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Inferring mitochondrial and cytosolic
metabolism by coupling isotope tracing
and deconvolution

Alon Stern1, Mariam Fokra2, Boris Sarvin 2, Ahmad Abed Alrahem2,
Won Dong Lee 2, Elina Aizenshtein2, Nikita Sarvin2 & Tomer Shlomi 1,2,3

The inability to inspect metabolic activities within distinct subcellular com-
partments has been a major barrier to our understanding of eukaryotic cell
metabolism. Previous work addressed this challenge by analyzing metabolism
in isolated organelles, which grossly bias metabolic activity. Here, we describe
a method for inferring physiological metabolic fluxes and metabolite con-
centrations inmitochondria and cytosol based on isotope tracing experiments
performed with intact cells. This is made possible by computational decon-
volution of metabolite isotopic labeling patterns and concentrations into
cytosolic and mitochondrial counterparts, coupled with metabolic and ther-
modynamic modelling. Our approach lowers the uncertainty regarding com-
partmentalized fluxes and concentrations by one and three orders of
magnitude compared to existing modelling approaches, respectively. We
derive a quantitative view of mitochondrial and cytosolic metabolic activities
in central carbonmetabolism across cultured cell lineswithout performing cell
fractionation, findingmajor variability in compartmentalizedmalate-aspartate
shuttle fluxes. We expect our approach for inferring metabolism at a sub-
cellular resolution to be instrumental for a variety of studies of metabolic
dysfunction in human disease and for bioengineering.

Metabolic activities are localized in distinct subcellular
compartments in Eukaryotic cells. Mitochondrial and cytosolic
metabolism play a central role in energy production, biosynthesis,
and redox balance. Numerous alterations in these metabolic
activities have been associated with human disease. Each sub-
cellular compartment has distinct metabolite pools, pH, energy
and redox state, and significantly differ in metabolic flux. Mito-
chondrial and cytosolic metabolism is tightly interlinked through
the transport of metabolic intermediates as well as redox and
energy co-factors, which complicates their studying once iso-
lated. Inferring mitochondrial and cytosolic metabolic activities
under physiological cellular conditions remains a major open
challenge1.

A variety of methods were proposed for inferring the con-
centration of metabolites as well as energy and redox cofactor in
mitochondria and cytosol2–9. The most straightforward approach is
performing measurements in isolated mitochondria4,5, though
mitochondrial extraction typically perturbs its metabolism. Recent
studies suggested methods for rapid cell fractionation and
quenching of metabolism to enable measurements of physiological
concentrations; e.g., via immunocapture of epitope-tagged
organelles5,10, nonaqueous fractionation (NAF)8, or through
digitonin-based selective permeabilization of plasma membrane6.
However, these approaches are technically challenging and may
alter the concentration of metabolites having rapid turnover rates.
Attempts to measure physiological redox and energy cofactor
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ratios were traditionally performed by measuring the cellular con-
centration of reactants of mitochondrial or cytosolic redox reac-
tions assumed to be in chemical equilibrium11–16. More recently,
fluorescence protein reporters have been developed to measure
NAD+/NADH ratio in the cytosol17–21 and mitochondria19,21,22.

The inference of mitochondrial and cytosolic metabolic flux is
even more challenging. A most common approach for inferring
fluxes is feeding cells with 13C tracers, measuring metabolite iso-
topic labeling patterns, and fitting the measurements with model
simulations via metabolic flux analysis (MFA)23–26. However, the
measured isotopic labeling of a metabolite in eukaryotic cell
extracts represents a mixture of potentially distinct labeling forms
across subcellular compartments. The latter has not been pre-
viously accounted for in MFA-based studies of eukaryotic cell
metabolism (implicitly assuming similar isotopic labeling forms of
metabolites in mitochondria and cytosol), which could markedly
bias flux interpretation. Attempts to infer compartmentalized flux
via isotope tracing techniques applied to isolated mitochondria
may suffer from nonphysiological conditions4,10,27. Recently, infer-
ence of central carbon metabolic fluxes in cultured cells was
demonstrated by performing isotope tracing followed by rapid cell
fractionation to infer compartment-specific isotopic labeling of
metabolites6. The inference of specific compartment-specific fluxes
was also demonstrated by utilizing particular isotopic tracers that
are metabolized differently in mitochondria and cytosol28,29, based
on the isotopic labeling of secretedmetabolites30, and based on flux
balance analysis (FBA) approach31.

Here, we show how mitochondrial and cytosolic metabolic activ-
ities can be inferred based onmetabolic measurements performed on
intact cells under physiological conditions by combining metabolic
modeling and computational deconvolution.We start by showing how
compartment-specific redox cofactor ratios can be inferred based on
deconvolution of metabolic concentration measurement and ther-
modynamics. Then, we provide a generic modeling approach for
jointly inferring compartmentalized fluxes and concentrations based
on deconvolution of isotope tracing measurements coupled with
metabolic modeling. We demonstrate the applicability of this
approach, deriving a first quantitative view of mitochondrial and
cytosolic central energy fluxes and concentrations across human
cancer cell lines without cell fractionation that potentially perturbs
the cells.

Results
Inferring mitochondrial and cytosolic redox cofactor ratios
analytically by deconvolution of metabolite concentration
measurements
We describe a simple approach for directly inferring redox cofactor
concentrations and ratios in mitochondria and cytosol based on
whole-cell measurements:

Cytosolic NADP + /NADPH ratio can be estimated based on the
thermodynamics of 6-Phosphogluconate dehydrogenase (6PGD) in
the cytosol, oxidizing 6-phosphogluconate (6PG) to produce ribulose-
5-phosphate (R5P) by reducing NADP+ toNADPH (Fig. 1a).We infer the
ratio of forward–backward flux through 6PGD (denoted by J+ and J−,
respectively) by feeding cells with [U-13C]-glucose and measuring the
mass-isotopomer distribution of 6-phosphogluconate (the fraction of
the metabolite pool having zero, one, two, etc. isotopic carbons;
Fig. 1b). M + 6 6PG (i.e., having 6 isotopic carbons) is produced from
fed isotopic glucose through the oxidative pentose-phosphate path-
way, while M+ 5 6PG is synthesized through reverse 6PGD flux from
R5P (incorporating 12CO2). Hence, under isotopic steady state, mass
balance entails that the forward–backward ratio is equal to R5Pm+5

6PGm+ 5

(“Methods”).
According to the flux-force relationship32, the ratio of forward-to-

backward flux through 6PGD is proportional to the Gibbs free energy

of this reaction:

ΔG= � RT ln J + =J�
� � ð1Þ

Hence, measuring the total cellular concentration of R5P and 6PG
(and assuming that they are strictly cytosolic), enables to infer the
cytosolic NADP+/NADPH ratio:

ΔG=ΔG0 +RT*ln
R5P*CO2*NADPHCY

6PG*NADPCY
ð2Þ

ΔG0 denotes the standard Gibbs free energy of 6PGD and estimated
here based on the group contribution method33–35. R and T represent
the gas constant and temperature, respectively.

Hence, we get:

NADP + CY

NADPHCY
=
R5P*CO2

6PG
*
J +

J�
e

ΔG0
RT ð3Þ

The measured total cellular concentration of NADP+ and NADPH
represents a mixture of their concentration in mitochondria and
cytosol and can be deconvoluted to the compartment-specific
concentrations36:

1� αð ÞNADPMT + αð ÞNADPCY =NADPWC ð4Þ

1� αð ÞNADPHMT + αð ÞNADPHCY =NADPHWC ð5Þ

where α denotes the relative volume of the cytosol out of total
cellular volume (Methods). Combining these deconvolution equa-
tions with an estimate of cytosolic NADP+/NADPH ratio enables to
infer bounds on the mitochondrial and cytosolic concentration of
these co-factors (as well as on the mitochondrial cofactor ratio;
“Methods”).

Applied to cultured HeLa cells, we find that while the whole-cell
NADP+/NADPH ratio is 0.1–0.3, the cytosolic ratio is at least sixfold
higher (~2–150), while the mitochondrial ratio is not higher than ~0.3
(Fig. 1c; showing 95% confidence interval computed based on experi-
mental noise in isotope tracing and concentration measurements;
“Methods”). The lower NADP+/NADPH ratio in mitochondria is asso-
ciated with ~2 orders of magnitude higher concentration of NADPH in
mitochondria (~1mM) versus in cytosol (<0.02mM); while the whole-
cell NADPH level is ~0.1mM (Fig. 1d). The estimated cytosolic NADP
+/NADPH ratio is consistent with previous measurements performed
in iBMK cells using similar thermodynamic considerations37. Notably,
our estimated NADP+/NADPH ratio is 1–2 order of magnitude higher
than previous estimates that were based on simplifying assumptions
that the NADP+/NADPH-dependent malic enzyme 1 (ME1)13,14,16 and
isocitrate dehydrogenase 1 (IDH1)16 are at chemical equilibrium and
that the total cellular concentration of reactants in these enzymes
match the cytosolic concentrations; which do not hold here (see
“Discussion”).

