c, d andTableS2 further compare
the computation time and memory of different methods on different
datasets. Lamian.chisq and monocle2TrajTestCorr are the fastest and
Lamian.chisq requires least memory. Lamian.pm is slower but it is
capable of handling atlas-level data. Unlike Lamian, PhenoPath,
condiments and tradeSeq are not scalable to large datasets. con-
diments and tradeSeq failed to handle the TB data, and PhenoPath
failed to handle both COVID and TB data within one week and with
400GB memory.

Discussion
In summary, Lamian provides a systematic solution to multi-sample
pseudotime analysis capable of detecting topology, gene expres-
sion and cell density differences between different conditions. In
biomedical research, while making new discoveries is exciting,
ensuring that the discoveries are real and replicable is equally
important. One challenge the scientific community faces today is
thatmany findings cannot be replicated or validated in independent
studies53. One important contributor to this problem is the flawed
statistical analyses which can produce a large number of false dis-
coveries. Such irreplicable false discoveries can be detrimental by
distracting investigators from real signals and misleading sub-
sequent research efforts, resulting in substantial waste of precious
human and financial resources. In the context of pseudotime ana-
lysis, our results demonstrate that, due to lack of appropriate
consideration of cross-sample variability, existing pseudotime
methods can report thousands of false differential genes in null
simulations where the data do not contain any true differential
signals. This highlights a critical gap in the pseudotime literature
and an open challenge that needs to be addressed. Lamian fills in
this gap by introducing a comprehensive statistical framework,
including a functional mixed effects model, to account for cross-
sample variability in the multi-sample differential pseudotime ana-
lysis. In order to benchmark this method, we applied it to both
simulated and real data. We note that the analyses of three real
datasets (HCA-BM, COVID, TB) mainly serve the purpose of illus-
trating and evaluating Lamian, and that making new biological
discoveries per se is not the focus of this study. The orthogonal
information (e.g. sex chromosome genes) and large sample size
(e.g. COVID and TB data) available in these data make it possible to
objectively and robustly compare different methods by quantifying
the overlap with orthogonal information or between independent
data partitions. Our results in these simulated and real data show

that the solution provided by Lamian substantially outperforms
other existing methods to prioritize true discoveries and filter out
false discoveries that are not generalizable to new samples.

Lamian is a free and open source R package with a modular
structure. While we demonstrated its default pipeline in this article,
users can replace certain analysis modules by their own data or algo-
rithm. For sample harmonization, we used Seurat32 to embed cells
into a common low-dimensional space. One could also use other
methods such as Harmony33 and scVI34. For example, in our HCA bone
marrow analysis, using Seurat, Harmony and scVI produced similar
branching structure and differential genes (Figs. S19, S20). In real
applications, different harmonization methods may perform differ-
ently. We recommend users to compare different harmonization
methods and choose the one most consistent with the existing
knowledge. A systematic comparison of harmonization methods is
beyond the scope of this study. Readers are referred to a recent
benchmark study35 for discussions on which harmonization methods
to use under different conditions.

In Lamian, TSCAN is used as the default method to construct
pseudotimedue to its flexibility and scalability. TSCAN uses the cluster-
based MST approach to reduce the number of tree nodes (e.g. clus-
tering 1 million cells into 1000 clusters will result in only 1000 tree
nodes instead of 1 million tree nodes) and hence can handle a large
number of cells. In terms of flexibility, while TSCAN by default deter-
mines the number of cell clusters automatically via an elbow method,
users have the option to specify their own cluster number if they are
not satisfied with the default cluster number. Increasing the cluster
number may create a more complex tree with a more detailed view of
the biological process. However, the increased complexity could also
introduce noise and false branches (Fig. S3). In real applications, even
though one may construct a more complex tree, a key question is
whether one can trust that the tree structure is real rather than random
noise. Answering this question is challenging when there is little or no
prior knowledge about the underlying biological process. Lamian
addresses this issue via bootstrap and detection rate. A low confidence
tree branch can be reflected by its low detection rate. Based on our
experience, applying this criterion often leads to relatively simple tree
structure. This does not imply that the underlying tree structure is
necessarily simple. Instead, it only reflects the fact that the available
data can only provide enough information to support robust conclu-
sion on a relatively simple tree and there is not enough information to
drawconclusions on amore complex tree structure. If users have prior
knowledge that supports a more complex tree structure, they can use
the manual option provided by TSCAN to choose a larger cluster
number to define more detailed tree structure. In addition to cluster
number, TSCAN also allows users to manually specify the order of cell
clusters in the trajectory, providing another way to adjust the trajec-
tory based on users’ prior knowledge. These options in TSCAN allow
users to conveniently perform analysis on more complex tree struc-
tures. Once the tree topology is given, all the remaining analyses
including those in modules 2 to 4 (differential topology, XDE, TDE,
XCD, TCD) can be carried out as usual.

