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Spatial transcriptomics reveals unique gene
expression changes in different brain regions
after sleep deprivation

Yann Vanrobaeys 1,2,3, Zeru J. Peterson 2,4, Emily. N. Walsh 2,3,5,
Snehajyoti Chatterjee 2,3, Li-Chun Lin2,3,6, Lisa C. Lyons7,
Thomas Nickl-Jockschat 2,3,4 & Ted Abel 2,3

Sleep deprivation has far-reaching consequences on the brain and behavior,
impactingmemory, attention, andmetabolism. Previous research has focused
on gene expression changes in individual brain regions, such as the hippo-
campus or cortex. Therefore, it is unclear how uniformly or heterogeneously
sleep loss affects the brain. Here, we use spatial transcriptomics to define the
impact of a brief period of sleep deprivation across the brain in male mice. We
find that sleep deprivation induced pronounced differences in gene expres-
sion across the brain, with the greatest changes in the hippocampus, neo-
cortex, hypothalamus, and thalamus. Both the differentially expressed genes
and the direction of regulation differed markedly across regions. Importantly,
we developed bioinformatic tools to register tissue sections and gene
expression data into a common anatomical space, allowing a brain-wide
comparison of gene expression patterns between samples. Our results suggest
that distinct molecular mechanisms acting in discrete brain regions underlie
the biological effects of sleep deprivation.

Sleep deprivation is a growing problem that affects more than one-
third of adults in the U.S. and more than 70% of teenagers and
adolescents1. Loss of sleep impacts cognition, attention, and
metabolism2–5. These processes are mediated by distinct neural cir-
cuits in specific brain regions—the hippocampus, the cortex, and
hypothalamus, respectively. Sleep and circadian rhythm disorders
have also been linked to the increased incidence and accelerated
progression of neurodegenerative diseases, including Alzheimer’s
disease6–10. Given the serious consequences of sleep loss for indivi-
duals and the interaction of sleep deprivation with many diseases, it is
important to understand the cellular and molecular consequences of
sleep deprivation. To this end, we have used non-biased spatial

transcriptomics to define whether sleep loss has distinct molecular
impacts on specific brain regions.

Sleep deprivation impacts protein synthesis and gene regulation
through many mechanisms including alterations to epigenetic reg-
ulation, transcription, and mRNA processing11–19. Estimates suggest
that up to 10% of cortical transcripts are regulated with sleep/wake
cycles, particularly by the length of time awake20–22. In the hippo-
campus, prolonged wakefulness causes changes in the expression of
genes associated with RNA splicing, cell adhesion, dendritic localiza-
tion, the synapse, and the postsynaptic membrane11,13,23,24. However,
the brain is highly heterogeneous and subserves many different
functions; as brain regions and circuits differ in their roles, they may
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differ dramatically in their response to sleep loss, and observations
from one brain region may not be generalized to the whole brain.

Recent technological advances in genome-wide spatial tran-
scriptomics offer enormous potential for providing detailedmolecular
maps that overcome limitations associated with single cell or single
nuclear RNA sequencing (sc/snRNA-seq) andmicroscopy-based spatial
transcriptomics methods25. This approach has been successfully used
to generate detailed datasets and cell-type specific gene expression
signatures26–29, but it has not yet been used to profile changes in gene
expression across multiple brain regions after experience. A further
challenge for data analysis is that a significant hurdle remains in terms
of finding a strategy to align the brain regions across slices from
multiple subjects or from independent experiments for data integra-
tion in multi-sample analyses. To investigate gene expression changes
within the adult mouse brain after sleep deprivation, we used the 10x
Genomics Visium platform, a barcoding-based, transcriptome-wide
approach that generates spatialmaps of gene expression.We collected
gene expression data from each major brain region across a coronal
brain slice, enabling us to profile multiple brain regions simulta-
neously. Using this technique, we were also able to get detailed, sub-
region and layer specific gene expression changes within the
hippocampus and cortex. Finally, wepresent an alternative to a region-
of-interest type of analysis by registering multiple slices into a com-
mon space using the Common Coordinate Framework (CCF) from the
Allen Brain Atlas30, thus adjusting for differences in the alignment of
brain tissue sections and allowing for a comparison between samples.
These data and analytical approaches provide a scientific resource for
the neuroscientific community, and they demonstrate the diverse
impact of sleep loss on gene expression across the brain.