A similar approach can be used to estimate compartmentalized
NAD+ and NADH levels. We infer the cytosolic NAD+/NADH ratio by
analyzing the forward–backward flux of cytosolic lactate dehy-
drogenase (LDH), feeding cells with [U-13C]-lactate, and measuring the
total cellular concentration of pyruvate and lactate (Fig. 1e–h). Nota-
bly, while pyruvate also exists in mitochondria, the total cellular con-
centration of pyruvate provides a good estimate of the cytosolic
concentration; assuming net flux of cytosolic pyruvate into mito-
chondria and considering the thermodynamics of the mitochondrial
pyruvate carrier (MPC; “Methods”).

We find the cytosolic NAD+/NADH ratio >1000 (Fig. 1g), which
is at the upper bound of previous estimates for this ratio13;

Article https://doi.org/10.1038/s41467-023-42824-z

Nature Communications |         (2023) 14:7525 2



obtained based on thermodynamics of LDH, though without
accounting for the displacement from chemical equilibrium.
Deconvolution of whole-cell NAD+ and NADH measurements sug-
gests that the mitochondrial NAD+/NADH ratio is lower than 10.
This is one order of magnitude lower than previous estimates
made based on the thermodynamics of beta-hydroxybutyric
dehydrogenase11,14,16, glutamate dehydrogenase11,14, and malate
dehydrogenase14 (considering similar simplifying assumptions
regarding chemical equilibrium of reactions and compartment-
specific reactant concentrations as described above). The markedly
higher NAD+/NADH ratio in the cytosol than in mitochondria is due
to a ~3-order of magnitude lower concentration of NADH in the
cytosol than in mitochondria (Fig. 1h). This is consistent with pre-
vious measurements performed with a genetically encoded
fluorescent sensor for intracellular NADH detection, showing ~300-
fold higher concentration of NADH in mitochondria than in
cytosol38.

A generic approach for inferring mitochondrial and cytosolic
metabolite levels and fluxes by computational deconvolution of
total cellular concentration and isotope tracing measurements
Measured metabolite concentrations and isotopic labeling in eukar-
yotic cell extracts represents a mixture of metabolite pools from dif-
ferent subcellular compartments, which is typically not accounted for
in MFA studies. Here, we developed a method, COmpartment-
DEconvoluted Metabolic Flux Analysis (CODE-MFA), for inferring

mitochondrial and cytosolic metabolite concentrations and fluxes,
explicitly considering that measured metabolite concentrations and
isotopic labeling patterns represent average quantities across com-
partments; and also considering cellular uptake and secretion rates,
and biomass growth requirements. The method utilizes optimization
to search for the most likely fluxes and metabolite concentrations
within a compartmentalized metabolic network model that are opti-
mally consistent with the experimental measurements (Fig. 2a;
“Methods”): Simulatedmetabolite concentrations inmitochondria and
cytosol are constrained based on thermodynamic principles. Specifi-
cally, the second lawof thermodynamics, associating reaction reactant
concentrations with the direction of net flux (Fig. 2a; Eq. (I–II)); and the
flux-force relationship, associating reactant concentrations with the
forward–backward flux ratio (Fig. 2a; Eq. (III)). Convolution of simu-
lated metabolite concentrations in mitochondria and cytosol is mat-
ched with the measured concentrations, considering the relative
volume of each subcellular compartment (Eq. (2a), Eq. (IV)). Simulated
mitochondrial and cytosolic steady-state fluxes (Fig. 2a; Eq. (VI–VII))
were utilized to uniquely determine compartment-specific metabolite
isotopic labeling patterns (utilizing Elementary Metabolite Unit39). A
convolution of the simulated isotopic labeling pattern (i.e., mass-
isotopomer distribution) of a metabolite in the two compartments is
matched with the measured isotopic labeling pattern (Eq. (2a), Eq. (V);
Fig. 2b). Notably, the convolution of the simulated isotopic labeling
patterns of a metabolite in mitochondria and cytosol relies on the
simulated concentration of themetabolite in these compartments; i.e.,
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NAD+

13C-lactate

6PG

R5P

CO2

NADP+

NADPH

13C-glucose

NADP+ NADPH

NAD+ NADH
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e f g h

Fig. 1 | Inferring mitochondrial and cytosolic cofactor concentrations and
ratios in HeLa cells. a A scheme of 6-Phosphogluconate dehydrogenase (6PGD)
and reactant isotopic labeling forms when feeding [U-13C]-glucose. b The steady-
state fractional M+ 5 labeling of 6-phosphogluconate (6PG) and ribulose-5-
phosphate (R5P) when feeding [U-13C]-glucose (data are presented as mean values
± SD, n = 3 independent biological replicates). c, d The measured NADP+/NADPH
ratio and NADP+ and NADPH concentrations (gray) and inferred compartmenta-
lized ratio and concentrations based on simple thermodynamics and

deconvolution analysis (blue), and via CODE-MFA (red). Asterisks represent pre-
viously published ratios (Supplementary Table S12). e A scheme of lactate dehy-
drogenase (LDH) and reactant isotopic labeling forms when feeding [U-13C]-lactate.
f The fractional M + 3 labeling of lactate and pyruvate when feeding [U-13C]-lactate
(data are presented as mean values ± SD, n = 3 independent biological replicates).
g, h The measured NAD+/NADH ratio and NAD+ and NADH concentrations (gray)
and inferred compartmentalized values based on simple thermodynamics and
deconvolution analysis (blue), and via CODE-MFA (red).
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the total cellular isotopic labeling pattern of a metabolite is more
similar to the labeling pattern in the compartment in which its pool
size is larger. Hence, the deconvolution of the total cellular isotopic
labeling patterns jointly constrains the simulated mitochondrial and
cytosolic concentrations and fluxes (determining the compartmenta-
lized isotopic labeling patterns).

We derived the following algorithm to solve the above optimiza-
tion problem, overcoming the complication due to several non-linear
constraints (Fig. 2a, Eq. (II), (III), and (V); Fig. 2c; “Methods”): We utilize
Mixed-Integer Linear Programming (MILP) to determine the direction

of net flux through reactions solely based onmass-balance constraints
and the second law of thermodynamics (as well physiological mea-
surements; Step I)40. Given the inferred flux direction through a subset
of the reactions,we formulate a nonconvex optimization problemwith
linear constraints that combines isotope modeling as well as thermo-
dynamic constraints for these specific reactions (Step II). Sequential
dynamic programming (SQP) is used to efficiently solve this problem,
computing 95% confidence intervals for all fluxes and metabolite
concentrations. The inferred flux and concentration confidence
intervals areused as input to iteratively run Step I and II, aiming to infer

Fig. 2 | CODE-MFA method and performance inferring compartmentalized
fluxes, Gibbs energies, and concentration in HeLa cells. a CODE-MFA optimi-
zation, inferring mitochondrial and cytosolic fluxes, Gibbs free energies, and
metabolite concentrations by combining isotope modeling, thermodynamic
modeling, and computational deconvolution. Equation (I): reaction Gibbs free
energy; ΔG Gibbs energy, ΔG00 standard Gibbs energy, R gas constant, T tem-
perature, Q reaction quotient. Equation (II): second law of thermodynamics.
Equation (III): flux-force relationship; v+ and v� - flux in forward and reverse
direction, respectively. Equation (IV): concentration deconvolution; CCY

i , CMT
i ,

CWC
i CiWC - simulated concentration of metabolite i in cytosol, mitochondria, and

total cellular. αi - relative cellular volume of cytosol versus mitochondria. Equation
(V): Isotopic labeling deconvolution; XCY

i , XMT
i , XWC

i - simulated isotopic labeling
vector of metabolite i in cytosol, mitochondria, and total cellular (determined
based on fluxes v). Equation (VI): mass-balance constraint; S stoichiometric matrix,
v flux vector. Equation (VII): simulated isotopic labeling vector of metabolite i in
cytosol and mitochondria, computed via the Elementary Metabolite Unit (EMU)39.
Colored bars (blue/red) represent constraints include in each optimization step of
the algorithm. b CODE-MFA algorithm steps (colors represent the constraints

accounted for within each step; according to (a). c An example isotopic labeling
deconvolution equation for a metabolite i having three carbons, with depicted
mass-isotopomer distributions for the cytosolic, mitochondrial, and total cellular
pools (XCY

i , XMT
i , XWC

i , respectively). d The fit been simulated total cellular meta-
bolite concentration (i.e., convolution of simulated mitochondrial and cytosolic
concentrations; x axis) and measurements (y axis; data are presented as mean
values ± SD, n = 3 independent biological replicates). e The fit been simulated total
cellular metabolite isotopic labeling (x axis) and experimental measurements (y
axis; data are presented as mean values ± SD, n = 3 independent biological repli-
cates). f Percentage of reactions in themodel whose direction of net flux is inferred
by CODE-MFA versus with MFA and CODE-MFA without thermodynamic con-
siderations. g Cumulative distribution of reaction net flux confidence interval sizes
inferred by CODE-MFA versus MFA and CODE-MFA without thermodynamic con-
siderations. h Cumulative distribution of reaction metabolite concentration con-
fidence interval sizes inferred by CODE-MFA versus with strictly thermodynamic
analysis. i Cumulative distribution of reaction Gibbs energy confidence interval
sizes inferred by CODE-MFA versus with strictly thermodynamic analysis.
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the direction of net flux through additional reactions. In case the
iterative process converges before the direction of all reactions is
uniquely determined, we utilize the derived flux and concentration
confidence intervals as a basis to enumerate all thermodynamically
possible reaction directionality vectors for the remaining reactions in
Step III. Finally, in Step IV, we compute flux and concentration con-
fidence intervals by considering all possible reaction directionality
vectors. Overall, the number of reactions for which the direction of net
flux is uniquely determined gradually increases throughout the CODE-
MFA run (Supplementary Fig. S1), tightening the flux, concentration,
and Gibbs energy confidence intervals.

