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Candidate genes under selection in song
sparrows co-vary with climate and body
mass in support of Bergmann’s Rule

Katherine Carbeck 1 , Peter Arcese 1, Irby Lovette 2,3, Christin Pruett4,
Kevin Winker5 & Jennifer Walsh 2

Ecogeographic rules denote spatial patterns in phenotype and environment
that may reflect local adaptation as well as a species’ capacity to adapt to
change. To identify genes underlying Bergmann’s Rule, which posits that
spatial correlations of bodymass and temperature reflect natural selection and
local adaptation in endotherms, we compare 79 genomes from nine song
sparrow (Melospiza melodia) subspecies that vary ~300% in body mass (17 −
50 g). Comparing large- and smaller-bodied subspecies revealed 9 candidate
genes in three genomic regions associated with body mass. Further compar-
isons to the five smallest subspecies endemic to California revealed eight SNPs
within four of the candidate genes (GARNL3, RALGPS1, ANGPTL2, and COL15A1)
associated with body mass and varying as predicted by Bergmann’s Rule. Our
results support the hypothesis that co-variation in environment, body mass
and genotype reflect the influence of natural selection on local adaptation and
a capacity for contemporary evolution in this diverse species.

Explicating correlations among phenotypes and environmental vari-
ables is a historic focus of theoretical and empirical research on
natural selection, local adaptation, and speciation1–4. More recently,
questions about local adaptation and the adaptive capacity of species
to persist given environmental change have reinvigorated efforts
to understand the micro-evolutionary processes involved. For
example, correlations between ambient temperature, phenotype,
and life-history traits affecting fitness and subject to natural selection
are widely reported in vertebrates2,5–8 and summarized as ecogeo-
graphical rules9. Of particular relevance to climate adaptation,
Bergmann’s rule posits an inverse correlation between ambient
temperature and body size in endotherms10 and has garnered sub-
stantial empirical support (birds:11–13; mammals:14,15). If such patterns
that follow Bergman’s rule reflect local adaptation in traits affecting
fitness, such as thermal tolerance, we expect genes underlying such
trait variation to show signs of historical or ongoing selection and to
vary predictably with phenotype.

Species with large ranges that encompass steep environmental
gradients are excellent candidates in which to test for a genomic basis
of local adaptation16. We focused on song sparrows (Melospiza melo-
dia), which are among the world’s most variable species17,18 as indexed
by the number of recognized subspecies (25), and which accordingly
exhibit a stunning range of co-variation in phenotype, life history, and
environment (e.g.,11,19,20). Song sparrows inhabit highly heterogeneous
environments, spanning about 36 degrees of latitude (26 °N to 62 °N)
and 15 °C in mean annual temperatures (ca. 1 °C to 16 °C). Because
many phenotypic traits of song sparrows are known to have an addi-
tive genetic basis, respond to selection, and affect individual fitness
(e.g.,21–23), we hypothesized that the phenotypic clines in body mass
exemplified in song sparrows at least partly reflect local adaptation to
environment. If so, we further suggest that identifying the genomic
mechanisms underlying such patterns can inform us about the adap-
tive capacity of other species displaying local adaptation to hetero-
geneous environments.
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Here, we test this idea by comparing 40 whole genomes of two
large- (M. m. maxima, M. m. sanaka; mean mass [range]: 45.9
[41.9–50.0 g]) and two smaller-bodied subspecies (M.m. merrilli, M. m.
rufina; mean mass [range]: 26.7 [21.9–30.9 g]) that breed in northern
British Columbia and Alaska in order to evaluate the genomic land-
scape of divergence and identify candidate genes associatedwith body
mass. Maxima and sanaka reside year-round from the Alaskan Penin-
sula to the Aleutian Islands, experience cold winters and are nearly
twice the mass of rufina and merrilli, which experience warmer
winters24 (Fig. 1). With candidate genes for body mass identified, we
then use those candidates to predict genotype in 39 birds that repre-
sent the five smallest subspecies of song sparrows, all endemic to
California and residing in or adjacent to San Francisco Bay (meanmass
[range]: 19.2 [16.9–23.3 g]). By doing so, we demonstrate the wider
utility of identifying candidate genes that are targets of selection and
which contribute to local adaptation in phenotypically variable species
that occupy a diverse range of environmental conditions and geo-
graphic scales.