Besides TSCAN, one also has an option to use user-provided
pseudotemporal trajectories as illustrated in the TB analysis. In fact,
onemay use Lamianmodules 3 and 4 as downstreamanalysis tools for
other pseudotime methods such as Monocle2, Monocle3 and
slingshot. However, Lamian modules 1 and 2 which construct tra-
jectory and quantify its uncertainty and variation currently do not
support other pseudotime methods due to various issues including
scalability and implementation challenges (Supplementary Notes). For
example, slingshot, a popular MST method similar to TSCAN, does
not scale well to bootstrap due to its time-consuming principal curve
fitting. For Monocle2 and Monocle3, modifying Lamian ’s trajectory
topology uncertaintymodule to support them is non-trivial due to lack
of interoperability between the data structures used by different
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methods to represent trajectory topology. A future direction is to
tailor these methods to improve their scalability and/or interoper-
ability to allow their seamless connection to Lamianmodules 1 and 2.

Uncertainties in the pseudotime analysis include both the uncer-
tainty of the inferred pseudotemporal trajectory and the uncertainty of
gene expression or cell abundance conditional on pseudotime. In
Lamian, the trajectory inference uncertainties are characterized by
bootstraping cells to computedetection rates. Conceptually, one could
also account for the pseudotime reconstruction uncertainty in the
downstream differential gene expression and cell abundance analysis
by fitting the temporal gene expression and cell abundance curves for
each bootstrapped tree. However, practically, it will make the differ-
ential analysis difficult to implement and make the results difficult to
summarize and report. This is because trees reconstructed from dif-
ferent bootstrap samples can have different topologies due to the
randomness. A branch that appears in one treemay not exist in another
tree, and often it is unclear how one should align branches of different
trees. It is unrealistic to enumerate all branches that occurred in
bootstrapped trees, and themeaning of differential expression along a
branch can be unclear if the branch does not always exist. For this
reason, Lamian separated the evaluation of uncertainties of the infer-
red pseudotemporal trajectory (i.e. the construction of minimum
spanning tree) and the evaluation of uncertainties of gene expression
using a sequential “conditional" procedure. In otherwords, ourmodule
1 evaluates the uncertainty of pseudotime (MST) construction. Next,
conditional on a tree lineage and conditional on the corresponding
inferred pseudotime, modules 3 and 4 perform differential analyses
using bootstrap sampling to account for the cell-level uncertainty,
followed by modelling sample- and cell-level variability to account for
gene expression variability and uncertainty. This sequential procedure
avoids the complication of comparing different trees, making it easier
for summarizing the analysis results to end users. Thus, while it may be
imperfect, it provides a practical solution to this complicated problem.
Developing better methods that can simultaneously account for all
sources of uncertainties including pseudotime inference uncertainty,
gene expression and cell abundance inference uncertainty, and cross-
sample and cross-cell variability remains a future research topic that
warrants further investigation.

Currently, the statistical model in Lamian is formulated for
scRNA-seq data. However, its general principle and statistical frame-
work may be applicable to other data types such as single-cell ATAC-
seq data aswell, although the other data typesmay have different data
characteristics that require one to tailor the model accordingly. These
extensions will be a topic for future research.

Methods
Data
Human Cell Atlas bone marrow dataset (HCA-BM). The raw count
matrix of bone marrow scRNA-seq data sequenced in 10x Genomics
platform from 8 healthy donors were downloaded from the Human
Cell Atlas (HCA) data portal37,38 (immune cell atlas of human
hematopoietic system). The raw data consist of 42,925 genes and
290,861 cells. Cells with fewer than 5000 reads, fewer than 1,000
expressed genes (i.e. genes with nonzero read count), or more than
10% of reads mapped to the mitochondrial genome were deemed as
low quality and filtered out. We also filtered out genes that were
expressed in less than 0.1% of all cells. This results in a data matrix of
22,401 genes × 32,819 cells used for subsequent analyses. See Supple-
mentary Notes and Fig. S21 for a more detailed discussion of filtering
parameters and additional quality control (QC) plots.

COVID19 dataset (COVID-Su). The raw count matrices of 256 PBMC
10x Genomics scRNA-seq samples from 139 COVID-19 patients were
downloaded from E-MTAB-935743. We filtered out cells with fewer than
2,000 reads or 500 expressed genes or more than 10% mitochondrial

reads. We also filtered out samples with fewer than 500 cells.
Seurat(v.3.2.1)32 was applied toprocess, integrate data across samples
and perform the cellular clustering with default settings. Cell types
were annotated based on known marker genes. CD8+ T cells were
identified usingCD3D expression > 1 log-scaled library-size-normalized
SAVER-imputed read counts and CD8A expression > 1 criterion. Sam-
ples with fewer than 100 CD8+ T cells were filtered out. Among the
total of 161 samples that passed the filters, we focused on analyzing
samples from 66 mild and 48 moderate patients subsequently. This
results in a data matrix of 26, 701 genes × 55, 953 cells used for sub-
sequent analyses.

Tuberculosis (TB) dataset. We obtained the pre-processed gene
expressionfile GSE158769_exprs_raw.tsv.gz of theTBRUdataset directly
from GSE15876950. This dataset consists of 500,089 memory T cells
from 259 donors that were profiled with CITE-seq. NAM-PC1 and NAM-
PC2 coordinates of 393,998 cells were obtained from the authors of
CNA51 (also see its supplementary file of Fig. 5A51). Batches with at least
onemale sample and at least one female samplewere retained. Samples
with at least 1000 cells and genes with expression values >0.1 in at least
1% of cells were retained. The NAM-PC2 values were used to order cells
to produce pseudotime. These processing steps result in a data matrix
of 9317 genes × 337,191 cells (184 samples from 38 batches, with 100
female and 84 male samples) which was used for subsequent analyses.

