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Quantitative assessment of the universal
thermopower in the Hubbard model

WenO.Wang 1,2 , Jixun K. Ding 1,2, EdwinW. Huang 3,4,5, BrianMoritz 2 &
Thomas P. Devereaux 2,6,7

As primarily an electronic observable, the room-temperature thermopower S
in cuprates provides possibilities for a quantitative assessment of the Hubbard
model. Using determinant quantumMonte Carlo, we demonstrate agreement
between Hubbard model calculations and experimentally measured room-
temperature S across multiple cuprate families, both qualitatively in terms of
the doping dependence and quantitatively in terms ofmagnitude. We observe
an upturn in S with decreasing temperatures, which possesses a slope com-
parable to that observed experimentally in cuprates. From our calculations,
the doping at which S changes sign occurs in close proximity to a vanishing
temperature dependence of the chemical potential at fixed density. Our
results emphasize the importance of interaction effects in the systematic
assessment of the thermopower S in cuprates.

The Hubbard model, despite decades worth of study, remains enig-
matic as a model to describe strongly correlated systems. Due to the
fermion sign problem and exponential complexity, only one-
dimensional systems have lent themselves to error-free estimations of
ground states and their properties. Recently, angle-resolved photo-
emission studies have demonstrated that a one-dimensional Hubbard-
extendedHolsteinmodel can quantitatively reproduce spectra near the
Fermi energy1–3. In twodimensions, the community lacks exact results in
the thermodynamic limit; nevertheless, many of the extracted proper-
ties fromsimulations of theHubbardmodel bear a close resemblance to
observables measured in experiments, particularly those performed on
high-temperature superconducting cuprates. These properties include
the appearance of antiferromagnetism near half-filling, stripes, and
strange metal behavior4–6. However, quantitative assessments have
remained out of reach, particularly regarding transport properties,
where multi-particle correlation functions (calculations involving the
full Kubo formalism) are computationally intensive, or onemust rely on
single-particle quantities (i.e., Boltzmann formalism), which can be
conceptually problematic for strong interactions.

In principle, the high-temperature behavior of the thermopower
(thermoelectric power, or Seebeck coefficient) S offers the possibility
to directly test the Hubbard model against experiments in strongly
correlated materials like the cuprates. Above the Debye temperature,
phonons are essentially elastic scatterers of electrons and one might
expect thermal relaxation to come overwhelmingly from inelastic
scattering off of other electrons. Moreover, room-temperature mea-
surements afford direct contact with determinant quantum Monte
Carlo (DQMC)7,8 simulations, which are limited by the fermion sign
problem to temperatures above roughly J/2 (half of the spin-exchange
energy). Thus, one can address directly an essential question—can the
Hubbardmodel give both qualitative and quantitative agreement with
the observed thermopower in cuprates at high temperatures?

Systematic studies of the room-temperature thermopower across
a wide variety of cuprates9–17 show that the thermopower falls roughly
on a universal curve over a broad range of hole doping p, with a more-
or-less universal sign change near optimal doping. This sign change
has been interpreted as evidence for a Lifshitz transition18–20; however,
this implies that the doping associated with the sign change depends
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on material specifics and the detailed shapes of Fermi surfaces, which
is hard to reconcile with the observed universality. An alternative
interpretation of the sign change appeals to the atomic limit21–27;
however, the atomic limit requires extremely strong interactions and a
very high temperature T compared to the bandwidth, neither of which
is satisfied in cuprates at room temperature. The thermopower S also
has been approximated by the entropy per density, defined through
the Kelvin formula SKelvin = (∂s/∂n)T/e*28, where charge e* = − e for elec-
trons.SKelvin is believed tobe anaccurate proxy for the thermopower S,
since it accounts for the full effects of interactions, while bypassing the
difficulties in exactly calculating the Kubo formula25,28–30. However, a
direct comparison between S and SKelvin is required beforedrawing any
conclusions based on these assumptions.

Here, we calculate the thermopower S based on the many-body
Kubo formula, as well as the Kelvin formula SKelvin, for the t-t0-U Hub-
bard model. We employ numerically exact DQMC and maximum
entropy analytic continuation (MaxEnt)31,32 to obtain the DC transport
coefficients that specifically enter the evaluation of S. Our results show
that the Hubbard model can quantitatively capture the magnitudes
and the general patterns of S that have been observed in cuprate
experiments.