Results
Phenotypic correlations and genomic divergence
Body mass (g) and mean winter and summer temperatures (°C) were
strongly negatively related in the subspecies we studied (Fig. 1), con-
sistent with Bergmann’s rule. At a genome-wide scale, we observed
marked differentiation and unambiguous clustering between all
four northern subspecies, clearly distinguished as large- (maxima
and sanaka) and smaller-bodied (merrilli and rufina) subspecies
(11,223,039 SNPs; PC1: 19.93% and PC2: 6.76% of genomic variation;
Supplementary Fig. 1). This pattern holds when the southern small-
bodied subspecies from San Francisco Bay are included, with a PCA
delineating body size on PC axis 1, which accounted for 12.48% of
genomic variation (PC2: 3.48%; Fig. 1b). Population structure atK =2 had
the lowest cross-validation error, corresponding to grouping of the
large- versus smaller-bodied subspecies; but structuringwas apparent at
K=4 (ADMIXTURE; Supplementary Fig. 2). Genome-wide estimates of
FST ( ± SD) indicated substantial divergence, with pairwise genome-wide
values from0.035 ±0.026 in the control comparisons (merrilli-rufina) to
0.247 ±0.112 (maxima-merrilli; Supplementary Table 1). Similarly, the
genome-wide absolute geneticdivergence (Dxy)was lowestbetween the
control comparisons (mean± SD; maxima-sanaka: 0.292 ±0.087) and
highest betweenmaxima-merrilli (0.425 ±0.046). Overall, the strongest
signals of genetic differentiation were best explained by body size.

Identification of candidate genes
We identified a total of 25 elevated windows of FST that were shared by
at least two pairwise comparisons of large- and smaller-bodied sub-
species (i.e., windows exhibiting FST estimates in the 99.9th percentile
of the genome-wide mean; Fig. 2). Several of these shared elevated
50 kb windows contained annotated genes (13 genes: sanaka and
merrilli; 10: sanaka and rufina; 18:maxima and rufina; 19:maxima and
merrilli).Overall, themean FST values in the 50kboutlierwindowswere
elevated for each of the four pairwise comparisons (Mean FST: sanaka-
merrilli =0.671; sanaka-rufina =0.625; maxima-rufina = 0.645; max-
ima-merrilli =0.828), relative to low genome-wide FST averages
(sanaka-merrilli =0.159; sanaka-rufina =0.176;maxima-rufina = 0.205;
maxima-merrilli = 0.247; Fig. 2).

To specifically identify putative genes under selection for body
size, we focused on genes that were shared between all four large- vs
smaller-bodied comparisons (i.e., “candidate genes”). Six genes were
shared by two subspecies comparisons (AIDA, TPPP, USP16, LTN1,
C3ORF52, and unknown gene ENSTGUP00000002762), and two
shared by three comparisons (TRIP13 and BRD9; Supplementary
Table 2). Notably, across the shared 50kb windows, 9 candidate genes
were identified in all large- and smaller- bodied pairwise comparisons
(FBXW2, GARNL3, RALGPS1, ZBTB34, ANGPTL2, ZBTB43, COL15A1,

TGFBR1, TAF1A), with six candidate genes occurring on the same
scaffold (contig 391/chr 17; Supplementary Table 2). None of these
candidate genes were shared in control comparisons between the
two larger (maxima and sanaka) and smaller (merrilli and rufina)
subspecies pairs, as expected if these differentiated regions arose via
divergent selection on body size (Fig. 3; Supplementary Table 2).

Signatures of selection
To search for evidence of local adaptation in body size, we calculated
the composite likelihood ratio (CLR) test statistic to test for the pre-
sence of selective sweeps on the 3 contigs containing the 9 candidate
genes (Fig. 3). Selective sweeps were evident on all contigs (>99th
percentile of contig-wide mean; Fig. 3). We also measured nucleotide
diversity (π) and Tajima’s D across 50kb windows in all four northern
subspecies to characterize genetic diversity and detect evidence of
selection. Commensurate with our hypothesis of natural selection,
nucleotide diversity was reduced in the regions of the 9 candidate
genes shared among all four comparisons (maxima = 0.0001,
sanaka =0.0002, merrilli =0.0002, rufina =0.0005), whereas the
genome-wide average was an order of magnitude higher (maxima =
0.0016, sanaka =0.0022, merrilli =0.0032, rufina =0.0026) (Supple-
mentary Figs. 3–5). Tajima’s D was also reduced in candidate regions,
especially inmaxima (−0.332), sanaka (0.229), andmerrilli (−0.789), as
compared to genome-wide means (0.851, 0.892, and 0.889, respec-
tively), but not in rufina (DTaj candidate = 1.038; DTaj mean = 1.219). Dxy
estimated in candidate regions was also elevated in size-related pair-
wise comparisons (maxima-merrilli =0.899, maxima-rufina =0.710,
sanaka-merrilli = 0.844, sanaka-rufina =0.771) compared to controls
of within-size comparisons (maxima-sanaka =0.032, merrilli-rufina =
0.233; Supplementary Fig. 6). Taken together, these results provide
evidence for the presence of selective sweeps and imply that the
strength and direction of selection may vary among subspecies.