Data harmonization and preprocessing
Before Lamian analysis, one needs to first harmonize data from dif-
ferent samples. The purpose of harmonization is to match cells of the
same type across samples so that the same type of cells can be com-
pared across samples. As such, it removes both biological differences
of interest (e.g. the same cell type can have differential expression
between two sample conditions which is removed by harmonization)
and unwanted technical differences (e.g. batch effects) among sam-
ples. In downstream analyses, since one is interested in biological
variation across samples and conditions, Lamian will use the original
normalized gene expression values instead of the harmonization-
corrected expression values, and it will use a regression framework to
remove unwanted technical variations such as batch effects but retain
biological differences across samples. In this study, we used
Seurat(v.3.2.1)32 to integrate (or harmonize) multiple samples in each
dataset. For differential expression (DE) analysis, SAVER was used to
impute gene expression values to address the drop-outs in the data. All
DE methods used imputed values except tradeSeq and condiments
since they require count values as inputs. Principal Component Ana-
lysis (PCA) and Uniform Manifold Approximation and Projection
(UMAP)54 were used for visualization, and they were both run using
default settings.

Constructing pseudotemporal trajectory and evaluating its
uncertainty
In the default mode of Lamian, after samples are integrated, the har-
monized data are used to construct pseudotemporal trajectory using a
cluster-based minimum spanning tree (cMST) approach. K-means
clustering is applied to cluster cells based on the top principal com-
ponents (PCs) of log2-transformed library-size-normalized gene
expression profiles. Trajectories are then inferred as in TSCAN by
constructing a minimum spanning tree that treats cluster centers as
nodes. The number of PCs and the cell cluster number are both
determined using an elbow method23. The origin of the pseudotime is
specified by users based on marker gene expression (or the origin cell
types if users input the cell types annotation). For example, in the bone
marrow data, the cluster with the highest expression of hematopoietic
stem cell (HSC) marker CD34 was set as the origin. Once the origin of
the trajectory is given, one can enumerate all paths and branches.
Branches are identified based on nodes with degree > 2.
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For each of the branch, we characterize its uncertainty using its
detection rate in 1000 bootstrap samples. Each bootstrap sample is
createdby sampling cells fromtheoriginal datawith replacement. Cells
in the bootstrap sample are used to reconstruct pseudotemporal tra-
jectory using the same cMST approach as in the original data. The
origin of the pseudotime in a bootstrap sample is determined using the
cell cluster with the smallest mean of cells’ pseudotime in the original
data. We then ask whether each branch in the original data is also
identified in the bootstrap sample by performing pairwise comparison
of branches between the original and bootstrap data. For a pair of
branches (one from original data and one from bootstrap sample), we
use the Jaccard index to evaluate their overlap (i.e., what percentage of
cells in these two branches are shared). If the Jaccard index exceeds a
cutoff, then the branch in the original data is called detected in the
bootstrap sample. To determine the cutoff, a null distribution of Jac-
card index is constructedby evaluating the overlap between the cells in
the branch and a randomly sampled set of cells with the cell number
matching those in the branch for 1000 times. The 0.99 quantile of this
null distribution is used as the cutoff. After comparing the original
trajectory with all bootstrap samples, the detection rate of a branch is
defined as the proportion of bootstrap samples in which the original
branch can be detected.

Tree variability across samples and differential topology
analysis
For each sample, the proportion of cells in each branch is calculated
and referred to as “branch cell proportion”. For each branch, the var-
iance of branch cell proportion across samples is reported to char-
acterize its cross-sample variability.

To test differential topology, by default a binomial logistic
regression model is fitted for each branch. Here the branch cell
count is treated as the dependent variable and modeled using
binomial distribution Binomial(n, p) where n is the total cell count
in a sample and p is the underlying true branch cell proportion.
The regression models logðp=ð1� pÞÞ as a function of the sample
covariates which are specified by users as the independent vari-
ables. Statistical significance of the association between a sample
covariate and the branch cell proportion is determined by testing
whether the corresponding regression coefficient is zero using
Wald test. The p-values are adjusted for multiple testing using the
Benjamini-Hochberg procedure to obtain false discovery rates
(FDRs)31. By default, FDR≤0.05 is used as the significance cutoff.
As an example, if two conditions have different topologies and
each has a condition-specific branch, then after data integration
and trajectory construction, one will have a branch (branch A)
that only contains cells from condition 1, and another branch
(branch B) that only contains cells from condition 2. The differ-
ential topology test will test the cell proportion differences
between the two conditions for each branch. For branch A, it will
report that there is a significant difference in cell abundance
between condition 1 and condition 2, and it will also report the
mean cell proportion in that branch for each condition. Users will
be able to see that the proportion of cells in branch A in each
sample from condition 2 is almost zero, but the cell proportion in
branch A for condition 1 is above zero. Therefore, based on this
information one will know that branch A is likely condition-1-
specific. Similarly, one can tell that branch B is condition-2-
specific since the cell proportion on that branch is almost zero for
condition 1 and is positive for condition 2, and the difference
between the two conditions is significant.

