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Assessing the value of integrating national
longitudinal shopping data into respiratory
disease forecasting models

Elizabeth Dolan 1,2 , James Goulding 1, Harry Marshall 1, Gavin Smith 1,
Gavin Long 1 & Laila J. Tata 3

The COVID-19 pandemic led to unparalleled pressure on healthcare services.
Improved healthcare planning in relation to diseases affecting the respiratory
system has consequently become a key concern. We investigated the value of
integrating sales of non-prescription medications commonly bought for
managing respiratory symptoms, to improve forecasting of weekly registered
deaths from respiratory disease at local levels across England, by using over 2
billion transactions logged by a UK high street retailer from March 2016 to
March 2020. We report the results from the novel AI (Artificial Intelligence)
explainability variable importance tool Model Class Reliance implemented on
the PADRUS model (Prediction of Amount of Deaths by Respiratory disease
Using Sales). PADRUS is a machine learning model optimised to predict
registered deaths from respiratory disease in 314 local authority areas across
England through the integration of shopping sales data and focused on pur-
chases of non-prescription medications. We found strong evidence that
models incorporating sales data significantly out-perform other models that
solely use variables traditionally associated with respiratory disease (e.g.
sociodemographics and weather data). Accuracy gains are highest (increases
in R2 (coefficient of determination) between 0.09 to 0.11) in periods of max-
imum risk to the general public. Results demonstrate the potential to utilise
sales data to monitor population health with information at a high level of
geographic granularity.

Between 2015 and 2019, respiratorydisease (ICD 10CODING (J00-J99))
was the underlying cause of 369,900 deaths across England and
Wales1. Respiratory Disease, ICD 10 CODING (J00-J99), refers to
infections and disease of the lungs and respiratory system including
asthma, chronic obstructive pulmonary disease (COPD); bronchitis;
emphysema, pneumonia and influenza. J00-J99 ICD coding does not
include lung cancer, respiratory tuberculosis or cystic fibrosis. By
2020, and the arrival of the global pandemic, respiratory disease had
become the leading cause of death1, with COVID-19 listed on over
200,000 UK death certificates between February 2020 and July 20222.

With COVID-19 appearing to have established itself as a dominant and
long-standing disease2,3, and with public health services simulta-
neously facing increasing financial and logistical pressures, it has
become more critical than ever to investigate better forecasting of
Influenza-like Illnesses (ILI) and their likely impact on local and vul-
nerable populations.

Behavioural data in integrated disease models
Response to COVID-19 also served to highlight the limitations faced by
classical disease modelling in supporting prediction efforts. In
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traditional forecasting models, individuals are assigned to just one of
three states (susceptible-infected-recovered) and population beha-
viours are broadly assumed to be both homogeneous and static4.
Evidence from the pandemic highlighted not only the key role micro-
scale interactions between individualsplay in disease transmission, but
the highly dynamic and evolving nature of those interactions amidst
social, economic and behavioural shifts within the population, espe-
cially at local levels5. In reaction to this, there have been renewed calls
to directly integrate social andbehavioural data intodiseasemodels4–9,
with the aim of producing more nuanced and adaptive forecasting
mechanisms. Data that can provide insights into the evolving nature of
population behaviours, from mobility patterns to nutrition and self-
medication strategies, have been referred to as operational response
data by Bedson et al.4. Although such event streams hold much pro-
mise, their use has remained limited due to lack of availability, access
and appropriate levels of granularity. Consequently their practical
utility is broadly untested.

While researchers have awaiteddevelopment of the infrastructure
to support use of digital footprint data within epidemiologicalmodels,
they have continued to leverage more traditional data collection
methods such as surveying and the harvesting of self-reports4–8. Sur-
veying at scale, however, remains a logistically challenging endeavour,
with sample sizes constrained by both budgets and capacity, along
with the recognised potential for response bias10,11, even when data is
obtained directly via mobile applications5,12. When self-reports are
obtained indirectly through analysis of social media accounts they too
have similar response biases due to both memory failure and social
desirability13,14.

Alternative digital footprint datasets offer potential to provide a
more sustainable and passive route to monitoring longitudinal health
behaviours at scale. Such data can be used to supplement and com-
plement qualitative insights, and act at a resolution that can reflect
variations within local populations if key transparency, privacy and
commercial sensitivity issues can be addressed. Privacy issues are
particularly relevant when individual-level digital footprint data is
accessed15, yet aggregated digital data at local levels could still offer
useful insights. While some datasets of this nature, such as mobility
data from use of mobile devices, have already been applied to COVID-
19 modelling with some success16–18, no integrated disease models in
the UK have incorporated sales data. Self-medication purchasing pat-
terns hold key information aboutpopulation-wide response todisease,
yet their use in health surveillance remains scarce19–21.

Using shopping data logs to examine health
Recorded and stored by retailers across the UK, transactional shop-
ping data consist of longitudinal, time-stamped purchasing logs, spe-
cified at store-level geographical granularity. One of the key
advantages of such data-sets is that they are updated in real-time,
offering capacity to investigate behavioural signals not only across a
population, but over time. A variety of studies have reported the
potential of such data to provide insights into population health22–25.
Non-prescription medication purchase logs, in particular, have long
been considered a valuable input into health surveillance
systems20,26,27, with Welliver et al. evidencing its potential to indicate
influenza at community levels as far back as 197928. Similarly, Hogan
et al. showed a high correlation between respiratory and diarrheal
outbreaks in children and sales of over-the-counter electrolyte
products29. Socan et al. showed correlation between medicines for
sore throat, antitussives, decongestants and mucolytics, and weekly
influenza incidence; the sales of antitussives alone could predict
increased incident rates30.

There remains, however, contention as to the effectiveness of
integrating such datasets in forecasting systems, a key issue given the
surrounding privacy, ethical and transparency challenges of their
usage15,31. Al-Tawfiq et al.’s review of health surveillance systems for

emerging respiratory viruses reported only mixed results in the effi-
cacy of monitoring of non-prescription drug purchases32; and while
Pivette et al. systematic review of drug sales in outbreak detection
demonstrated improvements in provision of earlier alerts, they also
noted challenges in selecting indicator drug groups and poor-quality
clinical surveillance data19. Davies and Finch’s 2003 UK study over 3
winter periods (examining Nottingham City Hospital NHS, Boots and
Reckitt Benckiser pharmacy data), reported that analysis of non-
prescription cough/cold medications could provide a two-week
warning of respiratory admissions peaks33, yet Todd et al. found no
significant correlation between retail sales of symptom remedies and
cases at a sub-national scale for the 2009 UK influenza outbreak34.

One of the challenges in assessing this prior research lies in the
spatial and temporal granularity that researchers have had available to
them. Disease transmission predominantly acts at local community
levels - yet many studies have only been able to examine datasets
aggregated to larger geographical regions. This has restricted many
studies to broad-brush conclusions. Todd et al.34 found that national
non-prescriptionmedication salesmodels, fitted using national spatial
areas of the countries England, Scotland and Wales, and 10 health
regions of England, were not useful for identifying weekly flu cases.
However, models fitted using sub-regions defined by catchment areas
for 156 English Primary Care Trusts showed some statistically sig-
nificant positive correlations between flu cases and sales34. They con-
cluded using retail sales at finer spatial scales may help augment
existing surveillance andmerit further study34. In this work we are able
to address some of these prior limitations, investigating whether
behavioural data (in the form of non-prescription medication sales)
can increase the effectiveness of forecasting models for respiratory
death at a weekly resolution, and acting at the far finer geospatial
granularity of local authorities. This study investigates whether shop-
ping sales data, drawn from over 2 billion transactions logged by a
national UK high street retailer, at store locations distributed across all
of England covering 314 Lower Tier Local Authorities (LTLAs) (See
Fig. 1), between 2016 and 2020, can improve the effectiveness of
models used to forecast weekly deaths by respiratory disease. A high-
street retailer is a store located in a central hub of retail activity in a
city, town or village.