Validation of candidate genes
Given the identification of 9 genes associatedwith body size and shared
by the 4 northern subspecies, we next tested if these candidate genes
could be used to predict allele frequency commensurate with the
smaller-bodied phenotype in the 5 smallest subspecies of song spar-
rows endemic to California (mean mass [range]: 19.2 [16.9–23.3 g]), for
which we had prior genomic data25. Allele frequency of the non-
reference allele was assessed across the 467 SNPs located within the 9
candidate genes noted above revealed 8 SNPs that were highly corre-
lated with mass (r >0.90; p<0.001; Fig. 4). Four of these SNPs were
located within RALGPS1 (one of which is also in ANGTPL2), 1 SNP in
GARNL3, and 3 SNPs in COL15A1 (Fig. 4). One SNP on RALGPS1 (position
57980) falls within the coding region of the gene, while the remaining
SNPs are located within non-coding regions of genes. Notably, non-
reference allele frequencies of the 8 candidate SNPs were also highly
negatively correlated with average winter and summer temperature
(range r= −0.79 to −0.85; p <0.05; Fig. 4).

We observed consistent positive regressions of mass on non-
reference allele frequency at each of the 8 focal SNPs (range:
F(1,7) = 31.96–142.66; rangeR2: 0.820–0.953;p <0.001; Supplementary
Table 3). In contrast, regressing temperature on allele frequency
revealed negative relationships at each of the focal SNPs (range:
F(1,7) = 11.38–18.15; range R2: 0.619–0.722; p <0.05; Supplementary
Table 4).Weused apartialMantel test to further explorewhether these
relationships reflect a history of selection versus neutral processes
using the 3 contigs containing the 9 candidate genes. Pairwise genetic
distance and phenotype were significantly correlated across all 9
subspecies after controlling for geographic distance (partial Mantel
test: r = 0.183; p =0.004).

Per-site FST estimates for the 8 focal SNPs noted ranged from0.63
to 0.96 among all large- and smaller-bodied subspecies (mean:
0.713–0.763,while control comparisons ranged from0 to0.272 (mean:
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Fig. 1 | Song sparrowsubspeciesdistribution, geneticdivergence,andbody size
variation. a Range map of song sparrow subspecies (digitized and georeferenced
from ref. 16) with the focal subspecies labeled therein. Inset map shows the ranges
of small-bodied San Francisco Bay subspecies (outlined in red) that were used in
analyses to validate candidate genes. b Genome-wide patterns of divergence
between large- (maxima: yellow; sanaka: pink), smaller- (rufina: green; merrilli:
purple), and small-bodied (gouldii, heermanni, maxillaris, pusillula, and samuelis:
shades of blue) subspecies of song sparrows based on 11,223,039 SNPs. Principal

component analysis plots show clear splits between northern subspecies, with
California subspecies clustering together. PC1 and PC2 explained 12.48% and 3.48%
of the total variation, respectively. c Mean winter (Dec, Jan, Feb) and summer
(Jun, Jul, Aug) temperature (°C) and mean ( ± SD) song sparrow body mass (g) by
subspecies (n: maxima = 12; sanaka = 8; rufina = 12; merrilli= 8; gouldii = 10; heer-
manni = 8;maxillaris= 6; pusillula= 9; samuelis= 6; see methods). Illustrations
depicting the average body size of the northern subspecies (illustrations by Jillian
Ditner 2022).
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0.003–0.081; Supplementary Table 5). Across the 9 candidate genes,
the percentage of fixed or nearly fixed SNPs between the large- and
smaller-bodied subspecies ranged from 3.0 to 33.8%, whereas 0% of
control comparisons contained fixed SNPs (Supplementary Table 5).

