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Mott insulators with boundary zeros

N. Wagner 1, L. Crippa 2, A. Amaricci3, P. Hansmann 4, M. Klett5,
E. J. König 5, T. Schäfer 5, D. Di Sante 6,7, J. Cano 7,8, A. J. Millis 7,9,
A. Georges7,10,11,12 & G. Sangiovanni 2

The topological classification of electronic band structures is based on sym-
metry properties of Bloch eigenstates of single-particle Hamiltonians. In par-
allel, topological field theory has opened the doors to the formulation and
characterization of non-trivial phases of matter driven by strong electron-
electron interaction. Even though important examples of topological Mott
insulators have been constructed, the relevance of the underlying non-
interacting band topology to the physics of the Mott phase has remained
unexplored. Here, we show that the momentum structure of the Green’s
function zeros defining the “Luttinger surface" provides a topological char-
acterization of the Mott phase related, in the simplest description, to the one
of the single-particle electronic dispersion. Considerations on the zeros lead to
the prediction of new phenomena: a topological Mott insulator with an
inverted gap for the bulk zeros must possess gapless zeros at the boundary,
which behave as a form of “topological antimatter” annihilating conventional
edge states. Placing band andMott topological insulators in contact produces
distinctive observable signatures at the interface, revealing the otherwise
spectroscopically elusive Green’s function zeros.

The theoretical description of topological order in physical systems
has progressed along the parallel routes of band- and quantum field-
theory1–7. The former, based on single-particle Hamiltonians, offers a
clear explanation of the origin of topological invariants but is limited
to the realm of weakly interacting perturbation theory. The latter,
making use of the Green’s function formalism, encompasses a wider
range of phases, such as topologicalMott insulators8–10, at the cost of a
higher theoretical complexity and a greater computational effort. This
more sophisticated approach is, however, necessary since single-
particle wave functions are no longer eigenvectors of the interacting
many-electron Hamiltonian.

Mott insulators (MIs) are characterized by an interaction-driven
gap opening occurring without explicit breaking of an underlying
symmetry or long-range ordering. Phenomena of this kind, which are
intrisically nonperturbative in the coupling constant11, result in gaps
even when globally robust crossings of bands such as Weyl cones or
topological boundary states12–16 are present. In these cases17,18 as well as
in MIs arising from conventional topological insulators (TIs) with an
inverted gap19,20, a key question is if and how the topological infor-
mation encoded in the non-interacting electronic dispersion survives
and reemerges after the Mott transition. Topological gapless excita-
tions can occur in the context ofMI quantum spin liquids concomitant
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with nontrivial entanglement of the fractionalized ground state21

allowing to circumvent the necessity of a Luttinger’s theorem-imposed
Fermi sea volume22,23. Strongly correlated counterparts to bulk semi-
metals disclose a relation to lattice symmetries in the case of non-
symmorphic space groups24–26. Topological Luttinger invariants have
been formulated specifically for such systems27, broadening the con-
ceptual perimeter of the Luttinger surface in a MI28. Further, a discrete
symmetry-breaking has been proposed to be associated to a Mott-like
transition29 considering an interaction term diagonal in momentum
space30. Recently, the existence of quasiparticles approaching a Lut-
tinger surface has been demonstrated31,32.

Here, we search for symmetry-protected gapless modes
despite the presence of a hard Mott gap and for experimentally
observable fingerprints thereof. We present analytic as well as
numerical evidence that the zeros of the single-particle Green’s
functions have a dispersion in momentum space that can be
topologically classified as the corresponding non-interacting sin-
gle-particle band structure. Schemes based on the two-particle
level have also been proposed33–35. Our approach offers a clean and
easily accessible signature of the topology ofMott insulating states:
first of all, the bulk Green’s function zeros of MIs arising from
symmetry-protected semimetals form Dirac and Weyl points and
are thereby topologically distinct from ordinary ones. Second, the
zeros of a MI that originates from a gapped bandstructure are in
general also gapped. When such bulk gap is of inverted character,
exotic gapless zeros localized at the boundaries must exist. We
show their existence in various systems and propose how to detect
them in an experiment, relying on the intrinsically incoherent state
that forms when a pole and a boundary zero annihilate.