Use of novel approaches to investigate the added value of
shopping behaviour data
It is important to note that establishing the capability of sales data to
predict respiratory deaths is, unto itself, insufficient to prove their
value to integrated diseasemodels35. To warrant investment in the use
of sales data in forecasting models, and the citizen privacy and com-
mercial sensitivity issues which then must be surmounted, we must
investigate the contribution that such data can offer uniquely, over
and above other predictive variables35. To this end, in this study we
employ an experimental approach specifically designed to identify the
added value provided via non-prescription medication sales data in
comparison with other covariates, leveraging recent advances in
variable importance analysis36,37. In line with Hofman et al.’s recom-
mendations on computational social science we construct baseline
models prior to the addition of sales data, implementing a rigorous
out-of-sample testing regime in order to ensure generalizability, with
appropriate attention to both prediction and explanation tasks38. As
detailed in the methods §4, and introduced in the results §2.2 and 2.5,
two comparative models are created by attaching a range of inde-
pendent variables (input features) for each of England’s 314 LTLAs,
derived from multiple datasets outside of sales data (the week of the
year, weather, temperature, socioeconomic deprivation, age/popula-
tion level, demographics, housing and land use). A further weekly
dependent variable (output feature) is also attached to each LTLA,
reflecting respiratory deaths in the authority for that week.We refer to
these comparative models as PADRUS (Prediction of Amount of
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Fig. 1 | Store, performance and traditional variable’s importance maps.Maps
showing the United Kingdom and England divided by 314 Lower Tier Local
Authorities (LTLAs) showing by LTLA a store locations and population density
b the PADRUS model’s performance by R2, and the traditional static variables with

themost impact on themodel according toModel Class Reliance (MCR) c Index of
Multiple Deprivation (IMD) concentration d Percentage of semi-detached houses
e IMD extent f Percentage of flats g IMD housing score h IMD score.
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Deaths byRespiratory diseaseUsing Sales) and PADRUNOS (Prediction
of Amount of Deaths by Respiratory disease Using No Sales). PADRUS
has additional weekly behavioural input features created from shop-
ping data attached to each local authority, encoding medication pur-
chasing patterns across the LTLAs local population each week. These
variables are derived from high-resolution sales data sourced from a
national UK high-street retailer, including both relative and absolute
weekly sales levels of a variety of of non-prescription medications
bought for managing respiratory symptoms. Predictive models are
then trained and assessed to identify an optimal forecasting mechan-
ism based on this dataset. We then apply Model Class Reliance (MCR)
analysis to ascertain variable importances; which variable inputs are
the most important to the models’ predictions.

MCR is a relatively new approach that allows researchers to
examine the impact of variables each time amachine learningmodel is
run, across all models that perform equally well, known as the
‘Rashomon set’39 (See Fig. 2).

No single execution of a predictive model can be guaranteed to
provide a full explanation of the underlying phenomena it ismodelling
- in fact, far from it, with forecasting models that produce the same
levels of accuracy often employing underlying variables in significantly
different ways36,40. Such instability of explanation is due in part to the
complex interactions that occur between variables and the mutual
information that can be shared between them, which can serve to
occlude confounding variables, and over-state the importance of
correlated features37. Only through interrogation of a range of com-
peting explanations (i.e. well performing models) can the utility and
necessity of any individual input feature be rigorously assessed. With
automatic enumeration of all competing, equally valid explanations
intractable in most cases, MCR provides a mechanism to find the
minimum impact a variable may have on a model (MCR−) and the
maximum impact a variablemayhave (MCR+), by calculating the levels
of usage of variables across competing explanations. MCR builds on
permutation for a single model41, computing the permutation feature
importanceboundsMCR- andMCR+. This canhelp identify a variable’s
absolute requirement (MCR−) and its maximal utility (MCR+) for fore-
casting efforts, rather than arbitrarily selecting a value between the
two calculated from a single execution of a model, randomly selected
from the Rashomon set. We also employ Group-MCR to test the
importance of different variable categories as assessing which data
inputs are most important can be difficult due to multicollinearity,
extensive shared information and non-linear interactions occurring
between variables40.

By comparing the accuracy of PADRUS’s weekly predictions of
deaths by respiratory disease in each local authority against the
baseline and comparative model (PADRUNOS), and through exam-
ination of variable permutation importance bounds, computed by
MCR, we investigated the extent to which improvements are depen-
dent on the integration of non-prescription medication sales data.

Results
National-level exploratory models using 5 million transactions
logged by loyalty cards from November 2009 and April 2015
To determine forecast horizons, the length of time between when
predictions are made and the actual date when the prediction is to
occur, and to establish if linear relationships existed (see Supple-
mentary Fig. 1), initial models were developed using sales and out-
comes across the whole of England and Wales using 3-31 day intervals
between the last day of the weekly sales aggregate (sales are collected
Wednesday to Tuesday) and the day of reported deaths (deaths are
registered on a Friday)(see Table 1, and Supplementary Fig. 2). Using
over 5million transactions fromNovember 2009 to April 2015, weekly
sales figures were totalled for England and Wales to make predictions
between 7th December 2009 to 13th April 2015. Across this time per-
iod the maximum weekly deaths from provisionally registered

respiratory disease (as the underlying cause) in England andWales was
3521 and the minimum 868, with 378,230 respiratory deaths recorded
in total. This exploratory modelling used a separate data-set, covering
a different time period, and available prior to acquiring the data used
in the following local-level forecasting models. Input sales features
were created from total weekly sales of cough, dry cough, mucus
cough, decongestant and throat healthcare products, reflecting
internal product categories used by the retailer and recorded through
point-of-sale logging systems in stores. Regressors predicting weekly
deaths from respiratory disease using sales data 17 days in advance
achieved the strongest results, producing an out-of-sample R2 of 0.81
on the held-out test data (30%). When predictions were made 24 days
in advance, results were still strong (RMSE 224, R2 0.77), but perfor-
mancewas notably weaker when predicting within 10 or fewer days, or
31 or more days in advance. Number of days in forecast horizons are
determined by weekly deaths being registered on Fridays, and the
sales data week beginning on Wednesday and ending on Tuesday.

Local-level forecasting models including those using over 2 bil-
lion in-store sales transactions with store location from March
2016 to March 2020
To examine the relationship between input variables and respiratory
deaths at local authority levels (LTLAs) threemodels were created and
are referred to as the baseline, PADRUS and PADRUNOS. All three
models were non-linear, and utilised a random forest regressor
(allowing for subsequent MCR analysis39), with parameters optimized
via a time series cross-validation regime using a grid-search (see §4),
and results given on held-out test data (30%). A random forest
regressor is a non-linear machine learning algorithm which constructs
a combination of decision trees in order to produce predictions41,42.
Basedon the results in Table 1 for national-level exploratorymodelling,
models used features constructed based on a 17 day forecast horizon
for each of the 314 LTLAs in England between 18th March 2016 and
27th March 2020. In addition sales data lagged at 24 days were inclu-
ded as strong results were also seen for predictions with this time lag
(SeeTable 1 andSupplementaryFig. 2). In the experimental designonly
England was included in the model due to data availability. Further
explanation is given in the methods section.

The baseline model was constructed from two variable inputs
consisting of week number, reflecting the seasonal nature of ILIs, and
LTLA population over 65, reflecting the known vulnerability of this
demographic to respiratory disease43. Models including only week
number had an R2 score of 0.007 on 30% test data and therefore this
further variable of population over 65 was added to create a tougher-
to-beat baseline. For the dependent variable (output feature) the
maximum weekly registered deaths in any LTLA from respiratory dis-
ease in England was 219 and the minimum 0, with deaths 671,046
assigned in total. Note however, that these total figures are inflateddue
to weekly figures between 1 and 5 in an LTLA being suppressed, and
assigned as 5 to ensure de-identification of any individual. It is noted
that an anomaly in the data occurs on the 6th January 2017 where
registered deaths are erroneously low. This has been left in the dataset
to assist ease of future replicability including any generated statistics.
As shown in Table 2 further described in section §2.5, despite its sim-
plicity the baseline model showed reasonably high predictive power,
forecasting weekly respiratory deaths in each LTLA with an R2 of 0.71
(RMSE 4.00, MAE 2.78). Alongside, Root Mean Squared Error (RMSE),
which takes into account the distribution of error magnitudes, Mean
Absolute Error (MAE) was also calculated in order to provide a more
interpretable measure of average error magnitude44.

The PADRUS model was next constructed, utilising 56 features
derived from sales, weather, demographic, environmental and socio-
economic data (please see §4.2 for full details of independent vari-
ables). Using over 2 billion in-store sales transactions with store
location from March 2016 to March 2020, sales data used was
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composedofunits sold for a variety of self-medicationproducts across
2354 retail stores in England during the time period. March 2020 was
the last month used in the model as after this date the general sales at
the retailers’ stores were shut-down due to UK government lockdown

coming legally into force on 26th march 2020, and the public told to
stay at homeon the 23rd ofMarch 202045. Thismeant themodel could
not generalise to the pandemic period, trained on data prior to the
closing of shops, because of this huge economic and environmental

Fig. 2 | Diagrammatic representation of the difference between other variable
importance tools andMCR.Figure abbreviations:MCR (ModelClass Reliance),ML
(Machine Learning), SHAP (SHapley Addictive exPlanations). NB, permutation

importance relays the expected increase in error after a variables contents are
randomly shuffled, and SHAP applies weighted linear regression to determine the
importance of each variable based on Shapley values, as derived fromgame theory.
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shift. Sales data variables were created from both the total sales from
theweek ending 24 days before the day of the prediction, and the total
sales from the week ending 17 days before the prediction. These are
two sevenday non-overlappingperiods (see Supplementary Fig. 2).We
subsequently refer to these as variables with a 17 or 24 day lag. The
forecast horizon for the PADRUS model was 17 days.

