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Eco-evolutionary feedbacks in thehumangut
microbiome

Benjamin H. Good 1,2,3 & Layton B. Rosenfeld4

Gut microbiota can evolve within their hosts on human-relevant timescales,
but little is known about how these changes influence (or are influenced by)
the composition of their local community. Here, by combining ecological and
evolutionary analyses of a large cohort of human gut metagenomes, we show
that the short-term evolution of the microbiota is linked with shifts in its
ecological structure. These correlations are not simply explained by expan-
sions of the evolving species, and often involve additional fluctuations in
distantly related taxa. We show that similar feedbacks naturally emerge in
simple resource competition models, even in the absence of cross-feeding or
predation. These results suggest that the structure and function of host
microbiota may be shaped by their local evolutionary history, which could
have important implications for personalized medicine and microbiome
engineering.

The human gut harbors a diverse microbial community comprising
hundreds of ecologically interacting strains1,2. Recent work has shown
that the residents of this community can also evolve over time,
through a mixture of within-host evolution3–9 and the invasion of
external strains4,6,10. In principle, these rapid genetic changes could
alter ecological interactions between species, driving shifts in com-
munity composition, and spurring further co-evolutionary responses
in other resident strains. Yet despite intensive theoretical
speculation11–16, little is currently known about how the short-term
evolution of the microbiota influences (or is influenced by) the com-
position of its local community.

Previous work has shown that ongoing evolution can alter the
ecological composition of small synthetic communities, ranging from
simple in vitro systems17–21 to complex plant-leaf microcosms22. Similar
effects have also been observed in macro-scale communities with
strong trophic structure23,24. However, it remains unclear how the
feedbacks observed in these tightly coupled settings extend to larger
and more metabolically diffuse ecosystems like the gut microbiota.
Previous experiments have shown that the disruption of particular
metabolic pathways can alter crossfeeding interactions between spe-
cies of gut bateria in mice and in vitro co-cultures25,26. Other variants
canenable the colonizationof openmetabolic niches27,28. However, it is

not known how often such ecologically impactful mutations are
selected in in situ, or whether the niche partitioning29 or functional
redundancy1,30 of native gut communities tends to shield them from
these evolutionary perturbations.

To distinguish these scenarios, we reanalyzed a large collection of
fecal metagenomes from the Human Microbiome Project1,2, which
followed >100 healthy human subjects at 2–3 timepoints over a period
of ~6 months (Supplementary Data 1). We hypothesized that this large
cohort would provide an opportunity to measure eco-evolutionary
feedbacks at a statistical level, by askingwhether within-host evolution
tends to be accompanied by larger shifts in taxonomic composition
during the same time interval. Since gut microbiota also experience
daily fluctuations in the absence of evolution6,31–33, this approach
requires us to search for global signals that exceed this baseline
variation.

To carry out this analysis, we used a reference-based approach4 to
identify single nucleotide variants (SNVs) that underwent large shifts in
frequency within a host between pairs of sequenced timepoints
(Methods). These large frequency changes indicate a partial or com-
plete “sweep” within the species in question, in which the focal SNV is
likely hitchhiking as a linkedpassengermutation9.We further classified
the sweeps within each species as “evolutionary modification” or
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“strain replacement” events (Supplementary Fig. 1) based on the total
number of correlated SNV changes along that species’ genome
(Methods); we previously showed that these strain replacement events
are accompanied by large differences in gene content (~100–1000s of
genes), comparable to other circulating strains in the global human
population4. Using these methods, we compiled a dataset of 16
replacement events and 78 modifications from 799 pairwise genetic
comparisons across 45 different species and 134 unique hosts (Sup-
plementary Data 2 and 3). These data provide a unique opportunity to
quantify the links between short-term evolution and community
structure in the native human gut microbiota in its complex natural
environment.

Results
Rates of evolution in different community backgrounds
We first asked how the rates ofwithin-species evolution variedwith the
composition of the local community. We found that the strain repla-
cement and evolutionary modification events were both non-
uniformly distributed across taxa. While the sample sizes were too
small to resolve the rates of individual species, an omnibus test still
revealed a global enrichment of variability across species (P ≈0.01,
Methods), with even stronger signals at the family or phylum levels
(P < 10−4; Fig. 1a, b). Much of this signal was driven by differences
between the Bacteroidetes and Firmicutes phyla, with the latter
experiencing replacement and modification events at ~3-fold higher
rates (Fig. 1a, b). Some of these differences are consistent with
dispersal-related phenotypes of the resident species34 (e.g., less strain
replacement and more within-host evolution in oxygen- and
temperature-sensitive Eubacteriaceae), while others are more mys-
terious (e.g., higher rates of strain replacement in oxygen-sensitive
Ruminococcaceae).