Optionally, users can also fit a multinomial logistic regression by
considering all branches jointly. Assume there are L branches, and let
p1,…, pL be the underlying true branch cell proportions for these
branches in a given sample (

PL
l = 1 pl = 1). In the multinomial logistic

regression, one chooses a branch as the reference branch. By default,

Lamian chooses the most abundant branch (i.e. the branch with the
largest number of cells) as the reference branch. Without loss of gen-
erality, let L denote the reference branch. The model assumes that the
branch cell counts in a sample follow a multinomial distribution
Multinomial(n, (p1,…, pL)) where n is the total cell count of the sample.
It models logðpl=pLÞ (l = 1,…, L − 1) as functions of sample covariates.
Statistical significance of the association between a sample covariate
and log odds is determined by testing whether the corresponding
regression coefficients are zero, similar to binomial logisitic regres-
sion. Compared to fitting a binomial logistic regression for each
branch, multinomial logistic regression allows one to account for the
fact that cell abundance in different branches are not independent.
The binomial logistic regression, on the other hand, may allow one to
conveniently explorewhether branch cell proportion of a givenbranch
increases or decreases (Supplementary Notes).

Modeling gene expression along pseudotime
Given a pseudotemporal path or branch, Lamian will describe how
gene expression Y varies along pseudotime t and characterize the
relationship between each gene’s pseudotemporal expression pattern
Y(t) and V sample covariates X1,…, XV (e.g. disease status, age, etc.)
using a functional mixed effects model.

Without loss of generality, belowwepresents the statisticalmodel
for one gene. All other genes can be analyzed in the sameway. We use
lowercase letters s and c to denote sample and cell, respectively, and
we use capital letter S to denote the total number of samples. Assume
that sample s consists of Cs cells. Let tsc be the pseudotime of cell c in
sample s. Given a gene, let ysc denote its expression level in cell c of
sample s. Let xs = ð1,xs1, . . . ,xsV ÞT be the realized values of covariates in
sample s. Here, we introduced anadditional term xs0 ≡ 1 as an intercept
term for the subsequent regression model.

We model each gene’s expression pattern along pseudotime as
functional curves and represent the function using a total of K + 1
B-spline basis functions ϕ0(t),ϕ1(t),…,ϕK(t). Here K is the number of
equidistant knots used to define B-spline bases. The gene’s functional
curve in sample s is YsðtÞ=

PK
k =0 ϕkðtÞbsk . For each gene, the optimalK

is automatically chosen by comparing values ranging from 0 to a pre-
definedmaximum (20by default) and selecting the one thatminimizes
the Bayesian Information Criterion (BIC). The BIC for a given K is cal-
culated as BICK =KS lnðPsCsÞ � 2

P
slK ,s + const. Here const is a con-

stant term that does not depend on K (hence irrelevant for finding
optimal K), and lK,s is the log-likelihood of the B-spline regression for
sample s (i.e. we fit a linear regression where the response variable is
the gene expression in cells and the independent variables are the
K + 1 B-spline bases).

The observed data of the gene are assumed to be generated from
this unobserved function after adding cell-level random noise ϵsc as
follows:

ysc = YsðtscÞ+ ϵsc

=
XK

k =0

ϕkðtscÞbsk + ϵsc

=ϕðtscÞTbs + ϵsc

ð1Þ

where

ϕðtÞ= ϕ0ðtÞ,ϕ1ðtÞ, . . . ,ϕK ðtÞ
� �T

bs = bs0,bs1, . . . ,bsK

� �T
ϵsc ∼Nð0, σ2

s Þ
ð2Þ

Since all samples share the same B-spline bases ϕ(t), the sample-
specific temporal pattern is described via the sample-specific regres-
sion coefficients bs. To model the relationship between a gene’s
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pseudotemporal pattern Ys(t) and sample covariates xs while
accounting for sample-to-sample variability that cannot be explained
by the covariates, we further assume

bs =

bs0

bs1

..

.

bsK

2
66664

3
77775
=

β00 β01 . . . β0V

β10 β11 . . . β1V

..

. ..
. ..

. ..
.

βK0 βK1 . . . βKV

2
66664

3
77775

1

xs1

..

.

xsV

2
66664

3
77775
+

us0

us1

..

.

usK

2
66664

3
77775
=Bxs +us

ð3Þ

where B is a (K + 1) × (V + 1) matrix representing unknown fixed effects
of covariates, and us is a (K + 1) × 1 vector representing unobserved
sample-level random effects (i.e. random variations among samples
with the same covariate values):

us ∼N 0, σ2
sΩ

� � ð4Þ

Here Ω is a (K + 1) × (K + 1) positive definite matrix. Note that the
degrees of freedom for estimating sample-level covariance matrix Ω
after accounting for V + 1 covariates are S − (V + 1) and one needs at
leastK + 1 degrees of freedom to estimate a full rank covariancematrix
with dimension K + 1. Therefore, if the sample size S does not exceed
V +K + 2, we do not have enough information to estimate an
unconstrained Ω. In that scenario, we add a constraint by assuming
Ω =ω2I(K+1)×(K+1) where I represents an identity matrix. This constraint
reduces the number of parameters in Ω to 1. Define

βk: = βk0,βk1, . . . ,βkV

� �T

β:v = β0v,β1v, . . . ,βKv

� �T

βT
k: is the kth row of B, corresponding to regression coefficients for

basis ϕk(t). β.v is the vth column of B, corresponding to regression
coefficients for the vth covariate Xv. If gene g’s expression pattern does
not depend on Xv, then β.v = 0.

