
Article https://doi.org/10.1038/s41467-023-42813-2

Introspective inference counteracts
perceptual distortion

Andra Mihali 1,2 , Marianne Broeker 1,2,3,4, Florian D. M. Ragalmuto1,2,5,6 &
Guillermo Horga1,2

Introspective agents can recognize the extent to which their internal percep-
tual experiences deviate from the actual states of the external world. This
ability, also known as insight, is critically required for reality testing and is
impaired in psychosis, yet little is knownabout its cognitive underpinnings.We
develop a Bayesian modeling framework and a psychophysics paradigm to
quantitatively characterize this type of insight while people experience a
motion after-effect illusion. People can incorporate knowledge about the
illusion into their decisions when judging the actual direction of a motion
stimulus, compensating for the illusion (and often overcompensating).
Furthermore, confidence, reaction-time, and pupil-dilation data all show
signatures consistent with inferential adjustments in the Bayesian insight
model. Our results suggest that people can question the veracity of what they
see by making insightful inferences that incorporate introspective knowledge
about internal distortions.

Successfully navigating the modern world requires questioning the
validity of sensory information—testing whether it conforms to reality
rather than simply taking it at face value. In other words, one cannot
always believe what one sees. This is apparent in considering “deep-
fakes", where objective sensory information is deliberately manu-
factured in such lifelike ways that viewers sometimes believe it is real.
This is also the case for hallucinations, where internal distortions drive
seemingly veridical percepts that are often falsely believed to be real.
The corollary is that to avoid harboring false beliefs, and acting erro-
neously on their basis, the presence of potentially deceiving sensory
information or experiences needs to be met with a healthy degree of
skepticism in one’s own senses. The ability to perform such “reality
testing"—e.g., testing whether subjective, internal sensory experiences
reflect actual states of the external world—is characteristically
impaired in psychosis1,2. Although perceptual distortions, including
hallucinations, are common in a variety of neuropsychiatric conditions
as well as in some non-clinical groups3, psychotic disorders such as
schizophrenia are classically distinguished by an inability to question
the reality of distorted percepts, a concept referred to as impaired

insight4. Put more simply, among the people who experience percep-
tual distortions, some can recognize them as such and others cannot.
The latter case of impaired insight leads to false beliefs and can drive
seemingly erratic behaviors, including poor treatment adherence5,6.
Alterations in reality testing also have important legal ramifications
given their impact on determinations of criminal responsibility.
Despite the broad societal implications of reality testing, the cognitive
mechanisms underlying this ability are insufficiently understood4.

Progress in this area has been hindered by the lack of a formal
explanatory framework and experimental paradigms suitable to study
reality testing. Previouswork related to reality testing has broadly used
two main approaches: (1) source (self versus other) memory tasks in
the context of semantic association and sentence completion7,8; and,
more recently, (2) imagery tasks in the context of perceptual decision-
making9–13. The first approach relies on episodicmemory and does not
capture in-the-moment reality testing; the second approach captures
in-the-moment processes and leverages signal-detection theory but
relies on individuals’ imagery ability, thus limiting experimental con-
trol and translatability. Furthermore, while imagery is relevant to some
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forms of reality testing, reality testing is a broader construct11,14 and its
impairments need not involve altered imagery. Here, we focus on a
formof reality testing thatwe refer to as ‘perceptual insight’: the in-the-
moment process of incorporating introspective knowledge about
distortions in internal percepts to effectively infer the actual state of
the external world. We propose a formal model of perceptual insight
building on Bayesian theory and present a perceptual-insight para-
digm that minimizes memory confounds and enhances experimental
control over previous designs.

In this work, we reasoned that probing perceptual insight would
first require experimentally inducing a sufficiently strong perceptual
distortion—a discrepancy between an objective stimulus feature and
its subjective perceptual experience or estimate—and then probing
beliefs about the true state of varying objective stimuli. To do this, we
used the motion after-effect (MAE), a well-characterized class of illu-
sions that includes strong illusory percepts of (seemingly veridical)
complex motion induced by prolonged viewing of an adaptor motion
stimulus. We deemed the complex MAE particularly suitable for
studying perceptual insight because explicit knowledge about the
illusion seemed to allow accurate inferences on the actual state of
objective stimuli while their subjective experience was distorted.
Augmenting classic MAE methods with psychophysics tools, compu-
tational modeling, and pupillometry, we thus set out to validate an
explanatory framework for human perceptual insight.

Using these approaches, here we show that healthy participants
can compensate for the MAE illusion when they report their beliefs
about actual direction of motion, relative to when they report per-
ceivedmotion.We show that thisMAE compensation is best explained
by a Bayesian model that captures insight through adjustments at an
intermediate inferential stage. This conclusion is further supported by
pupillometry data and drift-diffusion modeling. In sum, we show that
people can make insightful inferences that incorporate knowledge
about their internal perceptual distortions to counteract these
distortions.

Results
Formal model of perceptual insight
We focus on the concept of perceptual insight, defined as the incor-
poration of introspective knowledge about internal distortions to
effectively infer the actual states of the external world. Although
related to other notions of introspection15–18, this construct specifically
implies an ability tomake judgments incorporating knowledge that the
internal representation of external states may not accurately reflect
these states—i.e., that internal experiences may not match reality. In
particular, it implies incorporating knowledge that internal repre-
sentations may be systematically influenced by factors other than
external states (e.g., knowing that a voice one hears or a motion pat-
tern one sees is “in one’s head" and does not correspond to a speaker
or a moving object in the outside world).

To formulate this construct, we first consider a standard model of
perceptual decision-making19,20. Broadly, this model captures how an
agent observing a stimulus s makes a decision about the stimulus, for
instance the category C it belongs to. This process involves an early
sensory-encoding stage, in which the external stimulus s is encoded into
a neuralmeasurement or internal sensory representation x (Fig. 1A, left).
Based on x, which is corrupted by noise, at an intermediate stage the
agent infers aspects of the external stimulus such as its category C.
Finally, at a late stage, the agent makes a choice Ĉ with a certain level of
confidence q. A Bayesian observer formally solves this problem by first
inferring the posterior probability of C at the intermediate stage, com-
bining its likelihood and prior probability as p(C∣x)∝p(x∣C)p(C), and
computing a perceptual-decision variable d consisting of the log-
posterior ratio of the two possible options (C= 1 or C=−1). The observer
then chooses the category with the highest posterior probability at the
late stage by comparing d to a threshold kchoice, with a value of 0 in the

unbiased case. The observer further generates a confidence response q
by comparing the posterior probability of the chosen response
pðC = ĈjxÞ to a threshold kconfidence21–23 (see Methods, “Computational
models”, “Standard perceptual decision model”).

Nowweconsider a scenario directly relevant to perceptual insight
where the internal representation x is additionally influenced by a
distortion factor A and is no longer solely a function of the external
stimulus s. Factor A (e.g., a psychotomimetic substance or a sensory
adaptor) can distort the internal representation x, for instance off-
setting x from s (Fig. 1A, center). Similar to the standard case, an
insightful Bayesian observer can optimally infer the posterior prob-
ability p(C∣x) but will require incorporating knowledge about the dis-
tortion factor A, specifically about the influence of A on x and the
possible values of A, as p(C∣x)∝ ∫ p(x∣C,A)p(C)p(A)dA (see Methods,
“Computational models”). This optimal agent has perceptual insight
because it knows its internal representation x can be influenced by
factors other than external states (Fig. 1B, right). By optimally incor-
porating this knowledge at an intermediate inferential stage and
appropriately shifting the perceptual-decision variable d, the insightful
agent can compensate for factor A andmake accurate decisions about
category C using an unbiased response rule—i.e., choosing the option
with the highest posterior probability by comparing d to a kchoice of 0
(Fig. 1C, right).

We must distinguish this insightful optimal agent (Fig. 1C, right)
fromone that behaves similarly under factorAbutmay lackperceptual
insight (Fig. 1C, center). Without explicitly incorporating knowledge
about factor A at the intermediate inferential stage, this alternative
agent may still compensate for factor A at a late stage by adjusting its
response rule, i.e., via a response bias (as if it knew its decisions were
inaccurate but not the underlying cause). This agent would infer p(C∣x)
as p(x∣C)p(C)—that is, not incorporating knowledge about factor A into
the perceptual-decision variable d—and would only change its
responses by using a kchoice different than 0 (Fig. 1C, center). This is
reminiscent of patients with impaired insight who nonetheless learn to
report skepticism about their distorted percepts (such as hallucina-
tions) to derive some benefit. While an insightful agent could possibly
incorporate knowledge about factor A suboptimally by adjusting its
response rule, observing a response bias does not guarantee an
insightful strategy (as it is also consistent with the absence of insight).
In contrast, observing the abovementioned shift in d incorporating
knowledge about factor A (as in Fig. 1B, right) does imply the use of an
insightful strategy.

Here, we set out to test whether human observers experiencing
internal distortions in perception demonstrate perceptual insight.
Because its hallmark is a distinct shift in the perceptual-decision vari-
able d under perceptual insight (Fig. 1D, center versus right), through
which the insightful agent incorporates introspective knowledge
about the internal distortion into its posterior beliefs, we placed par-
ticular emphasis on behavioral and physiology measures shown to
reflect this variable d. More generally, our study is distinct from pre-
vious extensive work showing that observers integrate external
stimuli24–28 and external feedback20,29,30 into perceptual decisions in
line with Bayesian theory, in that it is, to our knowledge, the first to
examine integration of evidence from external stimuli with intro-
spective knowledge about an internal distortion in the absence of
external feedback. Furthermore, previous work has shown that
perceptual-decision changes at different stages can manifest as dis-
tinct patterns of choice, reaction times (RT), confidence reports31,32,
and pupil dilation33, which together can help differentiate shifts in the
perceptual-decision variable d such as those we specifically hypothe-
size under perceptual insight.

Experimental paradigm of perceptual insight
Toproduce a strong perceptual distortion, we induced anMAE illusion
of complex motion using a counterclockwise-rotating Archimedean
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spiral, based on the ability of complex motion (e.g., rotational) to
induce stronger adaptation than simplemotion (e.g., translational)34,35.
WemeasuredMAE strength via the nulling method36 as the shift in the
bias of the psychometric curve, i.e., the bias induced by a first moving
spiral (the adaptor) on the observer’s judgment of a second spiral
moving at different speeds and directions. The overall paradigm
(Fig. 2) had a two-by-two design, with two types of conditions, ’Adapt’
(rotating first spiral acting as adaptor) and ’No-Adapt’ (staticfirst spiral

acting as control), and two types of responses required upon obser-
ving the second spiral (test stimulus), ’See’ and ’Believe’. ’See’
responses required participants to report the perceived direction of
motion of the test stimulus (i.e., whether they saw the second spiral
moving counterclockwise [left] or clockwise [right]); ’Believe’ respon-
ses instead required them to report the inferred true direction of
motion of the test stimulus (i.e., whether participants thought that the
second spiral was actually moving counterclockwise or clockwise).
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Fig. 1 | Perceptual-decision framework for perceptual insight. A Generative
model of the early encoding stage with internal distortion due to factor A (center)
and with no distortion (left box). B At the intermediate stage, an observer’s infer-
ence under distortion can either take into account the actual generativemodel and
thus demonstrate insight (right cloud) or wrongly assume the generative model
without distortion and thus lack insight (left cloud). C Response—choice (Ĉ) and

confidence (q)—generation from the decision variable d at the late stage. D Choice
and confidencepatternswith insight (right) andwithout insight (center and left) are
distinct. Compensation for the distortion through perceptual insight (right) leads
to shifts in tandemof the choice and confidence curves. Late compensationwithno
insight (center) leads to isolated shifts in the choice curves.
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Adapt blocks started with an extended exposure to an adaptor spiral
(as in ref. 37) followed by trial-by-trial 3-second exposures to the
adaptor spiral before each stimulus, and adaptor spirals always rotated
counterclockwise at a constant speed. After each See or Believe
response, participants also reported their confidence or “how sure
theywere about their responses" (high or low confidence). Participants
received no feedback on their responses during the task. Critically,
participants had explicit knowledge of the MAE and its illusory nature,
acquired through detailed instructions and practice and individually
demonstrated in MAE strength estimates (see Methods “Experiment
1” and “Experiment 2”, “Instructions, demonstration, training” and
Fig. S1). We measured MAE compensation as a relative correction of
the Adapt-See bias (i.e., the MAE illusion) in the Adapt-Believe

condition and thus a candidate measure for perceptual insight. This
corrective shift may in principle reflect participants’ knowledge of the
direction and strength of the illusion since both conditions had mat-
ched stimuli and only differed in their required responses.