A phylogenetic tree reconstructed from individual genotypes of
the 8 focal SNPs and 1–3 additional SNPs immediately up and
downstream (54 total SNPs; Supplementary Fig. 7; see Methods)
was consistent with the strong correlation between body size and
non-reference allele frequency across subspecies. Across the nine
subspecies, three clusters formed largely reflecting body size
and geography, comprising two subspecies of intermediate mass
(rufina, merrilli), two large Aleutian endemics (maxima, sanaka),
and five small California endemics (gouldii, heermanni, maxillaris,
pusillula, samuelis). Whilst these findings suggest compelling sup-
port for our hypothesis that historical and/or ongoing natural
selection has contributed to genetic differentiation of body size
between subspecies, lower coverage for the San Francisco Bay
populations may limit our ability to fully resolve heterozygotes and
should be validated using higher coverage, phased sequence data.

Discussion
We characterized 9 candidate genes associated with body mass in
4 subspecies of large- and smaller-bodied song sparrows that breed
at the northern extent of the species’ range, and then used those
candidates to predict genotype in 39 individuals from 5 small-bodied
subspecies endemic to California that are ~50–70% smaller than sub-
species that reside year-round in Alaska. Bergmann10 explained the

tendency for endotherms to be larger in colder environments as an
adaptation to minimize heat loss, though mechanisms remain
uncertain13,26. Our observations of fixed and shared genomic differ-
ences, their co-variation with climate and body mass, and evident
signatures of selection support Bergmann’s Rule as influential in
song sparrows reflect a capacity for and history of local adaptation
to environment in this species. Moreover, because many other
traits exhibit substantial additive genetic variation23,27, respond to
selection21,28, co-vary with environment11,25, and affect individual fitness
in this species23, we interpret these cumulative results as suggesting
that song sparrows exhibit substantial capacity for contemporary
evolution via context-dependent selection on individual phenotype
and life history20,29.

We observed multiple regions of elevated divergence in the gen-
omes of large- vs smaller-bodied song sparrows versus a relatively
homogenous background (Fig. 2; Supplementary Fig. 6), extending
prior demonstrations of local adaptation at micro- to macrogeo-
graphic scales20,25,30. Consistent clustering of genetic groups in the
large- and smaller-bodied populations was evident in comparisons
based on mass and subspecies identity (Fig. 1; Supplementary Fig. 1)
but absent in shared regions of divergence in control comparisons
among subspecies of similar size (Fig. 2; Supplementary Fig. 6). These
contrasts also support our hypothesis that local adaptation in song
sparrow is underlain, as least in part, by genes that play a causal role in
the patterns Bergmann sought to explain.

Having identified candidate genes capableof differentiating large-
and smaller-bodied subspecies in Alaska, we then validated these
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Fig. 2 | Genome-wide differentiation between northern subspecies. Genome-
wide distribution of FST for pairwise comparisons between large- and smaller-
bodied northern subspecies (white background) and control comparisons (gray
background).Manhattanplot show genome-wide differentiation in 50-kbwindows.

The dashed line indicates the 99.9th percentile of genome-wide mean. The yellow
highlighted regions indicate a subset of divergent windows on contigs 3361 (chr 2),
1534 (chr 3), and 391 (chr 17) held in commonbetween all pairs. Chromosomeswere
identified by their position on the zebra finch genome.
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patterns by predicting the genotypes of 39 birds from the five smallest
subspecies endemic to California. Of the 9 candidate genes in regions
shared by all large- and smaller-bodied pairwise comparisons, four
contained SNPs (r > 0.90) that predicted allele frequency of small-
bodied subspecies in California (RALGPS1, COL15A1, GARNL3, and
ANGTPL2; Fig. 4), and included genes linked to bodymass index (BMI),
height, and fat distribution in humans (Supplementary Table 2; see
methods). RALGPS1 (mean FST: 0.797, range: 0.071–0.974) and
COL15A1 (mean FST: 0.514, range: 0.010–0.945) similarly associate with
percent and distribution of body fat, size and BMI in humans31,32.
ANGPTL2 contained several highly differentiated SNPs correlated with
body mass and temperature (mean FST: 0.917, range: 0.845–0.959).
ANGPTL2 codes for angiopoietin-like protein 2 which has important
roles in lipid, glucose and energymetabolism across taxa, and has also
been found to be associated with human height and obesity33,34.
In contrast, GARNL3 (mean FST: 0.791, range: 0.055–0.973) was infor-
mative in differentiating subspecies by body size and predicting the
genotype of smaller-bodied song sparrows, but it has not yet been
linked to phenotype in other species. Notably, there were high

proportions of fixed or nearly fixed SNPs (FST > 0.95) within RALGPS1,
GARNL3, and ANGTPL2 (18/151; 7/59; 6/14 SNPs, respectively). These
results support further our supposition that some or all of the genes
we identified are directly or indirectly associated with thermo-
regulatory capacity and influential in their contributions to the roughly
300% increase in the body mass of song sparrows observed from
California to Alaska.