To facilitate developing the model fitting algorithm, Eq. (3) can
also be rewritten in a vectorized form. Let IK be a K ×K identity matrix,
and

Xs = IK + 1 � xT
s =

xT
s 0 . . . 0

0 xT
s . . . 0

..

. ..
. ..

. ..
.

0 0 . . . xT
s

2
666664

3
777775
ðK + 1Þ× ½ðK + 1ÞðV + 1Þ�

β= βT
0:,β

T
1:, . . . ,β

T
K :

h iT
= β00, . . . ,β0V ,β10, . . . ,β1V , . . . ,βK0, . . . ,βKV

� �T

ð5Þ

Then Eq. (3) can also be written as:

bs =Xsβ+us ð6Þ

Thus, the observed data model in Equation (1) is equal to

ysc =ϕðtscÞTbs + ϵsc
=ϕðtscÞT ðBxs +usÞ+ ϵsc
=ϕðtscÞT ðXsβ+usÞ+ ϵsc

ð7Þ

where ϵsc ∼Nð0,σ2
s Þ and us ∼Nð0, σ2

sΩÞ. We further assume that σ2
s

follows an inverse-Gamma distribution:

σ2
s ∼ IGðα,ηÞ ð8Þ

For the given gene, let ys = ½ys1, . . . ,ysCs
�T denote its expression in

all cells in sample s, ϵs = ½ϵs1, . . . , ϵsCs
�T , and Φs = ½ϕðts1Þ, . . . ,ϕðtsCs

Þ�T ,
then Eq. (7) can also be written in a matrix form as:

ys =ΦsðBxs +usÞ+ ϵs
=ΦsðXsβ+usÞ+ ϵs

ð9Þ

The above model can be fit using an Expectation-Maximization
(EM) algorithm (see details in the Supplementary Notes). The algo-
rithm can estimate the unknown parameters Θ= β,Ω,α,η

� �
and infer

σ2
s based on the observed data. Here σ2

s ,α,η 2 R,
Ω 2 RðK + 1Þ× ðK + 1Þ, β 2 RðK + 1ÞðV + 1Þ.

Detecting differential expression associated with sample
covariate (XDE)
Under the Lamianmodel, detecting differential expression associated
with a sample covariate Xv amounts to testing whether
β:v = ½β0v,β1v, . . . ,βKv�T =0. An XDE gene is a gene with β.v≠0. For an
XDE gene, ifβ0v = β1v =… = βKv = c (i.e. allβkvs are equal), then the effect
of the covariate is to shift the gene’s pseudotemporal curveupordown
by a constant c for every unit change in Xv (because the B-spline bases
satisfy

PK
k =0 ϕkðtÞ= 1). Such a gene is called XDE with mean shift only.

Ifβkvs arenot all equal for anXDE gene, then the covariate also changes
the trend of the gene’s pseudotemproal curve. To systematically
detect and classify XDE genes, we consider the following nested
models:

• M0: β:v = ½β0v,β1v, . . . ,βKv�T =0.
• M1: β.v ≠0 and β0v = β1v =… = βKv= c.
• M2: β.v ≠0.

We conduct the following hypothesis tests:
• Overall XDE test: the null model M0 is compared with the alter-

native model M2. Rejecting M0 implies XDE.
• Mean test: M0 and M1 are compared. Rejecting M0 implies

mean shift.
• Trend test: M1 and M2 are compared. Rejecting M1 implies trend

difference.

A gene is called XDE if the XDE test is significant. For anXDE gene,
if the mean test is significant but the trend test is not significant, the
gene is called XDE with mean shift only. If the trend test is significant
but the mean test is not, then the XDE gene is called XDE with trend
difference only. If both the mean test and the trend tests are sig-
nificant, then the XDE gene is called XDE with both mean shift and
trend difference.

To conduct a hypothesis test comparing two models, we use a
permutation-based likelihood ratio test. Without loss of generality,
consider comparing null model M0 versus alternative model M1 as an
example (other model comparisons are handled similarly). The test
statistic is the log-likelihood ratio (LLR) betweenM1 andM0 computed
using the observed data. To construct the null distribution of the test
statistics, we use a permutation approach. In each permutation, we
first bootstrap the cells (keeping cell number the same as the observed
data) to account for the pseudotime variability, and then we permute
the values of the covariate Xv among the samples. Using the permuted
data, themodels are refit and the LLR statistic is recomputed.Using the
LLR obtained from all permutations (by default, 100 times), an
empirical distribution is fitted using kernel density estimate (base::-
density()) to serve as the null distribution. The p-value is calculated as
the tail probability of the null distribution (i.e. probability that a
LLR drawn from the null distribution is equal or larger than the
observed LLR). The p-values from all genes are adjusted for multiple
testing using the Benjamini-Hochberg procedure to obtain false
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discovery rates (FDRs)31. By default, FDR ≤0.05 is used as the sig-
nificance cutoff.