CODE-MFA infers compartmentalized metabolism in central
carbon metabolism in HeLa cells
We applied CODE-MFA to infer central mitochondrial and cytosolic
metabolism in cultured HeLa cells. We considered a compartmenta-
lized metabolic network model of central energy metabolism, con-
sisting of 63 reactions, out of which 12 are reactions catalyzed by
distinct isozymes inmitochondria and cytosol; and 35metabolites, out
of which 20 are localized in both mitochondria and cytosol (based on
the presence of corresponding enzymes in these compartments;
“Methods”). We utilized a variety of LC-MS methods to accurately
measure the total cellular absolute concentration of 30 metabolites;
out of which, we measured steady-state isotopic labeling of 19 central
carbon metabolites, when feeding [U-13C]-glucose and [U-13C]-gluta-
mine (“Methods”; Supplementary Tables S2 and S7). CODE-MFA gra-
dually determined the direction of net flux through up to 61 reactions
within 8 iterations before convergence (Steps I–II; Supplementary
Fig. S1b). The direction of net flux of the remaining reactions as well as
95% confidence intervals for all fluxes and concentrations in themodel
were inferred in Steps III and IV (Supplementary Tables S8 and S10).
The estimated fluxes and concentrations provided a good match with
the measured concentrations and isotopic labeling patterns: for all
metabolites, convolutionof the estimatedmitochondrial and cytosolic
concentration is within less than one standard deviation of the mea-
sured cellular concentration (Fig. 2d and Supplementary Table S7). For
90% of the measured metabolite isotopic labeling forms, the match
between the convoluted compartmentalized estimates and the cellular
measurements is less than two standard deviations (Fig. 2e and Sup-
plementary Table S2).

The 95% confidence interval for mitochondria and cytosol fluxes
inferred by CODE-MFA markedly varies between reactions (Figs. 2g
and 3a–c); for more than 65% of the reactions, the size of flux con-
fidence interval <10mM/h, including TCA cycle reactions, anaplerotic
and cataplerotic reactions, and mitochondrial transporters. As a
benchmark, we evaluated the performance of MFA applied solely
based on the isotopic labeling of metabolites that are strictly synthe-
sized in mitochondria or in cytosol, whose measured isotopic labeling
pattern reflects that of precursor metabolites in a specific compart-
ment; e.g., fatty acid labeling reflects cytosolic acetyl-CoA labeling41,42,
and the isotopic labeling of pyrimidines reflect that of cytosolic
aspartate, etc. (Supplementary Tables S2 and S6). While CODE-MFA
inferred the direction of net flux through all reactions in the model,
MFA inferred the direction of only 30% of the reactions in the model
(and through none of the reactions catalyzed by distinct isozymes in
the both compartments; Fig. 2f). Furthermore, the median flux con-
fidence interval inferred byMFAwas significantly (~20-fold) larger than
with CODE-MFA (Wilcoxon P value < 10−7; Fig. 2g). As a further
benchmark, we implemented a variant of MFA, which similarly to
CODE-MFA, utilizes the isotopic labeling patterns of all measured
metabolites as input and deconvolutes them into compartment-
specific patterns, though without accounting for thermodynamics.
This approach also performed markedly worse than CODE-MFA,
inferring the direction of net flux through only 40% of the reactions
(Fig. 2f), and with a significantly (~threefold) larger flux confidence

interval compared to CODE-MFA (Wilcoxon P value < 10−3; Fig. 2g). We
compared the inferred compartmentalized fluxes with enzyme mRNA
expression in HeLa cells, considering the expression of the specific
mitochondrial or cytosolic isozyme for each reaction; utilizing gene
expression data from Cancer Cell Line Encyclopedia; CCLE43). We
found a significant Spearman correlation of 0.72 between the most
likely compartmentalized fluxes by CODE-MFA and gene expression
levels (Spearman P value = 5 × 10−4; Supplementary Fig. S4a); while
MFA-derived fluxes are not significantly correlated with gene expres-
sion (Spearman P value = 0.48; Supplementary Fig. S4b). Similarly,
CODE-MFA-derived fluxes show a significant correlation of 0.54 with
enzyme concentration measurements44 (Spearman P value < 0.03;
Supplementary Fig. S4c); while no significant correlation is obtained
with MFA fluxes (Spearman P value = 0.36; Supplementary Fig. S4d).

Intracellular metabolite concentrations span ~7 orders of
magnitude, ranging from ~10 nM to 100mM. For 54% of the meta-
bolites in the model having distinct pools in mitochondria and in
the cytosol, CODE-MFA inferred their mitochondrial and cytosolic
concentration with a 95% confidence interval of less than 1 order of
magnitude (Fig. 2h and Supplementary Table S8). For 6 out of 15
metabolites in the employed metabolic network model that are
localized in both mitochondria and cytosol, CODE-MFA found a
significant difference in their concentration between the two com-
partments (i.e., no overlap in the 95% confidence intervals; Fig. 3d
and Supplementary Table S8). For example, pyruvate and oxaloa-
cetate were found to have more than 100-fold higher concentration
in cytosol; and glutamate and citrate more than tenfold higher
concentration in mitochondria (Fig. 3d). As a benchmark for infer-
ring compartmentalized concentrations by CODE-MDA, we per-
formed strictly thermodynamic analysis of the measured
metabolite concentrations based on the second law of thermo-
dynamics (utilizing Thermodynamic Metabolic Flux Analysis;
TMFA)45,46. The median concentration confidence interval size
inferred by TMFA was ~4 orders of magnitude larger than with
CODE-MFA (Wilcoxon P value < 10−11; Fig. 2h). Furthermore, CODE-
MFA estimations of Gibbs free energy for mitochondrial and cyto-
solic reactions had a median confidence interval size of 7 kJ/mol
(Figs. 2i and 3a–c); significantly (tenfold) lower than with TMFA
(Wilcoxon P value < 10−9).

CODE-MFA further reduced the uncertainty regarding the mito-
chondrial and cytosolic concentration of NAD(P)/H, compared to the
simplified analytical approach described above (Fig. 1). Specifically, we
find that the mitochondrial NADP+/NADPH ratio is at least 3 order of
magnitude lower than the cytosolic ratio; with the concentration of
NADP+ being markedly lower in mitochondria than in cytosol. The
estimated mitochondrial and cytosolic metabolite concentrations and
reactions Gibbs energy enabled to revisit the assumptions made by
previous estimations of compartmentalized redox cofactor ratios
(Fig. 1c). Specifically, CODE-MFAdetermines that theGibbs free energy
of cytosolic ME1 <−7.6 kJ/mol, explaining the marked (>twofold)
underestimation of the cytosolic NADP+/NADPH by previous studies
that assumed chemical equilibrium13,14,16. Furthermore, CODE-MFA
finds that the cytosolic concentration of citrate is more than 2 orders
of magnitude lower than the total cellular concentration, explaining
the (>twofold) underestimation of the cytosolic NADP+/NADPH ratio,
based on total cellar reactant concentration in IDH116.