Results
The doping dependence of thermopower S from the Hubbardmodel is
shown in Fig. 1 for three different sets of parameters at their lowest
achievable temperatures, overlaid with experimental data from several
families of cuprates. It is important to note that in the process of
converting our results to real units based on universal physical quan-
tities kB and e, there are no adjustable parameters: S is a ratio, so the
standard units of t (or U) in the Hubbard model factor out. The most
striking observation is the surprisingly good agreement between our
results and the room-temperature thermopower in cuprates, in both
qualitative trend and quantitativemagnitudes. Both the simulation and
experimental data show a sign change roughly at p ~ 0.15. In both cases,
S—a quantity proportional to the electronic resistivity—increases dra-
matically in the low doping regime, as the system approaches a Mott

insulator. The simulation shows moderate U and t0 dependence, with-
out significantly affecting agreement with experiments. The moderate
parameter dependence is consistent with the observed approximate
universality of the doping dependence of the room-temperature S for
different cuprates, which may have varying effective U and t0.

For weakly interacting electrons, S is expected to change sign
around the Lifshitz transition. The sign change in our model with
strong interactions, which occurs at p ~ 0.15 for t0=t = � 0:25, is much
lower than the Lifshitz transition, which occurs at p ~ 0.26 for the same
parameters, nor is it associated with the atomic limit (see Supple-
mentary Note 3 and Supplementary Note 5 for details). Therefore, we
seek a deeper understanding from SKelvin = − (∂s/∂n)T/e, entropy var-
iation per density variation at a fixed temperature, or equivalently, by
the Maxwell relation, (∂μ/∂T)n/e, chemical potential variation per
temperature variation at fixed density (see Supplementary Note 4). In
Fig. 2, we compare the doping dependence of S and SKelvin. Despite
differences in exact values, the sign change of S, as shown in Fig. 2a, is
closely associated with that of SKelvin, as shown in Fig. 2b. The sign
change of SKelvin occurs when the temperature dependence of the
chemical potential μ vanishes at fixed density—an “isosbestic” point, as
exemplified in the inset of Fig. 2b, and highlighted by the arrows.

The doping dependence of S and SKelvin are also qualitatively
similar, and U generally affects both S and SKelvin in a similar manner,
moderately reducing the doping at which each changes sign as U
increases. However, t0 has more significant and opposite effects on S
and SKelvin. Comparing Fig. 2a andb shows us that even though SKelvin, a
thermodynamic quantity, differs from S, since it does not reflect the
dynamics captured by transport33, SKelvin still reflects the most
important effects from the Hubbard interaction, showing a doping
dependence and sign change similar to S.

We now examine the temperature dependence of S and SKelvin,
using U/t = 6 and t0=t = � 0:25, shown in Fig. 3, as a representative
example. The temperature dependence of S in Fig. 3a and SKelvin in
Fig. 3b are qualitatively similar. As temperature decreases from high
temperatures, S and SKelvin first increase, following the atomic limit
(t,t0≪kBT ,U, see Supplementary Note 5). As temperature decreases
further and passes the scale t/kB, their behaviors deviate from the
atomic limit. At low doping (p≲0.07), S and SKelvin monotonically
increase, but at higher doping levels, they first decrease before
increasing again down to the lowest temperature, with a dip appearing
in between.

We find the dip and the low-temperature increase in both S and
SKelvin particularly interesting, since this upturn commonly appears in
cuprates9–11,13,16, and cannot be understood in either the atomic or
weakly interacting limits. To understand its origin, we consider the
relationship between SKelvin and the specific heat cv using the Maxwell
relation �eð∂SKelvin=∂TÞp = � ð∂cv=∂pÞT=T , where, by definition,
SKelvin = (∂s/∂p)T/e and cv = T(∂s/∂T)p. Specific heat cv results, also for
U/t = 6 and t0=t = � 0:25, are shown in the inset of Fig. 3b. Near half-
filling and for temperatures below the spin-exchange energy J (=4t2/U
to leading order), cv starts to increase with decreasing temperatures,
which is believed to be associated with spin fluctuations34–36, and cv
drops with increasing doping. Correspondingly, SKelvin at fixed doping
increases with decreasing temperatures, leading to a low-temperature
upturn. As the upturn is a common feature shared by S and SKelvin, it is
reasonable to believe that the origin should be the same.

The low-temperature slope of the thermopower can be compared
with experiments. The negative slopes quoted in ref. 11 for
Bi2Sr2CaCu2O8+δ and Tl2Ba2CuO6+δ range roughly from −0.05 to
−0.02 μV/K2. Assuming t/kB ~ 4000K, this range corresponds to
�2:3,� 0:9½ � k2

B=ðteÞ in our model. We estimate the slope in our model
by taking the finite difference between temperatures kBT = t/4 and t/3.5
in Fig. 3a andb. For doping between p =0.1 and0.2, the calculated slope
ranges between �2:1,� 1:5½ � k2

B=ðteÞ for S, and �1:8,� 0:2½ � k2
B=ðteÞ for

SKelvin. Even though systematic and statistical errors in S introduce

Fig. 1 | Comparison of simulated and experimental thermopower. Thermo-
power S as a function of doping p from DQMC simulations (empty markers con-
nected by lines), compared with doping dependence of S for various cuprates at
T = 290K (solid scatteredmarkers, data from refs. 9,11). For U/t = 8 and t0=t =0, the
temperature is kBT = t/3.5. For U/t = 6, the temperature is kBT = t/4 for both t0=t =0
and t0=t = � 0:25.
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uncertainties to this slope estimate, the ranges are roughly comparable
between simulated S, SKelvin, and experimental values.