Besides permutation test, we also provide an option to compute
p-values and FDRbased on the asymptotic null distribution, that is, chi-
squared distribution, of the likelihood-ratio test (stat::pchisq()). The
degree of freedom is the difference in the number of parameters
between the full and null model. This option can be used if users need
computational efficiency and are willing to sacrifice some accuracy to
control FDR.

Adjusting for confounding variables such as batch effects
Since Lamian uses a general regression framework, one can adjust for
confounding variables such as batch effects by properly specifying the
design matrix. The design matrix x can contain multiple columns
corresponding tomultiple sample covariates. For example, given eight
samples (4 males and 4 females) sequenced in three batches, the
design matrix for XDE can be specified as

x =

1

x1

..

.

xs

..

.

xS

2
66666666664

3
77777777775

=

1 1 0 0

1 1 0 0

1 1 1 0

1 1 0 1

1 0 0 0

1 0 1 0

1 0 0 1

1 0 0 1

2
66666666666664

3
77777777777775

Here each row corresponds a sample. The first column is the intercept.
The second column represents samples’ sex (1 for female, 0 for male).
The third and fourth columns are dummyvariables to indicate batches.
Suppose one is interested in detecting XDE genes associated with sex,
one will only use the regression coefficients for the sex variable to
identify differential genes. The batch effects are accounted for by
columns 3 and 4.

Detecting differential expression along pseudotime (TDE)
Unlike Lamian, most existing pseudotime methods do not detect
differential expression associated with covariates (XDE). Instead, they
detect differential expression along pseudotime (TDE).While ourmain
focus is to detect XDEgenes,Lamian alsoprovides a function todetect
TDE genes.

When all samples are from one group without covariate, the
Equation (3) becomes

bs =

β00

β10

..

.

βK0

2
66664

3
77775
+us ð10Þ

Note that
PK

k =0 ϕkðtÞ= 1. Thus, if β00 = β10 =… = βK0 = c (i.e. all βk0s are
equal), then the pseudotemporal pattern shared by samples is
ϕ(t)Tβ.0 = c, which is a constant that does not change along pseudo-
time. Therefore, TDE detection can be formulated as comparing the
following two models:

• H0: βk0 (k =0, 1,…,K) are all equal
• H1: βk0 (k = 0, 1,…,K) are not necessarily all equal

This yields the following hypothesis test:
• TDE test: H0 and H1 are compared. Rejecting H0 implies differ-

ential expression along pseudotime (TDE).

The TDE test can also be generalized to account for sample cov-
ariates. With covariates, the compared models become:

• H0: βkv (k =0, 1,…,K) within each columnofB in Equation (3) are
equal (i.e. β.v = cv1 where v =0, 1,…,V and 1 represents a K + 1
vector with all elements equal to 1)

• H1: No constraint on B

The hypothesis test is conducted using a permutation-based
likelihood ratio test. We first compute the log-likelihood ratio (LLR)
between H1 and H0 as the test statistic using observed data. We then
construct the null distribution of LLR using permutations. In each
permutation, we first bootstrap the cells to account for pseudotime
variability, and we then permute the pseudotime of the cells within
eachsample.Using thepermuteddata, themodels are refit and the LLR
statistic is recomputed. The null distribution is derived by applying the
kernal density estimate (base::density()) to the empirical LLR statistics
obtained from all permutations (by default, for 100 times). P-value is
calculated as the tail probability of the empirical distribution. The p-
values from all genes are adjusted for multiple testing using the
Benjamini-Hochberg procedure to obtain FDR31. By default, FDR≤0.05
is used as the significance cutoff.

EM algorithm for fitting the Lamian model
The algorithm used to fit the Lamian model is provided in Supple-
mentary Notes in detail.

Analysis of cell density changes
Given a pseudotemporal path or branch, we divide the pseudotime
from0 to itsmaximum into 100 consecutive intervals of equal lengths.
The number of cells in each interval t and sample s is counted and
denoted as rst. One approach to modeling cell density changes is to
model rst using a count distribution (e.g. PoissonorNegative binomial)
with mean Lsλst where Ls is a sample-specific normalizing constant
corresponding to the total cell number on the pseudotemporal path.
One can then model log λst as functional curves using B-spline bases
similar to the gene expression model. Fitting such a model, however,
requires algorithms such as Markov Chain Monte Carlo which makes
this approach less appealing computationally. We therefore use an
alternative and simpler approach inwhich rst/Ls ismodeled in the same
way as the gene expression model in equation (1) (i.e. treating time
interval t as cell and treating rst/Ls in the same way as ysc). In this way,
testing if the cell density changes along pseudotime (TCD test) or if a
sample covariate changes the pseudotemporal cell density curves
(XCD test) can be handled following the same procedure for TDE and
XDE tests. This approach is more computationally efficient and yields
reasonable results empirically in our benchmark data.