For several reactions we find that different isozymes catalyze flux
in opposite direction in mitochondria and cytosol (considering the
95% confidence intervals; Figs. 3a–c and 4a):

Our analysis shows that NADPH-dependent isocitrate dehy-
drogenases catalyze reductive flux in cytosol (IDH1) and in mito-
chondria (IDH2), while the NADH-dependent enzyme in mitochondria
(IDH3) catalyzes oxidative flux. Oxidative decarboxylation of citrate in
mitochondria through IDH3 is highly thermodynamically favorable
(ΔrG′ <−20 kJ/mol), driven by ~100-fold higher concentration of citrate
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than α-ketoglutarate in mitochondria (Fig. 3d). Reductive carboxyla-
tion of α-ketoglutarate in cytosol is driven by higher α-ketoglutarate
than citrate concentration in cytosol; cytosolic α-ketoglutarate is
found to be ~tenfold higher in cytosol than in mitochondria, while
citrate concentration in cytosol is ~500-fold lower than in mitochon-
dria (Fig. 3d). While the mitochondrial citrate/α-ketoglutarate ratio
supports oxidative isocitrate dehydrogenase flux, the mitochondrial,
NADPH-dependent IDH2 catalyze reductive flux; facilitated by low
NADP+/NADPH ratio (<0.001) in mitochondria (Fig. 1c). Notably, cal-
culating the Gibbs free energy of IDH1/2 based on total cellular con-
centration of reactants shows that the reaction is thermodynamically
favorable in the oxidative direction, emphasizing the need for a com-
partmentalized view of metabolite concentrations (Fig. 3a). Con-
sidering that the relative contribution of reductive IDH1 flux to
producing cytosolic citrate is higher than that of IDH2 inmitochondria
(as mitochondrial citrate is predominantly produced by citrate syn-
thase), CODE-MFA determines different isotopic labeling patterns of
cytosolic and mitochondrial citrate (Fig. 4b). Specifically, CODE-MDA
suggests that feeding HeLa cells with [U-13C]-glutamine, 28% of cyto-
solic citrate will be in the M+ 5 form, while only 15% of the mito-
chondrial citrate is M+ 5. The larger pool size of citrate in
mitochondria (Fig. 3d) biases the total cellular isotopic labeling
towards that in mitochondria, and accordingly, the measured total
cellular M+ 5 citrate is 15%. Notably, the higher fractional labeling of
M+ 5 citrate in the cytosol than in mitochondria is directly evident by
the high fractional labeling of fatty acids when feeding [U-13C]-gluta-
mine. Specifically, considering that palmitate is strictly synthesized in
cytosol, deconvolution of palmitate isotopic labeling41,42 suggest that
~30% of the cytosolic acetyl-CoA is indeed in the M+ 2 form (Supple-
mentary Table S6). Our results regarding the major contribution of
reductive IDH1 flux for synthesizing cytosolic citrate in HeLa cells is
consistent with our previous report, measuring the isotopic labeling
kinetics of citrate in mitochondrial and cytosolic enriched subcellular
fractions6.

CODE-MFA analysis further shows that mitochondrial and cyto-
solic malate dehydrogenase isozymes (MDH1/2) and glutamate-

oxaloacetate transaminase isozymes (GOT1/2) catalyze flux in
an opposite direction in each compartment (Figs. 4a and 3a); in
accordance with the known activity of the malate-aspartate shuttle,
transferring reducing equivalents in the form of NADH from cytosol
to mitochondria. Considering that malate dehydrogenase is
highly thermodynamically favorable in the reductive direction
(ΔrG0′ = −27 kJ/mol), driving mitochondrial MDH2 in the oxidative
direction (to maintain malate-aspartate shuttle flux) requires a high
substrate-to-product concentration ratio. Accordingly, the model
suggests ~10,000-fold lower oxaloacetate than malate in mitochon-
dria; with mitochondrial oxaloacetate having a concentration of
100nM (versus ~100 µM in cytosol; Fig. 3d). Consistent with the low
mitochondrial oxaloacetate concentration, mitochondrial phosphoe-
nolpyruvate carboxykinase (PCK2) is predicted to be close to chemical
equilibrium (ΔrG′ > −3 kJ/mol). Feeding [U-13C]-glutamine, rapid
forward–backward flux through PCK2 results in the synthesis of
mitochondrial M + 3 phosphoenolpyruvate (PEP; Fig. 4c) and M+ 3
OAA (releasing 13CO2 from M+4 OAA and fixing atmospheric 12CO2):
The mitochondrial M + 3 PEP is not observed in total cell measure-
ments, due to the substantially larger PEP pool size in cytosol (Figs. 4c
and 3d); while M+ 3 OAA condenses with non-labeled acetyl-CoA via
citrate synthase, producing the experimentally observed M+ 3 citrate
(Fig. 4b). The M+ 3 OAA further goes through the malate-aspartate
shuttle, synthesizing mitochondrial M + 3 aspartate, cytosolic M+ 3
OAA, and then cytosolic M+ 3 malate. This leads to higher fractional
labeling ofM+ 3malate in the cytosol (21%) than inmitochondria (10%;
Fig. 4d), while the convoluted labeling of M+ 3 malate (19%) is biased
toward that in cytosol (where malate pool size is large), in agreement
with the experimental measurement (Fig. 3d).

Applying CODE-MFA to quantify mitochondrial and cytosolic
metabolism across cell lines
We repeated the analysis to quantify mitochondrial and cytosolic
metabolism across a series of cancer cell lines with different tissue of
origin, HCT116 (colon cancer), A549 (lung cancer), and LN229 (glio-
blastoma), performing isotope tracing and absolute metabolite

a d

b

c

Fig. 3 | CODE-MFA-derived compartmentalized fluxes, Gibbs energies, and
concentration confidence intervals in HeLa cells. CODE-MFA-derived Gibbs free
energies and net fluxes for cytosolic and mitochondrial isozyme (a), for strictly
cytosolic reactions (b), and for strictly mitochondrial reactions (c). Blue and green
bars represent cytosolic andmitochondrial fluxes andGibbs energies, respectively;

asterisks represent Gibbs energies computed directly based on measured cellular
metabolite concentrations. d CODE-MFA-derived cytosolic and mitochondrial
metabolite concentrations (blue and green bars) and measured cellular con-
centrations (asterisk).
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concentrationmeasurements in each cell line and applying CODE-MFA
(Supplementary Tables S3–S5). As with HeLa cells, the most likely
mitochondrial and cytosolic fluxes and concentrations inferred by
CODE-MFA provided a goodmatch with the measured concentrations
and isotopic labeling patterns in all cell lines (Supplementary Table S7
and Supplementary Fig. S5). For all cell lines, the performance of
CODE-MFA outperformed that of standard MFA: CODE-MFA deter-
mined the direction of net flux throughmore than 85%of the reactions
in the model for all cell lines, while standard MFA inferred net flux
direction trough no more than 31% of the reactions (Supplementary
Fig. S6). The median flux confidence interval inferred by CODE-MFA is
more than one order of magnitude smaller than with MFA in all cell

lines (Wilcoxon p value per cell line <10−5; Supplementary Fig. S6). The
median metabolite concentration confidence interval size inferred by
CODE-MFA is more than 3 orders of magnitude smaller than with
strictly thermodynamic analysis in all cell lines (Wilcoxon P
value < 10−9; Supplementary Fig. S7). The most likely compartmenta-
lized fluxes inferred by CODE-MFA are significantly correlated with
gene expression levels of the corresponding enzymes for all cell lines
(Spearman P value < 0.02; Supplementary Fig. S8).

The resulting compartmentalized flux programs are overall highly
similar,with amedianpairwisePearson correlationof 0.84 (all pairwise
Pearson P value < 4 × 10−4; Fig. 5). A specific metabolic system showing
major variability between cell lines is malate-aspartate shuttle. For

Fig. 4 | CODE-MFA-derived compartmentalized metabolic activities in HeLa
cells and simulated isotopic labeling patterns. a Inferred fluxes, Gibbs energies,
and concentrations. Net fluxes are represented by the arrow width; metabolite
concentrations represented by font size; and Gibbs energies by color (see legend).

b–d Simulatedmitochondrial (MT(s)), cytosolic (CY(s)), total (convoluted; WC(S)),
and measured (WC(m)) isotopic labeling of citrate (b), phosphoenolpyruvate (c),
and malate (d).
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example, several mitochondrial and cytosolic reactions in this shuttle
have significantly lower flux in HCT116 versus in LN229 (Fig. 5f, g);
including both cytosolic and mitochondrial malate dehydrogenase
(MDH1 andMDH2, respectively), glutamate-oxaloacetate transaminase
(GOT1 and GOT2, respectively), and the mitochondrial aspartate
transporter (SLC25A12/13). While having lower malate-aspartate shut-
tle flux than LN229 (and hence low net transport of NADH from the
cytosol to mitochondria), cytosolic NAD+ /NADH ratio in HCT116 is
maintained through higher cytosolic malic enzyme (ME1) flux-
producing pyruvate that is reduced to lactate while oxidizing NADH
to NAD+ (Fig. 5g).