Results
Using spatial transcriptomics, we profiled spatial gene expression in
coronal brain slices from sleep-deprived (SD) or control (non-sleep
deprived (NSD)) adult male mice. Each coronal section covered
between 1736 and 3103 spots on the Visium slides (Supplementary
Data 1). We sequenced each sample to a median depth of 2.26E + 08
(interquartile range 2.10E +08–2.37E +08), which corresponded to a
mean of 93245 reads and a mean of 5978 genes per spot (Supple-
mentaryData 1). Importantly,wewere able todetectover 21,000genes
for each sample (Supplementary Data 1). However, the individual
number of genes detected in each spot is three to four times lower
than the total number of expressed genes detected due to cell-type
and brain-region specific differences in gene expression (Supplemen-
tary Fig. 1). We note that these rates are analogous to snRNA-seq and
scRNA-seq data using the 10x Genomics Chromium platform, where a
“cell” barcode on the Chromium platform corresponds to a “spatial”
barcode on the Visium platform. However, unlike snRNA-seq data,
which contains high numbers of intronic reads that map to immature
transcripts, we found strong enrichment of mature messenger RNAs
with high mean rates of exonic alignments (mean: 88.3%; IQR:
87.7–89.4%) (Supplementary Data 1).

We first generated region-enriched expression profiles for the
samples from each condition (Fig. 1A–C and Supplementary Fig. 2). As
expected, this approach predicted brain regions with high reliability
(Fig. 1B) and recapitulated the brain regions from the reference cor-
onal mouse Allen brain atlas31 (Fig. 1C). Each brain region was char-
acterized by specific transcriptional signatures and unsupervised
clustering of these region expression profiles revealed distinct clusters
(Fig. 1D) and top biomarkers (Fig. 1E). Supplementary Table 2 reports
the expression levels for all genes with no filters. Due to the tran-
scriptional similarity of the basomedial and basolateral amygdalar
subnuclei with the subnuclei of the amygdalar medial area, and the
spatial proximity and similarity with the allocortex, UMAP clustering
reports the striatum-like amygdalar nuclei and the allocortex as repe-
ated clusters with slightly different transcriptional signatures

depending upon the grouping of the basomedial and basolateral
subnuclei (Fig. 1D). We merged anatomically adjacent spots from the
two clusters to generate the labeled brain regions. Together, these
results highlight the ability of spatial transcriptomics to achieve high-
resolution expression profiling across the mouse brain.

Sleep deprivation exerts differential effects on transcriptional
activity in each brain region
Sleep deprivation affects different brain functions ranging from cog-
nition and affective processing that each rely upon distinct neuronal
circuits17,22–24,32–35. However, little is known about how sleepdeprivation
alters transcriptomic activity in individual brain regions, as bulk
sequencing approaches inevitably average out regionalized effects. To
address this problem, we performed differential gene expression
analysis in each of the brain regions identified in the coronal sections
(Fig. 1). In the analysis, significant differentially expressedgenes (DEGs)
were identified using two filters, an FDR of 0.001 and an absolute fold
change threshold of 1.2. Significant DEGs for each brain region are
reported in Supplementary Table 3. After filtering, we found that the
hippocampal region had the greatest number of significant DEGs
affected by sleep loss (592 DEGs), followed by the neocortex (401
DEGs), the hypothalamus (266 DEGs), and the thalamus (113 DEGs)
(Fig. 2A). Some of these DEGs, such as Rbm3, Hspa5, and Srsf5, have
been previously shown to be affected after sleep deprivation in our
previous studies of the hippocampus11,36,37 and in studies of other brain
regions13–15,17,21,34,38,39.