Although five of the candidate genes did not include SNPs highly
correlated with body mass in small-bodied subspecies endemic to
California, four of these genes have previously been associated with
BMI, body fat mass, height, or Marfan syndrome in humans (e.g.,
FBXW2, ZBTB43, TGFBR1, TAF1A;35–40; Supplementary Table 2), whereas
ZBTB34 appears to reflect a novel association to mass. Because com-
plex phenotypes often arise via many genes of small effect41, it is likely
that such smaller effects would be challenging to discern given our
statistical approach, stringent identification of candidates, andmodest
sample sizes.

Despite strong associations between bodymass and the candidate
genes noted above, genetic drift, variation in recombination rate and

Chromosome 17

FST CLR

Chromosome 2

Chromosome 3

ZBTB43

ZBTB34 RALGPS1

ANGPTL2
FBXW2

GARNL3

9.0                                                  10.01 1.0 10.5                          11.0                        11.5

30

20

10

0

1.0

0.5

0.0

1.0

0.5

0.0

1.0

0.5

0.0

72.0                                                73.0

104.0                                              0.6010.501

72.0                          72.4                        72.8

3

2

1

0

30

20

10

0
104.4                      104.8                       105.2

BRD9

TPPP
SLC9A3

TGFBR1

COL15A1 TRIP13

ENSTGUP00000002762

TAFIA AIDA

Position (Mbp)

maxima

sanaka rufina

merrilli

sanaka - rufina sanaka - merrilli

maxima - rufina maxima - merrilli

Fig. 3 | Genetic differentiation and selective sweeps within candidate genes.
Pairwise FST comparisons and composite likelihood ratio (CLR) test statistic values
within regions of the 9 candidate genes. The distribution of FST in 25-kb windows
and genes within the divergent windows on Chromosome 17 (contig 391), Chro-
mosome 2 (contig 3361), and Chromosome 3 (contig 1534) for pairwise

comparisons between large- (maxima: yellow; sanaka: pink), smaller-bodied
(rufina: green;merrilli: purple) northern subspecies. CLR values and 99th percentile
of the contigmean (dashed lines) are shownwithin a subset of the regionwithin the
red box are suggestive of selective sweeps.
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genetic architecture, and selection on correlated traits are also expec-
ted to influence population-level variation in the phenotype of song
sparrows across their North American range42. Thus, whilst genome
scans clearly offer valuable insights into the origins of adaptive
evolution43–45, more detailed genomic and field studies are needed to
validate geneexpression, the effects of natural selectionon the adaptive

capacity of populations, phenotype, and fitness, and to understand the
consequences of immigration on genetic architecture.Methods such as
QTL mapping of hybrid individuals in populations with precise pedi-
greeswill be needed to elucidate the additional effects of chromosomal
rearrangements, insertions, deletions, or duplications, on phenotype,
plasticity, and the process of speciation23,29. Similarly, a more precise
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understanding of the influence of plasticity versus direct or indirect
selection on traits underlying Bergmann’s or other ecogeographic rules
is needed to estimate the capacity of populations to maintain fitness
given environmental change13,26,46,47.

Song sparrows exhibit a stunning range of variation in external
phenotype and life history that correlates closely with local environ-
mental conditions11,18–20,25. Because many phenotypic traits that affect
individualfitness have anadditive genetic basis in this species21,23,28, it is
plausible that spatial and temporal variation in natural selection have
contributed substantially to local adaptation and divergence across its
range11,18–20,25. Our results reveal strong evidence of natural selection
acting on genes which appear to contribute to phenotypic variation in
body mass among nine subspecies distributed over a dramatic envir-
onmental cline, and augment our prior work demonstrating local
adaptation in the genomes of individuals across macro- to micro-
geographic scales25,48. Furthermore, our novel approach to validating
gene function strongly suggests that the same genes have experienced
historic and/or ongoing selection in multiple populations across the
species’ range. Our findings thus support and extend our prior results
at local to landscape scales23,25,30, implying a substantial capacity for
eco-evolutionary adaptation to environment change in the song
sparrow, and reinforcing its value as a model species for under-
standing the genomic underpinnings of adaptive evolution.