To validate the importance of high ME1 flux in HCT116, we found
that inducible silencingofME1 leads to a significant drop inHCT116 cell
proliferation (t test P value < 0.01), while its silencing in LN229 leads to
no significant change in growth (Fig. 6b). A major contribution of ME1

flux to support NADPH production in HCT116 is supported by a sig-
nificant drop in NADPH/NADP ratio upon ME1 silencing; while no sig-
nificant drop in NADPH/NADP ratio is observed up ME1 silencing in
LN229 (Fig. 6a; t testP value < 0.01). Ourfindingof amajorflux through
cytosolic malic enzyme in HCT116 are consistent with a recent report
regarding the importance of ME1 in these cells for maintaining redox
balance and cell growth47. Accordingly, considering that glutamine is a
major TCA anaplerotic source, we hypothesized that glutamine
removal would significantly harm HCT116 having high malic enzyme
flux. Indeed, glutamine removal led to >50% drop in cell number after
24 h; a significantly larger drop than in a control cell line, LN229 (in
which we identify lower ME1 flux; Fig. 6d; t test P value < 0.03). Con-
sistently, we detect a larger drop in the concentration of TCA cycle
metabolites upon glutamine removal in HCT116 (Fig. 6c; t test P
value < 0.01).

a b c

d e

fg

Fig. 5 | Correlation of CODE-MFA-derived fluxes for HeLa, HCT116, A549, and
LN229 cell lines. a Two-sided Pearson correlation of CODE-MFA-derived fluxes for
HeLa and A549. b Two-sided Pearson correlation of CODE-MFA-derived fluxes for
HeLa andHCT116. cTwo-sidedPearson correlation of CODE-MFA-derived fluxes for
HeLa and LN229. d Two-sided Pearson correlation of CODE-MFA-derived fluxes for

A549andHCT116. eTwo-sidedPearsoncorrelation ofCODE-MFA-derivedfluxes for
A549 and LN229. f Pearson correlation ofCODE-MFA-derived fluxes forHCT116 and
LN229. g CODE-MFA-derived net fluxes for fluxes with large difference per (f)
(HCT116 vs. LN229).
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Discussion
We presented a generic approach that enables for the first time to
infer mitochondrial and cytosolic fluxes and metabolite concentra-
tions via measurements performed with intact cells under physio-
logical conditions (without requiring subcellular fractionation,
potentially perturbing metabolic activities). This was made possible
by combining flux and thermodynamic modeling with deconvolu-
tion of cellular metabolic measurements into their mitochondrial
and cytosolic counterparts. Previous approaches demonstrated the
potential of deconvoluting metabolite concentration measure-
ments into compartmentalized pool sizes36,48. Here we show how
metabolite isotopic labeling patterns measured in isotope tracing
experiments can be deconvoluted into distinct mitochondrial and
cytosolic counterparts and facilitate direct inference of compart-
mentalized fluxes. While integrative compartmentalized modeling
of isotope tracing and reaction thermodynamics is computationally
hard37,48, we devise an optimization-based approach for inferring
compartment-specific fluxes and concentrations corresponding
confidence intervals. While focusing on cytosolic andmitochondrial
metabolism, our analysis is not biased by metabolic activities in
nuclei due to free diffusion of small molecules though NPCs into the
cytosol49; hence, the inferred cytosolic fluxes and metabolite con-
centrations represents averaged values in cytosol and nucleus.
Notably, compartmentalizedmetabolic activities in other organelles
such as ER, Golgi apparatus, peroxisomes, and lysosomes could
potentially bias some of the inferred concentrations and fluxes in
mitochondria and cytosol. While our method is based on measure-
ments of metabolite labeling under isotopic steady state, it can be
further extended to model metabolite isotopic labeling kinetics (in
accordance with non-stationary MFA)50. This could potentially

tighten estimated flux and concentration confidence intervals as
isotopic labeling kinetics depend on metabolite concentrations;
further linking and constraining the simulated concentrations and
isotopic labeling dynamics. Further improvement of mitochondrial
and cytosolic flux and concentration estimates could potentially be
achieved by incorporating measurements of the isotopic labeling of
collisional fragments of metabolites via MS/MS51–53. Overall, applied
to a series of proliferating cancer cell lines, our method is shown to
detect variation in mitochondrial and cytosolic redox cofactor
metabolism across cell lines that are non-observable with current
flux inference techniques.

Recent studies suggest a variety of mitochondrial and cytosolic
isozymes promoting cancer-specific proliferation, highlighting a
growing need for methodologies for probing subcellular level meta-
bolic activities: Oncogenic mutations in either NADP-dependent
cytosolic and mitochondrial isocitrate dehydrogenases (IDH1 and
IDH2, respectively) in tumors result in distinct metabolic
reprogramming54,55. Recently, major variability in cancer cell reliance
on cytosolic (SHMT1) versus mitochondrial (SHMT2) serine-derived
one-carbon metabolic flux was shown across tumors, suggesting the
reduced folate carrier (RFC) as a marker for tumor sensitivity for drug
targeting of the cytosolic pathway56. In accordance with our results
here regarding high cytosolic NADPH-dependent malic enzyme (ME1)
flux in HCT116, ME1 was reported to be a major producer of cytosolic
NADPH in some cancers57, whose silencing suppress cancer cell
growth47,58, and is considered a predictivemarker and forprognosis for
radiation therapy in cancer59,60. We expect that providing means to
infer metabolic activities in a subcellular resolution would be instru-
mental for a variety of studies on metabolic dysfunction in cancer and
in other human disease.
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Fig. 6 | Validate the importance of highME1 flux in HCT116 vs. LN229 cell lines.
a NADPH/NADP+ ratio in doxycycline-inducible ME1 knockdown (KD) and ME1
control (scr) in HCT116 and LN229 cells with/without dox treatment (*P <0.01 by
two-sided t test; data are presented as mean values ± SD, n = 3 independent bio-
logical replicates). b Growth (5 days) of doxycycline-inducible ME1 knockdown
(KD) and ME1 control (scr) in HCT116 and LN229 cells with/without dox treatment
(*P <0.01 by two-sided t test; data are presented as mean values ± SD, n = 3

independent biological replicates). c Intracellular relativemetabolites intensities in
HCT116 and LN229 cells without/with glutamine feeding (*P <0.01 by two-sided t
test; data are presented as mean values ± SD, n = 3 independent biological repli-
cates).d Relative cell number, 24-h without/with glutamine feeding, of HCT116 and
LN229 cells (*P <0.03 by two-sided t test; data are presented as mean values ± SD,
n = 3 independent biological replicates).
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Methods
Materials
Water and organic solvents were obtained from Merck & Co (LiChro-
solv, LC-MS grade, Germany), buffer additives for HPLC and ammonia
solution, 25%, formic acid (for LC-MS) andNaOHwere purchased from
Fluka Analytical Sigma-Aldrich (Germany) and Merck & Co (Germany),
respectively. [U-13C]-glucose (CLM-1396-1), [U-13C]-glutamine (CLM-
3612) and [U-13C]-lactic acid (CLM-1579) were bought from Cambridge
Isotope Laboratories.

Cell culture
HeLa (CCL-2), HCT116 (CCL-247), A549 (CCL-185) and LN229 (CRL-
2611) cells (purchased from ATCC, USA) were cultured in high-glucose
Dulbecco’s Modified Eagle’s Medium (Biological Industries 01-055-1 A,
25mM glucose) supplemented with 10% (v/v) dialyzed fetal bovine
serum (HyClone SH30079.03), 1% penicillin–streptomycin-amphoter-
icin B solution (Biological Industries 03-033-1B), and 4mM glutamine.

All cell lines were cultured using standard procedures in a 37 °C
humidified incubator with 5% CO2. Cell lines were tested for myco-
plasma using EZ-PCR mycoplasma detection kit (Biological Industries,
20-700-20).

In total, 2 × 105 cells fromeach cell line were seeded in 6-cm plates
(three repeats for each cell type) and grown for 24 h beforemetabolite
extraction. Plates were also seeded for cell count and packed cell
volume (PCV)measurements for normalization using a coulter counter
(Bekman Coulter Counter, USA). For each experiment, cells were
washed twicewith PBS before being culturedwith the indicatedmedia.

Isotope tracing
For labeling experiments, isotope tracing was performed by feeding
cells with either [U-13C]-glucose (25mM) or [U-13C]-glutamine (4mM)
for 24 h, or with [U-13C]-Lactic acid (50 µM) for 3 h before metabolite
extraction. To verify that cells reached metabolic steady state in 24-h
incubation, we compared intracellular metabolite concentrations
made after 24-h with those measured after 48-h incubation. We found
overall comparable concentrations in 24-h and 48-h (Supplementary
Fig. S2), with no statistically significant change in the concentration of
up to 70% of the metabolites (considering concentrations 95% con-
fidence interval). While metabolite concentrations were found to span
~4 orders of magnitude, the maximal change in concentration of a
metabolite between 24-h and 48-h incubation was lower than 40%
(Supplementary Fig. S2 and Supplementary Table S13). We confirmed
that cells reached isotopic steady state by repeating the [U-13C]-glu-
cose and [U-13C]-glutamine feeding in HeLa cells for 48-h incubation
and compared the measured metabolite isotopic labeling patterns to
those measured after 24-h incubation (focusing on metabolites
metabolite measurements using SeQuant ZIC-pHILIC column). We
found a strong match between metabolite isotopic labeling patterns
after 24-h and 48-h incubation, with a median difference of less than
1%; and the 95-percentile largest difference lower than 3% (Supple-
mentary Table S14).