Results and Discussion
Momentum dispersion of Green’s function zeros
A pole of the single-particle propagator close to the real-frequency
axis describes a conventional quasiparticle excitation of the system.
A zero eigenvalue of G(k,ω), with k and ω indicating crystal
momentum and complex frequency respectively, corresponds
instead to a divergence of the self-energy Σ(k,ω) and causes the
opening of a Mott gap36–39. For an isolated atom, the pole of Σ is
momentum-independent and the corresponding continued frac-
tion representation contains one floor only. Moving away from this
extreme limit by switching on a finite hopping t, information on the
lattice dispersion enters into the picture. Yet, if we are deep in the
Mott phase, the self-energy can be expressed as :

Σðk,ωÞ= U2=4

ω+ eH0ðkÞ
, ð1Þ

where eH0ðkÞ indicates the non-interacting Hamiltonian with renorma-
lized parameters. Eq. (1) is the result of a t/U expansion in the presence
of a Mott gap, which makes the lower floors of the continued fraction
contribute with terms not larger than t2/U. In particular, these terms
can contain frequency-dependent real parts whereas the imaginary
part of the self-energy has to vanish inside the Mott gap except at
isolated poles. According to Eq. (1) the position of these poles at large
U/t is given by �eH0ðkÞ. In the Supplementary Information40 we
describe how the renormalization encoded in eH0ðkÞ depends on the
spatial locality of the various termsof the tight-bindingmodel andhow
it canbe obtained in a controlledway through a calculation of the spin-
density correlators on different sites hniσnjσ0 i Their values are beyond
mean field because of the k-dependence of our self-energy41.

Expressions similar to Eq. (1) have been discussed previously42–47,
for one-dimensional systems48, in single-orbital models49, in the
pseudogap phase50, to prove the breakdown of Luttinger’s theorem in
a MI51 as well as in the context of magnetically ordered phases52 and
doped spin liquids53.

In this respect, it is interesting to mention also the so-called
“failed” (quantum disordered) superconductors or spin density-wave
systems, in which fermions couple to a strongly fluctuating boson
which prevents long-range ordering. In the latter case, the + sign is a
consequence of H0(k +Q) = −H0(k) appearing in the denominator52.
This observation suggests an intimate connection between Eq. (1) and
paradigmatic quantum spin liquids, such as the resonating valence
bond theory54 (a failed superconductor), and recent theories propos-
ing topological order for the pseudogap phase55 by means of failed
antiferromagnetism. In the present work we explore the surprising
implications of Eq. (1) for the topology of strongly correlated elec-
tronic systems. The link between Green’s function zeros and interact-
ing topology has been pioneered by Gurarie56 and Volovik57,58 and their
role has been considered for the topological classification of various
systems59–62. A simple connection between the topological properties
of the zeros and the microscopic non-interacting Hamiltonian is
however lacking.

In Fig. 1 we illustrate two prototypical cases predicted by Eq. (1):
panels (a)-(b) show a symmetry-protected semimetal with bulk bands
that meet at somemomentum. If the bandwidth is finite, such a system
in three dimensions turns into aMI at a critical interaction strength17. As
long as the interaction does not break any symmetry that protects the
cones of the non-interacting dispersion, Eq. (1) dictates that the zeros of
Gwill display a crossing: Analogously to the non-interacting case, a gap
in the zeros can only be opened when two “zero-nodes” meet in
momentumspace,whichmayhappendue to the renormalization of the
parameters. This finding offers a particularly transparent explanation of
the Mott transition in a Dirac or Weyl semimetal17,18: even if a gap
between poles of G opens, the protected linear crossing is in fact not