The molecular functions of the DEGs showed region-specific dif-
ferences (Fig. 2B–E and Supplementary Data 4). For the hippocampal
region, many molecular functions related to RNA processing were
enriched (Fig. 2B). For the neocortex, molecular functions related to
protein kinase activity, GTPase activity, ubiquitin ligase activity, and
DNA-binding transcription factor binding were enriched (Fig. 2C). The
DEGs in the hypothalamus were enriched for molecular functions
related to neuropeptide and hormone activity, as well as glutathione
transferase and peroxidase activity (Fig. 2D). Finally, the DEGs in the
thalamus were enriched for the Myogenic Regulatory Factor (MRF)
binding molecular function (Fig. 2E). Surprisingly, ~98% of the DEGs in
the hippocampal region were significantly downregulated whereas
~96% of the DEGs in the neocortex were significantly upregulated
(Fig. 2B, C and Supplementary Fig. 3).

We next investigated how many of those total DEGs are uniquely
affected in each brain region by analyzing the degree of overlap
between the DEGs in the brain regions that had at least 50 DEGs
affected by sleep deprivation (Fig. 2F). Although there were many
connections between different brain regions, themajority (50–83%) of
the DEGs were specifically affected in their respective brain region. Of
the 592 DEGs found in the hippocampal region, 489 were exclusively
affected in the hippocampal region (489/592 DEGs), 306/401 in the
neocortex, 199/266 in the hypothalamus, 56/113 in the thalamus, and
33/66 in the striatum-like amygdalar nuclei (Supplementary Data 3).
Interestingly, only 35 DEGs were found to be in common between the
neocortex and the allocortex, resulting in one significantly enriched
pathway: protein kinase inhibitor activity (Supplementary Fig. 4). All
other sets of common DEGs (Supplementary Data 5) were too few in
number to reveal enriched molecular functions.

Hippocampal subregions are differentially impacted by sleep
deprivation
As our results here and previous studies have demonstrated, the hip-
pocampus is highly susceptible to the effects of acute sleep
deprivation11,13,24,36,37. This brain region is comprised of several sub-
structures—CA1, CA2, CA3, and the dentate gyrus (DG)—each with dif-
ferent functions in learning and memory40–45. We performed a
deconvolution of the CA1 pyramidal layer and the dentate gyrus (DG)
granule cell layer using a reference scRNA-seq whole hippocampus
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mouse dataset from the Allen Brain Atlas46 (Fig. 3A) and were able to
distinguish the areas CA2 and CA3 pyramidal layers based on spatial
topography. Similarly, because the dendritic layers of CA1 are known to
undergo structural changes following sleep deprivation47–49, we also
used spatial topography todefine and include the stratumradiatumand
oriens layers ofCA1 inour analysis (Fig. 3B).Differential geneexpression
analysis in each hippocampal subregion revealed unique gene expres-
sion changes and molecular functions enriched that were specific to a
subregion (Fig. 3C, Supplementary Data 6 and 7). Of the DEGs identified
in each region, 51/62 DEGs were uniquely affected in CA1, 34/41 in DG,
53/61 in stratum radiatum, and4/4 in stratumoriens. TheCA1pyramidal
layer and stratum radiatum were most impacted by sleep deprivation,
with the most DEGs and unique DEGs of the areas examined. Stratum
radiatum had 53 unique DEGs enough to enrich the cyclin-dependent
protein serine/threonine kinase activity, as well as the pyramidal
CA1 cells with their 51 unique DEGs that enriched the glutamate
receptor binding. Interestingly, there were no genes significantly
affected in the combined CA2 and CA3 pyramidal layers after sleep
deprivation. This finding supports other observations that CA1 and the
DGare impacted by sleepdeprivationwhile areaCA3 is less affected37,49.