We also investigated how the strain replacement and evolu-
tionary modification events depended on the global properties of
their surrounding community. For example, classical theories sug-
gest that the rates of evolution may strongly depend on local species
diversity35,36, either by closing off environmental niches37–39, or by
creating new opportunities to adapt tometabolic byproducts18,40,41 or
other interactions42 with the surrounding community members.
Across our cohort, we observed a weak positive correlation between
the rate of evolutionary modification and the Shannon diversity at
the initial timepoint, after controlling for differences between phyla
(P ≈0.04, logistic regression; Supplementary Table 1; Fig. 1c). This
shows that community diversity does not strongly limit the rate of
evolution over the range of diversity found in healthy human gut
microbiomes.

The weak positive correlation in Fig. 1c could be consistent with
some models of accelerated community evolution [see ref. 43 for a
related analysis]. However, the effect size associated with the com-
munity diversity was much smaller than the differences in the mod-
ification rate between phyla.Moreover, this signalwas primarily driven
by the top diversity decile in the Bacteroidetes phylum, rather than a
systematic trend across all samples (P ≈0.2 when the top decile of the
diversity distribution is excluded; Supplementary Table 1). We also
observed no correlation between the initial community diversity and
the rate of strain replacement (P ≈0.8; Supplementary Table 1, Sup-
plementary Fig. 3). Consistent with these observations, we found that
there were no strong correlations between the replacement and
modification events in different species in the same host (Fig. 1d), as
might be expected if genetic changes were primarily determined by a
global property of the community like taxonomic diversity (Fig. 1c and
Supplementary Fig. 2) or the Firmicutes-to-Bacteroidetes ratio (Sup-
plementary Fig. 4). These different lines of evidence suggest that to a
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Fig. 1 | Replacement and modification rates vary across species, but only
weakly depend on the diversity of the surrounding community. Fraction of
resident populations in which we detected strain replacement or evolutionary
modification events (Methods), coarse-grainedat the family (a) or phylum level (b).
Lines denote 2.5–97.5 percentiles of the Gamma posterior distribution obtained
from the observed number of counts (Methods). c The probability of a modifica-
tion event as a function of the species diversity of the surrounding community.
Points show the fraction of modification events in Bacteroidetes or Firmicutes
species stratified by quantiles of the Shannon diversity; vertical lines denote
2.5–97.5 percentiles of the Gamma posterior distribution that were computed as
above. Solid lines illustrate the best-fit logistic regression model using the phylum

and community diversity as predictor variables (Methods), while the dashed lines
show the average of each phylum computed for the bottom 90% of community
diversity values. The analogous regression for strain replacements events was not
statistically significant (P ≈0.8; Supplementary Fig. 3). d The distribution of the
number of genetic changes per community. Barsdenote the fraction of community
comparisons with a given number of genetic events (replacements + modifica-
tions). These comparisons were further partitioned into two subgroups: those that
only experiencedmodification events (left) and those that also experienced one or
more replacement events (right). Lines denote the null distribution obtained by
randomly permuting replacement and modification events across resident popu-
lations of the same species (Methods).
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first approximation, the genetic changes within our cohort can be
describedby a simple nullmodel, where replacement andmodification
events occur approximately independently in different resident
populations, but with species-specific rates.

Genetic changes are correlated with shifts in composition
Armed with this information, we next asked how the genetic changes
within species were correlated with shifts in their ecological structure
over time. Within our cohort, one can find individual hosts with
replacement or modification events that were also accompanied by
large changes in species composition between the same two time-
points (Fig. 2a, b; Supplementary Data 4). One can also find hosts with
nodetected genetic changes that experienced smaller ecological shifts
(Fig. 2c). To quantify this pattern more systematically, we partitioned
our 194 community comparisons into three categories depending on
whether the community had at least one replacement event, at least
onemodification event, or no genetic changes within species (Fig. 2d).
For each of these communities, we also calculated the Jensen-Shannon
(JS) distance between the species abundance distributions at the initial
and final timepoints (Methods); this provides a simple metric for
quantifying the overall change in species-level composition over
time44.