Fig. 1 | Bulk and edge zeros in strongly correlated topological phases. a, b MIs
originating at large values of U from a semimetal with protected crossings and,
c, d, from a conventional non-interacting TI. In both situations the non-interacting
dispersion represents the energy-momentum location of the Green’s function
poles (light blue surfaces). In the corresponding Mott phases, we find dispersive
bulk zeros (red surfaces) inside the gap between the lower and upper Hubbard

bands (dark blue). In the case of the semimetallic bandstructure, b, the bulk zeros
display a symmetry-protected crossing. For the topological insulating band-
structure, d, the bulk zeros form instead an inverted gap, inherited from the non-
interacting topological band structure. Therefore, gapless edge zeros appear, as
indicated by the red dashed lines. Note the opposite spin direction associated to
the edge zeros of the TMI w.r.t. to that of the edge states of the TI.
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lifted: it just occurs between spectroscopically invisible zeros. The
second implication regards a TIwith an inverted bulk gap andboundary
Green’s function poles, as shown in Fig. 1c–d, turning into a topological
Mott insulator (TMI) at large interaction strengths. The bulk zeros of G
responsible for the opening of the Mott gap again obey Eq. (1):
depending on the renormalization of fH0ðkÞ, the zeros can acquire an
inverted gapped dispersion. The sketch also illustrates that the pre-
dicted gapless zeros are spatially localized at the boundaries. Their
dispersion inside the bulk gap follows the renormalized one of the edge
modes in the corresponding non-interacting TI with opposite sign.

In Supplementary Note 1E we give a proof that the topological
invariant of a Mott insulator is fully determined by the renormalized
Hamiltonian fH0ðkÞ describing the gapped zeros. Hence, our approach
represents a particularly flexible way of diagnosing all those interact-
ing topological phases that can be classified via one-particle quantities.
It is simple to see that Eq. (1) recovers the atomic limit when the
renormalization of the hopping terms in fH0 becomes zero. In the
following we compare the predictions of Eq. (1) with numerical results,
focusing on a simple one-dimensional case. Additional numerical evi-
dence for the applicability of our approach in two and three dimen-
sions is given in Supplementary Note 3 and Supplementary Fig. 21–24,
where we show various results for the cases sketched in Fig. 1.

Infinite and finite SSH+U chains
Firstly we test the validity of Eq. (1) with the example of a one-
dimensional Su-Schrieffer-Heeger (SSH) model63 with periodic
boundary conditions.The short bond hopping parameter is set to
v = 0.2 and the long bond to w =0.5. We supplement the model by a
local Hubbard U in order to induce the Mott phase. For an infinite SSH
+U chain at small values of U, most of the spectral weight A(k,ω)
resembles the non-interacting eigenvalues ∣v + e−ikw∣ (blue bands in
Fig. 2a). At large interactions instead, a gap of order U is sustained by
low-energy divergencies of Σ(k,ω) (red dispersive features in Fig. 2b).
This result, which is in agreementwithprevious literature59,64, allowsus
to compare the momentum dispersion of the zeros of G with those
predicted by Eq. (1), shown by the black dashed lines in Fig. 2b. The
renormalized dispersion of the zeros perfectly describes our numer-
ical result (see Methods), confirming that Eq. (1) captures the essence
of the momentum-dependent self-energy of a MI.

Since our focus is on boundary zeros, we need to validate Eq. (1)
also in the case of an open SSH+U chain.

At U = 0 and for nonzero winding number of the SSH Hamilto-
nian, G possesses zero-energy poles at the two ends of the chain.
This is signaled by the two blue states on the left- and right-most
sites of the chain in Fig. 3a where we show the sum of eigenvector
components corresponding to the different lattice sites weighted
with their eigenvalues (seeMethods). For large U, we solve the finite
chain with exact diagonalization (ED) and obtain zeros at the ends
of the chain instead, shown in red in Fig. 3b. Interestingly, the
topological nature of the gap of the zeros, analogously to what
happens for the poles of G, implies the existence of two “in-gap”
zeros at the boundary of the system. In the Supplementary Infor-
mation we compare these ED results with those acquired using Eq.
(1), demonstrating that the analytic formula is also well suited to
describe the non-local many-body features of a MI for finite size
systems.