Participants compensate for distorted perception
In a first experiment, participants experiencing the MAE illusion
showed evidence of compensation (Fig. 3, top). Observers’ responses
tracked stimulus strength derived from a staircase procedure
(see Methods “Experiment 1”, “Test stimulus generation”; Fig. 3A, top)
and were well described by psychometric curves (Gaussian cumulative
density functions) with condition-specific bias μ and noise σ, and a
shared lapse parameter λ (Fig. 3B, see Methods “Psychometric
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second spiral (test stimulus) of variable speed. A binary left/right choice is then
prompted aboutmotiondirection (for clockwise or counterclockwisemotion in the
test stimulus, respectively, as seen or believed depending on the required
response), followed by an up/down confidence response, provided to the question

“how sureare youof your response?".BVisualization of the experimental setup and
gaze fixation control (see Methods “Trial structure with gaze fixation control").
C Left: Fixation positions. There were no statistically significant differences across
the average fixation positions (averaged across trials per condition for each one of
the N = 22 participants) in the four task conditions (planned post-hoc two-sided t-
tests, all p >0.216). Data represent mean across N = 22 participants and SEM across
participants. Right: Microsaccade rates. Bars and error bars representingmean and
SEMacrossN = 22 participants fromExperiment 2.Microsaccade rates could reflect
differences in fixation stability or affect MAE strength145. There were no significant
differences in the microsaccade rates across conditions (planned post-hoc two-
sided t-tests, all p >0.355). (Microsaccades were measured following146 and using
parameters minimum velocity threshold multiplier λ = 6, minimum amplitude
threshold of 1 dva and minimum duration of 6 ms).
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curves”). The MAE appeared as a leftward shift in the psychometric
curves in Adapt-See relative to the control No-Adapt-See condition,
indicating a bias towards perceiving clockwise motion (difference in μ
bias parameter: z = 4.108, p < 0.001, bootstrapped 95% confidence
interval [CI] [4.108, 4.108], two-sidedWilcoxon signed-rank test, effect
size r =0.619). Critically, relative to Adapt-See, the psychometric
curves for Adapt-Believe showed a rightward corrective shift, indicat-
ing a compensation for the MAE (z = 2.642, p =0.008, 95% CI [0.823,
3.602], effect size r =0.398; Fig. 3C, bottom; note that throughout, this
MAE compensation index is normalized by ∣μAdapt−See∣).

Despite evidence for MAE compensation in Experiment 1, we
noted substantial interindividual variability and could not rule out the
possibility that participants solved the Adapt-Believe condition by
actively eluding the adaptor to minimize its influence (e.g., subtly
looking away despite the instructions). To control for this, Experiment
2 used eye tracking to enforce fixation and prevent blinks for a 8 s time
window encompassing the fixation, adaptor and stimulus periods and
3 s post-stimulus (see Methods “Trial structure with gaze fixation
control"). We also sampled stimuli from a uniform distribution
(informed by Experiment 1) to improve interpretability and facilitate
modeling38. All results from Experiment 1 were replicated and more
evident in Experiment 2 (Fig. 3, bottom), which generally produced
higher-quality data: participants experienced theMAE andconsistently
compensated for it in Adapt-Believe (Fig. 3C, bottom; z = 4.107, p <
0.001, two-sided Wilcoxon signed-rank test, 95% CI [4.107, 4.107],
effect size r = 0.619). Furthermore, unlike in Experiment 1, therewas no
statistically significant difference between the noiseparametersσ from
Adapt-See and Adapt-Believe in Experiment 2 (z = − 1.412, p =0.158,
two-sided Wilcoxon signed-rank test, bootstrapped 95 % CI: [-2.974,
0.829], effect size r = 0.213). Additionally, unlike in Experiment 1,
Experiment 2 participants tended to exhibit a systematic over-
compensation as psychometric curves in Adapt-Believe were often

shifted rightward beyond the control condition (Fig. 3A and C, Wil-
coxon signed-rank test for MAE compensation above 1 was z = 3.945,
p <0.001, two-sided Wilcoxon signed-rank test, 95% CI [2.651, 4.111],
effect size r = 0.595 for Experiment 2, versus z = 1.185,p = 0.236, 95 %CI
[−0.862, 2.746], effect size r = 0.179 for Experiment 1). In sum, our
participants experienced illusory motion and were able to either
report the distorted percept (in Adapt-See) or discount it and com-
pensate (or overcompensate) for it (in Adapt-Believe). Critically, they
responded differently in Adapt-See and Adapt-Believe despite experi-
encing identical (adaptor and test) sensory stimuli across these two
conditions.

MAE compensation could in principle reflect a more general
compensatory strategy not due to insight gained from training and
applied during the task. However, we empirically confirmed via MAE
strength estimation that participants knew about the illusion and
expected to have MAE roughly consistent in magnitude with the
observed MAE effect during Adapt-See, albeit not perfectly calibrated
(Supplementary Fig. S1). Furthermore, because participants received
no feedback during the task, it is unlikely that they could compensate
for the MAE via trial-and-error learning.

MAE compensation is consistent with an intermediate infer-
ential process
We then tested whether MAE compensation was consistent with per-
ceptual insight. Optimal perceptual insight would imply an adjustment
at the intermediate stage of inference that results in the computation
of the perceptual-decision variable d (the log-posterior ratio) under
Adapt-Believe (Fig. 1C, right). In contrast, late compensation—which
may or may not denote insight and which constitutes a suboptimal
strategy—would only imply a change at the late-response stage, such as
an offset in kchoice (Fig. 1C, center), similar to that induced by response
priming or asymmetric reward payouts31,32,39,40. The observed shifts in
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psychometric curves (Fig. 3) are theoretically consistent with either of
these two scenarios. However, among these two, only adjustments at
the intermediate stage should cause commensurate shifts in
perceptual-decision uncertainty, -∣d∣, the negative distance of d from
the point of maximal perceptual uncertainty (d =0), that should be
reflected in confidence and RT curves shifting in tandem with psy-
chometric curves31,32. Under late compensation, d should instead be
identical in Adapt-See and Adapt-Believe, and so should be any mea-
sures reflecting perceptual-decision uncertainty (i.e., confidence and
RT); late compensation should thus lead to an isolated shift in the
psychometric curves between these conditions (Fig. 1C, center)31,32,39.

Consistent with previous work, MAE-related shifts in the psycho-
metric curves were accompanied by commensurate changes in con-
fidence and RT curves (Fig. 4). Furthermore, biases under Adapt-See in
these three different measures correlated across individuals (all
0.43 < ρ <0.87, all p <0.047; Supplementary Fig. S2, Left). Critically,

psychometric curves defining MAE compensation also shifted in tan-
dem with confidence and RT curves (Fig. 4). Under Adapt-Believe,
individuals with larger biases in psychometric curves also exhibited
larger biases in confidence and RT curves (all 0.63 < ρ <0.85, all
p <0.002; Supplementary Fig. S2, Right). This shows that MAE com-
pensation involves a shift in perceptual-decision uncertainty, con-
sistent with an adjustment at the intermediate inferential stage and
inconsistent with a change restricted to a late response stage.

An alternative explanation for this pattern of compensation is a
change at the early stage of sensory encoding, but this seems less
tenable. First, participants reported continuing to experience theMAE
illusion after receiving instructions and during the Adapt-Believe
condition. Second, adaptation induces changes in early sensory neu-
rons, such as reductions in firing rates associated with
hyperpolarization41–45, that are unlikely to be easily reversed at task-
relevant timescales.
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Bayesian modeling supports perceptual insight
To more directly test the model of perceptual insight (Fig. 1, right)
versus other compensatory strategies, we fitted an adapted version of
this model to data from Experiment 2 (Fig. 5). We specified the
perceptual-insight and alternative models building from an extended
Bayesianmodel of perceptual inference shown to capture variability in

confidence reports22,23 (see Methods “Computational models”, “Stan-
dard perceptual decision model”), the architecture of which (Fig. 5A)
roughlymaps onto the three stages of processing discussed above. An
early stage in all models consisted of encoding the stimulus s into a
noisy internal representation x, which was offset under the Adapt
conditions. We assumed x was equally offset under Adapt-See and
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Adapt-Believe reflecting an unavoidable effect of the adaptor at this
early stage. At the intermediate stage, the posterior probability was
computed and converted into a perceptual-decision variable d con-
sisting of the log-posterior ratio, which was then used at the late stage
to produce a binary choice Ĉ by comparing d to the threshold kchoice.
Confidence responses q reflected the posterior probability of the
chosen response pðC = ĈjxÞ21,22, binarized via a comparison with the
threshold kconfidence. Critically, unique to the perceptual-insight model
was the incorporation of knowledge about factor A, here the adaptor,
in its intermediate inferential stage P(x∣C,A) via a shift in the likelihood
term p(x∣s,A) (see Methods “Computational models”, “Perceptual-
insight model”), which produced a shift in d sufficient to compensate
for the distortion without need for biasing its response rule
(kchoice = 0); in contrast, the late-compensation model inferred C
without knowledge about A, as P(C∣x), requiring a biased response rule
(kchoice ≠0) to compensate for the MAE. Because the former scenario
produces shifts of psychometric curves and confidence curves in
tandem and the latter produces isolated shifts in psychometric curves
(Fig. 1D), we deemed this basic model architecture flexible enough to
capture the range of relevant behavioral patterns.

Formal comparison of models fitted jointly to choice and con-
fidence reports (Table 1, see Methods “Computational models”,
“Model fitting”) selected the perceptual-insight model over the late-
compensationmodel, a hybridmodel, alternativemodels that allowed
changes inother inferential variables, including the category prior, and
a late-compensation process simultaneously biasing choice and con-
fidence reports (Fig. 5B). All models allowed for shifts in the internal
representation x during the Adapt conditions, relative to the control
No-Adapt conditions, via two fixed parameters (one μencoding value for
Adapt and one for No-Adapt), and additionally had condition-specific
free parameters for sensory or encoding noise (σencoding) and con-
fidence thresholds kconfidence (Table 1). Similarly to the perceptual-
insight (μlikelihood) model, the category prior model can compensate
for the MAE via an intermediate inferential process manifesting as
shifts in tandem, but achieves this compensation through a distinct
suboptimal mechanism (using an incorrect category prior and an
incorrect generative model); while the perceptual-insight model
compensates by flexibly modifying the perceptual-variable d in a way
that scales with encoding noise (Equation (30), Supplementary Fig. S4
and Supplementary Fig. S5), the prior model simply and incorrectly
assumes a change in the category prior that produces fixed shifts in d
regardless of encoding noise.

Importantly, the winning perceptual-insight (μlikelihood) model yiel-
ded meaningful parameters and satisfactorily captured the pattern of
shifts in tandem associated with the MAE and MAE compensation
(Fig. 5C, compare visually with the response-bias model fits in Supple-
mentary Fig. S6), accomplishing the latter through condition-specific
free μlikelihood parameters that shifted the likelihood of x under Adapt-
Believe relative to the other conditions (Fig. 5D). Fitted μlikelihood dif-
feredbetweenAdapt-See andAdapt-Believe (z =4.107,p <0.001, 95%CI
[4.107, 4.107], two-sided Wilcoxon signed-rank test, effect size
r =0.619), as did the fitted σencoding (z = − 3.457, p<0.001, 95% CI
[−4.053, −1.219], r= −0.521) and kconfidence (z = 2.613,p =0.009, 95% CI
[0.731 3.622], r =0.394). These parameter differences were meaningful
as parameter recovery was successful (Supplementary Fig. S7). While
our simplified insight model (see Methods “Computational models”,
“Perceptual-insight model”) assumed no additional uncertainty related
to the Adaptor (σA ≈0), it captured increased encoding noise in Adapt-
Believe relative to Adapt-See via condition-specific σencoding, likely
reflecting a contribution of σA (Supplementary Fig. S8). Critically, the
change in μlikelihood correlated with psychometric-curve shifts between
Adapt-See and Adapt-Believe (ρ = −0.95,p <0.001, 95% CI [−0.989,
-0.866], Spearman correlation). Changes in the other parameters
(σencoding and kconfidence) did not show significant correlations with the
psychometric-curve shifts between Adapt-See and Adapt-Believe (both

p >0.634). Altogether, these results suggest that participants can
compensate for an unavoidable perceptual distortion originating at an
early sensory stage by incorporating knowledge about this internal
distortion at an intermediate stage of perceptual inference, even if they
tend to overcompensate (possibly due to incorrect knowledge of the
illusion, see Discussion). This supports that the observed MAE com-
pensation reflects genuine perceptual insight rather than alternative, or
additional processes manifesting as adjustments at the late
response stage.

To further confirm that our results did not reflect a generic
compensation pattern, following previous work39, we performed a
pilot experiment (see Methods “Control Experiment”) where we
replaced the Believe conditions with ’Bias’ blocks in which partici-
pants were instructed to respond left when uncertain. This
response-bias manipulation induced the expected shift in the psy-
chometric curves in the absence of corresponding shifts in the
confidence and RT curves, a pattern that was explained by a change
in the response-bias parameter kchoice, and not by μlikelihood (Sup-
plementary Fig. S9C). These data thus support the notion that per-
ceptual insight can be dissociated from response bias and speak
against a generic compensation pattern.