Methods
Study system and sampling
To identify candidate genes underlying Bergmann’s rule, we inten-
tionally sampled large- and smaller-bodied song sparrows from the
northern extent of the range where these populations in close geo-
graphic proximity vary substantially in mass. In total, we sampled 40
male song sparrows representing two large-bodied subspecies, M. m.
maxima (n = 12; mean± SD = 46.9 ± 2.5 g) and M. m. sanaka (n = 8;
44.4 ± 1.1 g), and two smaller-bodied subspecies, M. m. merrilli (n = 8;
23.2 ± 1.2 g) and M. m. rufina (n = 12; 29.0 ± 1.1 g). Tissue samples for
these individuals were provided by the University of Alaska Museum.
All birds were collected between 1997 and 2000 (Supplementary
Data 1). We then used these candidate genes to predict the genotypes
of small-bodied subspecies from California: M. m. gouldii (n = 10;
mean± SD= 18.44 ±0.84g); M. m. heermanni (n = 8; 21.22 ± 0.95 g); M.
m. samuelis (n = 6; 17.95 ± 0.70 g);M.m. pusillula (n = 9; 18.57 ± 0.95 g);
and M. m. maxillaris (n = 6; 20.25 ± 1.08 g). Because extreme cold and
heat are both expected to influence body size we used mean winter
(Dec, Jan, Feb) and summer (Jun, Jul, Aug) temperature data, which
were acquired from ClimateNA v.6.0049 for each of the sample loca-
tions to visualize the relationship betweenbodymass and temperature
(Fig. 1). All subspecies are year-round residents across their range
except rufina andmerrilli, which are considered to be partial migrants.
At our sampling locations, however, rufina are known residents and
merrilli are known migrants, therefore we estimated the mean winter
temperature for merrilli based on Patten and Pruett18.

Whole-genome sequencing and variant discovery
Genomic DNA was extracted using the DNeasy Blood and Tissue Kit
(Qiagen, CA, USA). DNA concentrations were quantified using the
Qubit BR dsDNA Assay Kit (Life Technologies). Using 150ng of DNA
from each sample, we prepared individually barcoded libraries with a
300bp insert size following the protocol for the NEBNext Ultra II FS

DNA Library Prep Kit (Illumina, CA, USA). Libraries for M. m. sanaka
andM. m. merrilliwere sequenced on a single Illumina NextSeq lane at
the Cornell Institute for Biotechnology core facility, while those of M.
m. maxima and M. m. rufina were sequenced on a single Illumina
NovaSeq lane at Novagene (The University of California at Davis
campus). Whole-genome sequencing yielded a mean of 48,428,940
reads per individual in our British Columbia and Alaska populations.

We assessed library quality using FastQC v.0.11.8 (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc). We used Adapter-
Removal v.2.1.1 for sequence trimming, adapter removal, and quality
filtering (requiring a minimum Phred quality score of 30), and we
merged overlapping paired-end reads.We aligned filtered reads to the
song sparrow reference genome based on a small-bodied subspecies
(M. m. morphna) from Southern British Columbia50 using the default
settings in Bowtie2 v.2.4.251 and obtained alignment statistics from
Qualimap v.2.2.152. Mean alignment rates for the four subspecies
comparisons were 97.98%. Mean coverage and mapping quality were
7X (range: 4X–16X), and 18.62 (Table S3). We used SAMtools v.1.953 to
convert all resulting SAM files to BAM files and to sort and index files.
We used Picard Tools v.2.8.2 (https://broadinstitute.github.io/picard/)
to add index groups andmark duplicates. We usedmpileupmodule in
Bcftools v.1.12 for SNP variant discovery and genotyping for all song
sparrows and filtered out variants that were not biallelic, had minor
allele frequencies less than 5%, mean coverage less than 2X or more
than 50X, and more than 20% missing data. This resulted in a total of
13,089,663 SNPs across the four subspecies. The mean missing data
across individuals was 16.9% (Supplementary Data 1). We identified
three samples that exhibited 50% or greater relatedness to another
individual. Because three (rufina, sanaka, and maxima) of our sub-
species were sampled from islands and are likely to have higher levels
of inbreeding54, this signal is likely biologically relevant. To assess
whether retaining related individuals had any impact on population
structure, exploratory PCA plots were run both with and without these
individuals. This comparison produced similar results (Fig. 1, Supple-
mentary Fig. 1); therefore, all downstream analyses were conducted
with the full dataset, including related individuals.