To address the case in which an edge pole and an edge zero get
spatially close to one another we look at the system shown in Fig. 3c.
The two non-trivial SSH chains (U=0 on the left and finite U on the
right) are connected by a hopping in the center, that can be swit-
ched on and off via a parameter dubbed f. Figure 3c shows the fate
of pole and zero at the two ends whichmeet at the center of the new
chain. They hybridize and, as a result, zeros are no longer located at
ω = 0. The same happens for the pole localized on the rightmost site
of the non-interacting part of the chain. The solution obtained in
Fig. 3 is fully compatible with symmetry and topological require-
ments of having two gaplessmodes at the two ends of the chain, due
to the interchangeable role of poles and zeros. From a spectro-
scopic point of view, instead, it is highly unexpected as the new
chain, seen as a whole, has in fact only one “detectable” low-energy
edge state, at the left end. Its partner at the right end, is the dual
zerowhich of course would not be visible in a tunneling experiment.
The hybridization does not disappear if pole and zero are at dif-
ferent energies and, in general, if the chiral symmetry is broken.
This reflects the fact that both sides of the chain are in the same
topological phase and hence there cannot be a protected gapless
state localized at the interface. See Supplementary Note 3C for
further details.

Fig. 2 | Poles and zeros in an infinite chain. Spectral representation of the
determinant of GR(k,ω) on the real axis highlighting poles (dark blue) and zeros
(dark red). In a, this is shown for a weakly interacting SSH+U with hopping para-
meters v =0.2 and w =0.5, i.e. on the topologically non-trivial side. The numerical
solution is obtained with cluster dynamical mean-field theory (CDMFT), whose

details can be found in Methods. In the Supplementary Information we show also
Quantum Monte Carlo (QMC) solutions of longer SSH+U chains. b In the strongly
interacting limit, in addition to theHubbardbands at ±U/2, dispersive zeros (in red)
are visible inside the spectral gap. The dashed black lines show a fit with the ana-
lytical formula of Eq. (1) to the position of the zeros of the CDMFTGreen’s function.
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Two-dimensional topological Mott insulator
In two dimensions we find that Eq. (1) continues to give an excellent
description of the dispersion of the zeros of G in MIs. A detailed ana-
lysis including a comparison with numerical quantum cluster methods
for different real-spacegeometries, canbe found in the Supplementary
Information. Analogously to the one-dimensional case, wedefine aTMI
through the bulk-boundary correspondence in an extended sense: if
the zeros of G have a topologically inverted gap in the bulk, then
gapless zeros have to appear at the edge. In contrast, conventionalMIs
do not display robust gapless zeros at their boundaries.

Compared to zero-dimensional poles/zeros of the SSH+U,
the gapless edge zeros – living inside the gap of the bulk zeros of a

TMI – acquire a dispersion w.r.t. the momentum parallel to the edge.
This implies that the pole/zero annihilation gets even more intriguing
than that shown in Fig. 3c. In the following we therefore analyze a two-
dimensional heterostructure between a conventional quantum spin
Hall (QSH) system and a TMI, as illustrated in Fig. 4b. The two parts
have a segment of the edge in common and we ask what the con-
sequences are on the helicalmodes when they travel in this region. We
also consider two additional cases: a “benchmark”, in which the two
sides are completely disconnected (f=0) and one where the TMI is
replaced by a trivial Mott (Fig. 4a). We initialize a wave packet at the
very left of the QSH side and let it evolve in time towards the interface
with the TMI. The time evolution is governed by the full Green’s

Fig. 3 | Zero/pole annihilation in anSSH+Ufinite chain. a Exact diagonalizationof
a 12-site non-interacting SSH chain in the topologically non-trivial phase (v =0.1 and
w = 1.0). Zero-dimensional states are visible at the two ends of the chain with some
finite extension inside the chain. We visualize this by showing site-resolved eigen-
vector components, weighted with the corresponding eigenvalues (see Methods).
b Exact diagonalization of a 12-site SSH+U chain in the topological phase with the
same v and w but a large value of the on-site interaction (U/w = 4), i.e. in the Mott

phase. The ends of the chain now host two zeros inside the Mott gap (of order 4 in
units of w). The topological invariant of these two chains is the same but the
interacting chain has no edge pole, rather only zeros that are clearly visualized via
the weights. c Interface (i.e. f = 1) between the two situations above; the position of
the interface is indicated with a dashed, vertical line. In order to align the chemical
potential inside the global bulk gap, we subtract the Hartree-shift on the
interacting chain.