For a detailed verification and analysis of the relationship between
SKelvin and cv, we calculate −∂2s/(∂p∂T) from derivatives of indepen-
dently measured SKelvin and cv, for both U/t = 6 and U/t = 8 with
t0=t = � 0:25, as shown in Fig. 4. Results from the two methods are
consistent, up to minor discrepancies such as taking derivatives from
discrete data points. At any point along the contour ∂2s/(∂p∂T) = 0
(black solid lines), either a peak or a dip will occur in SKelvin as a func-
tion of T. We observe that a peak appears at temperatures above J/kB
(dashed horizontal line) and a dip appears at temperatures below J/kB.
Note thatT ~ J/kB corresponds roughly to the crossover between a peak
or dip in SKelvin for both U/t = 6 and U/t = 8 (c.f. Supplementary Fig. 6),
supporting our idea that the non-monotonic temperature dependence
of both SKelvin and S should be associatedwith effects of spin exchange.

Discussion
In summary, we calculated the thermopower S and the Kelvin formula
SKelvin in the Hubbard model. S shows qualitative and quantitative

agreement with the universal curve of the room-temperature S in
cuprates, with a sign change corresponding to an “isosbestic” point in
n versus μ. S and SKelvin show qualitatively similar doping dependence,
and the doping at which S changes sign corresponds well to that of
SKelvin. As a function of temperature, we observe a low-temperature
upturn in S and SKelvin with a slope quantitatively comparable with the
corresponding linear increase in cuprates, and we provide evidence
supporting their association with the scale of J. With this general
agreement, we demonstrate that major features in the universal
behavior of S in cuprates can be replicated through a quantitative
assessment of S in the Hubbard model. The observation that SKelvin
captures qualitative features of S enables us to understand the
experimental thermopower results from the perspective of entropy
variation with density.

We emphasize the significance of such a high level of agreement
between simulations and experiments for thermopower. Transport
properties can be sensitive to numerous factors, which may be dif-
ferent between cuprates and the t-t0-U Hubbard model. The combi-
nation of the model’s simple form and capability to reproduce

Fig. 2 | Doping dependence and sign change of S and SKelvin. Thermopower S (a)
and the Kelvin formula for the thermopower SKelvin (b) as a function of doping p for
the Hubbard model with different U and t0, all at the same temperature kBT = t/3.
Inset of (b): density n, measured using DQMC, as a function of the chemical

potential μ for U/t = 6, and t0=t = � 0:25 at different temperatures T. The arrows in
(b) and its inset indicate the correspondencebetween the sign change of SKelvin and
the vanishing of the temperature dependence of μ at fixed density.

Fig. 3 | Temperature dependence of S and SKelvin. Thermopower S (a), and the
Kelvin formula for the thermopower SKelvin (b), as a function of temperature T, at
different doping levels p, forU/t = 6, and t0=t = � 0:25. Inset of b shows the specific

heat cv measured using DQMC as a function of temperature for different doping
levels.

Article https://doi.org/10.1038/s41467-023-42772-8

Nature Communications |         (2023) 14:7064 3



universal features suggests the dominance of interaction effects in the
origin of the systematic behavior in the cuprates. Our observations
highlight the importance of pursuing high-accuracy simulations
accounting for the full effect of interactions in making progress at
understanding these enigmatic materials.

Methods
We investigate the two-dimensional single-band t-t0-U Hubbard
model with spin S = 1/2 on a square lattice using DQMC7,8. The
Hamiltonian is

H = � t
X
hlmi,σ

cyl,σcm,σ +h:c:
� �

� t0
X

hhlmii,σ
cyl,σcm,σ +h:c:

� �

+U
X
l

nl," � 1
2

� �
nl,# � 1

2

� �
,

ð1Þ

where t (t0) is the nearest-neighbor (next-nearest-neighbor) hopping,U
is the on-site Coulomb interaction, cyl,σðcl,σÞ is the creation (annihila-
tion) operator for an electron at site l with spin σ, and nl,σ � cyl,σcl,σ is
the number operator at site l with spin σ.