Population genomic analyses
We visualized genetic clustering in the SNP dataset by performing a
PCA using snpgdsPCA function in the SNPRelate package55 in R
v.4.0.556. To quantify the level of genome-wide differentiation between
subspecies, we calculated FST

57 between populations using VCFtools
v.0.1.1458 across 50 kbwindows.Manhattanplots were generated using
the Manhattan function in the qqman package in R59. Before plotting
windowed FST estimates, we filtered out all scaffolds with fewer than
four windows and less than 10 SNPs. We also used VCFtools to calcu-
late inbreeding coefficients (FIS) for all individuals. We then calculated
Tajima’s D, nucleotide diversity (π), and absolute genetic divergence
(Dxy) using the popgenWindows.py script (S. Martin; https://github.
com/simonhmartin/genomics_general) to further provide insight into
the evolutionary processes that have shaped population-level genetic
variation. Putative chromosomal locations of different scaffolds were
obtained by aligning them to the zebra finch (Taeniopygia guttata)
assembly (bTaeGut1_v1.p; https://www.ncbi.nlm.nih.gov/datasets/
genome/GCA_003957565.1/; SAMN02981239) using the pseudo-
chromosome scaffolding command in SatsumaSynteny60. To analyze
patterns of genetic structure among the four subspecies, Admixture

Fig. 4 | Relationship between non-reference allele frequency, body mass, and
temperature for highly divergent SNPs. Allele frequency of the non-reference
allele vs mass (g) and temperature (°C) for eight highly divergent SNPs within four
of the 9 candidate genes. The SNPs of interest are located within FST peaks on
contigs 391 (chr 17) and 3361 (chr 2) and located within five of the eight candidate
genes (GARNL3, RALGPS1, ANGTPL2, and COL15A1) of maxima and sanaka (large-
bodied; yellow and pink, respectively), rufina and merrilli (smaller-bodied; purple

and green, respectively), andM.m. gouldii, M. m. heermanni, M.m. maxillaris, M.m.
pusillula, and M. m. samuelis (small-bodied; shades of blue) (illustrations by Jillian
Ditner 2022). Non-reference allele frequency is positively correlated with body
mass (g) and negatively correlated with average winter and summer temperature
(°C). Points are color coded by subspecies identity; solid black line represents the
line of best fit and shaded area represents standard error, with coefficient of
determination values (R2) reported in lower right of plots.
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v.1.2361 analyses were run using a filtered dataset (1,989,848 SNPs) that
contained no missing data and was pruned to avoid linkage using the
script ldPruning.sh (https://github.com/speciationgenomics/scripts/
blob/master/ldPruning.sh). We investigated one to four population
clusters with 200 bootstrap resampling iterations.

Genome-wide divergence
We identified regions of elevated divergence among the four pairwise
(or between size) comparisons including large- and smaller-bodied
northern populations using the sliding window FST estimates. Elevated
values of FST averaged over non-overlapping 50kb windows were
considered elevated if exceeding the 99.9th percentile of genome-wide
mean value (i.e., >0.498 when comparing sanaka andmerrilli, > 0.493
for sanaka and rufina, 0.507 for maxima and rufina, and 0.518 for
maxima and merrilli; Fig. 2). We compiled a list of genes within these
outlier windows using Geneious V.11.1.562. To characterize putative
candidate genes, we used ontology information from the zebra finch
Ensembl database63 the annotated song sparrow reference genome50,
and functional information from the Uniprot database64 (Supplemen-
tary Table 2). We additionally compared the identified list of genes to
known genes involved in recent analyses of body size or BMI in other
species (see discussion; NHGRI-EBI GWAS catalog; https://www.ebi.ac.
uk/gwas/).

To control for phenotypic differences between subspecies in
traits that are not body size (e.g., plumage differences, migratory
behavior), we compared the two smaller-bodied populations, M. m.
merrilli and M. m. rufina, that also differ in migratory behavior as a
measure of ensuring that the candidate genes are correlatedwith our
trait of interest.We also compared the two large-bodied populations,
M. m. sanaka and M. m. maxima as an additional control for our
smaller- vs large-bodied comparisons. There were no overlaps in
elevated peaks between our large-small bodied (between size) com-
parisons with those identified within our smaller-bodied or large-
bodied (within size) control comparisons, increasing our confidence
that we have identified genes related to body size variation as
opposed to migratory behavior or other traits differing between
subspecies.