The PADRUS model significantly outperformed the baseline
model achieving an R2 of 0.78 (RMSE 3.42, MAE 2.39), producing sig-
nificantly higher levels of predictive accuracy forecasting. In addition
to the strong out-of-sample results, wenote further the extremely high
in-samplefit results,with PADRUSmodel producing anR2 of 0.86when
modelling training data (again please refer to Table 2 for full results).

Variable importance results
Permutation feature importance analysis was applied to PADRUS,
relaying the expected increase in error after a features contents are
randomly shuffled (see Supplementary Table 1 for full details). The size
and age of an LTLA’s population was identified as being the most
important driver in producing model predictions, with mortality rates
from respiratory disease being higher in older demographics. How-
ever, these factors were closely followed in importance by sales data
features, and specifically the relative proportion of cough medication
purchases. After these top ranked features, of next greatest impor-
tance to the model’s predictions were IMD concentration (Index of
Multiple Deprivation is a measure of relative socioeconomic depriva-
tion across the country) and weather features, both having greater
impact on forecasting than decongestant sales, and housing related
features. IMD is the official measure of relative deprivation for areas in
England, one of the statistics reporting levels of deprivation is IMD
concentration which is the population weighted average of the ranks
of a local authorities area’s most deprived Lower Super Output Areas.

Permutation importance,while still being informative, is limited in
its explanatory power, and feature importance analysis for PADRUS
washence also examined via SHAP (see Fig. 3). SHAP carries out amore
complex calculation of feature importance, with the Kernel Explainer
SHAP tool used in this analysis applying weighted linear regression to
determine the importance of each feature based on Shapley values, as
derived fromgame theory46. SHAP valueswere calculated on a random
sample of 1000 output data points from an instance of the PADRUS
model. SHAP values relay the extent to which the feature impacts on
themodel’s output, andwhether the impact increases or decreases the
prediction. Results again reported that the proportion of the > 65
population as most important to the model’s predictions, closely

Table 2 | Results from experimental models predicting registered deaths from respiratory disease 17 days in advance using
over 2 billion in-store sales transactions with store location from March 2016 to March 2020

Model Months of the year included in
results

Results on train-
ing set (approx.
70%) for
314 LTLAs

Results on test set
(approx. 30%) for
314 LTLAs

Experimental Design Predicting Deaths in English Local Authorities 18/03/2016
to 27/03/2020

RMSE MAE R2 RMSE MAE R2

Baseline Random Forest Regressor All months 3.41 2.4 0.78 4.00 2.78 0.71

PADRUS Random Forest Regressor All months 2.74 2 0.86 3.42 2.39 0.78

PADRUNOS Random Forest Regressor All months 2.87 2.08 0.85 3.61 2.49 0.76

Results on training
set for the 41 LTLAs
with limited
suppression

Results on test set
for the 41 LTLAswith
limited suppression

PADRUS Random Forest Regressor All months 4.27 3.32 0.85 5.87 4.37 0.70

PADRUNOS Random Forest Regressor All months 4.52 3.53 0.83 6.5 4.8 0.63

PADRUS Random Forest Regressor Oct, Nov, Dec, Jan, Feb, Mar 4.78 3.7 0.85 6.58 4.84 0.66

PADRUNOS Random Forest Regressor Oct, Nov, Dec, Jan, Feb, Mar 5.11 3.94 0.83 7.43 5.47 0.57

PADRUS Random Forest Regressor Oct, Nov, Dec, Jan, Feb 4.85 3.75 0.85 6.03 4.74 0.69

PADRUNOS Random Forest Regressor Oct, Nov, Dec, Jan, Feb 5.24 4.04 0.82 6.86 5.31 0.60

PADRUS Random Forest Regressor Nov, Dec, Jan, Feb, Mar 4.96 3.82 0.84 6.71 4.93 0.65

PADRUNOS Random Forest Regressor Nov, Dec, Jan, Feb, Mar 5.33 4.11 0.82 7.64 5.64 0.55

PADRUS Random Forest Regressor Nov, Dec, Jan, Feb 5.08 3.91 0.84 6.13 4.83 0.69

PADRUNOS Random Forest Regressor Nov, Dec, Jan, Feb 5.54 4.28 0.82 7.07 5.52 0.58

PADRUS Random Forest Regressor Dec, Jan, Feb, Mar 5.17 3.97 0.84 6.96 5.09 0.64

PADRUNOS Random Forest Regressor Dec, Jan, Feb, Mar 5.57 4.3 0.82 7.92 5.85 0.54

PADRUS Random Forest Regressor Nov, Dec, Jan 5.11 3.92 0.84 6.33 5 0.66

PADRUNOS Random Forest Regressor Nov, Dec, Jan 5.7 4.39 0.8 6.94 5.38 0.59

PADRUS Random Forest Regressor Dec, Jan, Feb 5.42 4.16 0.84 6.37 5.05 0.67

PADRUNOS Random Forest Regressor Dec, Jan, Feb 5.95 4.61 0.81 7.36 5.79 0.56

Table 1 | Results from exploratory linear regression models
predicting weekly registered deaths from respiratory disease
in England and Wales (min 828, max 3521), using over 5 mil-
lion transactions from November 2009 to April 2015

Forecast Horizon Results on National level data

Days between sales &
respiratory deaths

Results on training
set 70%

Results on test
set 30%

Root Mean
Square Error

R2 Root Mean
Square Error

R2

3 days 137 0.86 286 0.62

10 days 134 0.86 258 0.69

17 days 146 0.84 203 0.81

24 days 165 0.79 224 0.77

31 days 191 0.72 270 0.66
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followed by size of younger populations in an LTLA. However, this was
again followed in importance by sales data, specifically all cough, and
dry cough medicine sales figures with a 24 day lag. Next was IMD
concentration, cough and dry cough medicine sales with a 17 day lag,
and thereafter features created from weather data.

While potentially indicative of the important role that sales data
might play in respiratory disease death predictions, standard permu-
tation importance and SHAP analysis still only reflects the workings of
a single arbitrary instance of the PADRUS model, drawn at random by
the optimiser from the Rashomon Set of all equally well-performing
models. As such, MCR was finally applied to understand the bound-
aries of this Rashomon set. MCR builds on permutation for a single
model, computing the permutation feature importance bounds
(MCR-, MCR+) for an input variable across all instances of PADRUS;
calculating the minimum and maximum impact a variable could have
on the predictions across all instances of the model (See Fig. 2). This
initial MCR analysis evaluated each feature individually for its impor-
tance, for example the importance of ‘minimum temperature’. The
minimum impact a variable can have (MCR-) is represented on the
MCR plots by the ’lollipops’ and the maximum impact a variable can
have is represented by the ’bars’.

The permutation importance bounds (MCR-, MCR+) returned by
MCR (see Fig. 4, and Supplementary Table 1 for full details) indicate
moderate differences in the way independent variables can be used in
combination to forecast respiratory deaths. MCR indicated

unequivocally that the size of populations in the three age categories
remain themost important factor, and that thesewere irreplaceable by
any other variables in making optimal predictions (with an MCR-
higher than any other variable sets MCR+). Population over age 65 was
the most dependable feature for predictions with the highest MCR-.

While overall IMD (socioeconomic deprivation) scores for an
LTLA had high importance in some models, this was not the case
across the Rashomon set, and their relatively low MCR- scores indi-
cated that they couldbe replacedby other variables (this excludes IMD
concentration which consistently remains important). In contrast the
features with highest MCR- scores, indicating that they were the most
strongly required variable following population age and size, were
features derived from cough medicine sales, with cough medicine
sales with a 24 day lag outperforming a 17 day lag. Subsequent features
with relatively high MCR- scores compared to other remaining vari-
ables, were IMD concentration, decongestant sales with a 17 day lag,
minimum temperature, maximum temperature, average temperature,
week of the year, and decongestant sales with a 24 day lag. Variables
besides the aforementioned showed consistently lowMCR- scores, yet
several retained strongerMCR+ scoreswhich indicates that these input
features were likely broadly interchangeable with each other.