Comparisons with existing methods
XDE detection. For detecting differential expression associated with
covariates, we compared Lamian with tradeSeq27 (v.1.1.23), limma42

(v.3.40.6), monocle221 (v2.14.0), PhenoPath28 (v1.8.0), and
condiments29 (v.0.99.14). We applied tradeSeq by considering the
cells belonging to two groups as those belonging to two lineages. The
cell weights on each group were set as 0.99 and 0.01 respectively. We
then fit the models by running the fitGAM() function with the default
setting. All three types of tests for between-lineage comparisons were
included. Specifically, earlyDETest(), diffEndTest() and patternTest()
were applied to identify early drivers of differentiation, differentiated
markers and expression patterns over pseudotime, respectively.
limma was applied by pooling each sample as a pseudobulk. Its func-
tions lmFit(), eBayes(), and topTable() were used to perform the test.
Monocle2 provides a trajectory-conditioned test ‘monocle2TrajTest’
which compares a full model g(E(Y)) ~ β0 + f1(G) + f2(ϕ) with a null
model g(E(Y)) ~ β0 + f1(G) (see page 23 of the Monocle2 supplemental
material21). Here E(Y) is the expected values of the transcript counts Y,
g( ⋅ ) is the log function, G indicates sample group (note: in the original
Monocle2 paper G refers to genotype), ϕ is pseudotime, f1(G) models
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the different intercepts for different groups (note: f1(G) does not
involve pseudotime ϕ), and f2(ϕ) is a non-parametric function
that models gene expression as a function of pseudotime ϕ.
The ‘monocle2TrajTest’ evaluates whether f2(ϕ) is zero and it assumes
that f2(ϕ) is the same for different sample groups G. Therefore,
the trajectory-conditioned test ‘monocle2TrajTest’ is essentially a TDE
test and does not detect XDE. To detect XDE, we modified the build-
in functions in Monocle2, resulting in a revised test which
we call ‘monocle2TrajTestCorr’. In our revised test, the null
model is g(E(Y)) ~ β0 + f2(ϕ), and the full model is
g(E(Y)) ~ β0 + f1(G) + f2(ϕ) + f2(ϕ)f1(G). Comparing these twomodels will
test whether f1(G) + f2(ϕ)f1(G) (i.e., the difference between different
sample groups including both intercept and pseudotemporal trend
differences) is zero. To run PhenoPath, we provided sample covariate
information as a designmatrix where the first column is the phenotype
(1 or 0, indicating the two sample groups), and the second to S-th
columns are S − 1 dummy variables to indicate the S samples. P-values
are 1 − the tail probability of the test statistics’ z-scores (m_beta divided
by s_beta) which are assumed to be standard normal.condimentswas
run based on its user manual. The XDE in condiments was imple-
mented using the conditionTest() in the tradeSeq package.

TDE detection. For detecting differential expression along pseudo-
time, we compared Lamian with Monocle2 (v.2.14.0), Monocle322

(v.3.0.2.1), tradeSeq27 (v.1.1.23) and TSCAN23 (v.1.7.0). All methods
other than Lamian treat cells from all samples as if they were fromone
sample. Monocle2 performs the testing with an approximate χ2 like-
lihood ratio test. In this test, generalized additive models (GAMs) are
applied to fit the gene expression against pseudotime as a full model,
while the nullmodel considers the gene expression as a constant along
pseudotime. Monocle3 performs trajectory inference on the coordi-
nates from UMAP and then implements the Moran’s I test to identify
genes whose expression is associated with pseudotime with statistical
significance. TSCAN applies the same fitting and testing method as
Monocle2 except that TSCAN uses MGCV package and Monocle2
applies VGAM package. tradeSeq is used by Slingshot24 to identify
dynamic genes along pseudotime. Both tests designed for within-
lineage comparisons in tradeSeq were included (startVsEndTest()
and associationTest()). We also tried pseudotimeDE, but it did not
output results within one week and with 400GB and 20 CPU cores.

Significance cutoff
All p-values are provided as exact values except for situations where
the p-value computation reaches the computer’s precision lower
bound (i.e. the smallest value allowed by the precision). In that case, p-
values are reported as smaller than the precision lower bound. All p-
values reported by each method were adjusted for multiple-testing
using the Benjamini-Hochberg procedure to obtain false discovery
rates (FDRs)31. By default, FDR ≤0.05 is used as the significance cutoff.

Simulations
XDE detection. We first created null simulation data where we do not
expect any XDE genes. The simulationwas based on the 13,269 cells on
the erythroid branch in the real HCA-BMdata described above. For the
null simulation in Fig. 4a, the eight bone marrow scRNA-seqsamples
were randomly partitioned into two groups (group 0 and 1). Next, to
remove any group differences for a given gene, we divided the pseu-
dotime into 100 non-overlapping intervals of equal lengths. Within
each interval and within each sample group, we calculated the median
of the gene’s normalized expression. For cells in the sample groupwith
lower median value, we added their expression with the difference of
median expression between the two groups so that the two groups
have similar expression values.