Cell proliferation assay
In all, 1.8 × 105 cells per well were seeded in 6-cm plates. For the 5-day
(120 h) growth assay, media were replaced on day 3. Cell number was
counted via a Multisizer Coulter Counter (Beckman Coulter) (Fig. 6b).

In total, 0.6 × 106 cells perwellwere seeded in6-cmplates. Sixteen
hours later, media were changed to glutamine-free media. 24 h after,
cells were counted. Cell number wasmeasured via aMultisizer Coulter
Counter (Beckman Coulter) (Fig. 6d).

Generation of inducible shRNA ME1 knockdown
ShRNA sequences were cloned into lentiviral vector Tet-pLKO-puro
(purchased from AddGene, 21915). The shRNA target sequences were
as follows:

sh1: 5′-GGGCATATTGCTTCAGTTC-3’
sh2: 5′-GCCTTCAATGAACGGCCTATT-3’
shScr: 5′-AACAAGATGAAGAGCACCAA-3′.
To generate active lentivirus, 4.6 × 106 293T cells were cultured

in DMEM growth medium supplemented with 10% fetal bovine
serum in 100-mm plate, Cells were at 80% confluency before seed-
ing; passage number was lower than 12. After 24 h, cells were
transfected using a 4:2:1 ratio of Tet-pLKO-puro: psPAX2 (Addgene
catalog number 12260):pMD2.G (Addgene catalog number 12259)
using PEI (DNA:PEI = 1:3). After 24 h cell growth, the medium was
replaced with fresh DMEM, supernatant-containing viruses was
collected 72 h post transfection, and filtered through a 0.45-μm
sterile filter.

For cell transduction: 2.5 × 105 HCT116 cells were seeded in a six-
well plate. After 24 h, 200μl of the viral solutionwas added to the cells.
Cells were transduced with the presence of 10μg/mL polybrene. After
24 h, the media were replaced with a fresh media. Transduced cells
were selected using 3mg/mL puromycin for 72 h. For shRNA induc-
tion, 1μg/mL doxycycline was used.

LC-MS analysis
For the measurement of intracellular metabolites, cells were washed
with 2mLof ice-cold PBS twice on ice. The cells were extracted quickly
in 300 µL volume of methanol/acetonitrile/water (50:30:20, v/v/v)
solution at −20 °C on dry ice by scraping. For the measurement of
media metabolites, 50 µL of media was mixed with 200 µL volume of
methanol/acetonitrile (75:25, v/v) ice-cold solution.

For lipids saponification, the following protocol was used: cells
were extracted quickly in 1mL of PBS by scraping and then spanned at
500 ×g for 5min at 22 °C. 200 µL volume of ethanol/water (80:20, v/v)
solution (0.02M NaOH) was added to pellets and then transferred to
glass HPLC vials to incubate in 66 °C for 1 h. Then samples were mixed
with 100 µL of acetonitrile (5% formic acid).

For uptake/secretion experiments, unlabeled internal standard
mixes were used. Measurements were performed with a method of
standards additions. Extracted media samples were spiked with
appropriate standardsmix (1:1, v/v). Concentrations of standards were
determined for each cell line based on their specific
consumption rates.

For NAD(P)(H) measurements, the following protocol was used61:
cells were seeded on 6 cm plates in the non-labeled media. About 16 h
later, media were changed to new non-labeled media. 24 h later media
were aspirated and without any washing, 150 µl special extraction
solutionwas added to eachplate (40ACN:40MeOH:20H2Owith0.1M
Formic acid), plated were covered and left on ice for 3min, cells were
detached form the plate surface by a plastic cell scraper. The content
of the plate including cell pellet was transferred to 1.5-mL micro cen-
trifuge tube. In all, 12 µl ammonium bicarbonate was added to each
tube. The tubes were briefly vortexed and then frozen at −80 °C for
30min–-2 h. After thawing, tubes were vortex again. Tubes were cen-
trifuged at 20,000× g for 20min at 4 °C to remove pellet and stored at
−80 °C until the analysis. Samples were centrifuged again with the
same parameters directly before transferring them to LC-MS vials
(Fig. 6a). All the metabolite samples were stored at −80 °C for at least
2 h. Protein-freemetabolite extractions were prepared by spinning the
samples at 20,000× g for 20min at 0 °C twice. Samples were subse-
quently analyzed using liquid chromatography-mass spectrometry
(LC-MS) method.

Cellular and media extracts were chromatographically separated
on a SeQuant ZIC-pHILIC column (2.1 × 150mm, 5 µm, EMD Millipore)
with anHPLC system (Ultimate 3000DionexLC system,ThermoFisher
Scientific, Inc., USA). Flow rate was set to 0.2mLmin−1, column com-
partment was set to 30 °C, and autosampler tray maintained 4 °C.
Mobile phase A consisted of 20mM ammonium carbonate and 0.01%
(v/v) ammoniumhydroxide.Mobile PhaseBwas 100% acetonitrile. The
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mobile phase linear gradient (%B) was as follows: 0min 80%, 12–15min
20%, 15.1min 80%, 23.0min 80%.

A chromatographic column SeQuant ZIC-HILIC (4.6 × 150mm,
5 µm, EMD Millipore) were used for determination of fumaric acid,
alanine and asparagine. Separation was performed with flow rate of
1.0mLmin−1, column compartment was set to 50 °C, and autosampler
tray maintained 4 °C. Both mobile phases water and acetonitrile were
spiked with 0.1% of formic acid. The following mobile phase linear
gradient (%B) was used: 0–6min 95%, 15min 60%, 20–26min 20%,
26.1min 95%, 34min 95%.

A reverse-phase chromatographic column (2.1 × 100mm, 1.7 µm,
Kinetex C18 EVO, Phenomenex) was utilized for analysis of palmitic
acid labeling. A ramp gradient of mobile phase A (5% acetonitrile, 95%
water, 10mM ammonium acetate) and B (50% acetonitrile, 50 iso-
propanol, 10mM ammonium acetate) was used with flow rate of
0.4mLmin−1. The mobile phase ramp gradient (%B) was as follows:
0–1.9min 75%, 2–5min 100%, 5–8min 75%.

Mass spectrometry detection was performed using a Q Exactive
Hybrid Quadrupole Orbitrap high-resolution mass spectrometer with
an electrospray ionization source (ESI, Thermo Fisher Scientific, Inc.,
USA) for all chromatographic methods. Ionization source parameters
were the following: sheath gas 25 units, auxiliary gas 3 units, spray
voltage 3.3 and 3.8 kV in negative and positive ionization mode
respectively, capillary temperature 325 °C, S-lens RF level 65, auxiliary
gas temperature 200 °C. Metabolites were analyzed in the range
72–1080m/z, AGC target was set to 3 × 106. A single ion monitoring
method was used for the analysis of metabolites with low concentra-
tion: pyruvic, lactic, oxaloacetic, fumaric and palmitic acids, coenzyme
A and acetyl coenzyme A, alanine, and asparagine. The width of ion
range for each compound was defined individually in order to collect
information for all isotopic formswithin a single range. AGC target was
set to 1 × 106 for SIM measurements. An additional concentration
protocol was implemented for metabolites measured with single ion
monitoring mode to increase sensitivity. Specifically, the cell extracts
after first centrifugation were evaporated with nitrogen and recon-
stituted with 50 µL of methanol/acetonitrile/water (50:30:20, v/v/v).
After vortex and additional centrifugation at 20,000× g for 20min at
0 °C samples were subsequently analyzed using liquid
chromatography-mass spectrometry (LC-MS) method with increased
injection volume of 10 µL. Retention time of metabolites in the chro-
matogramwere identified by corresponding pure chemical standards.
Concentration of metabolites were quantified using chemical stan-
dards via an isotope-ratio approach, as described previously62,63 (see
Supplementary Data and Supplementary Table S15). Data were ana-
lyzed with commercially available software, MAVEN64. A CO2 con-
centration of 1.2mM was assumed6,65, while repeating the CODE-MFA
analysis of HeLa cells to confirm the robustness of our results to
threefold lower and 3-fold higher CO2 concentrations (0.4mM and
3.6mM). We found that the inferred compartmentalized fluxes were
highly similar to those inferred using the original 1.2mM concentra-
tion, with a pairwise Pearson correlation >0.98 (Pearson P
value < 10−10).