While species abundances can fluctuate due to a variety of
intrinsic and extrinsic factors6,31–33, we observed a small but systematic
trend toward larger JS distances in hosts that experienced an evolu-
tionary modification event, and even larger distances in hosts that
experienced a strain replacement event (Fig. 2d). To assess the sig-
nificance of these trends, we utilized an empirical null model informed
by Fig. 1: we generated n = 104 bootstrapped datasets by randomly
permuting the observed genetic events within the resident popula-
tions of each species. By construction, these bootstrapped datasets
preserve both the overall number of genetic changes of each type,
their distribution across species, and the species abundance trajec-
tories within each host. This provides a principled way to test for
associations between ecological and genetic changes, while preserving
the complex correlations between the abundances of different species
in large microbial communities.

We found that both replacement and modification events had
significantly larger JS distances than expected under this empirical null
model (P ≈0.001 and P ≈0.003, respectively; Methods), suggesting
that the ecological and genetic changes within these communities are
indeed correlated with each other. Notably, the evolutionary

modification signal was primarily driven by a depletion of the smallest
temporal fluctuations (Supplementary Fig. 6), rather than the handful
of hosts with the largest ecological shifts. By contrast, the strain
replacement signal was driven by a global increase in JS distances
(Supplementary Fig. 6), which could be consistent with both an
increased power to detect these genome-wide events, as well as a
larger phenotypic impact due to the larger number of SNV and gene-
content differences that they carry. Similar differences were observed
when community composition was measured at the genus, family, or
phylum levels (Supplementary Fig. 5). We also observed a small but
significant enrichment of “extinction” events in abundant species
(modifications P ≈0.003, replacements P ≈0.01; Methods) (Fig. 2g),
which suggests that these eco-evolutionary correlations are not spe-
cific to the idiosyncratic features of the Jensen-Shannon metric.

The ecological distances in Fig. 2d can be further decomposed
into the contributions from different species (Methods). Interestingly,
this decomposition shows that the larger distances in Fig. 2 were not
solely driven by expansions of the focal species (i.e., thosewith genetic
changes), as expected under some of the simplest models of niche
expansion22,37. While we observed a small bias toward expansions in
species that experienced amodification event (P ≈0.05, Methods), the
focal species still declined in frequency in more than 40% of cases
(Fig. 3a, b). Strain replacements displayed a similar trend: while the
focal species experienced significantly larger fold-changes over time
(P ≈0.03,Methods), themajority of these changes involved declines in
relative abundance rather than expansions (Fig. 3a, b). Furthermore,
we observed no strong correlation between the community-level dis-
tances in Fig. 2d and the fold changes in the focal species (Fig. 3d). This
suggests that the eco-evolutionary correlations in Fig. 2d do not
depend on the direction of the focal species’s trajectory. Rather, the
observed ecological shifts are more global in nature, in that they are
comprised of correlated shifts in the abundances of other species in
the community, even when focal species itself declines.

Figure 2b illustrates a prototypical example of this behavior: we
detected an evolutionary modification event in one species (Bacter-
oides stercoris), which declined slightly in relative abundance, while
two other species went extinct in the same time interval—one from the
same genus (Bacteroides massiliensis) and another from a different
bacterial family (Barnesiella intestinihominis). To quantify the rela-
tionships between these species more systematically, we calculated
the fraction of JSD that was contributed by species in the same family
as one of the focal species (Fig. 3f). We found that the family-level
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Fig. 2 | Genetic changeswithin species are statistically associatedwith shifts in
taxonomic composition over time. Species relative abundances over time in
three example hosts experiencing strain replacement events (a), evolutionary
modification events (b), and nogenetic changes (c). Species are shown if theyhad a
relative abundance> 2% in one of the hosts in at least one timepoint; all other
species are grouped together in the “Other” category. Species experiencing
replacement andmodification events are indicated by the triangles. d Distribution
of Jensen-Shannon distances over time (Methods) for communities that experi-
enced at least one replacement (Rep, n = 13) ormodification event (Mod, n = 58), or

no genetic changes (None, n = 123). Symbols denote individual data points, while
boxes show the median and inter-quartile range; the JS distances between ~1000
random pairs of hosts are shown at right for comparison. e, f For each of the
communities in (d), the fraction of the Jensen-Shannon divergence explained by
fold changes greater than a given amount (f, Methods), as well as the fraction of
this amount explained by positive vs negative changes (e). Colors indicate the Rep,
Mod, and None categories in (d). g The number of abundant species that went
extinct in each of the communities in (d) (Methods). Colors are the same as (e).
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contributions were somewhat larger than the contributions of the
focal species themselves (Fig. 3f), consistent with the larger number of
species involved, but they were not significantly different than
expected by chance (P ≈0.07; Methods). Similar results were obtained
for other taxonomic groupings (Supplementary Fig. 9), and for the
species that went extinct between the two timepoints (Fig. 3g, h). This
shows that the statistical signal in Fig. 2 is not solely driven by fluc-
tuations in closely-related species, but rather by correlated fluctua-
tions in distantly related taxa.