To further validate our winning model of perceptual insight, we
examined its ability to capture RTs not used for model fitting (Fig. 5E).
We assumed that RTs reflected decision difficulty based on the
perceptual-decision uncertainty, − ∣d∣, derived from the model. We
thus tested whether ranked ∣d∣ could predict ranked RT on a trial-by-
trial basis using a generalized linear mixed-effect model (GLME) con-
trolling for condition (see Methods “Statistical analyses”). Indeed,
greater uncertainty, smaller ∣d∣, correlated with longer RT
(t10643 = − 10.023,p <0.001, 95% CI [-11.983, -8.063], linear mixed-
effects model), providing a good explanation for the RT curves across
conditions; thisGLME showedno significant effects of condition onRT
(all t < 1.153, p > 0.249; Fig. 5E). Furthermore, this GLME provided a
better fit (R2

adjusted =0:615 and indices AIC = 191610, BIC = 191770) than
one predicting ranked RT from the ranked objective stimulus strength
∣s∣ (t10643 = − 8.927, p < 0.001, 95 % CI [-10.887, -6.967], linear mixed-
effects model, with R2

adjusted =0:541 and indices AIC = 193390 and BIC =
193540) and condition, which in contrast did show residual condition
effects (t10643 = 3.092, p = 0.002, 95 % CI [1.294, 5.777] for Adapt-See
and t10643 = 5.143, p < 0.001, 95 % CI [3.556, 7.937] for Adapt-Believe).
Therefore, RTs could be parsimoniously explained by decision
uncertainty reflecting uncertainty of posterior beliefs in the
perceptual-insight model.

Pupillometry further validates the perceptual-insight model
Arousal-related pupil dilation tracks with perceptual-decision uncer-
tainty and relies on norepinephrine and brainstem circuits distinct
from motor execution of button presses33,46–54, and thus from RTs in
this task. We used pupillometry as an objective physiological readout
of intermediate processing stages (as opposed to late-stage processes
involved in planning and executing the button-press response) to
corroborate our interpretation of the data in terms of perceptual
insight. We specifically hypothesized that pupil dilation in the relevant
task periods (pink and yellow regions in Fig. 6A; see Methods “Experi-
ment 2”, “Eye tracking and pupillometry”) wouldmirror RTs andmore
directly reflect the internal perceptual-decision uncertainty, − ∣d∣,
variable from the perceptual-insight model.

Indeed, during relevant decision-related periods where the slug-
gish pupil responses should be most apparent, the pupil dilation pat-
terns roughly mirrored the confidence and RT curves, showing subtly
yet visibly shifted pupil-dilation peaks for Adapt-See versus Adapt-
Believe (Fig. 6B)—a remarkable difference considering that these
conditions werematched on the adaptor and stimuli and only differed
in the required response. These differences manifested as statistically
significant interactions between test stimulus speed and condition

Article https://doi.org/10.1038/s41467-023-42813-2

Nature Communications |         (2023) 14:7826 8



(Adapt-See, Adapt-Believe) in two-way repeated-measures ANOVAs in
both a stimulus-locked decision-related period (2000 − 2500 ms after
stimulus onset, F(10, 210) = 4.105, p <0.001, η2 = 0.016) and in a
response-locked decision-related period (500 − 1000 ms post

response, F(10, 210) = 3.073, p = 0.001, η2 = 0.016). Thus, pupil dilation
patterns during relevant decision-related periods differed between
Adapt-See and Adapt-Believe, possibly consistent with shifts in
perceptual-decision uncertainty.
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Fig. 6 | Pupillometric signature of perceptual-decision uncertainty supports
the perceptual-insight model. A Time series of normalized pupil area (mean±
SEM) across trials (Ntrials = 121) and participants (N = 22) by task condition. Left:
stimulus-locked data (left) showing a decision-related window (pink). Right:
response-locked data showing a decision-related window (yellow). B Pupil dilation
peaks (mean ± SEM) as a function of stimulus strength show subtle yet visible shifts
between Adapt-See and Adapt-Believe (mirroring confidence and RT data in Fig. 4).
Here, SEM was calculated as in ref. 147 to account for within-participant effects.

C, D Moving-window GLMEs showing the fixed-effect t-statistics time series (see
Methods Statistical analyses). Brighter colors indicate statistical significance at
p <0.01. C The effect of absolute objective stimulus strength ∣s∣ is apparent around
the decision-related periods. D The effect of model-derived perceptual-decision
uncertainty ∣d∣ (from the winning model) is apparent around the decision-related
periods, and is stronger than that for ∣s∣ in (C). Effects for Adapt-See and Adapt-
Believe (relative to No-Adapt-See) are weaker in (D) than in (C).

Table 1 | Bayesian model variants and their parameters

Stage Model

Perceptual insight
“μlikelihood”

“prior” “μlikelihood + prior” Late compensation
“kchoice”

“μlikelihood + kchoice” “kchoiceconfidence”

Early μencoding × 2 (fixed)
σencoding × 4

μencoding × 2 (fixed)
σencoding × 4

μencoding × 2 (fixed)
σencoding × 4

μencoding × 2 (fixed)
σencoding × 4

μencoding × 2 (fixed)
σencoding × 4

μencoding × 2 (fixed)
σencoding × 4

Intermediate μlikelihood × 4 prior × 4 μlikelihood × 4
prior × 4

μlikelihood × 4

Late kconfidence × 4 kconfidence × 4 kconfidence × 4 kconfidence × 4
kchoice × 4

kconfidence × 4
kchoice × 4

kconfidence × 4
kchoice × 4

The cells show the model names and the parameters of each of the model variants, as well as their associated stages. × 4 means one parameter for each condition: No-Adapt-See, No-Adapt-Believe,
Adapt-See and Adapt-Believe. × 2 (fixed) means that the μencoding parameters are fixed to the values fitted from the psychometric curves for No-Adapt-See and Adapt-See. In the last model,
kchoice confidence, the kchoice factor depicted in Fig. 1 is allowed to shift simultaneously the confidencecurves (as if apart from the arrowdepicted from kchoice toC therewas another arrow from kchoice toq).
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To test this further, in parallel to our RT analyses above, we ran a
GLMEpredicting ranked pupil area on a trial-by-trial basis as a function
of ranked ∣d∣ and condition during the stimulus-locked decision-rela-
ted period. As expected, smaller ∣d∣ indicating greater uncertainty
predicted greater pupil area (t10643 = − 7.631, p < 0.001, 95% CI [-9.592,
-5.671], R2

adjusted =0:376). To control for response contamination, we
next performed analyses of response-locked changes in pupil area
during the decision-related period, which confirmed the effect of ∣d∣
(t10643 = − 5.389, p <0.001, 95% CI [-7.348, -3.428], R2

adjusted =0:346),
even when controlling for RT (t10642 = − 2.693,p =0.007, 95% CI
[-4.653, -0.732], in a model which showed a better fit R2

adjusted =0:386).
Generally, ∣d∣wasmore closely related to pupil area than the objective
stimulus strength ∣s∣ (t10643 = − 3.835,p < 0.001, 95% CI [-5.795, -1.875],
R2
adjusted =0:319), with GLMEs featuring ∣s∣ showing poorer fits and lar-

ger condition effects than the corresponding GLME above featuring
∣d∣. Finally, these results were confirmed in moving-window GLMEs
(see Methods Statistical analyses) showing strong effects of ∣d∣ at the
relevant time periods. Response-locked analyses confined to the
matched Adapt conditions (Adapt-See and Adapt-Believe) showed
consistent results for ∣d∣ (t5321 = − 6.073, p < 0.001, 95% CI [-8.033,
-4.112], R2

adjusted = 0:297) that held even when controlling for RT
(t5320 = − 2.883, p = 0.004, 95% CI [-4.843, -0.922], R2

adjusted =0:381),
demonstrating key model-predicted changes in the pupillometric
signature of d that were distinct from RT changes. Leveraging objec-
tive pupil dilation data to index the subjective perceptual-decision
variable33,51, we thus confirmed the predicted changes in the pupillo-
metric signature of this internal variable between Adapt-See and
Adapt-Believe, further supporting the validity of the perceptual-
insight model.

Drift-diffusion modeling supports an intermediate inference-
level explanation of perceptual insight
We observed an MAE compensation that manifested as shifts in tan-
dem in psychometric and confidence curves (Fig. 4). This pattern was
well captured via a Bayesian process model of perceptual insight that
was jointly fitted to choice and confidence responses and explained
insight via shifts in a perceptual-decision variable at an intermediate
inferential stage. However, this model assumed shared computations
across See and Believe confidence reports and one of several possible
architectures (see Methods “Computational models”,55–58).

To assess the robustness of our conclusions, we used an alter-
native framework based on drift-diffusion models (DDMs). To avoid
strong assumptions about confidence generation (as in some DDM
formulations59), weopted for standardDDMs that jointlymodel choice
and RTs, and which have proved useful to parse biases in decision-
making60,61. In its classic form, the DDM assumes that evidence sup-
porting one of two decisions is initially unbiased or biased (with a
starting-point bias of 0, or different than 0, respectively), and accu-
mulates over time with speed determined by the mean drift rate and
tracked via a noisy decision variable at an intermediate stage. When
this decision variable reaches one of two decision bounds at a later
stage, after some motor preparation and production time (part of
nondecision time), the observer reports their decision.

Previous DDM work has suggested that decision-making biases
can result either from changes in the starting-point bias of the
evidence-accumulation process or biases in the drift rate of accumu-
lation towards one decision. While a non-zero starting-point bias
would favor a specific choice by starting closer to one decision bound,
a drift-rate bias would increase the rate of evidence accumulation
towards one decision. These two scenarios have dissociable patterns
on the conditional response function (Fig. 7A) of the choice bias as a
function of RT quantiles: under a starting-point bias, the choice bias
manifests at short RTs and disappears quickly as RTs increase; under a
drift-rate bias, the choice bias decays slowly with increasing RTs.
Potentially consistent with a starting-point bias, we saw that biases in

the conditional response functionplots in Adapt-See (MAE) andAdapt-
Believe (MAE compensation) were most apparent at shortest RTs and
disappeared relatively quickly with increasing RTs (Fig. 7A).

To quantitatively parse the source of the choice bias, we fit DDM
variants using a previously validatedmethod62.We considered a “base"
variant including 3 free parameters (per condition) formean drift rate,
nondecision time and decision bound and extended variants including
a free parameter (per condition) for starting-point bias, one for drift-
rate bias, or both (Fig. 7B). The model with starting-point bias as an
additional parameter per condition fit the data best across all condi-
tions according to BIC (Fig. 7B); the winning model captured the
choice and RT data reasonably well (Fig.7C) for the limited number of
trials for DDM analysis63. The parameters of the winning model were
informative (Fig. 7D). First, Adapt-See differed from No-Adapt-See in
the mean drift rate and starting-point bias, partially consistent with
previous work63 and with sensory-level explanations for MAE41. Criti-
cally, Adapt-See and Adapt-Believe differed in the mean drift rate and
in the starting-point bias. Differences between Adapt-Believe and
Adapt-See in the mean drift rate correlated with corresponding dif-
ferences in σencoding, also indexing sensory noise in the perceptual-
insight model (Fig. 5C, ρ = −0.578,p =0.006, 95% CI [-0.814, -0.122]).
Most critically, differences in the starting point correlated strongly
with the degree of MAE compensation (ρ = 0.851, p <0.001, 95% CI
[0.669, 0.946]) and changes in the perceptual-insight μlikelihood para-
meter (ρ = −0.885,p < 0.001, 95%CI [-0.961, -0.724]); differences in the
starting point did not significantly correlate with changes in other
parameters from the perceptual-insight model (both p >0.864). A bias
in the starting point of perceptual evidence accumulation (obtained
via joint choice-RT fitting) thus corresponded with the shift in the
perceptual-decision variable in theperceptual-insightmodel (obtained
via joint choice-confidence fitting) that explained MAE compensation.
Importantly, we found no statistically significant differences in deci-
sion bounds between conditions (finding such differences may have
supported a late-stage response process). Overall, our DDM results
support an implementation of perceptual insight at an intermediate
stage of perceptual decision-making, and argue against a mechanism
confined to a late-response stage.

Discussion
We have presented a formal modeling framework that portrays
perceptual insight as the ability to acknowledge distortions in one’s
internal representations, allowing online adjustments in support of
adaptive decision-making. We further designed a controlled “cogni-
tive psychophysics" paradigm38 to capture this form of in-the-
moment reality testing while minimizing memory demands. We
first demonstrated that people can compensate—and often over-
compensate—for distorted percepts associated with a complex MAE
illusion, showing that they can adjust their decisions to counteract
the MAE illusion. We then leveraged confidence reports and RTs31,32

to show that MAE compensation involved shifts in decision uncer-
tainty more consistent with adjustments at an intermediate infer-
ential stage. Model comparison lent further support for a model of
perceptual insight involving adjustments at this inferential level. The
shifting perceptual-decision variable in our model provided a parsi-
monious explanation for RT and pupil-dilation patterns, providing
further support for our model of perceptual insight and suggesting
humans’ ability to deploy such insightful strategies to circumvent
internal biases. Further support for an interpretation of perceptual
insight in terms of the hypothesized shifts in the perceptual-decision
variable came from DDM analyses (jointly fitting choice and RTs but
not confidence reports), suggesting robustness of our conclusions to
assumptions about confidence generation.