When a large set of independent variables are used as inputs to a
predictor, assessing the importance of each feature to achieving a
model’s optimal accuracy can be challenging, and results are difficult
to interpret in unison. To address this we applied Group-MCR, which

Fig. 3 | SHAP analysis for feature importance assessment for the PADRUS
model. The Kernel Explainer SHAP tool was employed to calculate feature
importance by applying weighted linear regression based on Shapley values

derived from game theory. The tool was applied to the training data set on an
arbitrary instance of the PADRUS model run on a random sample of 1000 data
points.
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computes the importance of a category of features in concert, calcu-
lating the minimum and maximum impact variable groups could have
on the predictions across all instances of the model40. Individual vari-
ables and their groups are in Supplementary Table 2. Results for
Group-MCR are reported in Fig. 5. Features related to population age
are substantially the most important group of features (MCR− 22.84,
MCR+ 26.05). When grouped, sales features, however, are second in
importance to achieving optimal predictions (MCR− 11.99, MCR+
12.87). Following local population age and size, non-prescription
medication sales aremost central to models producing optimal 17-day
forecasts of respiratory deaths in local authority regions.

Sales features provided substantially higher permutation impor-
tance bounds than the third in importance, IMD (MCR- 3.68, MCR+
5.63). In fourth and fifth position, variable groups housing (MCR- 2.31,
MCR+ 4.05) and land use (MCR- 1.95,MCR+ 3.87) had very similarMCR
scores. For weather (MCR− 2.45, MCR+ 2.54) in sixth position of
importance and week number (MCR− 0.56, MCR+ 0.73) the least
important in eighth position, there was only a small difference
between MCR- and MCR+ scores. This implies weather and week
number consistently have the same permutation importance across all
model instances. Demographics was in seventh position (MCR− 0.68,
MCR+ 2.14). The high MCR−/+ for grouped sales features means that
there are no models within the Rashomon set that can achieve their
predictive scores (R2 0.78) without this set of variables (Fig. 5).

To compare the assessment of variable importance using the
method of removing each set of grouped variables and creating new
models with the usage of Group-MCR, please refer to the results from
additional models presented in Supplementary Table 3.

Comparison to models without sales data
MCR analysis indicates that the prediction accuracy produced by
PADRUS could not be achieved without the inclusion of sales data
variables. However, MCR in its current form, cannot tell us the exact

accuracy increases gained through their inclusion - only that they are
essential to thosegainsmade. To compute thedifference in accuracy, a
further model PADRUNOS was used, constructed from the same vari-
able set as PADRUS but omitting features derived from sales data. To
derive the PADRUNOS model, a random forest regressor was again
optimised using a time series cross-validation grid-search to predict
weekly deaths from respiratory disease 17 days in advance for the
314 LTLAs.

Results were notable in that the PADRUNOS model achieved a
strong R2 of 0.76 (RMSE 3.61, MAE 2.49) on the 30% held-out test
dataset (20,410 data points), despite the absence of non-prescription
medication sales (see Table 2 for full details). While the improvements
made by PADRUS over PADRUNOS detailed in Table 1 were significant
(p-value < 0.001, using Bonferroni corrected Wilcoxon signed-rank
tests), accuracy increases were relatively small (0.02 R2). Wilcoxon test
results comparing the models results on held-out 30% test set were p-
value < 0.001 across all result scoring metrics, 95% confidence inter-
vals R2 (−0.023, −0.01), MAE (0.033, 0.11), RMSE (0.077, 0.189). Group-
MCR was again applied to investigate how PADRUNOS was compen-
sating for the loss of sales data (see Fig. 5 for a side-by-side comparison
with PADRUS). Results show that the PADRUNOS model became even
more reliant on the grouped variables of age (MCR− 37.91, MCR+
41.21). The dynamic variable, weather (MCR− 7.55, MCR+ 7.54)
increased in its relevance, becoming the second most important fea-
ture used for forecasting. The related variable, week number (MCR−
2.04, MCR+ 2.15) which encodes seasonality also increased its impor-
tance. All other grouped variables increased their minimum and
maximum permutation bound scores, apart from land use (MCR− 1.15,
MCR+ 3.85) where the MCR- decreased.

Assessing critical prediction periods and suppression
We observed that optimal forecasting models are dependent on sales
data; yet broader analysis appeared to indicate that the accuracy gains

Fig. 4 | Model Class Reliance (MCR) results for PADRUS.MCR computes the
permutation feature importance bounds (MCR–, MCR+) for an input variable
across all instances of PADRUS; calculating the minimum and maximum impact a

variable could have on the predictions across all instances of the model. MCR was
applied to the PADRUS model trained on 45,844 data points.
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arriving through their inclusion are relatively small. To understand this
apparent contradiction, and explainhow sales data can simultaneously
appear to be both critical to predictions while only providing limited
improvements in accuracy, we examined weekly time-series forecast-
ing results across LTLAs for bothmodels (plotted in Fig. 6). Forecasting
graphs illustrate that although both PADRUS and PADRUNOS follow
similar predictive patterns between 2016 and 2020, PADRUS is better
at capturing key spikes in respiratory death rates that are under-
estimated by PADRUNOS. It is here that inclusion of sales data obtains
accuracy gains, over and above reliance on seasonal indicators and
weather-related variables. Comparing PADRUS and PADRUNOS pre-
diction scores (R2, MAE and RMSE) by week (Fig. 7, Supplementary
Table 4) further highlights how the inclusionof sales data increases the
PADRUS model’s predictive accuracy especially in winter months.
Accuracy gains are hence limited over the whole year, but occur in
periods most important to early warning systems.

A second key observation is obtained through examination of
how results vary across individual LTLA areas (see Fig. 1 and Supple-
mentary Table 5 for more details). These indicate that prediction
accuracies are being impacted by inclusion of suppressed data. Death
counts below5within an LTLAwere suppressed and reported as 5prior
to receipt of the data. When predictions were limited to the 41 LTLA
areas with data that contained no suppressed weeks, it became clear
that the PADRUS model was not only performing significantly better
than PADRUNOS, but with clearer effect sizes. For unsuppressed LTLA
data, PADRUS achieved an R2 of 0.70 (RMSE 5.87, MAE 4.37) compared
to PADRUNOS’ R2 of 0.63 (RMSE 6.50, MAE 4.80). As shown in Table 2
and Supplementary Fig. 3, this reflects an improvement in R2 of 0.07,
indicating that suppressionwas simplifying the true prediction task, to
the advantage of models without behavioural sales data.

Further, when analysis of predictions in these LTLAs is con-
strained to seasonal periods of higher respiratory disease (e.g.
November - February) the improvement in performance of the
PADRUS model (R2 0.69, RMSE 6.13, MAE 4.83) further increases in
comparison to models without sales data (R2 0.58, RMSE 7.07, MAE
5.52).Winter periods, when vulnerability to respiratory disease ismost
prevalent, reflect weeks when suppression is less likely but also when
regressors have the most scope for error due to higher potential
incidence. Depending on the exact start and end month chosen to

capture these critical periods for forecasting, inclusion of sales data
increases R2 between 0.09 to 0.11 (again full results are detailed in
Table 2 and in Supplementary Fig. 4 a point plot figure illustrates these
results).

Additional models were generated to compare the inclusion and
utilisation of LTLA identifiers for calculating historical death averages
by area. The corresponding results can be found in Supplementary
Table 3. Themodel relying solely onweek numbers and LTLA identifier
inputs exhibited considerably lower accuracy (R2 0.67, RMSE 4.21,MAE
2.93). Furthermore, the addition of the LTLA identifier variable
alongside the 56 variables used by PADRUS had minimal to negligible
impact (R2 0.78, RMSE 3.43, MAE 2.39).

Assessing economic regional factors on prediction accuracy
Variation in the accuracy of the models’ predictions on the weekly
deaths from respiratory disease may not only be influenced by sup-
pression, other independent variables of an LTLA area could impact
the results (See Fig. 1). In consideration of this, additional stratification
of the results by the Index of Multiple Deprivation (IMD) was con-
ducted to assess the impact of the economic circumstances of the
population. Using IMD concentration, as it was shown to be the most
important IMD measure to the model in the variable importance ana-
lysis, results on the test set (approximately 30%) for the 314 LTLAswere
stratified by IMD concentration interquartile ranges. This analysis
revealed both models PADRUS and PADRUNOS produced predictions
with higher accuracy in areas with higher concentration levels of
deprivation, with PADRUS out-performing PADRUNOS across all
interquartile ranges and this out-performance in R2, MAE and RMSE
increasing as the deprivation increased (Table 3).