Similar feedbacks emerge in resource competition models
Our results establish a statistical link between the short-termevolution
of the human gut microbiota and changes in its ecological structure.
Such correlations could arise through several causal scenarios: genetic
changes could alter ecological interactions between species, driving
shifts in community composition ("evolution-driven feedbacks”);
alternatively, environmental perturbations could lead to taxonomic
shifts while also creating new opportunities for within-host evolution
("ecology-driven feedbacks”). It is difficult to distinguish these sce-
narios from observational data alone, though the independent dis-
tribution of genetic events (Fig. 1d) and the slight bias toward the
expansion of species with evolutionary modification events (P ≈0.05,
Methods; Fig. 3b, d) could provide some evidence in favor of the
evolution-driven scenario.

To gainmore intuition for the range of possible behaviors,we also
studied the correlations between ecological and genetic changes in a
simple mathematical model, where the contributions of these two
feedback mechanisms could be precisely controlled. We considered a
simple class of resource competition models15,45–49, in which S coex-
isting species compete for R substitutable resources that are con-
tinuously supplied by the environment (Fig. 4a; Supplementary
Note 1). For a saturated community (S =R) at ecological equilibrium,
previous work has shown that the selection pressures on new muta-
tions are independent of the external environment and the abun-
dances of the resident species (ref. 15; Supplementary Note 1). This
constitutes a simple theoretical example in which ecology-driven
feedbacks are effectively damped by the collective response of the
community. In this saturated case, one can derive a further result

connecting the invasion fitness of a small-effect mutation (Sinv) with
the ecological perturbations that it causes after it invades (Fig. 4b).
This relationship can be written in the implicit form,

Sinv =Cμ* � ΔXμ* � f μ* +
XS
μ= 1

Δf μ � Xμ

 !
, ð1Þ

where fμ denotes the relative abundance of species μ, Xμ is the loga-
rithm of its total resource uptake rate, μ* denotes the focal species in
which themutationoccurred, andCμ* is a proportionality constant that
depends on the focal species μ* (and its interactions with the sur-
rounding community) but is otherwise independent of the phenotypic
impact of the mutation (Supplementary Note 1).

A special case of Eq. (1) occurswhen amutation increases the total
resource uptake rate of the focal species (ΔXμ* > 0) but leaves its rela-
tive uptake rates intact. In this case, a successful mutation will always
increase the relative abundance of the focal species (Δf μ* > 0), while
causing downstream shifts in other species that depend on the meta-
bolic overlap within the larger community (ref. 15; Supplementary
Note 1). On the other hand, when mutations are able to alter the rela-
tive uptake rates of the focal species, Eq. (1) shows that any combi-
nation of directions of Δfμ are possible (at least in principle), provided
that they lead to the same overall sign on the right-hand side.

This effect is present even for the simplest case of two resources,
where a graphical picture provides some further intuition about the
underlying mechanisms involved (Fig. 4c). Previous work has shown
that differences in the overall uptake rates of the two species (Xμ)
create local selection pressures for mutations that shift metabolic
effort toward the species with the smaller value of Xμ (ref. 15; white
region in Fig. 4c).Mutations in this lessfit specieswill be favored if they
drive the relative uptake rates further away from the fitter competitor;
thesemutationswill generally lower the abundance of the focal species
(Δf μ* < 0), unless they are compensated by a corresponding increase
in Xμ* .