As the adage “seeing is believing" implies, conscious perceptual
experiences generally dictate one’s beliefs. In contrast, our results
exemplify a rare case of a compensatory strategy that systematically
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prevents conscious perceptual experience—of the MAE—from driv-
ing beliefs about the true state of the world64–66. Put simply, they
show that seeing need not imply believing. Under our oper-
ationalization, perceptual insight is at the center of this distinction:
perceptual insight allows for a flexible mapping between seeing and
believing because it incorporates introspective knowledge that
internal experiences depend upon factors other than external sti-
muli and therefore do not always represent the external world
faithfully. As such, perceptual insight may enable reality testing. The
systematic dissociation between perceptual experience and belief
we achieved empirically, and our multi-stage perceptual-insight
framework, conceptually relates to previous hierarchical views of
conscious perception and metacognition; these views have gen-
erally proposed that beliefs about reality arise from higher-level
processes (possibly supported by higher-order prefrontal regions
such as anteromedial prefrontal or paracingulate cortex involved in
source monitoring andmetacognition8,11,67) distinct from lower-level

processes supported by earlier sensory regions. Our observed dis-
sociation between perceptual experience and beliefs seems con-
sistent with this notion, and could perhaps suggest the involvement
of higher-order regions inmonitoring and correcting biases in lower-
order sensory representations. Note however that our algorithmic
model does not speak directly to neural implementation and that
the ‘intermediate-level processes’ we refer to may encompass dif-
ferent neural hierarchical levels—e.g., from posterior parietal
regions routinely involved in perceptual inference68, to above-
mentioned prefrontal regions which could be more selectively
involved in insightful inference requiring top-down signals for sen-
sory bias correction. Our computational account of reality testing is
also conceptually related to a previous proposal based on gen-
erative adversarial algorithms69,70. Future work is warranted to
evaluate and directly compare our framework to these theoretical
and neuroanatomical accounts, as well as to other experimental
paradigms of reality testing8,71–73.
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Fig. 7 | Drift-diffusionmodeling. AConditional response function60, 61 for our data
(left, mean ± SEM across the N = 22 participants for each bin per condition) and
schematic (right, adapted from60,61) illustrating differential effects of starting-point
biases versus drift-rate biases. RTs are binned into 5 quantiles. B Using the PyDDM
package62, we implemented a base DDM (with parametersmean drift rate, decision
bound and nondecision time) as well as variants with additional parameters
(starting-point bias, drift-rate bias or both for each condition). Model comparison
selects the starting-point bias DDM variant as the winning model. Bar plots

represent summed ΔAIC and ΔBIC across participants, and the error bars are 95%
bootstrapped confidence intervals over 1000000 samples with replacement.C Fits
of the winning DDM with starting-point bias capture choice and RT data satisfac-
torily. Dots end error bars depictmeandata ± SEMacross theN = 22participants for
each bin and shaded areas depict model predictions, mean ± SEM. D Fitted para-
meter values from the winning DDM model above (mean± SEM across the N = 22
participants from Experiment 2). *** indicates p <0.001, with results being based on
planned post-hoc two-sided t-tests.
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The assumptions of our perceptual-insight model are broadly
consistent with previous theoretical and empirical neuroscience work.
As in previous work, the assumption that the MAE predominantly
affects the early stage of sensory encoding is based on the observed
decreases in neuronal firing rates44,74 and fMRI signals in motion-
selective sensory regions under MAE75. Further, microstimulation of
these sensory regions produces shifts of psychometric, confidence,
and RT curves in tandem76,77 similar to those we and others31,32

observed during the MAE. We also assumed that the offset in the
sensorymeasurement under MAE could not be (fully) corrected, since
adaptation produces changes in the membrane potential of
neurons41–45 unlikely to be readily malleable. Moreover, the MAE illu-
sion was experienced regardless of explicit knowledge about its illu-
sory nature and of the required (See or Believe) responses. Given this,
and consistent with recent work78, we interpreted the observed shifts
in tandem associated with MAE compensation as changes at an inter-
mediate perceptual-decision stage (‘intermediate’ here broadly refer-
ring to a process preceding response implementation). Consistent
with this interpretation, microstimulation of decision regions such as
the lateral intraparietal area (LIP) also produces shifts in tandem79. An
explanation in terms of late compensation seemed less tenable given
that changes in the response rule at late stages—likely implemented in
distinct downstream regions80,81—can manifest as isolated shifts in
psychometric curves39, (as reproduced in our response-bias pilot
experiment; see Supplement S1.4, Fig. S9), in contrast to our main
results. DDM analyses of choice and RT data—free of assumptions on
confidence construal or generative processes—similarly favored a
perceptual-decision bias during MAE compensation and weighed
against a late-response process. Beyond pointing to an intermediate-
stage process, our results supported a model whereby perceptual
insight reflects the incorporation of knowledge that factors other than
external stimuli (here, the adaptor) influence internal representations.
Modeling suggested this knowledge was incorporated at the level of
the likelihood term in the inferential process, or equivalently at the
level of decoding of the distorted internal representation. Although
speculative, this process could be neurally implemented in decision
regions (e.g., LIP) akin to optimal-decoding solutions based on
synaptic reweighting of sensory representations82–87. Alternatively or
additionally, insightful inference may require higher-order prefrontal
regions involved in metacognitive processes8,67,88.

Potential limitations include our reliance on the dissociation
between psychometric-curve shifts in tandem with confidence and RT
curves versus isolated shifts in psychometric curves to arbitrate
between intermediate inferential biases and late-response biases,
respectively. While previous findings (and our pilot results; Fig. S9) are
consistent with such dissociation31,32,39,89, other results are less clear40.
Nonetheless, our interpretation of MAE compensation in terms of an
inferential process (incorporating introspective knowledge about the
internal distortion) is further supported by evidence (1) that our par-
ticipants had detailed knowledge about the MAE illusion (its direction
and approximate strength; Fig. S1); (2) from our model comparison
favoring the perceptual-insight model even over other inferential
models (e.g., category prior model; Fig. 5B, Fig. S5); (3) from the
pupillometric data that more likely reflect internal inferential pro-
cesses than response-related processes, and which held after con-
trolling for RTs (more likely reflecting the latter); and (4) from DDM
results showing that MAE compensation related strongly to biases in
the starting point for the perceptual-decision variable but not to
changes in decision bounds associated with response termination,
consistent with shifts in inferential processes and not with changes
limited to response implementation (for a similar interpretation, see
ref. 61). In Experiment 2, but not statistically in Experiment 1, partici-
pants overcompensated for the MAE, a result we did not predict. This,
together with a lack of calibration between expected illusion strength
and MAE compensation (Fig. S1), could suggest a suboptimal

compensation strategy. However, model comparison favored the
optimal perceptual-insight model over other potential alternatives,
including suboptimal compensation strategies at intermediate (e.g.,
category prior model) or late (e.g., late compensation) stages which
could still reflect some form of insight—understood broadly in the
sense of having knowledge of the illusion and attempting to use that
knowledge to adjust decisions. But how could participants over-
compensate if they were presumably using an optimal insightful
strategy consistent with the perceptual-insight model? One potential
explanation is that they employed the correct strategy and generative
model but nonetheless used incorrect expectations aboutMAE illusion
strength, which could have been plausibly induced by our experi-
mental design (due to our pre-task instruction using longer-lasting
adaptors to illustrate the MAE, which was particularly emphasized in
experiment 2; seeMethods “Experiment 1” and “Experiment 2”). Future
work systematically manipulating expectations about MAE strength is
needed to test this directly. Furthermore, the interindividual variability
in the MAE compensation hints at a variety of factors—some explicitly
identified in our perceptual-insight model, including misestimation of
the distortion strength or uncertainty—potentially driving overuse or
underuse of introspective knowledge in health and illness. We dis-
cussed that the category prior model differs from the perceptual
insight model in that the former incorrectly assumes a change in the
category prior that produces fixed shifts in d regardless of encoding
noise (Supplementary Fig. S5), and this may be tested in future
experiments through manipulations of encoding noise (for instance
via changes in stimulus contrast). Finally, future work should improve
upon the current task design to further minimize potential order
effects (although see Methods “Experiment 1” and “Experiment 2”,
"Experiment structure and block order") and to allow comparisons
between pre- and post-acquisition of knowledge about the MAE.

A key future goal of this research is to advance our understanding
of elusive insight impairments that are central to psychosis1,2,4. In this
context, our model may suggest that impaired insight in psychotic
individuals stems from a failure to recognize that, in contrast with
lifelong experience, their internal representations do not match the
external world. This failure could thus relate to the sort of inflexible
belief-updating proposed to underlie other aspects of psychosis90–92.
Overall, this work will hopefully provide a foundation for the quanti-
tative study of insight impairments and contribute to the development
of objective markers, e.g., based on pupillometry93,94.

In conclusion, we have developed a modeling framework and a
controlled psychophysics paradigm that captures perceptual insight
as a quantifiable compensation for distorted perception. Our results
collectively suggest that perceptual insight can be used to counteract
upstream distortions in sensory measurements via downstream
adjustments at an inferential readout stage. By decoupling percepts
and beliefs, perceptual insight reveals a key interface that may prove
helpful in advancing our understanding of introspection and con-
scious perception.

Methods
Experimental approach
Experiments 1 and 2 used variants of our perceptual-insight task to
quantify compensation and test our candidate mechanism of percep-
tual insight. We will first present the core components of our
perceptual-insight task based on the motion after-effect (MAE) and
discuss small differences across experiments, first in brief and then in
more detail.

Perceptual-insight task. The task, trial structure and overall experi-
ment structure were mostly shared across the two experiments. The
exact task design of Experiment 2 is in Fig. 2. The task requires the
participants to perform left/right motion discrimination: is the test
spiral rotating counterclockwise (left response) or clockwise (right
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response)? In order to measure implicitly the strength of the motion
after-effect, we used the nulling method36,95–97, which entails the pre-
sentationof two spirals, thefirst onebeing the adaptor, and the second
one being the test stimulus. Observers are then required to give their
responses about the second test spiral. Stimuli are full screen spiral
textures, adapted from ref. 98, with a small circle marker in the center
to indicate fixation. As depicted in Fig. 2, on every trial, participants
first sawafixation screen for 1000ms, followedby a screenof 3000ms
with the first adaptor spiral (moving with a fixed high speed on Adapt
blocks or static in No-Adapt blocks), and then a screen for amaximum
of 1000 ms with the second test spiral (rotating at variable speed).
Afterwards, a first change in the color of the central marker prompted
the left/right choice about motion direction, and then another change
in its color prompted a confidence report about their choice (very sure
[high confidence] or not very sure [low confidence]) (Fig. 2). Overall,
the experimental task had a 2-by-2 design -- with two types of condi-
tions No-Adapt (static first spiral) and Adapt (rotating first spiral)—and
2 types of responses required -- which direction participants See the
second spiral moving or which direction they Believe the second spiral
is actually moving. The behavioral measures of interest shared across
both experiments were: choice responses (left/right), confidence
responses (high/low) and reaction times.

Overviewof Experiments 1 and 2. Experiments 1 and 2were in-person
andbothmeasuredbehavior; Experiment 2 additionally employed eye-
tracking. Experiment 2 had three main developments relative to
Experiment 1. First, it made use of enhanced instructions which con-
tained more informative feedback. Second, it presented the partici-
pants with a fixed set of stimuli drawn from a uniform distribution
(with bounds informed by the data from Experiment 1), thus making
the data amenable to fitting the proposed Bayesian model of insight.
Third, by using eye-tracking, we ensured that participants maintained
fixation during the trial and also measured their eye positions and
pupil sizes continuously throughout the experiment. Specifically,
during the fixation, adaptor and test stimulus periods (a total of ≈ 5 s),
if the participants either blinked or moved their eyes relative to the
screen away from a circle centered at fixation with radius 3 degrees of
visual angle (dva), the trial stopped and the same trial was again pre-
sented immediately after until the participant completed it without
blinking or breaking fixation. During a 3 s post-stimulus period, if the
participants either blinked or moved their eyes away from a circle
centered at fixation with radius 24 dva, the trial was also stopped and
the same trial waspresented again. This approach served to control for
the potential influence of eye movements and blinks99 on the motion
after-effect and to rule out certain strategies that could be used to
minimize it.

Other minor differences across Experiments 1 and 2 were:
Experiment 1 had a slightly shorter fixation window (890 ms vs. 1000
ms) and different colors of fixation circles and choice prompts. Addi-
tionally, the adaptor before the blocks was presented for 15 s in
Experiment 1 and 30 s in Experiment 2. 5 out of 22 participants from
Experiment 1 were presented with the adaptor spiral rotating clock-
wise; their data was combinedwith data from the other participants by
flipping directions accordingly (such that the reference direction of
the adaptor was counterclockwise). Note that all the reported effects
were present even if we exclude these 5 participants from
Experiment 1.

Experiment 1
Participants. 25 participants were recruited. 3 participants were
excluded after the instructions because they did not experience the
illusion as their responses in the second part of the training were not
consistent with the illusion on a sufficient number of trials (less than 8
out of 10). The remaining 22 participants that completed the task and
were used for analyses comprised 11 males, and 11 females, and had a

median age of 26 years old (range 21 to 50). No statistical method was
used to predetermine sample size. All participants provided informed
consent. The study conformed to the Declaration of Helsinki and was
approved by the Institutional Review Board of New York State Psy-
chiatric Institute.

Apparatus. The stimuli were displayed on a 13-inch MacBook Pro
laptop (2017 model) in a dark psychophysics room. The width of the
viewable portion of the screen was 11.97 inches (30.4 cm) and the
screen resolution was 2560 × 1600 pixels and 60 Hz refresh rate (1
frame lasting ~16.67ms). TheMacBook Pro laptop had installedMatlab
9.6 (2019a, MathWorks, Massachusetts, USA) with the Psychtoolbox
extension, version 3.0.15100–102. Matlab and Psychtoolbox controlled
the presentation of the stimuli and recorded the participants’
responses. Participants were seated at a distance from the laptop
of ~20 cm.