Fig. 4 | Evolution of wave packet along the edge. a A wave packet is initialized
from the leftmost part of the edge of a QSH (green part, see inset) and let evolve
towards the interface with a trivial Mott insulator (see inset). Upon entering the
blue interface region, no appreciable change of thewavepacket is observed, except
for some small loss of its relative weight due to reflections and scattering from the
walls of the two-dimensional structure. b The left-moving wave packet evolving
along the edge now enters the red region where a topological Mott insulator is

placed on the other side. The edge zeros of the TMI hybridize with the edge mode
of the QSH and determine the immediate collapse of the wave packet. This sudden
loss of weight can be used as a detection protocol for the presence of boundary
zeros on the Mott insulating side. In both cases the time evolution is calculated via
theGreen’s functionof a 40 × 40slabwhere the interaction is taken into account via
the analytic self-energy in Eq. (1).
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function of this hybrid 2D interacting system, where the interaction is
included using the analytic formula of Eq. (1). As shown in Fig. 4b as
well as in the movie in the Supplementary Information, the wave
packet is well defined only up to the interface with the TMI (marked in
red in the inset to Fig. 4b). As soon as it enters this region, the edge
state becomes immediately incoherent and loses spectral weight. In
the other two cases (f=0 and trivial MI) the propagation proceeds
undisturbed, as standard topological arguments predict (Fig. 4a and
movie in the Supplementary Information65). The annihilation depends
on the relative slope of the edge state and edge zero. If their slope is
very similar (as in Fig. 4) the reduction of thewave packet weight in the
coupled region is maximal. In case of different slopes, the effect
remains albeit being quantitatively less pronounced (see Supplemen-
tary Note 3G and 3H). The existence and robustness of the gapless
edge zeros in the TMI and the observed annihilation with poles on the
conventional QSH side is supported by our analytic calculation (Sup-
plementary Note 1E40), indicating that deep in the Mott phase, the
topological invariant of the interacting phase can be simply calculated
via the momentum dependence of fH0ðkÞ.

We have thus described an experimental probe sensitive to the
otherwise invisible zeros. Based on the dynamics of the wave packet
and its clearcut distinct coherence, the propagation represents a way
to detect the presence of the boundary zeros on the TMI side.We have
checked that when the wave packet starts to lose weight, there is no
component of the QSH edge state that tries to circumvent the TMI
part. This is strikingly different from what would instead happen if we
were to replace a portion of the QSH with a trivial system. In that case
the edge state of the QSH would go around the trivial region. Here
instead, the QSH loses the helical state even though its bulk topolo-
gical properties are the same as before. The next question, beyond the
scope of the present work, is to understand the consequences of the
observed loss of weight for quantum edge transport.

Operatively, one can first quantify the renormalization of para-
meters of a single-particle tight-binding model for a given material, as
outlined in the Supplementary Information. Then, Eq. (1) can be used
to predict the nature of the corresponding MI. Since, in absence of
spontaneous symmetry breaking, no higher-order corrections beyond
Eq. (1) can change the symmetry class of the problem66, 67, the renor-
malization of the parameters in fH0ðkÞ can only influence the position
of the topological phase transition. In other words, the non-trivial
region on the Mott side can either be smaller or larger than that of
H0(k), i.e. one can generate a TMI from a trivial band structure or get
vice-versa a trivial Mott from a QSH, depending on the specific model
and type of interaction. Should a Mott material be non-trivial accord-
ing to Eq. (1), one can then exploit the annihilation phenomenon dis-
cussed in the last part of this work to unambiguously tell whether or
not zeros exist at its boundary.