Discussion
Results of this study evidence that the inclusion of non-prescription
medication sales data commonly bought for managing respiratory
symptoms, alongside traditional variables, can contribute to increases
in forecasting accuracy for respiratory deaths. Models corroborate
prior work22–25, but also provide potential insights into why contra-
dictory results exist within the literature19,32,34. While initial results in
this study achieved only relatively small effect sizes in across-the-year
accuracy gains (with an increase of 0.02 R2 over models without sales

Fig. 5 | Group-MCR results for PADRUS and PADRUNOS. a PADRUS and b
PADRUNOS. Group-MCR assesses variable group effects on random forest classi-
fier predictions, computing importance bounds (MCR–, MCR+) for input variable

groups across all instances of the model. Group-MCR was applied to the PADRUS
model trained on 45,844 data points. 'Demo' stands for demographics. NB differ-
ence in scale of graph.
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Fig. 6 | Line Plot of PADRUS and PADRUNOS predictions and actual number of
respiratory deaths. a Panels show results are from 66,254 datapoints (45,844
training datapoints, 20,410 testing datapoints) of 211 weekly deaths from respira-
tory disease for 314 English Local Authorities from 18thMarch 2016 to 27th March

2020. b panels provide magnified visualisation of the proximity of the blue area
outlines (predictions) to orange areas (targets) in PADRUS and PADRUNOS at
specific peak and trough periods.
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data), further analysis revealed that improvements were being con-
strained by over-simplification of the modelling task due to sup-
pressed data, and a lack of focus on periods when incidence of
respiratory disease is the most volatile. The models ability to accu-
rately capture small death counts was limited by the suppression

process whereby all weekly death counts below 5 were reported as 5.
When these issues were attended to, the gainsmade through inclusion
of sales increasedmarkedly, with out-of-sample forecasting increasing
in predictive performance by 0.11 (R2) when models included beha-
vioural sales data.

Fig. 7 | Line Plots showing how the inclusion of sales in the PADRUS model
changes. a R2 (coefficient of determination), b MAE (mean absolute error) and
c RMSE (root mean squared error) predictive scores especially in the winter
months. (Three data points have been left out where error scores were higher to
create a high granular view to compare models. These data points were the

anomaly 2017 week 1, 2020 week 1, and 27th March 2020 the first week of the UK
lockdown). Results are from 66,254 datapoints (45,844 training datapoints, 20,410
testing datapoints) of 211 weekly deaths from respiratory disease for 314 English
Local Authorities from 18th March 2016 to 27th March 2020.
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In addition to confirming the influenceof age and population size,
variable importance analyses (in the form of MCR/Group-MCR)
showed that optimal predictions were achieved usingmedication sales
data, notably the cough sales medication feature with a 24 day lag
(with IMD concentration and temperature also providing utility). The
importance of cough sales recorded 24 days in advance shows the
potential forpredictions fromsales data to have forecasthorizons long
enough in length to inform the forward planning needed for allocating
health resources. Why sales features with 24 day lag appear to have a
higher variable importance to the PADRUS model than those with a
17 day lag needs further investigation, however the length of this
duration indicates that lagged medication sales may not be predicting
hospitalisation in the people that purchase them - but of a growing risk
within a community. This risk could be an increase in infectious dis-
eases affecting the respiratory system, or another environmental
change which is exacerbating and/or increasing chronic lung condi-
tions. Confirmation of this hypothesis, however, would require
accompanying individual level studies.

MCR could also enable decision making in choosing alternative
groupings of the more traditional variables included in the model. By
informing uswhichof thosevariablesweremost consistently critical to
the models for producing high accuracy rates, and which variables
might be interchangeable, our MCR analysis of PADRUS could help to
select variables that are easier or more affordable to access, are most
up-to-date, and would be most accepted by the public to use in sur-
veillance systems for respiratory disease. In PADRUS a number of
variables are gathered from the Office for National Statistics (ONS)
census 2011 (Supplementary Table 2), the census takes place every 10
years collecting data on all households in England andWales, andMCR
reveals these are possibly conveying similar information to the model
as variables from the government statistics on land use from2018, and
housing age data from the Valuation Office Agency 2020 (Supple-
mentaryTable 2). This is particularly important asmodel inputs related
to housingmadeup 3 out of the top 6most important static traditional
variables excluding population age (See Fig. 1 and Supplementary
Table 1).

MCR analysis suggests that the gains occurring due to inclusion of
sales data are due to weather/ temperature variables being unable to
sufficiently compensate for when disease incidence veers away from
seasonal norms. A relationship between temperature and ILIs is well
noted in the literature, but there is no current consensus on how
colder weather might cause the seasonal increase in respiratory
disease47. Moreover, when disease incidence diverges from historical
patterns due to feature drift, in this use-case a rapid change in the
relationship between seasonable variables and deaths, predictive
models are unable to respond quickly enough. An example is the 2017/
18 influenza season in the UK, which was unexpectedly characterised
by co-circulation of both influenza A (H3N2) and influenza B. Vacci-
nation regimes were unable to respond accordingly to this situation,
leading to a significantly large number of respiratory outbreaks and

increased hospital admissions48. In PADRUNOS, seasonal/temperature
variables were unable to adapt to this change in causal relationship (or
‘feature drift’), whereas in PADRUS the relationship between non-
prescription medication sales and deaths remained far more stable.
For disease surveillance under adaptation, variables that respond to
disease prevalence, and obtained from direct empirical observation of
human behaviour, may provide a more stable and reactive forecasting
mechanism.

Socioeconomicdeprivation in an areameasured through IMDwas
found to be an important variable group to both PADRUS and
PADRUNOS model, with regional differences in levels of IMD con-
centration influencing the models’ accuracy scores. Both models per-
formed better where deprivation was higher, but this increase in
accuracy was higher for PADRUS which also consistently achieved
superior prediction scores (see §2.6, Table 3, Fig. 1). Why inclusion of
sales would increase accuracy gains in areas with higher deprivation
needs further investigation. A possible hypothesis is populations in
more deprived areas are more likely to have long term lung diseases
such as asthma and chronic obstructive pulmonary disease
(COPD)49–52, and therefore if the sales of cough medicines indicate
therehasbeen an environmental changewhich can exacerbate chronic
lung conditions, increases in deaths will be higher in these at risk
communities. This theory highlights how sales data could potentially
help in an early warning system, with at risk patients sent alerts when
predictions from models including sales data show a predicted
increase in deaths, especially outside the seasonable norms. Those at
risk patients could be sent text, push notifications or email messages
to advise them to adhere to medications. The latter are already digital
technologies being trialled using smart inhalers and smartphones53,54.
General practitioners and staff in primary care healthcare settings
could alsobe informed to ensure the care teams of patients, andwhere
appropriate families, with conditions such as COPD have extra help
adhering to theirmedicationswhere theremaybebarriersusingdigital
aids, or accessing prescription medications55. Hopefully these pre-
ventative measures could help reduce predicted deaths, yet the early
warning system could also help in patient flow modelling, predicting
future patient arrivals for healthcare facilities, and hospital planning,
particularly for winter periods where high patient admissions are
experienced56–58.

This study considered four continual years of weekly retail sales
data in 314 LTLAs across England, providing finer resolution evidence
for previously hypothesised relationships between 1. sales of cough
and decongestant medications and rates of ILI30 and 2. sales of cough
medicines and peaks in hospital admissions for respiratory illness two
weeks later33. No significant evidence for the relevance of other non-
prescription medications, such as throat remedies, was found. Due to
the temporal granularity of the dataset made available to this work, it
was also possible to examine a range of themodels results constrained
to particular periods across the year (see Table 2 for a full list of these).
PADRUS provided significant improvements over PADRUNOS (and
accounting for Bonferroni corrections) but sales data proved most
valuable to the periods coveringOctober to February. This is likely due
to both the increasedmagnitude of deaths over this period, and hence
the higher potential volatility of mean squared error that can occur -
periods that forecasting models are ofmost utility to decisionmakers.