Instructions, demonstration, training. This section contained
instructions and training trials and was divided into 8 parts with a few
additional quiz questions. Collectively, these elements were used to
gradually build and ensure an adequate construal of the task. In the
first part, participants were asked to perform 10 trials of left/right
motion discrimination of a single rotating spiral and received feedback
after each trial. Each participant was asked to perform this part until
performancewashigher or equal than70%correct, for amaximumof 3
times. The second part entailed 10 trials showing two sequential spir-
als, the first one rotating for 3 s and the second one static for 1 s, and
participants were asked to report whether they saw the second spiral
moving left or right. Here they received feedback about whether the
responses were consistent with the motion-after effect illusion. The
participants were asked to perform this part until performance was
consistent with the illusion in 80% of the trials, for a maximum of 3
repetitions. The third part repeated the structure of the second part,
but importantly entailed the presentation of a sound tomark the onset
of the second spiral. Participants were encouraged to convince
themselves that the second spiral was indeed static and that looking at
the first moving spiral caused them to perceive the second static spiral
as moving in the opposite direction. The fourth part built on the third
part by introducing motion in the second spiral and asking the parti-
cipants to report across 10 trials whether they saw the second spiral as
moving left/right. Participants were told not to be concerned with the
actual motion in the second spiral, foreshadowing that this would be
relevant to the ’Believe’ condition introduced next. The fifth part
introduced the Believe condition. Across 10 trials, participants repor-
ted which direction they believed the second spiral was actually
moving. To ensure they had explicit knowledge about the illusion,
participants were then asked to respond to the following questions:
“Imagine that the first spiral was moving [clockwise/counter-
clockwise], and then you saw the second spiral as still. Which way do
you believe the second spiral was actually moving?". The sixth part
introduced the confidence responses ("very sure"/"not very sure") to
augment the left/right responses when discerning the direction of
motion of a spiral across 10 trials. Participants were told on howmany
trials they responded “not very sure" so they could reflect on their
confidence responses and attempt to balance them, vs. dis-
proportionately responding with just one button (i.e., 9 vs. 1). The
seventh part again presented two spirals and asked participants across
5 trials to report the direction they saw the second spiral moving and
then their confidenceabout this response. The eighthpartfinally asked
participants across 5 trials to report the direction they believed the
second spiral was moving and their confidence about this response.

Payment. In Experiment 1 participants received $30 for the first hour
and $20 for each additional hour. Theywere instructed to try their best
in all conditions and incentivized with a bonus of $10 determined
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based on adequate compliance with task instructions and the experi-
menter’s examination of the data, including consistency in behavior.

Stimuli. Adaptors of complex motion (e.g., rotational) have been
shown to induce stronger adaptation effects relative to ones of simple
motion (e.g., translational)34,35. We aimed to choose spiral stimuli to
achieve the strongestmotion after-effect (or spiral after-effect) illusion
with the shortest presentation times of adaptor and test spirals.Within
spiral stimuli, we considered their type (Archimedean103 vs
logarithmic104,105), spatial frequency and temporal frequency106,107.
Based on the literature and pilot data, we decided to use Archimedean
spirals, with spatial frequency parameters w1 = 30 and w2 = 3. A w1

value of 30 corresponds to 30 pixels being traversed during a cycle.
Based onw1, screenwidth, the distance from the screen and the screen
resolution, we calculated the spatial frequency to be 1.16 cycles/°.

The Archimedean spiral equation is:

spiral =
white 1� cos r

w1
+θw2

� �� �
2

ð1Þ

A third parameter, which captured the temporal frequency of the
motion of the spiral, was set to w3 = 9 for the adaptor and varied for
test stimuli (Experiment 1: [-2,2] and Experiment 2: [-0.3,0.3]), thus
determining the velocity or speed of spirals, as the spatial frequency
was always the same across trials (see Equation (2)). To implement
rotational motion, the spiral was offset relative to the previous screen
by a particular angle value, determined byw3. Given the refresh rate of
60 Hz, the temporal frequency was 1.5 cycles/s. Velocity (here used
interchangeably with speed) of the adaptor spiral, given by the ratio of
the temporal frequency and the spatial frequency, was 1.293°/s.

velocity ð�= s Þ= temporal frequency (cycles / s)
spatial frequencyðcycles =�Þ ð2Þ

We implemented the adaptor and test spirals based on ref. 98. In
contrast to some other studies (i.e., refs. 108–110), we decided to keep
the contrast of the adaptor and the test spiral both equal to the max-
imum (1), to avoid introducing interindividual differences due to
contrast sensitivity and luminosity.

Test stimulusgeneration. The speed of the test stimuluswasbased on
the participant’s previous responses according to an adaptive proce-
dure, a type of Bayesian staircase, applied separately for each of the 4
conditions. Each one of the 4 conditions contained 120 trials, divided
into 2 blocks of 60 trials each. We used the Matlab implementation111,
based on112 with extensions to include the lapse rate113,114 (this exact
staircase was used in ref. 115). This procedure maintains a posterior
distribution over the parameters and updates it after each trial. The
next stimulus value is chosen to minimize the entropy of the updated
posterior given the stimulus, averaged over the participant’s possible
responses weighted by their respective probabilities112. We defined the
space of parameters for the computation of the posterior distribution
in111 as follows: for μ, we used a linear grid of 51 points from -0.5 to 0.5,
for σ a logarithmic grid of 25 points from0.001 to 0.5, and for λ a linear
grid of 25 points from 0 to 0.3.

The test stimuli were substantially slower than the adaptor. Each
one of the 4 staircases generated on every trial a value w3 within the
range [ − 2, 2] that dictated the temporal frequency and the velocity
(speed) of the test stimulus. The test stimulus values thus corre-
sponded to velocities in the range [-0.285°/s, 0.285°/s]. The actual
values selected through the staircase and used in the experiment had a
narrower range (typically within [−0.5, 0.5] in arb. units; see Fig. 3A,
top). These values amount to an adaptor/ test velocity ratio of 4.5 or
higher, consistent to some extent with values in the range [2, 5] which

were shown to achieve the maximum motion after-effect in previous
work83.

Trial structure. Trials had the basic structure described in Fig. 2. Par-
ticipants first saw a fixation screen of mid-level gray (RGB: [128 128
128]) for 890ms with a central small white circle. This was followed by
a screen of 3000 ms with the first adaptor or control spiral (moving
with a fixed high speed or static), which was followed by a screen
lasting a maximum of 1000 ms (or until the participant responded if
the reaction time was under 1000ms) with the second test spiral
(moving with variable speed as determined by the adaptive staircase
procedure). The transition from the first (adaptor or control) spiral to
the second spiral (test stimulus) wasmarked by the change in color of
the small fixation circle from white to either yellow, for the See con-
ditions, or blue, for the Believe conditions. See and Believe trials were
blocked (see below), but this color coding provided an additional
reminder of the required responses. If the participant submitted a left/
right choice response during the 1000 ms when the test stimulus was
on the screen, the next screen was immediately presented featuring a
pink-colored fixation circle prompting for a confidence response,
specifically ’how sure are you of your response?" (requiring an up/
downkey press). If the participant didnot respondwithin 1000ms, the
test stimulus screenwas replacedwith a gray screenwith no changes in
the fixation-dot color (yellow or blue depending on the trial type)
whichwasdisplayeduntil response. Therewas nodeadline,making the
task self-paced. After response, the screen with the pink-colored fixa-
tion circle prompted for the confidence response until this was sub-
mitted. In Experiment 1, if the total post-stimulus time (including the
left/right choice and up/down confidence response times) was shorter
than 2000ms, the fixation screen was presented to ensure aminimum
post-stimulus total time of 2000 ms.

Experiment structure and block order. Before the experimental task
trials, participants performed a short illusion-reproduction task. They
saw a 15 s rotating spiral followed by a second static spiral and were
asked to remember the strength of the illusory motion on the static
spiral. Afterwards, they were asked to reproduce the strength of the
illusion in 10 consecutive trials using the computer trackpad. During
the reproduction, they saw the static spiral with a green fixation circle
and controlled its speed using the trackpad (scrolling away from the
center to control direction and speed) until the speed of the static
spiral matched that of the illusory motion they had just experienced.
These illusion-reproduction estimates were collected once again after
the Adapt blocks, and together they served as confirmation that par-
ticipants had explicit knowledge about themotion-after effect illusion,
including its direction.

The main task had a fixed order and was structured as follows:
Adapt blocks were presented first, including two Adapt-See blocks
followed by two Adapt-Believe blocks, each starting with an exten-
ded 15 s presentation of the adaptor spiral (as in refs. 37,63) before
the presentation of the experimental trials. These 4 Adapt blocks
were followed by 10more trials of illusion reproduction. Afterwards,
participants took a break of at least 10minutes to minimize any
possible lasting effects associated with adaptation. After the break,
participants performed the No-Adapt blocks: two No-Adapt-See
blocks and then two No-Adapt-Believe blocks, each starting with an
extended 15 s presentation of a control static spiral. Adapt blocks
were presented before the break to reduce fatigue for the active
conditions (although 3 participants performed No-Adapt blocks
before the break instead and we did not observe systematic differ-
ences between these and the rest other than general speeding of
responses as the experiment progressed). The fixed order of blocks
also served to remind participants of the block-relevant instructions
before starting the experimental trials and required responses and
to minimize switching costs.
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Experiment 2
Participants. 26 participants were recruited. One participant was
excluded due to medication, 2 because they did not experience the
illusion, and one dropped out without completing all procedures. The
22 completers comprised 6 males and 16 females, and had a median
age of 24.5 years (ranging from 18 to 34 years old). No statistical
method was used to predetermine sample size. All participants pro-
vided informed consent. The study conformed to the Declaration of
Helsinki and was approved by the Institutional Review Board of New
York State Psychiatric Institute.

Apparatus. The experiment took place in a dark psychophysics room.
The computer used was a Mac mini (Late 2014 model) with a 3 GHz
Intel Core i7 processor, 16 GB 1600 MHz DDR3 memory and Intel Iris
1536 graphics. The width of the viewable portion of the screen was 59
cm and the screen resolutionwas 1920 × 1080pixels and 60Hz refresh
rate (1 frame lasting 16.67 ms). The Mac mini had installed Matlab 8.3
(2014a,MathWorks,Massachusetts, USA) with the Psychtoolbox 3.0.13
extension100–102.

In addition to other procedures similar to Experiment 1, in
Experiment 2 we also monitored participants’ fixation and recorded
their eyemovements and pupil sizes.We used a remote infrared video-
oculographic system (EyeLink 1000Plus version 5.15; SRResearch, Ltd,
Mississauga, Ontario, Canada) with a 1 kHz sampling rate. Participants
were seated such that the screen distance (eye to center of the screen)
was ~66 cm. For the majority of the participants (17/22), we set the
heuristic filtering option ’ON’. For the 5 participants for which we did
employ the Eyelink’s online heuristic filter, we implemented a post-hoc
Kalman smoother on the x and y eye position time series as in ref. 116.
The eye tracker was calibrated using the 9-point calibration routine
before every block.

Instructions, demonstration, training. This section contained the
same 8 parts as in Experiment 1 in addition to a new part and other
enhancements. The instructions were enhanced (based on our
experience and feedback from participants in Experiment 1) and pro-
vided more detailed and informative feedback so that participants
could have more precise knowledge about the illusion. After the first
threeparts transpired as in Experiment 1, participantsfirst experienced
how they can control the speed and direction of a static spiral by
moving themouse farther away to the right or to the left. In the fourth
part, participants practiced 10 trials of illusion-reproduction. This was
not included in the training from Experiment 1, just in the Experiment 1
itself. As in Experiment 1, participants saw the first rotating spiral for
30 s, then a static spiral and were told to remember the strength of
their illusion. Note that this was done to clearly illustrate the MAE
illusion, although it may have induced expectations of stronger MAE
than that experienced during the task following shorter adaptors.
Then they saw 10 static spirals each with a green fixation circle and
each time controlled its speed using the mouse until the speed of the
static spiral matched that of their illusory motion. This served as
training for the illusion-reproduction trials from the experiment itself.
In the fifth part, participants saw an adaptor spiral followed by the test
spiral and performed motion discrimination, as in Experiment 1. Here
however they also received feedbackwith the actual velocity of the test
spiral, presented as the percent of the speed of the adaptor spiral, and
the direction of motion (same or opposite) relative to the adaptor
spiral. In the sixth part introducing the Adapt-Believe condition (cor-
responding to the fifth part from Experiment 1), participants saw an
adaptor spiral followed by a second test spiral with different motion
speeds and reported their beliefs about its true motion. Here, parti-
cipants received feedback on their accuracy based on the true motion
of the test spiral and again received information about the actual
velocity of the test spiral (as noted in the discussion, this may have
helped consolidate a stronger expectation of MAE strength).