Gene expression analysis
We utilized RNASeq data from the Cancer Cell Line Encyclopedia
(CCLE)43 to identify enzymes with especially low expression that
were assumed nonfunctional in specific analyzed cell lines (con-
sidering a common and stringent RPKM cutoff of 0.5): In all cell lines
analyzed here, PCK1 (phosphoenolpyruvate carboxykinase 1; cata-
lyzing cytosolic synthesis of phosphoenolpyruvate from oxaloace-
tate) and GPT (glutamic-pyruvate transaminase; catalyzing
cytosolic transamination of pyruvate to alanine) were found to be
nonfunctional. ME3 (mitochondrial NADP-dependent malic enzyme
3) was found to be nonfunctional in HCT116 and LN229 cell lines
(Supplementary Fig. S3).

Inferring mitochondrial and cytosolic redox cofactor ratios
We infer the cytosolic NADP+/NADPH ratio based on thermodynamics
analysis of 6PGD in cytosol (according to Eqs. (1–3)). To compute the
95% confidence interval for the derived NADP+/NADPH ratio, we ran-
domly sampled values for the concentrations of R5P, 6PG and for the
fractional isotopic labeling R5Pm+ 5 and 6PGm+ 5 from a normal dis-
tribution whose mean and standard deviation are determined based
on the experimentally measured values (considering biological repli-
cates); choosing NADP+/NADPH ratios between 2.5th and 97.5th per-
centiles (denoted rlb and rub, respectively).

The inferred cytosolic NADP+/NADPH ratio was used to compute
the range of possible concentrations NADP+ and NADPH in mito-
chondria and in cytosol using Linear Programming (using Eqs. (4–5)):

min=max

NADPCY ,NADPMT ,NADPHCY ,NADPHMT
ð6Þ

s:t:

rlbNADPHCY ≤NADPCY ≤ r
ubNADPHCY ð6aÞ

NADPlb
WC ≤ 1� αð Þ*NADPMT +α*NADPCY ≤NADP

ub
WC ð6bÞ

NADPHlb
WC ≤ 1� αð Þ*NADPHMT +α*NADPHCY ≤NADPH

ub
WC ð6cÞ

NADPMT ,NADPCY ,NADPHMT ,NADPHCY ≥0 ð6dÞ

where Eq. (6a) enforces the NADP+/NADPH ratiowithin the confidence
intervals estimated above; and Eq. (6b, c) constrain the convoluted
concentration of NADP+ and NADPH to be equal to the measured
values (where NADPðHÞlbWC and NADPðHÞubWC represent the measured
concentration of NADP(H) minus and plus two standard deviations,
respectively). The relative volume of cytosol out of total cellular
volume is denoted α. To compute the range of possible mitochondrial
NADP+/NADPH ratios, we constrain this ratio to a series of increasing
values (from10−5 to 105), considering theminimal andmaximal ratios in
which a feasible solution was found.

We infer the cytosolic NAD+/NADH ratio based on thermo-
dynamics analysis of lactate dehydrogenase (LDH) in the cytosol:

NAD+ CY

NADHCY
=
PyruvateCY
LactateCY

*
J�

J +
e
�ΔG0

RT ð7Þ

As pyruvate is present in both mitochondria and cytosol, we
estimated the cytosolic concentration based on the second law of
thermodynamics, assuming net transport of cytosolic pyruvate into
mitochondria through the mitochondrial pyruvate carrier (MPC) and
considering the transporter’s standard Gibbs free energy

α*PyruvateCY + ð1� αÞ*PyruvateMT =PyruvateWC ð8Þ

ΔG=ΔG0ðMPCÞ+RT*lnPyruvateMT

PyruvateCY
ð9Þ

The cytosolic NAD+/NADH ratio was used to compute the com-
partmentalized concentration of NAD+ and NADH and mitochondrial
ratio as described above for NADP/NADPH+.

Gibbs free energy of mitochondrial transporters
The standard Gibbs free energy of mitochondrial transporters was
calculated by considering the difference in pH between cytosol and
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mitochondria and membrane potential, as previously described66:

ΔrG
00
k = � NHRT ln 10ΔpH

� �
� FQΔ++ STkΔf G

00 ð10Þ

where NH is the net number of hydrogen ions transported from
initial to final compartment, R is the gas constant, T is the tem-
perature, ΔpH is the difference in pH between initial and final
compartment, F is Faraday’s constant, Q is the net number of
charges transported from initial to final compartment, Δ+ is the
difference between the electrical potential of the initial and final
compartments, S is the stoichiometric matrix, and Δf G

00 is the
standard Gibbs energy of formation of the species involved in the
reaction. For this analysis, we used Δ+ of 150mv66,67, cytosolic pH
level of 7 (see ref. 66), and mitochondrial pH level of 7.5 (estimates
range between 7.4–8.2 (see refs. 66,68–70)). We evaluated the
robustness of our analysis performed for HeLa cells, considering
potential mitochondrial pH levels of 8 and 8.5. The estimated
compartmentalized fluxes were highly similar to those inferred
using the original mitochondrial pH level of 7.5, with a pairwise
Pearson correlation >0.98 (Pearson P value < 10−10).

We calculated the standardGibbs free energies of 7mitochondrial
transporters according to Eq. (10) (Supplementary Table S11) and
considered 30% standard deviation.

Compartmentalized deconvoluted metabolic flux analysis
(CODE-MFA)
CODE-MFA searches for the most likely mitochondrial and cytosolic
net fluxes under metabolic steady state (denoted vnet), compartmen-
talized metabolite concentrations (denoted C), and reactions’ stan-
dard Gibbs free energies (ΔG0), providing optimal match with
concentration and isotopic labeling measurements performed in
intact cells, as well as metabolite uptake and secretion rates, and bio-
mass growth requirements. Specifically, it is formulated as the fol-
lowing optimization problem:

min
CSIM ,vnet ,ΔG0

XNc

i= 1

CWC
i � α*CSIM,CY

i + ð1� αÞ*CSIM,MT
i

� �
σCWC

i

0
@

1
A

2

+ ð11Þ

XK
t = 1

XNt

i= 1

XNi

j = 1

XWC
t,i,j � βi Cð Þ*XSIM,CY

t,i,j C,vnet ,ΔG00
� �

+ ð1� βi Cð ÞÞ*XSIM,MT
t,i,j C,vnet ,ΔG00

� �� �
σXWC

t,i,j

0
@

1
A

2

s:t:

Svnet =0 ð11aÞ

vnet,lb ≤ vnet ≤ vnet,ub ð11bÞ

ln C½ �lb ≤ ln CSIM
h i

≤ ln C½ �ub ð11cÞ

ΔG00lb ≤ΔG00 ≤ΔG00
ub ð11dÞ

signðvneti Þ*½ΔG00 +RT lnQ CSIM
� �

�≤0 ð11eÞ

where, Eq. (11a) enforces stoichiometric mass balance (Si,j repre-
senting the stoichiometric coefficient of metabolite i in reaction j;
see compartmentalized network model and stoichiometric coeffi-
cients in Supplementary Table S1). Equation (11b) enforces lower
and upper bounds on net fluxes (vnet,lb and vnet,ub respectively),

based on experimentally measured net uptake/secretion rates and
estimated cellular demand for cell proliferation (Supplementary
Tables S1 and S9). Equation (11c) enforces lower and upper bounds
on metabolite concentrations; lower bound is based on minimum
physiological concentration, and upper bound is based on total
cellular measurements, while considering a metabolite is fully
concentrated in one compartment. Equation (11d) enforces lower
and upper bounds on the searched metabolite standard Gibbs free
energy, considering previous estimates of free energies and their
95% confidence intervals using the group contribution method33–35.
Equation (11e) constrains the direction of net flux through each
reaction based on the sign of Gibbs free energy, in accordance with
the 2nd law of thermodynamics71.