Predictive mechanisms able to adapt to changing circumstances
are, of course, also highly relevant to the surveillance of pandemics
such as COVID-19, where new unpredictable diseases occur due to
such factors as antigenic shifts. While analysis of this period was out-
side the scope of the data available for this work, a small crossover
period does occur (up toMarch 27th). At this point the PADRUSmodel
predicts that deaths from respiratory disease were set to increase, a
response to increased non-prescription medication sales it observes,
whereas PADRUNOS model, relying on seasonal variables, predicts a
fall. There is insufficient data covering this period, however, to test

Table 3 | Test-set (approx. 30%) results from PADRUS and
PADRUNOS Random Forest Regressor models predicting
weekly registered deaths from respiratory disease in England
for 314 LTLAs stratified by Index of Multiple Deprivation
Concentration (IMD) Interquartile Ranges (IQR) in LTLAs

LTLA IMD IQR Range (IMD
concentration)

PADRUS PADRUNOS

R2 MAE RMSE R2 MAE RMSE

0–25 (10,680 − 24,164) 0.61 2.35 1.72 0.59 2.4 1.73

25–50 (24,164–28, 327.76) 0.68 3.06 2.19 0.64 3.22 2.27

50–75 (28,327.76 – 30,999.650) 0.71 3.56 2.53 0.67 3.76 2.65

75–100 (30,999.650–32,838.16) 0.81 4.37 3.11 0.77 4.72 3.32
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whether this forecasting advantage would continue - with reported
panic buying of medical supplies and a shift into online shopping,
feature drift may have weakened the relationship between sales and
hospitalisations. However with COVID-19 still prevalent worldwide and
continuing to regularly defy the normal seasonal trends of ILIs, further
research is required to investigate if the potential holds to underpin
early warning mechanisms. Extended research could assess whether
new data available during the pandemic such as COVID-19 test, case
and mortality data, and mobility data59, could create accurate models
utilising sales data. Noted, the feature drift of reduced sales post and
between varying lockdowns would need to be addressed. Research
into using sales data to predict deaths in COVID-19 could help to
confirm this study’s findings, offering many more peaks and valleys in
disease prevalence to assess amodel’s ability to generalise to newdata.

This study is limited by its use of in-store purchases from one UK
high street retailer despite its wide coverage with thousands of stores
across England, and the vast majority of the population being within
< 10min from a store. Sales data may represent a biased sample of the
population due to the demographic characteristics and socio-
economic status of the type of consumers who can access, afford and
choose this retailer.While the use of a single lens intomedication sales
does not impact the validity of forecasting results, and indeed likely
means that reported forecasting accuracies represent a lower boundof
potential forecasting improvements, representativeness of results are
difficult to examine. Any real-world forecasting model based upon a
single source of data is necessarily biased towards the demographic it
featured most heavily. Furthermore, areas of the country where a
retailer has greatest presence (which in this case tend to be urban,
rather than rural locales) will feature most predominantly within a
regression, and consequently receive higher probabilities of accurate
predictions. This may be attended to by normalisation/weighting
towards representative areas/customer types, but further investiga-
tion is required.

We also note that an anomaly in the data occurred on the 6th
January 2017 where registered deaths were very low for the time per-
iod. Public holidays affect the process of death registrations60, and the
anomaly may have occurred due to Christmas Day in 2016 occurring
over a weekend. A final limitation, and a potentially fruitful route for
further research, lies in the need to undertake data linkage between
individual customer data and clinical outcomes if we are to unpack
drivers of model accuracy. This would require a participatory cohort
study of shoppers willing to undertake data donation, and careful
sampling across demographics, geospatial regions and of those who
have and have not experienced respiratory disease.

This study provides evidence of the potential value in integrating
national longitudinal shopping data into respiratory disease forecast-
ing models acting at local levels. Analysis indicates value in including
sales data in predictive models in order to identify irregularities out-
side seasonal norms, and in periods where deaths from respiratory
disease were most prevalent and varied. With COVID-19 now endemic
in the population the potential of shopping data to improve fore-
casting is even more valuable for aiding healthcare decision-making.
The prospect of increasing the capability of sales data to improve
forecasting models for respiratory disease is promising; the PADRUS
model is at the lower bounds of possible predictive accuracy with an
array of limitations and improvements that future research could
address.

Impact Statement
The results of this study show the potential of sales data to aid timely
forecasts in disease surveillance which could be of use to healthcare
decision making, however, this potential would be subject to public
health authorities being able to access commercial sales data in real-
time. Careful negotiations with large retailers would need to be con-
ducted, with due consideration to commercial sensitivity, and how the

costs for the data analytics, systems infrastructure, and employee time
and skills would be accounted for. The ability to achieve the latter
would vary across different countries and geographic regions depen-
dent on data quality both in health and retail, technology infra-
structure and the population skill-sets. Despite the variation across
different environments, there will be both opportunity and a financial
cost for incorporating sales data into disease surveillance systems that
must be balanced. Therefore, cautious evaluation is essential to ensure
that models can adapt to both environmental and consumer changes,
ensuring the longevity of systems reliant upon them.

It must be noted that events can occur that generate sharp
changes in human behaviour, directly impacting the effectiveness of
sales-based models. For instance, the accuracy of the PADRUS model
would be highly affected by circumstances such as government lock-
downs preventing in-store sales. Additionally, current models may not
account for item shortages resulting from panic buying. Further
research is necessary to develop information systems capable of
monitoring and providing warnings of rapid feature/distributional
shifts of this nature. Simultaneously, care must be taken to integrate
relevant moderating variables (e.g., introducing a variable encoding
item availability) in response to such changes. These shifts, whether
major or gradual, can be caused by various factors such as evolving
economic conditions, product range change, shop closures, or shifts in
disease symptoms due to different virus variants altering the medica-
tions bought in response. The development of AI (Artificial Intelli-
gence) explainability tools that track changes in variable importance
across time series data, and can identify feature drift, could be crucial
inmaintainingmodel accuracy and informing policymakers about new
disease symptoms and possible implications for the model’s
applicability.

Methods
Open-source software used
We used the following open-source software in the data collection and
analysis:
1. Open source PostgreSQL 13: https://www.postgresql.org
2. Matplotlib: https://matplotlib.org/
3. MCRForest: https://github.com/gavin-s-smith/mcrforest
4. Numpy: https://numpy.org/
5. Pandas: https://pandas.pydata.org/
6. Seaborn: https://seaborn.pydata.org/
7. Scikit-learn: https://scikit-learn.org/
8. SHAP: https://shap-lrjball.readthedocs.io/en/latest/index.html

Shopping, mortality and Socio-demographic data
Data was collected for this study through working partnerships with:
the UK National Health Service (NHS); a UK commercial high street
retailer; and via open source data providers. Data sources and
descriptions used in this study can be seen in Supplementary Table 2,
which lists the data used for both dependent and independent vari-
ables. In Supplementary Table 2, the table column ‘Research relating
variable to respiratory disease’ cites the journal papers providing sci-
entific evidence why each variable type was included.

Data underpinningmedication sales variables originates from two
data-sets made available to the project by a national UK high street
retailer, incorporating: 1. a 20% sample of timestamped commercial
sales transactions (including over 5 million transactions of non-
prescription medications for cough, decongestant and throat) from
England and Wales recorded through 2,702,449 loyalty cards from
November 2009 to April 2015; and 2. a data-set of all in-store weekly
commercial sales transactions in England (over 2 billion) labelled by
store location, covering the period between March 2016 to March
2020. Commercial sales data was sales units of all in-store transactions
with store location only; no sales transactions were linked to individual
customers, and no personal data was used in this study. Other
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independent variables used in the models are derived from: English
indices of deprivation 201961; Nomis official census and labour market
statistics62; Housing age data from the ValuationOffice Agency 202063;
ONS Census 201164; Land use in England from 2018 live tables from the
Department for Levelling Up, Housing and Communities and Ministry
of Communities and Local Government65; andWeather ERA5data from
the European Centre for Medium-Range Weather Forecasts66.

Data was collected or aggregated to the geographic regions of
LTLAs (Local Tier LocalAuthorities). The LTLAs boundaries used in this
study are the 314 local governmental areas across all of England as
structured in 2019. LTLAswereusedbecause, as geographic areasused
by government data, they would enable direct inclusion of a wide
range of demographic, environmental and socioeconomic data pre-
viously found to be significant to the risk of death from respiratory
disease (SupplementaryTable 2). LTLAswere chosenover other spatial
divisions, including census areas MSOAs (Middle Layer Super Output
Areas) and LSOAs (Lower Layer Super Output Areas), to find a balance
between limiting data suppression of deaths done tomaintain data de-
identification, and maintaining a high enough level of spatial granu-
larity for data to have a significant impact on predictions.

The output variable for the models, respiratory deaths in each of
the England’s 314 Local Authorities (LTLAs), originates from two
datasets supplied by the UK Office of National Statistics (ONS) and the
National Commissioning Data Repository (NDCR) containing: 1. details
of total weekly registered deaths from respiratory disease (as the
underlying cause)(ICD 10 coding: J00 - J99) in England andWales from
7th December 2009 to 13th April 201567; and 2. ONS data on all weekly
registereddeaths from respiratorydisease (ICD 10 coding: J00 - J99) by
314 LTLAs in England from 18th March 2016 to 27th March 2020. The
health data in this study was used under the terms of usual practice for
research as defined in the UK Policy Framework for Health and Social
Care Research, with the study designed to investigate the health issues
in apopulation to improvepopulationhealth68. Tokeephealthdata de-
identified and extractable from theNDCR, death counts below5within
an LTLA were suppressed and reported as 5 prior to receipt. Sup-
pression was between 20% and 25%.