Participants next completed the same quiz as in Experiment 1. The last
three parts introducing confidence responses were as in Experiment 1,
but had more trials (10 vs. 5) and additional feedback of the actual
speed of the test spiral relative to the adaptor spiral. The ninth part
consisted of 10 Adapt-Believe practice trials. If response accuracy on
these trialswasbelow 70%, participantswere asked to repeat this set of
10 trials until their accuracy was above 70%, for a maximum of 3
attempts. Overall, the instructions and training for Experiment 2 were
similar to those in Experiment 1 and mainly differed in that they con-
tained more detailed feedback and information including the actual
relative speed of the second test spiral.

Payment. Participants were compensated with $30 for the first hour,
and $10 for each additional hour. They were instructed to try to be as
consistent as possible in all conditions and as accurate as possible in
the Believe conditions. They were incentivized with a bonus of $30. As
in Experiment 1, this bonus was determined based on adequate com-
pliance with task instructions and the experimenter’s examination of
the data, including consistency in behavior.

Stimuli. The stimuli were also Archimedean spirals with the same
parameters as in Experiment 1: w1 = 30 and w2 = 3. The temporal fre-
quencywas the same for the adaptor spiral (w3 = 9) but differed for the
test spirals in that was drawn from a uniform distribution between
[−0.3, 0.3]. The screen width, distance from the screen and the screen
resolution were different from those in Experiment 1. Given this, the
spatial frequency in Experiment 2 was 1.14 cycles/° and the velocity of
the adaptor was 1.5/1.14 = 1.31°/s .

Test stimulus generation. In contrast to the adaptive staircase in
Experiment 1, Experiment 2 used test stimuli drawn from a uniform
distribution (in a pseudorandom order fixed across participants). The
bounds of this uniform distribution were informed by the empirical
distributions of the test stimuli from Experiment 1. The values were
between [ −0.3, 0.3], corresponding to test stimulus velocities between
[ −0.044°/s, 0.044°/s]. This range was maintained across conditions to
facilitate direct comparison of responses and provide a parametric
distribution satisfying assumptions of, and allowing for model fitting
based on, Bayesian models. Each of the 4 conditions contained 121
trials, divided into 2 blocks of 60 and respectively 61 trials. We chose
121 trials (vs. 120 in Experiment 1) to include the velocity value of 0,
corresponding to a static test spiral.

Trial structure with gaze fixation control. As in Experiment 1, trials
had the basic structure described in Fig. 2. Amajor difference was that
fixation was enforced for a time window encompassing the fixation,
adaptor, and test stimulus periods (5 s total) and blinking was also
enforced for this timewindowplus an additional post-stimulus interval
of 3 s, for a total of about 8 s. If participants blinked or deviated their
eyes outside a circle of 3 dva centered at the fixation central dot during
this period (fixation, adaptor or test stimulus) or blinked or deviated
their eyes outside a circle of 24 dva during the post-stimulus period,
the trial was immediately interrupted and the same trial was repeated
until responses were provided without blinks or breaking fixation.
Participants were encouraged to keep their eyes within the fixation
area throughout the trial and were encouraged to blink at the end of
their trial and briefly rest their eyes as needed. The moment they
decided to resume fixation dictated the initiation of the next trial.

Participantsfirst saw afixation screenofdark gray (RGB: [8585 85]
vs. [128 128 128] in Experiment 1) for 1000 ms (vs. 890 ms in Experi-
ment 1) with a central graydot of RGB [28.7 28.7 28.7], equivalent to [10
00] inCIE-L*ab color space,with L = 10. Thedarker color of thefixation
screen (RGB [85 85 85] equivalent to [36 0 0] in CIE-L*ab, with L = 36)
was close in overall luminance to the spiral texture, which minimized
spurious changes in pupil size due to luminance and minimized eye-
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muscle strain under the more demanding fixation-enforcement pro-
cedure. Next, a screen of 3000 ms with the first adaptor or control
spiral was presented. This was followed by a screen lasting amaximum
of 1000 ms with the second test spiral (moving with variable speed).
The transition from the first spiral (adaptor or control) to the second
spiral (test stimulus) was marked by a change in color of the small
fixation circle, from gray to a yellow of RGB [81 75 0] and respectively
[31 -6 40] in CIE-L*ab, with L = 31, close to the luminance of the gray of
the screen (L = 36). This yellow dot signaled the onset of the test spiral
in both See and Believe conditions (unlike in Experiment 1, where
different colored dots were used for See vs. Believe) to keep stimula-
tion identical between these conditions. In Experiment 2, even if the
participant made a left/right response about the test stimulus faster
than 1000 ms, the test stimulus was always kept on screen for the
entire 1000 ms (precisely 1033 ms due to the refresh rate). If the par-
ticipant did not respond within this window, the test stimulus screen
was replacedwith the same gray screenmaintaining the yellow fixation
circle until response. After the left/right response was recorded, a new
screenwith a blue fixation circle (the shade of blue, RGB [0 85 140] and
respectively CIE-L*ab [34 0 -36], with L = 34, being approximately iso-
luminant with the yellow in the previous fixation circle) was presented
prompting for a confidence response (requiring an up/down key
press). If the total post-stimulus time was shorter than 3000ms, the
fixation screenwas presented to ensure aminimumpost-stimulus total
time of 3000 ms (vs. 2000 ms in Experiment 1). These differences
between the experiments ensured that stimulation across conditions
was identical between Adapt-See and Adapt-Believe, which allowed
direct comparisons of pupil responses (see below).

Experiment structure andblock order. The experiment structure and
block order were comparable to Experiment 1. Adapt blocks started
with a 30 s presentation of the adaptor spiral andNo-Adapt blockswith
a 30 s presentation of the control spiral (vs. 15 s for each in Experiment
1). Adapt blocks were completed before No-Adapt blocks. The only
difference fromExperiment 1 was that the No-Adapt blocks (No-Adapt-
See vs. No-Adapt-Believe blocks first or second) were randomized
across participants to minimize fatigue, rushing, and task familiarity
effects in the control conditions. Adapt-See blocks were followed by
Adapt-Believe blocks in a fixed (non-randomized) order because the
Adapt-Believe condition involved all elements in Adapt-See plus
maintaining and using information about the illusion, and thus bene-
fited from additional exposure to the basic task setup in Adapt-See.

The fixed order of some of our conditions could in principle have
led to differential fatigue or practice effects, and systematic differ-
ences in RTs, across conditions, but the results of RT analyses speak
against this possibility. First, RT did not differ significantly between
conditions in the GLME featuring ∣d∣ (all p > 0.25). Additionally, in the
context of the DDM, fatigue has been argued to produce general
slowing of stimulus encoding and response production times, which
should be mainly reflected in the nondecision time parameter117.
Nondecision times from the winning DDM variant showed no differ-
ences between Adapt-See and Adapt-Believe (two-sided t-test,
t(21) = −0.93, p = 0.36), further arguing againstmeaningful differences
in fatigue between these two critical conditions.

Task and illusion comprehension checks. Several checks were used
to ensure that participants understood the task and had explicit
knowledge about the illusion. First, participants’ verbal expression of
their understanding of the task and illusion in their own words was
deemed to be acceptable by the experimenters. Second, their
responses on the second part of the training had to be consistent with
the illusion in at least 80% of the trials. If this did not happen within 3
repetitions, participants were paid for their time so far and excluded.
Third, responses on key questions of the quiz during training were
consistentwith their proper understanding of the illusion or prompted

clarification until understanding was established by the experimenter.
Fourth, the training from Experiment 2 included a performance cri-
terion of 70% accuracy during Adapt-Believe practice trials that
demonstrated directional knowledge of the illusion. Fifth and most
definitively, in both experiments participants demonstrated explicit
directional knowledge of the illusion in illusion-reproduction trials: the
estimated strength of their motion after-effect illusion showed that
they expected to experience illusory motion opposite to the direction
of the adaptor, reasonable in magnitude, and consistent within parti-
cipant (Fig. S1).

Control Experiment
To test whether observers could potentially employ a compensation
strategy distinguishable from the one prescribed by the perceptual-
insight model, we performed a pilot control experiment. We specifi-
cally used a response-bias manipulation combined with MAE to test
whether we could observe a compensation-like pattern in the form of
isolated shifts in the psychometric function in line with the late-
compensation “kchoice" model (Fig. 1, Fig. 5B, Table 1) or instead whe-
ther the response-bias manipulation would result in similar behavioral
patterns (shifts in tandem) to those in Experiment 2. To this end, we
used a response-bias manipulation based on previous work (Experi-
ment 1 in ref. 39) in addition to our adaptation manipulation. Specifi-
cally, observers performed the No-Adapt-See and Adapt-See
conditions as in Experiment 2 and additionally performed No-Adapt-
Bias andAdapt-Bias conditions (insteadof the Believe conditions)were
they were instructed to choose a left counterclockwise response (in
the direction that would compensate for the clockwise MAE) when
they were uncertain about the direction of the test stimulus, via the
instruction: “If unsure, press Left”. Instead, during the See conditions
in the control experiment (and in all conditions in Experiment 2) the
instruction was: “If unsure, guess” (aiming to balance guesses across
left and right responses).

For this experiment, 10 participants were recruited. 3 participants
were excluded due to low quality of their data, specifically their
responses not being captured well by psychometric curves. All parti-
cipants provided informed consent. The study conformed was
approved by the Institutional Review Board of New York State Psy-
chiatric Institute. The payment structure was as in Experiment 2: $30
for the first hour and $10 for each additional hour, plus a $30 com-
pletion bonus. The 7 completers comprised 4males and 3 females, and
had a median age of 25 years (ranging from 21 to 47 years old). Parti-
cipantswere seated at a screendistanceof 57 cm (versus in Experiment
2, 66 cm).

Statistical analyses
All statistical analyses were performed inMatlab R2019a. Assumptions
of parametric tests were violated formost of themain variables, so our
main analyses consisted of Wilcoxon signed-rank tests (Matlab’s
ranksum and signrank) or Spearman correlations. To compute the
95% confidence intervals of statistics—specifically signed-rank tests
and Spearman correlations—we used a bias-corrected and accelerated
bootstrapping procedure118–120, in which we set the significance level
α = 0.05 and number of bootstraps to 100000. Following121, we com-
puted the effect sizes for theWilcoxon signed-rank tests as Zffiffiffiffiffiffi

2�N
p , where

N is the number of participants. To compute the effect sizes for the
two-way repeated-measures ANOVA analyses, we used the formula

η2 = SSeffect

SStotal
, where SS is the sum of squares.

To visualize the psychometric, confidence, reaction-time and
pupil curves as a function of test stimulus speed, we divided the values
into 11 bins (with 11 data points each). Data was visualized asmean and
standard error of the means (usually across participants) or as median
and 95% bootstrapped confidence intervals where non-parametric
tests were used. To calculate the 95% bootstrapped confidence
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intervals for parameter values, we took samples of the same size as the
data with replacement across 5000 iterations using Matlab’s rand-
sample and calculated the sample median for each iteration. The 95%
confidence intervals were based on the 2.5th and 97.5th percentiles of
the distribution of medians across iterations.

Generalized linearmixed-effectmodels (GLMEs). We usedGLMEs to
quantify the relationships between reaction times and either absolute
stimulus strength ∣s∣ or absolute perceptual-decision certainty ∣d∣
(Fig. 5D), as well as the relationship between pupil area and these
independent variables (Fig. 6C, D). Themain independent variables (∣s∣
or ∣d∣ depending on the GLME) were ranked. All GLMEs (implemented
using Matlab’s fitlme) included fixed effects for the intercept, for the
independent variables of interest (∣s∣ or ∣d∣ depending on the GLME),
and for condition (coded as 3 dummyvariables for each conditionwith
No-Adapt-See as the reference condition), as well as random intercepts
and slopes for all variables. The following GLMEs were used (formulas
in Wilkinson notation):

Reaction time / 1 + jsj+Condition+ ð1 + jsj+ConditionjParticipant Þ
ð3Þ

Reaction time / 1 + jdj+Condition+ ð1 + jdj+ConditionjParticipant Þ
ð4Þ

Pupil area / 1 + jsj+Condition + ð1 + jsj+ConditionjParticipant Þ ð5Þ

Pupil area / 1 + jdj+Condition+ ð1 + jdj+ConditionjParticipant Þ
ð6Þ

Pupil area / 1 +RT+ jdj+Condition+ ð1 +RT+ jdj
+ConditionjParticipant Þ ð7Þ

For the GLMEs with pupil area as the dependent variable, we
computed the average of the normalized pupil area within a 500 ms
time window of interest (respectively pink and yellow regions in
Fig. 6A). To check that these results were robust to the choice of
window and for intepretability, similar to previous work122, we used a
sliding window of 200 ms which we applied in steps of 20 ms across
the entire pupil area time series (Fig. 6C, D).

Eye tracking and pupillometry
In Experiment 2, we monitored and recorded eye position and pupil
size using an infrared video-oculographic system (Eyelink 1000 Plus;
SR Research, Ltd, Mississauga, Ontario, Canada) with 1000Hz sam-
pling rate. We recorded monocular data. Stimulus presentation and
response collection were controlled by a Mac computer running
Matlab 7.1 (MathWorks, Massachusetts, USA) with Psychtoolbox
3100–102 and EyeLink software123. Participants used a chin rest to sta-
bilize their head (Fig. 2B). The chin rest which was located at ~55 cm
from the top knob of the desktop mount camera and the distance
from the eye to the center of the screen was 66 cm. The eye tracker
was calibrated using the 9-point calibration routine before every
block124–126.