This shows that natural selection can favor mutations that lower
the abundance of the focal species (Δf μ* < 0), which could provide a
potential mechanism for the empirical behavior observed in Fig. 3b. It
also shows that mutations can produce a mixture of positive and
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Fig. 3 | Ecological changes are not solely explained by frequency increases in
focal species. a, b Fraction of focal species with absolute fold changes in relative
abundance greater than a given amount, regardless of direction (a), and the frac-
tion of this amount contributed by positive vs negative changes (b). c, d The
Jensen-Shannon distances in Fig. 2d as a function of the fold change in relative
abundance of the focal species (d), and the fraction of the Jensen-Shannon diver-
gence explained by each of these fold changes (c, Methods). e The fraction of
community comparisons in which the Jensen-Shannon divergence explained by
the focal species exceeds a given percentage. Solid lines denote the observed data

for the replacement (red) andmodification (blue) hosts in Fig. 2d, while thedashed
lines denote the expectations of a null model where the focal species are chosen at
random (Methods). f An analogous version of panel e using the fraction of Jensen-
Shannon divergence explained by all species in the same family as one of the focal
species. g, h Taxonomic relationship with themost closely related focal species for
each of the extinction events in Fig. 2g. Colored bars denote the observed data for
the modification (top) and replacement (bottom) hosts, respectively, while the
gray bars denote the corresponding expectations from the null model in (e).
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negative abundance changes across a large range of species, regard-
less of their phylogenetic or phenotypic similarity.

These theoretical results show that simple evolution-driven
feedbacks can recapitulate some of the qualitative features of Figs. 2
and 3, even in the absence of additional factors like crossfeeding50,51,
spatial structure52, or phage predation53. Nevertheless, this analysis
also has important limitations: Eq. (1) only applies to the simplest case
of small-effect mutations in ecologically saturated communities. Fur-
ther theoretical work is necessary to understand how these results
extend to the non-saturated case49, and to incorporate important
factors like cross-feeding50,51 and spatial structure within the gut52.
Perhaps more importantly, Eq. (1) only shows that it is theoretically
possible for a beneficial mutation to produce a given combination of
Δfμ values, provided that it changes the resource uptake phenotype of
the focal strain in aparticularway. The extent towhich thiswill occur in
practice will depend on how easily the corresponding changes can be
produced bymutations in the resident strains. This requires additional
information about the genetic architectures of the resource uptake
phenotypes, which are poorly constrained by existing data.Our results
suggest that it would be interesting to map out the accessible ecolo-
gical perturbations in future experiments, e.g., by measuring the joint
distribution of Sinv and {Δfμ} values obtained by mutating or swapping
resident strains. This joint distribution would constitute an eco-
evolutionary analog of the distribution of fitness effects of new
mutations, which plays a central role in evolutionary genetics54.

Discussion
Further work will be required to determine which of the various eco-
logical or evolutionary feedbackmechanisms aremost relevant for the
human gut, and to understand themix of external (or internal) factors
that drive them. Our results show that the statistical signature of these
feedbacks can sometimes be observed even in complex in situ envir-
onments, generating targeted hypotheses that could be tested in
future experiments (e.g., using large synthetic gut communities55,56).
These results could have important implications for the development
of personalized therapies that aim to tune the composition of the gut
microbiota. For example, within-host evolution could perturb the
ecological structure of the community away from its desired state,
requiring repeated interventions in order to control. Conversely, shifts
in the local environment could select for different sets of mutations in

different hosts, which could potentially ripple through the community
in unpredictable ways. The phylum-specific rates of evolutionary
modification and strain replacement we observed in Fig. 1 could be
interesting in this context, since the Firmicutes-to-Bacteroidetes ratio
has previously been associatedwith severalmarkers of host health and
disease57. Further work will be required to determine whether within-
host evolution could contribute to these associations.

While we have focused on applications to the human gut micro-
biota here, our statistical framework can also be applied to other
microbial ecosystems where large cohorts of independent evolu-
tionary replicates are available. Extending our pairwise approach to
denser longitudinal timeseries6,9,58 could help disentangle the relative
contributions of evolution- vs ecology-driven feedbacks. These and
other generalizations will be useful for quantifying the links between
short-term evolution and community structure in other microbial
ecosystems characterized by large numbers of coexisting
species39,58–60.

Methods
Metagenomic pipeline
Weutilized a collectionof shotgunmetagenomicdata fromtheHuman
Microbiome Project1,2 that we analyzed in a previous study4. This
cohort contained a total of 316 fecal samples from 138 healthy human
subjects, who were sequenced at 2–3 timepoints roughly 6 months
apart (Supplementary Data 1). We chose to focus on this cohort for
several reasons: (i) the samples were sequenced with relatively high
coverage, which enhances our ability to detect evolutionary changes
within species; (ii) the subjects were specifically selected to avoid
unusual external perturbations (e.g., antibiotics, chronic diseases, or
large dietary shifts) that could have an outsized influence on micro-
biome composition; and (iii) we previously showed4 that the sampling
interval in this cohort results in amixture of hostswith genetic changes
in some of their resident species, and other hosts with no genetic
changes; this mixture of outcomes is critical for our present analysis.