Building upon the null dataset above, we then introduced in silico
spike-in differential signalswith varying strengths andpseudotemporal

patterns between the two sample groups to a randomset of genes. This
spike-in simulation data set was used in Fig. 4b–h. We randomly
selected 20% (1814) genes as the gold standard XDE genes (gs genes)
and randomly assigned them to 3 groups: trend difference only, mean
shift only, and both trend & mean differences. We then spiked in dif-
ferential trend, mean, or both trend & mean signals into these gold
standard genes based on their differential type. To generate the spike-
in signals, we selected highly variable genes from the remaining 80%
non-gold-standard (non-gs) genes using cells in sample group 0 and
using their original unpermuted data. To select highly variable genes,
we applied B-splines to fit the relationship between the standard
deviation (SD) and the mean of gene expression of the non-gold-
standard (non-gs) genes across cells in group 0. Genes with positive
residuals (i.e. SD is larger than its expected value estimated from the
mean expression) are selected as highly variable. We applied k-means
clustering to cluster these genes into 5 clusters using their standar-
dized log2-transformed SAVER-imputed expression. Louvain and
Gaussian mixture model clustering have also been separately applied
to examine the sensitivity to clustering methods. Here the cluster
number 5 was determined using an elbow method. For each gene that
was clustered,wefit a B-spline on the log2-transformedSAVER-imputed
expression againstpseudotime.Weevaluated themagnitudeof change
of the gene along pseudotime by calculating a F − statistic that com-
pares a full model (which assumes gene expression along pseudotime
is modeled using the B-spline curve plus additive noise) and a null
model (which assumes gene expression alongpseudotime is a constant
plus additive noise). We used highly variable genes (i.e. those with
positive residuals) as “source genes”. We ordered source genes in
increasing F − statistics. We categorized the tail 1814 source genes into
4 groups from the smallest to the largest F − statistics to represent
signal strengths fromweakest (1) to highest (4). In each signal-strength
simulation, we added the gene expression profiles in each sample from
the source genes in the same strength group onto those gold standard
genes. The signal-spike-in procedures were performed in SAVER-
imputed gene expression matrix and original count matrix in parallel.
For gold standard genes with trend difference, we added signals to
both group 0 and 1, except that the signals were permuted before
adding to group 1. For gold standard genes with mean shift, we per-
muted the source gene expression profiles within each sample before
adding signals to group0. For gold standard geneswith both trend and
mean differences, we added source signals directly to group 0 cells
without centering the data.

TDE, TCD, and XCD detection. Simulations for evaluating TDE, TCD
and XCD detection are presented in Supplementary Notes.

Evaluation
Evaluation in simulation. Performance of Lamian (Lamian.pm),
Lamian.chisq and other existing methods is compared based on FDR
difference and AUC. FDR difference is the difference between the area
under the realFDR vs. reportedFDR curve and the diagonal line. The
differences between the true and reported FDRs were calculated for
overall XDE test, trend test and mean test. Within each set of gold-
standard genes (trend, mean, and trend & mean), the area under
sensitivity-realFDR curve (AUC) was also calculated.

Evaluation on sex chromosomes. To evaluate overlap between
XDE genes reported by different methods and sex chromosome
genes as gold standard (see Fig. S12a), we counted the overlap
(i.e. the number of sex chromosome genes) among the top N XDE
genes for different Ns. The mean of the overlap across all Ns was
used as the observed overlap statistic. Null distribution was
constructed by permuting the order of the genes which originally
were ordered by increasing FDR. Violin plots show the permuta-
tion null distribution used to determine the statistical significance
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of the observed overlap statistics (dots), and p-values are shown
on the right of each plot.

Visualization
Each heatmap to visualize XDE test results is organized in four white-
bar-separated panels to show the expression patterns of XDE genes
(rows) by cells (columns) ordered by pseudotime. The 1st and 2nd
panels show original values and model-fitted values of gene expres-
sion. Cells from the samples in group 0 and 1 are separated. The 3rd
and 4th panels show the standardized model-fitted group difference
(trend difference) and the mean shift between groups, where white
space denotes no significant difference.

Data availability
The data used in this manuscript are all downloaded from publicly
available data sources. Specifically, HCA-BM data were downloaded
from HCA data portal (immune cell atlas of human hematopoietic
system)37,38 [https://data.humancellatlas.org/explore/projects/
cc95ff89-2e68-4a08-a234-480eca21ce79]. COVID-19 data were down-
loaded from theArrayExpress database under accession code E-MTAB-
9357 [https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-
9357]43, and TB data were downloaded from the Gene Expression
Omnibus (GEO) database under accession code GSE158769 [https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158769]50. All rele-
vant information about data is described in the Methods section. All
processed data generated in this study are provided in the Supple-
mentary Information/Source Data file. Source data are provided with
this paper and in Zenodo under accession code https://doi.org/10.
5281/zenodo.8274409[https://zenodo.org/record/8274409]55. Source
data are provided with this paper.

Code availability
The Lamian package (v.0.99.1) is provided as an open-source software
package with a detailed user manual available at https://github.com/
Winnie09/Lamian. All codes to reproduce the presented analyses are
publicly available in Github repository https://github.com/Winnie09/
trajectory_variabilityand also in Zenodo under the accession codeDOI:
10.5281/zenodo.8197779 [https://zenodo.org/record/8197779]56. R
version 4.0.2, topGO (v.2.42.0)57, and ComplexHeatmap (v.2.6.2)58

were used to perform the analyses in the manuscript. The R package
ggplot2 (v.3.3.0)59 for data visualization was used. All competing
methods are described in Table S1. BioRender (BioRender.com) was
used for generating part of Fig. 1a under a paid subscription, and the
publication agreement number is FS25T0PP8E.
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