The Kelvin formula for the thermopower SKelvin can be calculated
using DQMC through

SKelvin = � hðH � μNÞNi � hH � μNihNi
eTðhNNi � hNihNiÞ , ð2Þ

where N =∑l(nl,↑ + nl,↓) is the total electron number operator, and μ is
the chemical potential.

From the Hamiltonian in Eq. (1), the particle current J and the
energy current JE are obtained as37,38

J=
t
2

X
l,δ2NN,σ

δ icyl + δ,σcl,σ +h:c:
� �

+
t0

2

X
l,δ02NNN,σ

δ0 icy
l + δ0 ,σ

cl,σ +h:c:
� � ð3Þ

and

JE =
X

l,δ12NN,
δ22NN,σ

�δ1 +δ2

4

� �
t2 icyl + δ1 + δ2,σ

cl,σ +h:c:
� �

+
X
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δ02NNN,σ

�δ +δ0

2

� �
tt0 icy

l +δ +δ0,σ
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� �

+
X

l,δ0
1
2NNN,

δ0
2
2NNN,σ

�δ0
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0
2

4

� �
t02 icy

l +δ0
1 +δ

0
2,σ

cl,σ +h:c:
� �

+
Ut
4

X
l,δ2NN,σ

δ nl + δ,�σ +nl,�σ

� �
icyl +δ,σcl,σ +h:c:

� �

+
Ut0

4

X
l,σ,

δ02NNN

δ0 nl +δ0,�σ +nl,�σ

� �
icy

l +δ0 ,σ
cl,σ +h:c:

� �

� Ut
4

X
l,δ2NN,σ

δ icyl + δ,σcl,σ +h:c:
� �

� Ut0

4

X
l,δ02NNN,σ

δ0 icy
l +δ0 ,σ

cl,σ +h:c:
� �

:

ð4Þ

To make the notations above clear, NN (NNN) denotes the set of
nearest-neighbor (next-nearest-neighbor) position displacements.

Fig. 4 | Analysis using cv and SKelvin. Color density plots of −∂2s/(∂p∂T) calculated
from doping derivative of specific heat [�ð∂cv=∂pÞT=T , (a, c)] and temperature
derivative of SKelvin [�eð∂SKelvin=∂TÞp, (b, d)], for interaction strengths U/t = 6 (a, b)
andU/t = 8 (c, d), both with t0=t = � 0:25. A cubic-spline fit was applied to curves of
cv versus p and SKelvin versus T, with corresponding derivatives obtained from the

fits. The derivatives −∂2s/(∂p∂T) were interpolated (cubic) onto the two-
dimensional (p, T) plane. Horizontal dashed lines mark the leading-order approx-
imation for the spin-exchange energy J = 4t2/U, and solid lines mark the contour
where −∂2s/(∂p∂T) = 0.
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Specifically, on the two-dimensional square lattice, NN= {+x, −x, +y, −y}
and NNN= {+x + y, −x + y, +x − y, −x − y}, where the lattice constant is
set to 1 and x and y are unit vectors. Here, if l is an arbitrary site label
associated with the position vector xlx + yly, and ν is a vector adding up
arbitrary elements inNNandNNN, thenotation l + ν represents aunique
site label associated with the position xlx + yly+ ν. The heat current is
JQ= JE −μJ.

We calculate the thermopower

S= �
LJQ,x Jx
eTLJx Jx

ð5Þ

using DQMC and MaxEnt31,32. Here, JQ,x and Jx are the x-components of
the heat current operator JQ and particle current operator J, respec-
tively. For arbitrary Hermitian operators O1 and O2, the DC transport
coefficient LO1O2

� LO1O2
ðωÞ

���
ω=0

, where LO1O2
ðωÞ is determined using

the Kubo formula

LO1O2
ðωÞ= 1

NxNyβ

Z 1

0
dteiðω+ i0+ Þt

Z β

0
dτhO1ðt � iτÞO2ð0Þi, ð6Þ

where t is real time, without confusion with the hopping matrix ele-
ments in the Hamiltonian. Here, Nx, Ny are the sizes of the lattice along
the x and y directions, respectively, β � ðkBTÞ�1, and

O1ðt � iτÞ= eiðH�μNÞðt�iτÞO1e
�iðH�μNÞðt�iτÞ: ð7Þ

Detailed derivations for Eqs. (5) and (2) are in Supplementary
Note 2 and Supplementary Note 4, respectively. For our calculation,
the units for both S and SKelvin are kB/e ≈ 86.17 μV/K.

Data availability
The data needed to reproduce the figures can be found at https://doi.
org/10.5281/zenodo.8286640.

Code availability
The source code and analysis routines can be found at https://doi.org/
10.5281/zenodo.8286636.
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