We processed these data using the pipeline described in ref. 4.
Briefly, the MIDAS software package61 was used to align the raw
sequencing reads from each sample to a large panel of reference
genomes representing different species. The relative abundance of
each species was estimated in each sample based on the coverage of
single copy marker genes (Supplementary Data 4). These relative

Fig. 4 | Eco-evolutionary feedbacks in a simple resource competition model.
a A simplified model of a microbiome: S resident species compete forR sub-
stitutable metabolites that are continuously supplied by the environment; rμ,i
denotes the uptake rate ofmetabolite i by species μ, while βi denotes the input flux
from the environment. In the absence of further mutations, growth and dilution
lead to steady-state levels of resource concentrations (ci) and species abundances
(fμ). b An example of an evolution-driven feedback: a mutation in a focal strain
alters its resource uptake phenotype by an small amount Δ r!; if the mutation
provides a fitness benefit (Sinv > 0), its descendants will proliferate in the com-
munity and cause a shift in the steady-state abundances of the resident species

(fμ→ fμ +Δfμ). Colors denote the different species in (a). c Evolution-driven feed-
backs in a simplified community with S =R= 2 (see Supplementary Note 1 for a
mathematical derivation). Solid circles denote the resident strains, while dashed
circles denote potential mutants. Shading indicates regions of phenotype space
that are favored (Sinv > 0, white) or disfavored (Sinv < 0, shaded) to invade; when
S =R= 2, these regions are completely determined by the resident strains, and are
conditionally independent of the input fluxes from the external environment (βi).
The top two mutations lead to an increased abundance of the focal species when
they invade, while the bottom example shows a beneficial mutation (Sinv > 0) that
decreases the relative abundance of its focal species (Δf μ* < 0).
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abundances were used to assemble a personalized panel of reference
genomes for each host, which were used to identify single nucleotide
variants within each species. These initial SNVs were subsequently fil-
tered based on their absolute and relative coverage, as well as their
location along the genome, using the default parameters and code
provided in ref. 4.

Detecting replacement and modification events within species
We used these data to detect replacement and modification events
between pairs of timepoints using themethods described in Ref. 4. For
each pair of time points, we identified the subset of “quasi-phaseable”
species where the lineage structure was sufficiently simple that the
dominant lineage could be identified with a high degree of
confidence4. Within each of these quasi-phaseable populations, we
calculated the total number of SNVs that transitioned from <20% fre-
quency in one timepoint to >80% frequency in another (or vice versa),
along with the corresponding number of changes expected from
sequencing noise alone4. As in ref. 4, we recorded zero SNVdifferences
if the estimated false positive rate was >10%. The resulting numbers
and locations of the SNV differences in each of the populations are
listed in Supplementary Data 2 and 3. These counts were used to
classify each population as experiencing a replacement event (>100
SNV differences), a modification event (<100 SNV differences), or zero
genetic changes; we previously showed that this divergence-based
definition is consistentwith the patterns of privatemarker SNV sharing
on these time scales4 (Supplementary Fig. 1). In carrying out this ana-
lysis, we noticed that the followup samples from two subjects (Subject
IDs 763536994 and 763880905) were possibly swapped, since they
exhibited strain replacement events in all of their resident species, but
had nearly identical strains when compared to the corresponding
sample from the other host. For simplicity, we omitted these two
subjects from all of our downstream analyses (though they are still
included in Supplementary Data 2 and 4 for completeness). This ana-
lysis yielded a total of 18 replacement events and 98 modification
events from a total of 937 pairwise comparisons across 45 different
species in 136 unique hosts.

Since some hosts were sampled at more than two timepoints, we
further de-replicated these data to ensure that all genetic comparisons
were performed on non-overlapping time intervals. For each host-
species combination, we only included pairwise comparisons from
consecutive quasi-phaseable timepoints; all other pairwise compar-
isons were treated as missing data (similar to non-quasi-phaseable
timepoints). This de-replication procedure yielded a final dataset
containing 16 replacement events and 78 modification events from a
total of 799 pairwise comparisons across 45 different species in 134
unique hosts. These data were used for all of our subsequent analyses.