Open source data availability for UK LTLAs outside of Englandwas
limited, and consequently analysis was for local-level forecasting was
restricted to 314 LTLAs in England alone. Even with this restriction
other variables under consideration for inclusion such as mobility
data, search engine trends, temporal pollen, traffic, and air pollution
counts, could not be included as there was no access to these datasets
at this level of geospatial granularity or for the 4 year period within the
time limits of the project. Data matching, the time series of available
target predictions and availabledynamic datasets of sales andweather,
gave the dataset its time-frame of the 18th March 2016 to 27th March
2020 for weekly deaths by respiratory disease.

Exploratory modelling / National-level Analysis
Preliminary exploration of the national UK relationship between sales
data and respiratory deaths was undertaken before modelling at local
levels to better understand potential forecast horizons. For this ana-
lysis a distinct preceding time period was considered, using ONS data
on weekly registered deaths from respiratory disease (as the under-
lying cause) in England and Wales from 7th December 2009 to 13th
April 201567 andmedication sales data drawn with forecast horizons of
3, 10, 17, 24, 31 days (forecast horizon refers to the time lapse between
the date of registered deaths being predicted and the date of reported
sales). Independent variables consisted of ‘week number’ (1 to 52) and
features created from commercial sales data, including absolute
weekly sales units for: cough medication, dry cough, mucus cough,
decongestant and throat healthcare products, reflecting the data
partner’s internal product categories. Sales features were aggregated
byweek fromover 5million over-the-counter transactions recordedby
2,702,449 loyalty cards. Data was temporally stratified into a training

(70%) and test set (30%), and out-of-sample performance examined
against the held-out test data via RMSE (root mean squared error) and
R2 (coefficient of determination). Several linear regression models
were trained (one for each forecast horizon at which sales data was
engineered) and evaluated to test for the optimal forecast horizon in
days between sales and registered deaths (Table 1). Results then gui-
ded subsequent feature engineering stages of fully cross-validated
local-level modelling experiments, as described in the following
section.

Local-level respiratory-death forecasting
The central experiment of this study, with forecasting at local-level,
was structured into two phases: modelling and variable importance
analysis. Phase 1 investigated a range of random forest regressors to
identify an optimized reference model, PADRUS, for forecasting
respiratory deaths 17 days in advance (as indicated by exploratory
national-level modelling). All available data used in this modelling
covered the period between 18th March 2016 and 27th March 2020,
with variables reflecting hypothesised associations with deaths
from respiratory disease (see Supplementary Table 2 for a full fea-
ture list). In order to provide comparison two other models were
generated - baseline, using just week number and LTLA population
over 65, and - PADRUNOS, which used all variables apart from those
derived from sales data. Phase 2 of the analysis sought to explain the
impact of the inclusion and importance of different variables on the
models’ predictions, including commercial sales data. Phase 2
applied the novel variable importance tool MCR for random forest
regressor37,40.

Feature engineering. All raw data was aggregated to LTLA spatial
resolutions across England, with 314 LTLAs being assigned weekly
values for the dependent variable (target feature) and each of the 56
independent variables (input features). The data used for the depen-
dent variablewas all registereddeaths from respiratorydisease (ICD 10
coding: J00 - J99) by LTLAonaweekly timebasis. Independent features
used by models can be categorised into dynamic or static variables.
Dynamic variables had a forecast horizon of 17 days. Static features,
which were assumed to be constant over the period of analysis, were
themselves grouped into variables sets including: demographics,
indices of multiple deprivation, age of population, housing and land
use. Dynamic (temporal) features were grouped into: week number,
commercial sales, weather-related. These groupings were used for the
Group-MCR (Model Class Reliance), and further details of 56 features
were created canbe seen in SupplementaryTable 2which lists any data
manipulation from the original source (e.g. use of averages/percen-
tages/aggregation approaches).

Feature engineering for sales data. Sales data variables were created
from both the total sales from the week ending 24 days before the day
of the prediction, and the total sales from the week ending 17 days
before the prediction. These are two seven day non-overlapping per-
iods. We refer to these as variables with a 17 or 24 day lag. Online sales
were not included, and all data was pre-aggregated to store level.
Based on this pre-aggregation, no individual customer information
was known, nor could be reconstructed. Features derived from sales
data were included as both absolute and relative values for each
medication category, with relative values further represented as both a
proportion of thatweeks store sales, as well as in a formnormalised by
overall national sales, to account for changing footfall.

Complex datamanipulation was needed for feature creation from
commercial sales. Sales from the 2354 stores, distributed as they are
across England, had to be assigned to eachof the 314 English LTLAs. To
help achieve thiswefirst introduce somenotation. The total number of
unit sold across the whole UK in a particular week for product cate-
gory, c is defined as: salesUK,c.
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While total sales across the country can simply be counted, the
number of units bought by customers from any particular LTLA,
salesL,c, cannot, given that people will travel across LTLA boundaries to
purchase medications. To estimate the proportion of sales that arise
from customers living in a particular local authority a store catchment
model must be be established. We implement a simple Gaussian
kernel-based approach that allows us to infer the ‘influence’ each store
has over an LTLA, and then use that to attribute sales to LTLAs
proportionately.

We establish a two-dimensional Gaussian with variance, σ2
s , over

each store, s, with a mean, μs, centred at the store’s longitude and
latitude. σ2

s was varied depending on a theorised catchment radius
(metres) corresponding to a store’s type (Regional Mall 15,000m,
Hospital / Transport Hub 10,000m, Retail Park / Shopping Centre
8000m, High Street / Supermarket 5,000m, Health Centre/Commu-
nity 3000m). These catchment ranges reflect 2σ (95% of the kernel)
and were devised in collaboration with the data provider. The influ-
ence a store, s, had over any point, x, can therefore be assigned as:

inf luencesðxÞ=
1

σs

ffiffiffiffiffiffi

2π
p e� x�μsð Þ2=2σ2

s ð1Þ

The ‘influence’ the store had over an LTLA is then determined by
examining the value of the store’s probability density function at that
LTLA’s population weighted centroid. Due to the fact that Gaussian
functions have an infinite range, a store will be assigned a non-zero
influence for every LTLA across the UK but, in order to simplify ana-
lysis, the influence assigned to a point by each store for a given LTLA
was zeroed if it fell below a threshold of 3.449937e-318. The ‘total
influence’ of each store can then be calculated by summing the influ-
ences for the population weighted centroid of every LTLA, L, from the
314 available, L:

total inf luences =
X

L2L
influencesðLÞ ð2Þ

The amount of sales that each store attributes to a given LTLA, L,
can then simply be assigned as a proportion of the influence the store
has over that LTLA compared to its total influence overall. If sales are
then aggregated for each store thenwe canfinally produce an estimate
of category sales in that LTLA overall. Formally for any sales category,
c, the absolute sales assigned to an LTLA, L, in particularly week, after
aggregating all contributions of every store, s, is:

total salesL,c =
X

s2S

influencesðLÞ
total influences

× saless,c

 !

ð3Þ

Total sales in any given week, however, does not always represent
an informative variable. This is due to the uneven geographical dis-
tribution of the retailer’s stores across the country, and the different
number of customer bases they serve. A more informative variable is
the percentage of sales that a category, c, is contributing that week - in
comparison to sales across all product categories, C. To this end, we
derive a local sales ratio variable for an LTLA, L, as follows:

sales ratioL,c =
X

c0 2C
c0 ≠c

total salesL,c
total salesL,c0 ð4Þ

Here C represents all product categories sold by the retailer
(including but not restricted to non-prescription medication cate-
gories) and we are therefore normalising by overall sales in that LTLA.
This prevents modelling bias towards regions where there is a higher
population or number of retailer stores.

It is useful to compare the sales ratiooccurring in anLTLAwith the
national average, as this allows to defend against both feature drift and
seasonal fluctuations. To achieve this we define a local sales multiplier

variable, which allows us to assess whether non-prescription medica-
tion sales are proportionally more dominant in one region compared
with another (making this feature more invariant over time):

local salesmultiplierL,c =
sales ratioL,c

sales ratioUK,c
ð5Þ

These three features total sales, sales ratio and local sales multi-
plier make up the central sales variables within our models (with ver-
sions for cough medicines, dry cough medicines, decongestant
medicines and throat medicines - products selected due to reports in
prior literature associating a rise in their sales with an increase in
respiratory illnesses30,33).