The first term in the objective function minimizes the variance-
weighted sum of squared residual of the experimentally measured
metabolite concentrations (CWC) versus the convoluted simulated
concentrations in cytosol (CSIM,CY ) and mitochondria (CSIM,MT ),
considering the relative volume of cytosol (α) and mitochondria
(1� α). The standard deviation in the measurements of metabolite
concentrations is denoted σCWC . The relative volume of the two
compartments was calculated assuming that cytosol and mito-
chondria accounts for ~80% and ~20% of total cellular volume,
respectively5. We evaluated the robustness of our analysis per-
formed for HeLa cells, considering a range of potential mitochon-
drial volumes (4%, 12%, 20%)5,72–78. The estimated
compartmentalized fluxes were highly similar to those inferred
using the original mitochondrial 20% volume, with a pairwise
Pearson correlation >0.95 (Pearson P value < 10−10). The second
term in the objective function minimizes the variance-weighted
sum of squared residual of the experimentally measured metabo-
lite labeling patterns versus the convoluted simulated labeling in
cytosol and mitochondria. We denote the measured mass-
isotopomer distribution (MID) in the tth isotope tracing experi-
ment, for the ith metabolite under isotopic steady state, by XWC

t,i .
The relative fraction of M + j form with XWC

t,i,j ; i.e., the fraction of the
metabolite pool having j labeled carbons; and the standard devia-
tion in this measurement denoted σXWC

t,i,j
. We denote by K (=3) the

number of isotope tracing experiments performed (using [U-13C]-
glucose, [U-13C]-glutamine, and [U-13C]-lactate); byNt the number of
metabolites whose labeling pattern is measured in the tth isotope
tracing experiment; and by Ni the number of isotopic labeling
forms in the ith metabolite. The metabolite MIDs in cytosol and
mitochondria, denoted XSIM,CY

t,i and XSIM,MT
t,i , respectively, are

uniquely determined based on the forward and backward fluxes39,
derived from the net flux, concentration, and Gibbs free energy
variables (as shown below). The convolution of the simulated MIDs
of the ith metabolite in mitochondria and cytosol accounts for the
relative pool size of the metabolite in each compartment; the
relative pool size in cytosol is denoted βi and is calculated as fol-
lowing:

βi Cð Þ= α*CSIM,CY
i

α*CSIM,CY
i + ð1� αÞ*CSIM,MT

i

ð12Þ

Considering that the simulated net flux through the ith reaction
represents the difference between the forward and backward fluxes:

vneti = v f
i � vbi ð13Þ

and that the Gibbs free energy determines the forward-to-backward
flux ratio (in accordance with the flux-force relationship; Eq. (14)):

ri =
v f
i

vbi
=Q�1e�

ΔG00
RT , ð14Þ
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the forward and backward fluxes are calculated as following:

v f
i =

vneti *ri
ri � 1

ð15Þ

vbi =
vneti

ri � 1

Given the estimated forward–backward fluxes, the unique MID of
all metabolites in mitochondria and cytosol are computed via the
Elementary Metabolite Unit (EMU)39.

Direct solving of the above optimization problems is challenging
due to the non-linear constraint in Eq. (11e), enforcing net flux in the
direction of negative Gibbs free energy change. We describe a 4-step
approach for solving this problem:

Step 1—Determine bounds on the direction of new flux based on
thermodynamic analysis:We utilizemixed-integer linearprogramming
(MILP) to search for net fluxes in the forward or backward direction
(denoted vnet,f and vnet,b, respectively), log metabolite concentrations
(denoted C), and metabolite standard Gibbs free energies (ΔG0),
satisfying mass-balance constraints and the second law of thermo-
dynamics (as well physiological measurements)40. We define two
variables for each reaction i, denoting whether net flux is in the for-
ward (yfi ) or backward (ybi ) direction, enabling formulation of the
thermodynamic constraint via linear equations:

min=max

yf ,yb,vnet,f ,vnet,b,C,ΔG00

vnet,f � vnet,b
� �

ORðCÞOR ΔG00 +RT lnQ
� �

ð16Þ

s:t:

Svnet,f � Svnet,b =0 ð16aÞ

vnet,lb ≤ vnet,f � vnet,b ≤ vnet,ub ð16bÞ

ln C½ �lb ≤ ln C½ �≤ ln C½ �ub ð16cÞ

yfi ,y
b
i 2 f0,1g (16d) for reactions i with thermodynamic data

ybi � 1
� �

*B≤ΔG00
i +RT lnQ Cð Þ≤ 1� yfi

� �
*B ð16eÞ

vnet,fi ≤T*y f
i

ð16fÞ

vnet,bi ≤T*ð1� ybi Þ ð16gÞ

where Eq. (16e) constrains the sign of Gibbs free energy for the ith
reaction based on yi and Eq. (16f–g) constrain flux in the forward and
backward direction for the ith reaction based on yi. The optimization
problem is repeatedly applied to compute the range of feasible net
fluxes, metabolic concentrations, and reaction Gibbs energies satisfy-
ing the above constraints (as in Flux Variability Analysis79).

Step 2—Determine bounds on the direction of new flux based on
thermodynamic analysis: We formulate a variant of the optimization
problem in Eq (11), in which the second law of thermodynamics
(Eq. (11e)) is enforced only for reactionswhose direction of netfluxwas
inferred from the analysis performed in Step 1, using a linear con-
straint. The resulting nonconvex optimizationwith linear constraints is
solved using sequential dynamic programming (SQP) starting from

1000 sets of random fluxes and metabolite concentrations to over-
comepotential localminima To facilitate efficient solving, we calculate
the first order derivatives of the objective function (ObjF) with respect
to each of the optimization parameters: The first order derivatives of

the objective function with respect to forward (dObjF
dvfi

) and backward

(dObjF
dvbi

) fluxes are computed as previously described in the EMU

method39. These are used here to compute the derivative of the
objective function with respect to the optimization problem variables:
netfluxes (vnet),metabolite concentrations (C) and standardGibbs free

energies (ΔG0):

dObjF
dvneti

=
dObjF

dvfi
*
dvfi
dvneti

+
dObjF

dvbi
*
dvbi
dvneti

=
dObjF

dvfi
*

ri
ri � 1

+
dObjF

dvbi
*

1
ri � 1

ð17Þ

dObjF
dðlnCjÞ

=
X
i

dObjF

dv f
i

*
dvfi

dðlnCjÞ
+
dObjF
dvbi

*
dvbi

dðlnCjÞ

 !
=
X
i

sign Sji
� � vneti *ri

ri � 1
� �2

ð18Þ

dObjF

dðΔG00
i Þ

=
dObjF

dvfi
*

dvfi
d ΔG00

i

� � +
dObjF

dvbi
*

dvbi
d ΔG00

i

� � =
2
RT

*
vneti *ri
ri � 1
� �2 ð19Þ

We repeatedly applied the nonconvex optimization to compute
the 95% confidence intervals for all fluxes and metabolite concentra-
tions. The nonconvex optimization problem was solved using
MATLAB’s Sequential Quadratic Optimization (SQP), starting from
1000 sets of random fluxes and metabolite concentrations to over-
come potential local minima. To compute confidence intervals for
each compartmentalized flux, we started at the optimal solution, and
increased (and then decreased) the value of the flux whose sensitivity
is examined step-by-step. All other fluxes are determined by mini-
mizing the objective function via the SQP, till the objective function
has increased by 95% quantile of chi-square distribution with one
degree of freedom, compared to the value of the optimal solution80. A
similar method was used to compute the confidence intervals for each
metabolite concentration in mitochondria and cytosol.

The inferred flux and concentration confidence intervals are used
as input to iteratively run Step I and II, aiming to infer the direction of
net flux through as many reactions as possible.

Step 3—Enumerate remaining thermodynamically feasible flux
directionality vectors: In case the iterative method converged before
all reaction directions are inferred, we enumerated all thermo-
dynamically possible directionality vectors for the remaining reac-
tions. Thiswasdoneby repeatedly solving theMILPproblemdescribed
in Step I (until no additional feasible solutions are found), while adding
“integer cut” constraints to exclude previous solutions with the same
set of net flux directions (while considering the derived ranges of net
fluxes, concentrations, and Gibbs free energies derived in the previous
iterative procedure). Specifically, in each kth run of theMILP problem,
the following constraint was added:

P
j

y f , j � y f , j
i

��� ���� �
≥ 1 f or i= 1,2, . . . k � 1 ð20Þ

where y f , j
i denotes the integer variables denoting whether reactions

are thermodynamically feasible in the forward direction in the ith run
of the MILP problem.

Step 4—Compute flux and concentration confidence intervals
considering all reaction directionality vectors:

For each feasible reaction directionality vector inferred in Steps 3,
we solve the nonconvex optimization problem described in Step 2
(with the 2nd law of thermodynamics and flux-force relationship
constraints now enforced for all relevant reactions in the model).
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Finally, we determine confidence intervals for compartmentalized
fluxes andmetabolite concentrations based on the union of the ranges
computed for all directionality vectors. The derived confidence inter-
vals represent the level of uncertainty in flux estimates, while some
intermediate flux values within those ranges might be infeasible.

PreviousMFA studies have evaluated the goodness-of-fit between
themeasured and simulatedmetabolite isotopic labeling forms, based
on the variance-weighted sum of squared residuals39. Here, we exten-
ded this analysis, to also similarly fit the simulated and measured
metabolite concentrations (see Eq. (11)). The sumof square residuals of
the labeling forms and concentrations is a stochastic variable with chi-
square distribution. The number of degrees of freedom equal to the
number of independent measurements minus the number of esti-
mated free fluxes and metabolite concentrations. We determined
statistical significance based on 95% quantile of chi-square distribu-
tion, obtaining a statistically significant fit with the experimental
measurements in the application of CODE-MFA on all studied cell lines
(chi-square P value < 0.05).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that all the data supporting the findings of this
study are available within the article and its Supplementary Informa-
tion and from the corresponding author upon request. Sourcedata are
provided with this paper.

Code availability
All code used to conduct the research detailed in this manuscript is
available at the following link: https://github.com/sternal75/
CODE-MFA.
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