Quantifying heterogeneity in replacement and modification
rates across species
We quantified the overall variability in the rates of replacement and
modification events across species using a global likelihood ratio test,

Λ �
X
μ,e

nμ,e log
pμ,e

pe

� �
, ð2:aÞ

wherenμ,e is the total number of events of type e∈ {R,M, 0} in speciesμ
(representing replacements, modifications, and no genetic changes,
respectively), and

pμ,e =
nμ,eP
e0nμ,e0

, pe =

P
μnμ,eP

μ,e0nμ,e0
: ð2:bÞ

Equation (2.a) quantifies the degree to which the observed replace-
ment and modification rates deviate from a null model in which these
events occur uniformly across species.We assessed the significance of

this deviation by comparing the observed value of Λ to a null model in
which the replacement and modification events were randomly per-
muted across all quasi-phaseable samples. This defines a correspond-
ing P-value,

P = Pr Λ≥Λobs
h i

, ð3Þ

which we estimated numerically from n = 104 bootstrapped samples
(Supplementary Code 1). We performed this test for the observed
species counts nμ,e, as well as coarse-grained versions that merged the
observed counts at the genus, family, or phylum levels (Fig. 1a, b).

The confidence intervals in Fig. 1 were obtained from the α/2 and
1 − α/2 percentiles of the posterior distribution of the underlying
Poisson process,

pðpμ,ej n!Þ / p
nμ,e�1
μ,e e�pμ,e

P
e
nμ,e , ð4Þ

with α = 0.05. In the case where nμ,e = 0, the posterior is an improper
distribution, so we define the lower limit of the confidence interval to
be 0, and the upper limit to be the point where e�pμ,e

P
e
nμ,e ∼α=2.

Quantifying the relationship between community diversity and
the rates of evolutionary modification
We quantified the residual effects of community diversity on the rates
of evolutionary modification using a logistic regression model, in
which the probability of an evolutionary modification in species μ in
community c is given by

log
pμ,c

1� pμ,c

 !
=β0 + β

!
P � P

!
μ + βHH

0
c , ð5:aÞ

where P
!

μ is an indicator variable giving the phylum of species μ, and
H0

c is the Shannon entropy of the surrounding community,

H0
c = �

X
ν

fν,0log2 fν,0 , ð5:bÞ

whichwas estimated from the relative abundances of the species at the
initial timepoint. For simplicity, we only examined species in the Bac-
teroidetes and Firmicutes phyla, which constitute the vast majority of
our data (Fig. 1b). Regression coefficients and P-values were estimated
using the logistic regression routines in the statsmodels library62

using default parameter values. Similar results were obtained whenH0
c

was replacedwith ameasureof species richness (Supplementary Fig. 2;
Supplementary Table 1).

Quantifying the overdispersion of genetic changes within hosts
We quantified the residual effects of more general community prop-
erties on replacement and modification rates by examining the over-
dispersion of genetic changeswithin a given host community. For each
pair of timepoints, we calculated the total number of quasi-phaseable
populations that experienced a replacement or modification event,
and examined the distribution of these counts across our dataset
(Fig. 1d). We compared this distribution to a null model in which the
replacement andmodification events were randomly permuted across
quasi-phaseable populations of the same species. This permutation
scheme eliminates any correlations between the genetic changes in
different resident populations, but preserves the heterogeneity in the
number and types of quasi-phaseable populations in different hosts,
and the total number of replacement and modification events in dif-
ferent species.
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Quantifying shifts in ecological structure over time
We quantified the changes in ecological structure between a pair of
timepoints using the Jensen-Shannon divergence,

JSD=
X
μ

fμ,0log2
2fμ,0

fμ,0 + fμ,1

 !
+ fμ,1log2

2fμ,1
fμ,0 + fμ,1

 !" #
, ð6:aÞ

=
X
μ

fμ
2

1 + rμ

 !
log2

2
1 + rμ

 !
+

2
1 + r�1

μ

 !
log2

2
1 + r�1

μ

 !" #
, ð6:bÞ

where fμ,0 and fμ,1 are the relative abundances of species μ at the initial
and final timepoints, f μ = ðf μ,0 + f μ,1Þ=2 is the average relative abun-
dance, and rμ = fμ,1/fμ,0 is the fold change between the two time points.
The Jensen-Shannon distance (Fig. 2d) is defined as the square root of
the Jensen-Shannon divergence (d =

ffiffiffiffiffiffiffiffi
JSD

p
).