Modelling procedure. The analysis of registered deaths from
respiratory diseasewas framed as a regression taskwith the amount of
deaths predicted (the target) a continuous output integer variable, y.
Themodelling taskwaspredictionofweekly respiratorydeaths 17 days
in advance for each of the 314 LTLA areas in England from 18th March
2016 to 27th March 2020. For all models (PADRUS, PADRUNOS,
baseline) data was temporally stratified into the same training set
(45,844 data points from 18th March 2016 to 28th December 2018),
approx. 70%) and test set (20,410 data points from 4th January 2019 to
27th March 2020, approx. 30%)

Random forest regressors were trained and evaluated, with meta-
parameters for the model optimised using a time series cross-
validation (TSCV, 4 splits) and grid search to prevent over-fitting.
TSCV is an alternative to k-fold cross-validation, which is applied to
prevent temporal data leakage and the risk of over-reported accuracy
results. TSCV iteratively applies a ‘walk-forward’ testing process, in
order to robust evaluate a models’ ability to generalise. Once optimal
meta-parameters had been identified, the model was re-fit to the
training dataset, and evaluated against the held-out test set. Three
metrics were used to score the regression task: RMSE (root mean
squared error), MAE (mean absolute error) and R2 (coefficient of
determination).

To assess whether the PADRUS model created was valuable, two
baselinemodelswere created. The first, baseline, was createdusing the
samemethodology; a random forest regressor optimized using a time
series cross-validation grid-search on training data. The baseline per-
formed the same task of predicting weekly respiratory deaths 17 days
in advance for each of the 314 LTLA areas in England from 18th March
2016 to 27th March 2020. Data was stratified using the same splits on
the training and test data (45,844 training data points, 20,410 test data
points), and model predictions on the held out test data were scored
usingRMSE,MAE andR2. Theonly differencebetween PADRUS and the
baseline model is its feature inputs, with the baseline inputs consisted
of only: the week number (1 to 52) for a dynamic input, and secondly
the static input of the population of over 65s in each LTLA. The first
feature was chosen because of the known seasonality of deaths by
respiratory disease47, yet used alone the prediction accuracy levels
were very low. Therefore the second feature was chosen due to the
assumption that the size and age of populationwouldgreatly influence
the number of deaths, with 90% of deaths from respiratory disease in
Europeoccurring in those aged65 andover43. The second comparative
model, PADRUNOS, was formed in exactly the same way, and used the
exact same features as PADRUS except any that related to sales data
(see §4.4.5)

Variable importance analyses. In order to understand the impact of
the different features driving predictions in the PADRUS model, we
conducted a range variable importance analyses. First standard per-
mutation importance was used to score of each feature in producing
the model’s predictions, relaying the expected increase in error after
the a features contents are randomly shuffled. Second, a SHAP
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(SHapley Additive exPlanations) Analysis46 was conducted. SHAP car-
ries out a more complex calculation of feature importance, with the
Kernel Explainer SHAP tool used in this analysis applying weighted
linear regression to determine the importance of each feature based
on Shapley values, as derived from game theory46. Both tools were
applied to the training data set on an arbitrary instance of the PADRUS
model. The SHAP analysis is computationally expensive approach and
therefore was run on two random samples of data points of 100 and
1000. This enabled a comparison of results between sample sizes to
ensure a large enough sample had been evaluated.

By running these variable importance tools on one arbitrary
model, misleading results can be given due to the stochastic nature of
the models machine learning algorithms. This is a problem because
different instances of an optimised model class can use different
variables (features) and in different ways to achieve the same model
predictive performance. To address the problem of standard variable
importance tools only evaluating one instance of the PADRUS model,
MCR (Model Class Reliance) was applied. MCR was developed by
Fisher et al. to compute the feature importance bounds across all
optimal models called the Rashomon set for Kernel (SVM) Regression
(polynomial run-time)36. Smith, Mansilla and Goulding introduced a
new technique that extends the computation of MCR to Random
Forest classifiers and regressors37. MCR builds on permutation for a
single model, computing the permutation feature importance bounds
(MCR-, MCR+) for an input variable across all instances of PADRUS;
calculating the minimum and maximum impact a variable could have
on the predictions across all instances of the model (See Fig. 2). This
initial MCR analysis evaluated each feature individually for its impor-
tance, for example the importance of ‘minimum temperature’. It did
not assess how important a dataset type used to create a number of the
models’ features was to predictions as a whole, for example ‘weather’.
Ljevar et al. introduced a Grouped Feature approach to MCR for ran-
dom forest40. Group-MCR was created in order to calculate the effects
of variable groups, measuring the importance of a collection of fea-
tures together on the predictions of random forest classifiers40. In
order to evaluate the importance of groups of variables, and their
impact in concert on the PADRUS model, we apply for the first time
Group-MCR to a random forest regressor. Group-MCR is achieved
through a modification of the random forest MCR algorithm, which
reconsiders the definition of Model Reliance to be with respect to a
group of variables rather than a single variable40.

Modelling without sales data. Although MCR can explain which
variables need to be included in a model to achieve the maximum
accuracy rates for predictions, it can not compute the difference in
accuracy (the loss) if those variables were to be excluded from the
model. In order to determine the loss in accuracy if sales data were to
be left out of themodel, themodel PADRUNOS (Predicting the amount
of deaths from respiratory disease using no sales) was created as a
comparison to PADRUS. PADRUNOS was created inline with the
baseline and PADRUS model methodology, as a random forest
regressor optimized using a time series cross-validation grid-search on
training data. MCR and Group-MCR was applied to PADRUNOS to
calculate how the variables were used differently. The three metrics
used to score the regression task were compared for both models
PADRUS and PADRUNOS. These scores were examined overall, by
week, by LTLA and bywintermonths.Wilcoxon signed-rank tests (two-
sided) were used to compare the significance of model’s predictive
accuracy scores.

Models for further understanding and reference. In order to deter-
mine the loss in accuracy if each set of grouped variables were to be
left out of the model, and to enhance understanding of how the MCR
variable importance tool functions by comparison, separate random
forest regressor models were created each omitting a different

variable group (See Supplementary Table 3). A further baseline ran-
dom forest regressor model was also created using the variables week
number and LTLA identifier only, to compare the accuracy of pre-
dicting on yearly historical averages of deaths only. Afinal comparative
model was then created by incorporating the LTLA identifier variable
into a random forest regressor alongside the 56 variables used in
PADRUS (See Supplementary Table 3). The latter aimed to assess
whether the LTLA identifier itself provided any additional predictive
information beyond the 56 separate features that offered subject-
specific data about each LTLA.

Ethics and data management
This work was carried out within an NHSX PhD Internship: Placement
Programme69 and continued post-placement partnership. After
reviewing the project proposal, NHS England (formerly NHSX) deter-
mined that the NHS Research Ethics Committee was not required
based on criteria68,70,71. Health data in this study was used under the
terms of usual practice for research as defined in the UK Policy Fra-
mework forHealth and Social CareResearch68, with the study designed
to investigate the health issues in a population in order to improve
population health. To keep health data de-identified and extractable
from the National Commissioning Data Repository (NDCR), death
counts below5within an LTLAwere suppressed and reported as 5prior
to receipt. Health data was deleted following the study’s conclusion.
Ethics approval for the study was additionally obtained from the Uni-
versity of Nottingham ethics panel (Faculty of Social Sciences NUBS
ethics review reference: 201829095).

Both sales and health data were aggregated weekly to Local
Authority areas for an ecological analysis, and abided by the retailers
privacy policy for data use, and the lawful GDPR basis for processing
consumption data was encompassed by: ‘the performance of a task in
the public interest’ (GDPR 6(1)(e)) and ‘processing necessary for sci-
entific research purposes’ (GDPR 9(2)(j)). Transactions logged via
loyalty cards were geographically aggregated to a national level
(England andWales) and aggregated temporally to aweekly sales total.
Sales units of in-store transactions were tagged with store location
only; no sales transactions were linked to individual customers, and no
personal data was used in this study. Strict data management proto-
cols were abided to at all times, as per the N/Lab data management
plan72 and the University of Nottingham’s ISO/IEC 27001 certification.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The health data used in this study is not publicly available but can be
requested via NHS England and Improvement NCDR73. The sales data
used in this study is commercially sensitive and subject to strict access
controls. To request route to access, please contact the Neo-
demographics Laboratory (N/Lab) Director, James Goulding (james.-
goulding@nottingham.ac.uk). We will promptly provide guidance on
engaging with the commercial retailer and endeavour to respond
within one month. All other datasets are open source and can be
accessed via the website links given in Supplementary Table 2.

Code availability
The analysis code developed for this paper can be found online at
https://github.com/nhsx/commercial-data-healthcare-predictions.
This can also be accessed via https://github.com/LizzieHD/sales-
predictions-respiratory/releases/tag/v.final74.
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