Fixation monitoring. Fixation was strictly imposed within each trial
during a period encompassing the fixation, adaptor and stimulus
periods. If the participant’s gaze deviated outside of a circle of radius 3
degree of visual angle (dva) centered at fixation, or if they blinked, the
trial with the exact same stimulus value was restarted (see Trial
Structure above for exact details). This approach ensured that parti-
cipants fixated during the adaptor and stimulus presentation and thus

maximized adaptation effects. Additionally, if participants responded
earlier than 3000ms after stimulus onset, blinks post response still
lead to a restart of the trial. Thus, participants avoided blinking for
about 8000 ms in each trial. We instructed participants to blink as
muchas needed and rest their eyes sufficiently after each trial, and that
resuming fixation afterwards would initiate the next trial.

Pupillometry data analysis. For each participant and block, we
defined the relevant task periods within a trial based on the Eyelink
timestamps and concatenated the pupil area time series across trials.
Mean time-series per condition are shown in Fig. 6A, left. Artifact
removal was conductedbased on124. Segments of the time serieswithin
a trial where pupil dilation speeds exceeded a threshold were
removed. This threshold was determined based on threshold =
median(dilation speeds) + n ⋅MAD(dilation speeds), where MAD is the
median absolute deviation and n is amultiplicative factor which we set
to 16. In keeping with recommendations124, we chose this value since
our empirical checks showed that it was sufficient to eliminate visible
outliers in our data (note that our strict control for blinks yielded
relatively clean time series). Each removed segment exceeding this
threshold was replaced with interpolated values based on 20ms
before and 20 ms after the segment. Next, the pupil area timeseries
were filtered on each trial using a Butterworth filter of order 2 and
bandpassed between 0.01 and 10Hz, implemented in two steps as in
ref. 33 with Matlab’s functions butter and then filtfilt. For normal-
ization, based on previous work122,125,126, we first subtracted the average
baseline period—specifically themean pupil dilation in the last 400ms
of the fixation period—from the pupil area time series for each trial.We
concatenated all baseline-subtracted time-series across trials and
blocks corresponding to each condition. For each participant, we then
calculated the maximum value across all conditions and divided the
time series for each condition by that value.

Ourmain timewindows of interest lasted 500ms (consistent with
previous work48,122) and started either at 2000 ms post-stimulus or at
500 ms post-response to capture the delayed peak in pupil responses
(~1000ms) while ensuring pupil stabilization following luminance
transitions (e.g., between the brighter stimulus screen and the darker
gray response screen).

For the moving window analyses in Fig. 6C and D, we applied the
GLMEs across sliding windows of 200 ms each, shifted in steps of 20
ms. Note that in the response-locked data from Fig. 6C and D, we do
not show pre-response t-statistics as they are not interpretable. This is
because differences in reaction times create artifactual differences in
pupil dilation due to the latency of pupil stabilization following test
stimulus offset (Fig. 6A).

Psychometric curves
Psychometric curves and parameters. We fit psychometric curves
based on Gaussian cumulative density functions (cdfs) to the obser-
vers’ left/right responses as a function of the test stimulus speed
(Fig. 3A). s denotes the test stimulus value on a given trial (in arbitrary
units of speed, with negative sign indicating counterclockwise motion
andpositive sign indicating clockwisemotion; conversions to standard
units of velocity are provided above). Test stimuli ranged between [-2,
2] in Experiment 1 and [-0.3, 0.3] in Experiment 2. We assumed the
Gaussian cdf psychometric curve formula127, in which a response r
depends on a stimulus s and the parameters—μ, σ, λ—as follows :

pðr = 1js;μ,σ,λÞ= 1
2
� λ+ ð1� λÞ �Φðs;μ,σÞ, ð8Þ

where r = 1 stands for a “clockwise” response. The parameters are the
bias or point of subjective equality (PSE) denoted with μ, the noise or
inverse slope parameter denoted σ—both of which are inputs to the
Gaussian cumulative density function (Φ)—and the lapse rate, λ.
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We first fitted a psychometric curve with 3 parameters for each
one of the 4 conditions: No-Adapt-See, No-Adapt-Believe, Adapt-See
and Adapt-Believe. However,model comparison selected amodel with
a shared lapse λ across the 4 conditions based on AIC and BIC, so our
main psychometric-curve cdf model had free parameters μ and σ for
each of the 4 conditions, and a single free parameter λ shared across
conditions (9 free parameters total; Fig. 3B).

Psychometric curve parameter estimation. We performed
maximum-likelihood estimation of the psychometric curve free para-
meters (4 μ, 4 σ, and 1 shared λ). The likelihood of a parameter com-
bination is the probability of the data given that parameter
combination, with the log likelihood denoted as LL. We assumed that
trials were independent and summed the log likelihoods across all
trials. The LL for all the trials across all conditions is:

LLðparametersÞ= logpðdatajparametersÞ
=

X
No�Adapt�See trials j

logpðrj jsj;μNo�Adapt�See,σNo�Adapt�See,λÞ

+
X

No�Adapt�Believe trials j

logpðrjjsj ;μNo�Adapt�Believe,σNo�Adapt�Believe,λÞ

+
X

Adapt�See trials j

logpðrjjsj;μAdapt�See,σAdapt�See,λÞ

+
X

Adapt�Believe trials j

logpðrjjsj ;μAdapt�Believe,σAdapt�Believe,λÞ

where sj and rj are the stimulus and the participant’s response on the j
th trial, respectively.

Parameter estimation was performed via grid searches. For
Experiment 1, we searched on a multidimensional grid with 101 values
as follows: for each value of λ linearly spaced from 0 to 0.3, we per-
formed 4 2-dimensional searches to find the corresponding μ and σ
that maximized the LL per condition, with μ linearly spaced from -0.3
to 0.5 and σ logarithmically spaced from0.001 and 0.5.We then found
the global maximum LL across all the possible λ values and picked the
corresponding set of 4 separate values of μ and σ. We used the same
strategy for Experiment 2, but each parameter grid had 201 values
instead. μ was linearly spaced from -0.2 to 0.2, σ was logarithmically
spaced from 0.0001 and 0.2, and λ was linearly spaced from 0 to 0.3.

Estimation of bias μ from confidence curves and reaction-
times curves. We also estimated the bias μ from confidence curves
and reaction-times curves for each individual (Fig. 4). As these curves
were not well captured byGaussians in our data, we estimated the bias
μ as the mean value of the bin (bin center) with the minimum con-
fidence or maximum RT for each individual. If several bins tied on the
minimumormaximumvalues, the bias μwas calculated as themean of
these bin centers.

Drift-diffusion modeling
We implemented the drift diffusion models with the PyDDM package
from62. Briefly, the differential equation for the decision variable ν
across time t is:

dν =μðν,t,:::Þdt + σðν,t,:::ÞdW ð9Þ

Here, μ(ν, t, . . . ) is the instantaneous drift rate, which depends on
the decision variable and time (Drift class in PyDDM), σ(ν, t, . . . ) is the
instantaneous noise (Noise class in PyDDM), and dW is the standard
Wiener process. Initial conditions (IC class) are drawn from the dis-
tribution ν ~ ν0(. . . ), with a default Kronecker Delta function at ν =0.
The diffusion process terminates when the decision variable ν exceeds
a bound ν(t, . . . ) > =B(t, . . . ), with the exact form dependent on the
Bound class chosen in PyDDM.As it is common for DDMs, PyDDMuses

the Fokker-Planck partial differential equation to represent the prob-
ability density of the decision variable ν with respect to ν and time t62.

Practically, before fitting the DDM, we removed trials with reac-
tion times larger than 3 s (there were no trials shorter than 100ms), as
recommended to improve fitting. For each condition, the free para-
meters of our base model were mean drift rate, decision bound
("BoundConstant") andnondecision time ("OverlayNonDecision"). The
noise parameter which captures the standard deviation of the drift
process was assumed constant ("NoiseConstant") and fixed to 1, as in
previous work62. Across all DDM variants, we assumed that drift varies
linearly with the absolute value of the test stimulus speed (Drift class
set to “DriftCoherence" in PyDDM). TheDDMvariants we used allowed
for either starting-point biases (Biased initial conditions, implemented
in PyDDM with “ICPointSideBiasRatio") or drift-rate bias ("DriftCoher-
enceRewBias") or both, separately for each condition. We used the
following parameter ranges:meandrift rate: [0, 20]; decision bound [1,
3]; nondecision time [0, 2]; starting-poing bias [-1, 1]; and drift-rate bias
[-1, 1]. The fitting method to optimize the parameters was “differential
evolution" on a discretized grid with Δν =0.01, Δt =0.0005 and the
loss function minimized by this method was robust negative log-
likelihood ("LossRobustLikelihood")62.

Computational models
We now specify the standard perceptual decision-making model and
use it to build the perceptual-insight model. As in refs. 128,129 and
elsewhere, we first specify the generative or encoding models
assumptions, then the decision rules, and then the generation of
model predictions.

Standard perceptual decision model
Generative model. We present the generative model of the standard
perceptual decisionmodel in Fig. 5A, left. We denote by C the category
of the spiralmotion, which can take the values of C = 1 for clockwise or
C = − 1 for counterclockwise. The two categories occur about half the
timeeach such that the correctpriorwouldbe:pðC = 1Þ=pðC = � 1Þ= 1

2.
The stimulus s is the speed of motion of the test stimulus and takes a
value in the interval [-0.3, 0.3], uniformlydistributed: s∼Uðs;�0:3,0:3Þ
(similar to a case in ref. 130). The generative model further assumes
that the observer’s brain encodes a noisy measurement x of the sti-
mulus s, which herewe assume to be corrupted by Gaussian noise with
standard deviation σ.

pðxjsÞ=N ðx; s,σÞ ð10Þ

Generative model with distortion. In the generative model with dis-
tortion (Fig. 5A, center),we assume the internal representation x is also
offset by the factor A, with some value which we also call A. This value
would plausibly be very close to 0 in the No-Adapt conditions. In the
Adapt conditions, we assume A is drawn from N(A; μA, σA). Thus, x
depends on s, A and σ as follows:

pðxjs,AÞ=N ðx; s � A,σÞ ð11Þ

Note that previous models of adaptation described two main
features: the repulsion bias and increased sensitivity around the
adaptor84. Here, we focused on the repulsion bias, or the offset in x
induced by A. Increased sensitivity around the adaptor was not rele-
vant to our data as the adaptor was much faster than the test stimuli
and thus we could not measure the sensitivity around the adaptor.

Decision rule. We assume that the observers compute the optimal
decision rule to eventually generate their response for category Ĉ and
confidence q (Fig. 1C). The inference process assumes that the Baye-
sian observer inverts the generativemodel to eventually produce their
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responses; it is depicted in Fig. 5A, right. As mentioned in the intro-
duction, before producing their responses, we assume that the
observer computes the posterior p(C∣x):

Using the decision variable, we can write the posterior:

pðC = 1jxÞ= pðC = 1jxÞ
pðC = 1jxÞ+pðC =�1jxÞ =

1

1 + pðC =�1jxÞ
pðC = 1jxÞ

� � = 1
1 + e�d ð12Þ

Correspondingly, pðC = � 1jxÞ= 1
1 + ed .

We assume the observer picks the option Ĉ with the highest
posterior (MAP):

Ĉ = argmax
C

pðCjxÞ ð13Þ

This MAP decision rule is equivalent to reporting:

Ĉ =
1, if d >0

�1, otherwise

�
ð14Þ

Ĉ =
1, if d > kchoice

�1, otherwise

�
ð15Þ

Instead of comparing d to 0, the observer may use a different
criterion or threshold kchoice (Fig. 1C, center). While we do not delve
into this here, the observer might perform the computation of the
decision variable d in a way affected by decision noise, as assumed by
ref. 23 and others (originally131).

The observer also reports the confidence associated with their
choice.We assume that theobserver computes and reports confidence
based on the Bayesian confidence hypothesis22,23, where confidence q
depends on the perceptual-decision variable and represents the pos-
terior probability of the observer’s choice, an assumption in line with
substantial empirical evidence and theoretical work21,132–134. As the
reported confidence qwas binary (low or high, coded respectively as 0
or 1), we assume that observers’s confidence response are determined
via a confidence threshold kconfidence, as:

confidence =pðC = ĈjxÞ= 1
1 + ejdj

q=
1, if confidence >kconfidence

0, otherwise

� ð16Þ

Alternative models of confidence have been proposed in the
literature55–58. These include models with similar architecture to our
basic model but which account for additional sources of noise and
uncertainty (e.g., variability in the confidence criterion kconfidence135–138

or uncertainty about the confidence variable139). We opted for the
basic, more established, architecture described above because it was
more parsimonious yet appropriate for our design and since it pro-
vided a good description of our data. That said, we also considered a
model where a kchoice bias could simultaneously shift choice and
confidence curves (see kchoice and confidence variant below) to account for
alternative model architectures for confidence generation.