Wequantified the differences between the distributions of Jensen-
Shannon distances in Fig. 2d using a one-sided Kolmogorov-Smirnov
(KS) test,

De =maxd ŜeðdÞ � Ŝ0ðdÞ
n o

, ð7Þ

where ŜeðdÞ is the fraction of communities of type e∈ {R,M, 0} with
Jensen-Shannon distance larger than d. Larger values of De indicate an
enrichment of larger Jensen-Shannon distances, relative to commu-
nities with no genetic changes. We assessed the significance of these
differences by comparing the observed De values to a null model
similar to Fig. 1d, in which the replacement and modification events
were randomly permuted across quasi-phaseable populations of the
same species. As mentioned above, this permutation scheme
preserves the heterogeneous opportunities for replacement and
modification events in different hosts, the observed distribution of
Jensen-Shannon distances, and any correlations between the two. This
defines a corresponding P value,

P = Pr De ≥D
obs
e

h i
, ð8Þ

which we estimated numerically from n = 104 bootstrapped samples.
For completeness, we used a similar approach to compare the overall
change in Shannon diversity between the two timepoints (Supple-
mentary Fig. 7). We observed a much weaker correlation with the
number of replacement or modification events, suggesting that the
signals in Fig. 2 cannot be explained by diversity fluctuations alone.

In addition to these entropy-based metrics, we also quantified
shifts in community structure by examining extinction events among
highly abundant species (Fig. 2g). In this calculation, a species was
counted as going extinct if it transitioned from an initial relative
abundance > 1% to a final relative abundance <0.01%. We compared
thedistributions of extinction events in Fig. 2g using a similarKS test as
Fig. 2d, with the number of extinction events in a given community
(Supplementary Fig. 8) replacing the Jensen-Shannon distance in Eq.
(7); we assessed the significance of these differences using the same
permutation-based null model as above. We also compared these
observations to the corresponding number of “invasion” events,
defined as the time-reversed version of an extinction event above
(Supplementary Fig. 8). We quantified the asymmetry between
extinctions and invasions by comparing them to a null model in which
we randomly flipped the direction of time in each sample.

We used a similar approach to compare the distributions of focal
species fold changes Fig. 3b,with themagnitudeof the log fold change,
j logðf μ,1=f μ,0Þj, replacing the Jensen-Shannon distance in Eq. (7). We
quantified the excess of positive over negative changes (Fig. 3a) using a
one-sided sign test. Similar results were obtained by comparing the
fraction of positive changes in specieswithmodifications vs no genetic
changes using the permutation-based null model above (P ≈0.02).

Decomposing the Jensen-Shannon divergence
The linear sum in Eq. (6.b) provides a natural way to decompose the
Jensen-Shannon divergence into contributions from different species.
For example, the fraction of Jensen-Shannon divergence “explained”
by a subset of species μ 2 S can be defined as

pðSÞ=
P

μ2S f μ
2

1 + rμ

� �
log2

2
1 + rμ

� �
+ 2

1+ r�1
μ

� �
log2

2
1 + r�1

μ

� �h i
JSD

: ð9Þ

Figure 2e shows the percent JSD explained by the subset of strainswith
a minimum fold change r, by defining

SðrÞ= μ : j log rμj≥ j log rj
n o

: ð10Þ

Similarly, Fig. 3 shows the percent JSD explained by a single focal
species (Fig. 3c), the entire set of focal species (Fig. 3e), or all species in
the same family as one of the focal species (Fig. 3f).

In the latter two cases, we compared these distributions to a null
model in which the same number of replacement or modification
events were redrawn from the same subset of hosts, by weighting each
resident population by the empirical rate of replacement or mod-
ification events in that species across our entire dataset (Fig. 3e, f). We
assessed the significance of these differences using the mean of this
distribution as a test statistic.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Postprocessed source data for Figs. 1–3 can be found in Supplemen-
tary Data 2 and 4; these figures can be regenerated by running the
generate_all_figures.py script provided in SupplementaryCode 1.
Rawsequencingdata fromtheHumanMicrobiomeProject arepublicly
available at the NCBI Sequence Read Archive using the accessions
provided in Supplementary Data 1.

Code availability
All analysis code andfigure generation scripts for Figs. 1–3 are available
on Github (https://github.com/bgoodlab/microbiome_ecoevo_
correlations), as well as in Supplementary Code 1. Figs. 1–3 can be
regenerated by running the generate_all_figures.py script in the
base directory.
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