Among our large- and smaller-bodied (between size) compar-
isons, we classified outlier regions as shared if two or more paired
comparisons identified the same gene within 50kb of an elevated
window (SupplementaryTable 2).We narrowed the candidate gene set
by keepingonly genes identified in all four comparisons between large-
and smaller-bodied subspecies. Using this approach, we identified 9
genes that are shared in all of the between body size comparisons.
Within these 9 genes, there are 467 variants across the four subspecies
of interest.

Signatures of selection
We used the candidate gene set, containing the 467 SNPs, to test for
evidence of selective sweeps, identify SNPs highly correlated with
body mass, and calculate the percentage of fixed or nearly fixed SNPs
(FST > 0.95; Supplementary Table 5). To identify regions under selec-
tion, we calculated the composite likelihood ratio (CLR) test statistic
using the program SweeD v3.3.265. We determined the genotypes of all
individuals by phasing and imputing missing data using Beagle
v.3.3.266. We ran SweeD separately for each population and on indivi-
dual contigs of interest using the default parameters except for using a
window size of 200bp. The window within each contig with the
highest CLR statistic is considered the likely location of a selective
sweep67.

Hypothesis testing for validation
To test the hypothesis that our narrowed set of 9 candidate genes is
related to body size, we predicted the genotypes of more distantly
related small-bodied subspecies (M. m. gouldii, M. m. heermanni,M. m.

samuelis, M. m. pusillula, and M. m. maxillaris) from a different geo-
graphic region, the San Francisco Bay area of California. Whole-
genome sequences for the 39 San Francisco Bay individuals were
generated in a separate study25 using library preparation and sequen-
cing methods as detailed above. For the whole-genome sequencing
summary statistics of the 39 San Francisco Bay individuals see Mikles
and colleagues25.

We first performed a partial Mantel test on the 3 contigs con-
taining the 9 candidate genes across all 9 subspecies to assess whether
patterns of divergence were due to neutral, including isolation by
distance, or selective processes. Using the vegan68 R package, we tes-
ted for correlations between mass and genetic distance, while
accounting for geographic (Euclidean) distance.

To see how strongly allele frequency correlated with body size
across all 79 individuals, we produced a matrix of the frequency of
the non-reference allele using vcftools (--freq2 recode option) for the
467 SNPs. We used Pearson correlation coefficient (r) to quantify the
relationship between the non-reference allele frequency and body
mass (g), and between non-reference allele frequency and average
summer and winter temperature (°C) at each of the SNPs. We selec-
ted the top 8 SNPs with a r > 0.90 between non-reference allele fre-
quency and mass: contig 391 (chr 17) positions: 19152, 57980, 61835,
86656, 122228; contig 3361 (chr 2) positions: 255216, 255218, 262569.
We also performed linear regression analyses to further explore the
relationships between allele frequency and mass and temperature at
each of the focal SNPs. For each analysis, allele frequency served as
the independent variable, while mass and temperature were the
dependent variables. Model parameters, including regression coef-
ficients, intercepts, confidence intervals, effect sizes, R-squared
values, p-values, and leverage and influence statistics can be found
in Supplementary Tables 3 and 4. Relationships were then visualized
using ggplot269 (Fig. 4).

In addition to looking at correlation between subspecies-level
allele frequencies and mass, we assessed correlation with phenotype
and genotype for individuals (heterozygotes or homozygotes for the
reference/alternate alleles at our focal SNPs). To do this, we used the R
package vegan68 to calculate a distance matrix between the 8 SNPs
identified above and included 1–3 additional SNPs immediately up and
downstream of each focal SNP for visualization purposes (54 total
SNPs). Less than three SNPs were used in cases where the SNP was
located at the endof a contig or adjacent to another focal SNP.We then
used the Ward algorithm as a grouping method to express the rela-
tionships between sites, which was implemented using the hclust
function in vegan.We plotted the output using the plot.phylo function
in the R package ape70 and visualized genotypes by constructing a
modified heatmap in which the base pairs of each individual at a locus
are represented in the two halves of a diagonally split pixel (Supple-
mentary Fig. 7).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequencing data generated in this study have been deposited
in the National Center for Biotechnology Information (NCBI) BioPro-
ject database under accession code PRJNA1013697. Raw sequencing
data for the California song sparrow subspecies used in this study are
available in the NCBI BioProject database under accession code
PRJNA1018990. Source data are provided with this paper.

Code availability
Scripts and bioinformatic pipelines used in this study are available
at https://github.com/kcarbeck/SOSP_body_size (https://doi.org/10.
5281/zenodo.8365146).
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