We have shown that physically detectable (via edge state
annihilation) topological information is carried by the Green’s
function zeros. It is interesting to connect this information to
properties of the full many-body spectrum68. Investigation of this
interesting issue is ongoing but here we show in Sec. 3L of the
Supplementary Information, a straightforward connection between
the zeros and the spin gap in the case of the simple SSH+U model,
where with periodic boundary conditions we show that gapless spin
excitations appear exactly when the gap of the zeros closes at the
topological phase transition. A more thorough study of the relation
between zeros and spinons beyond the simple case of SSH-model
will be part of future work.

These results open therefore interesting perspectives in connec-
tion to two-particle indicators of topology35,69, Fermi-liquid approa-
ches to the quasiparticles at the Luttinger surface31,68 as well as the
theory of topological order and in the characterization of protected
bulk and surface features in the realm of non-Hermitian physics with
strong correlation.

Note added in proof. During the completion of this work, we have
become aware of results on the symmetry constraints for the Green’s
function zeroswith theHatsugai-Kohmoto interaction (see refs. 70,71).

Methods
Cluster-DMFT
The numerical results for the bulk systems presented in this work are
obtained within the framework of cluster-DMFT, an extension of
Dynamical Mean-Field Theory capable of grasping nonlocal correla-
tions. The Exact Diagonalization results have been obtained using a
cluster extension of the EDIPack code72, where the SSH model is
mapped to a finite “cluster impurity", consisting of two or three
interacting dimers, coupled to a finite bath. This is structured as a
number of non-interacting clusters replicating the one-particle hop-
ping matrix of the impurity, each site of which is coupled to the cor-
responding impurity one. The intra-replica hopping amplitudes and
bath-impurity couplings are adjusted self-consistently. Two such
replicas have been used for the 2-dimers case, and 1 replica for the
3-dimer case. The BHZmodel is solved through an asymmetric cluster
impurity consisting of two sites along the x direction, coupled to two
bath replicas. Benchmark tests with a 3x1-sites cluster plus 1 bath
replica and a 2 × 2 cluster plus 1 replica have confirmed analogous
results, the latter restoring the symmetry of the model though at the
cost of a dramatically increased computational time.

Single-shot calculation for finite chains
The finite size SSH effects have been obtained through a single-shot
exact diagonalization of an impurity cluster of 6 dimers decoupled
from any bath. For the quantumMonte Carlo calculations a single-shot
solution of the impurity problem, again decoupled from any bath, has
been acquired via the use of a continuous time quantum Monte Carlo
solver based on the interaction expansion (CT-INT)73. For every QMC
calculation a statistic of 50 million Monte Carlo cycles is used.

Determination of the finite chain zeros
In order to spatially resolve the zeros of real-space Green’s function
(cfr. Fig. 3) we look at weighted eigenvector components, i.e. the
quantity

wi =
X
j

ψðjÞ
i Ej

��� ��� ð2Þ

where ψðjÞ
i is the i-th element of the j-th eigenvector and Ej is the j-th

eigenvalue of the Green’s function and i and j correspond to lattice
sites. This weight is a good indicator of isolated zeros, which are of
interest to the topological characterization. On the contrary, it
correctly avoids showing the presence of zeros when these are
masked by weight coming from other nonzero eigenvalues. For this
reason, the zeros in Fig. 3 seem tobe entirely localized at the end of the
chain without smearing into the inner part of the chain and bulk zeros
are also not highlighted in this site-resolved representation.

Slab wavepacket evolution
For the 2D slab calculations the interaction is taken into account using
the analytic formula for the self-energy (Eq. (1)). The timeevolutionof a
wave packet at location r and time t is given by

ψðr, tÞ=
Z

dr0Gðr, r0, tÞf ðr0 � r0Þ ð3Þ

where f ðr0 � r0Þ is a gaussian centered about r0.

Data availability
The data generated in this study have been deposited in the NOMAD
database https://doi.org/10.17172/NOMAD/2023.11.06-1.
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Code availability
The code used for the CDMFT and ED calculations is available from
https://github.com/lcrippa/CDMFT-MOTT-ZEROS.
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