Model predictions. While the decision rule prescribes how to jointly
compute observer’s responses Ĉ and subsequently confidence
responses q when their internal measurement x is known, we empha-
size that on every trial, the observers’ internal measurement x is not
known, but the test stimulus s is known. Thus, to find the predicted
responses we need to compute the integral pðĈ,qjsÞ. To do this, we
have to marginalize over all the possible measurements x:

pðĈ,qjsÞ=
Z

pðĈ,qjxÞpðxjsÞdx ð17Þ

We computed the probability of responses pðĈ,qjsÞ by estimating the
above integral by sampling: we simulated several samples (here
Nsamples = 500) of x from s and averaged the predictions over the cor-
responding outcomes pðĈ,qjxÞ.

Perceptual-insight model
Generative model with distortion. The generative model is the exact
same model as above in “Generative model with distortion”.

Decision rule. In the perceptual-insightmodel, the observer takes into
account the correct generative model with the distortion factor A and
then the computation of their posterior p(C∣x) is as follows:

pðCjxÞ / pðxjCÞpðCÞ=pðCÞ
Z

pðxjC,AÞpðAÞdA

=pðCÞ
Z Z

pðxjs,AÞpðsjCÞpðAÞds dA
ð18Þ

Below, we unpack the decision variable (which consists of the log-
posterior ratio as above) using the distributional assumptions spelled
out in the generative model with distortion:

d = log
pðC = 1jxÞ

pðC = � 1jxÞ

= log
pðC = 1ÞRRpðxjs,AÞpðAÞpðsjC = 1Þds dA

pðC = � 1ÞRRpðxjs,AÞpðAÞpðsjC = � 1Þds dA

= log
pðC = 1Þ

pðC = � 1Þ

RRN ðx; s � A,σÞN ðA;μA,σAÞUðs; s11,s12Þds dARRN ðx; s � A,σÞN ðA;μA,σAÞUðs; s21,s22Þds dA

= log
pðC = 1Þ

pðC = � 1Þ
1

s12�s11

RRN ðx; s � A,σÞN ðA;μA,σAÞds dA
1

s22�s21

RRN ðx; s � A,σÞN ðA;μA,σAÞds dA

ð19Þ

= log
pðC = 1Þ

pðC = � 1Þ

1
s12�s11

R1
�1
R s = s12
s = s11

1
σ
ffiffiffiffiffi
2π

p e�
ðx�ðs�AÞÞ2

2σ2 1
σA

ffiffiffiffiffi
2π

p e
�ðA�μA Þ2

2σA
2 ds dA

1
s22�s21

R1
�1
R s = s22
s = s21

1
σ
ffiffiffiffiffi
2π

p e�
ðx�ðs�AÞÞ2

2σ2 1
σA
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2π
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2σA
2 ds dA
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1
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1
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p 1
σA

ffiffiffiffiffi
2π

p
R1
�1
R s = s22
s = s21

e�
ðx�ðs�AÞÞ2

2σ2 e
�ðA�μA Þ2

2σA
2 ds dA

= log
pðC = 1Þ

pðC = � 1Þ
1

s12�s11

R1
�1
R s = s12
s = s11

e�
ðs�ðA+ xÞÞ2

2σ2 e
�ðA�μA Þ2

2σA
2 ds dA

1
s22�s21

R1
�1
R s = s22
s = s21

e�
ðs�ðA+ xÞÞ2

2σ2 e
�ðA�μA Þ2

2σA
2 ds dA

ð20Þ

This integral can be solved numerically. However, for the models
we test (Table 1), tomake the calculationsmore tractable, wemake the
assumption that the observer has negligible uncertainty about their
offset A, such that they have essentially no uncertainty over it (σA
asymptotically close to 0). Nonetheless, the model had flexibility in
this respect as it allowed σencoding parameters to vary in each condition,
which could—and seemingly did—absorb additional uncertainty likely
associated with A in the Adapt-Believe condition. Simulations of the
full model allowing a σA different from zero showed negligible effects
on measured values of the μlikelihood and σencoding (with the latter
absorbing non-zero σA values at low levels of encoding noise), sup-
porting the validity of our simplified model (see Fig. S8).

Normalized Gaussian functions with the width tending to 0, lim
w!0

,
will yield Dirac delta functions δ:

δwðxÞ= lim
w!0

1
jwj ffiffiffiffi

π
p e�ðxwÞ2 ð21Þ

δðxÞ= 1, if x =0

0, otherwise

�
ð22Þ
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The Delta function has the following property for any continuous
function f(x):

Z 1

�1
f ðxÞδðx � x0Þdx = f ðx0Þ ð23Þ

Assuming that in p(A)σA is asymptotically close to 0, we will get:

NðA;μA,σAÞ /
1

jσAj
ffiffiffiffi
π

p e
� A�μA

σ2
A

� 	
= δσA

ðA� μAÞ ð24Þ

Substituting the relevant terms into Eq. (19) and using the prop-
erty of the δ function we get:

Z Z
N ðx; s � A,σÞN ðA;μA,σAÞds dA=

Z Z
N ðx; s � A,σÞδσA

ðA� μAÞds dA

=
Z

N ðx; s � μA,σÞds

ð25Þ
Therefore:

d = log
pðC = 1Þ

pðC = � 1Þ

R s12
s11

N ðx; s � μA,σÞUðs; s11,s12ÞdsR s12
s11

N ðx; s � μA,σÞUðs; s21,s22Þds

= log
pðC = 1Þ

pðC = � 1Þ
1

s12�s11

R s12
s11

N ðx; s � μA,σÞds
1

s22�s21

R s22
s21

N ðx; s � μA,σÞds

ð26Þ

For the set of test stimuli in Experiment 2, we have:
s11 = 0, s12 = 0.3 and s21 = −0.3, s22 = 0.Wemake the change of variable
t = s − μA, with dt = ds, we substitute the limits of integration accord-
ingly and write:

d = log
pðC = 1Þ

pðC = � 1Þ

R s12�μA
s11�μA

N ðx; t,σÞdtR s22�μA
s21�μA

N ðx; t,σÞdt

= log
pðC = 1Þ

pðC = � 1Þ

R s12�μA
s11�μA

1
σ
ffiffiffiffiffi
2π

p e�
ðx�tÞ2
2σ2 dtR s22�μA

s21�μA

1
σ
ffiffiffiffiffi
2π

p e�
ðx�tÞ2
2σ2 dt

= log
pðC = 1Þ

pðC = � 1Þ

R s12�μA
s11�μA

1
σ
ffiffiffiffiffi
2π

p e�
ðt�xÞ2
2σ2 dtR s22�μA

s21�μA

1
σ
ffiffiffiffiffi
2π

p e�
ðt�xÞ2
2σ2 dt

= log
pðC = 1Þ

pðC = � 1Þ

R s12�μA
s11�μA

N ðt; x,σÞdtR s22�μA
s21�μA

N ðt; x,σÞdt

ð27Þ

We use the property that : Pr½La≤ x ≤ Lb�= R LbLa Nðx;μ,σÞdx =
1
2 � erf Lb�μffiffi

2
p

σ

� �
� erf La�μffiffi

2
p

σ

� �h i

d = log
pðC = 1Þ

pðC = � 1Þ

1
2 erf s12�μA�xffiffi

2
p

σ

� �
� erf s11�μA�xffiffi

2
p

σ

� �h i
1
2 erf s22�μA�xffiffi

2
p

σ

� �
� erf s21�μA�xffiffi

2
p

σ

� �h i ð28Þ

Because Φðx; s,σÞ= 1
2 1 + erf x�sffiffi

2
p

σ

� �h i
and thus erf x�sffiffi

2
p

σ

� �
=2Φ

ðx; s,σÞ � 1 we write:

d = log
pðC = 1Þ

pðC = � 1Þ
2*Φðs12 � μA � x;0,σÞ � 1� 2*Φðs11 � μA � x;0,σÞ+ 1
 �
2*Φðs22 � μA � x;0,σÞ � 1� 2*Φðs21 � μA � x;0,σÞ + 1
 �

= log
pðC = 1Þ

pðC = � 1Þ
Φðs12 � μA � x;0,σÞ �Φðs11 � μA � x;0,σÞ
 �
Φðs22 � μA � x;0,σÞ �Φðs21 � μA � x;0,σÞ
 � ð29Þ

We plug in the values s11 = 0, s12 = 0.3 and s21 = −0.3, s22 = 0, take
the log and write out the decision variable:

d = log
pðC = 1Þ

1� pðC = 1Þ + log
Φð0:3� μA � x;0,σÞ �Φð�μA � x;0,σÞ
Φð�μA � x;0,σÞ �Φð�0:3� μA � x;0,σÞ

� 	
ð30Þ

An insightful observer will know that they have an offset μA ≠0
and incorporate this into their decision variable. To distinguish
between μ from the generative model and this value used in inference,
we refer to them respectively as μencoding and μlikelihood. In the case of
the Adapt conditions, μencoding is offset. In Adapt-See, observers may
ignore this offset and thus use μlikelihood ≈0. In Adapt-Believe, instead,
observers are asked to incorporate their knowledge of the offset and
will thus try to use a μlikelihood approximating their estimate of μencoding.
Inference can be insightful even if μlikelihood ≠ μencoding, but the closer
these values are, the more accurate the compensation will be for
perceptual distortions.

Once the decision variable is computed as shown here, its use in
the decision rule to yield choice Ĉ and confidence q is assumed to be as
described above by the MAP decision rule in Equation (15).

Model predictions. “Model predictions” are again as in the previous
section.

Bayesian model variants
We tested the model variants presented in Table 1. All models had 6
parameters for the early sensory-encoding stage (2 fixed for μencoding, 4
free σ parameters) and to allow for MAE compensation either had free
parameters for intermediate-stage processes (μlikelihood and/or cate-
gory prior), or late-stage processes (kchoice), or both. All models also
had free parameters for the confidence threshold kconfidence. The
perceptual-insight model used for fitting only had free parameters for
μlikelihood at the intermediate inference stage. The critical competing
model was able to compensate for the illusion based solely on changes
in kchoice at a late choice stage. Other hybridmodels were evaluated for
completeness. Model comparison based on goodness of fit is pre-
sented in Fig. 5B.

Model fitting
We fitted the Bayesian model variants jointly to the choice and con-
fidence data separately for each condition. Across conditions, we used
the model fitting strategy described below. We fixed the two μencoding
parameters to the μ values fitted from the psychometric curves for the
No-Adapt-See and Adapt-See conditions. We performed maximum-
likelihood estimation (MLE) of the remaining parameters in the Baye-
sianmodels (with parameters as in Table 1). For a particular model, the
likelihood of a set of parameters θ is the probability of the data given
those parameters, p(data∣θ). We denote the log likelihood with LL. We
assumed that trials are independent of each other and thus we could
sum the log likelihoods across all trials:

LL ðθÞ= logpðdata
��θÞ= log

YNtrials

j = 1

pðresponsesj
��sj ,θÞ

 !

=
XNtrials

j = 1

logpðresponsesj
��sj ,θÞ

We denote the subject’s responses on the jth trial with responsesj
above, which could be Ĉj = 1 for clockwise or respectively Ĉj =0 for
counterclockwise, and q = 1 for high confidence or q = 0 for low
confidence.

We replaced extreme values (0 or 1) of pðĈ,qjsÞ with 1
Nsamples

for
0 and with 1� 1

Nsamples
for 1.

As in the “Model predictions" section, we approximated the
p(responsesj∣sj, θ) through sampling. Even with 500 samples, the log
likelihood can be considered noisy. To find the parameters θ that
maximize LL(θ) we used an optimization method called Bayesian
adaptive direct search (BADS)140 that is especially suited for noisy
functions. For each dataset and model, we ran BADS with 14 starting
points and chose the best fitting parameters among those. Within
BADS, we set the estimated noise size to 1 (options.NoiseSize= 1).
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The parameter ranges were ½logð0:001Þ, logð0:15Þ� for σ,
[0.0001, 0.0099] for the category prior right, [0.50000, 0.99999] for
kconfidence, [ − 10, 10] for kchoice and [ − 3, 6.5] for μlikelihood For these
parameters, we set the hard bounds equal to these plausible bounds,
except: [0.4, 0.6] for category prior right and [ − 5, 5] for kchoice. None
of the participants had the parameters fitted to their upper or lower
bounds, suggesting that these ranges were meaningful.

Model comparison. We performed model comparison based on
the Akaike Information Criterion (AIC)141 and the Bayesian Information
criterion (BIC)142. Thesemetrics are defined as AIC = − 2LL* + 2nparameters

and BIC = � 2LL * +nparameters logntrials, respectively, where LL* is the
maximum log likelihood and nparameters and ntrials the number of free
parameters and the number of trials, respectively.

To statistically determine the winning model that best captured
the data,we substracted the AIC andBIC values of the referencemodel
from the AIC and BIC values of every other model and summed these
differences across participants as in ref. 143; to get 95% bootstrapped
confidence intervals for these sums, we took 1000000 samples of 22
participants with replacement.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed behavioral data generated in this study has been
deposited in a public github repository https://github.com/lianaan/
Insight, with the following corresponding Zenodo link https://zenodo.
org/record/8411332144. The processed eye tracking data is available at
the links accessible from the github repository. The rawbehavioral and
eye tracking data are available onOSF at https://doi.org/10.17605/OSF.
IO/DSYHC.

Code availability
Analysis andmodeling code have been deposited onGitHub at https://
github.com/lianaan/Insight, under the following Zenodo https://
zenodo.org/record/8411332144. Experimental code is available upon
request to the corresponding authors.
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