Sleep deprivation causes layer-specific transcriptional changes
in the cortex
The neocortex was the second-most impacted by sleep deprivation
(Fig. 2A). The cortex comprises of different layers that each are

involved in various functions of receiving, integrating, and outputting
information50. To understand how sleep deprivation differently
impacts the layers of the cortex, we examined the gene expression
profiles within each cortical layer. We performed a deconvolution of
the spatial datasets by integrating them with a reference scRNA-seq
dataset of ~14,000 adult mouse cortical cell taxonomy from the Allen
Institute51. This allowed us to identify the layers of the neocortex based
on the prediction score in each spot (Fig. 4A) and perform differential
gene expression analyses in each layer (Supplementary Data 8 and
Supplementary Fig. 5). Layers 2/3 and 5 are the most transcriptionally
affected after sleep deprivation with 222 and 225 significant DEGs,
respectively (Supplementary Data 9). Differential gene expression
analysis in each cortical layer revealed distinct gene expression chan-
ges and molecular functions that were uniquely enriched in certain
layers (Fig. 4B), which may relate to the differential function of these
layers in intracortical processing and cortical output. Layer 5, which
contains neurons that are the main output of the cortex, had 174
unique DEGs that included molecular functions related to sterol
binding, cyclic adenosine monophosphate (cAMP) binding, structural
constituents of the postsynapse, and ion channel regulator activity.
Layer 2/3, which functions largely in information processing within the
cortex, had 149uniqueDEGs that includedmolecular functions related
to phosphatase inhibitor activity, adenylate cyclase inhibiting G
protein-coupled glutamate receptor activity, and ionotropic glutamate
receptor binding.
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Registration of slices to a common anatomical reference space
via the Spatial Transcriptomics Analysis Tool (STAnly) allows

the unrestricted analysis of transcriptomic data across entire
brain slices
Our deconvolution approach (used in Figs. 1–4) subdivides a given
brain slice into different larger brain regions based on their

transcriptomic activity. Although this is a powerful tool to analyze
spatial gene expression changes, it inevitably comes at the price of a
loss of spatial resolution, as this approachnecessarily pools over larger
brain regions, and requires a prior biological knowledge of cell type-
specific gene expression profiles. To address this loss of spatial reso-
lution, we established an analysis tool (Spatial Transcriptomics

A B

HypothalamusC

Hippocampal region

Neocortex

E Thalamus

D

Hippoca
mpal

reg
ion

Neo
co

rte
x

Hyp
othala

mus

Thala
mus

Allo
co

rte
x

Stria
tum-lik

e am
yg

dala
r nucle

i

Cau
dato

putam
en

Fiber
tra

cts
0

200

400

600

800

1932
6688113

266

401

592

Brain regions

N
um

be
ro

fs
ig

ni
fic

an
tD

EG
s

Rab12

Cnksr2

Cdk11b

Sidt1

Sf3b4

Tubg2

Tlk2

Camk2g

Mrpl2

Eprs

Map2k5

Vps4a

Atxn2lSnhg4

Ak5

Pcca

Thumpd1

RNA bindingAR ingbRN n bbbb dR indindndingingAA gnRNARN

Zdhhc4

Tlk1

Raf1

U2af1l4

Ncstn

Nmnat2

Atad3a

Mepce Zdhhc18

Vars

Blmh

Yrdc

Zdhhc17

Ube2i

Lars2

Nol6

Zdhhc8

Dtymk

Eif2a

protein-cysteine
S-palmitoyltransferase

activity

Agap2

Kdm1aam11admdmdmK

Ythdf1

snRNA binding

Ube2d1

Celf3

Cstf3

Pnck

Sgk1

Myh10

Safb

Fam20c

Abcg4

Jakmip1

Safb2

Scyl1

Prps1

Pop7

U2af2

Nt5c2
Prkag1

Dhx30

Tfrc

Csnk1g3

Prkcd

Ddx42

Ddx46

Afg3l2

Pip5k1a

Cdc40
Snrpb2

purineeepurinnnp nenenepuurr
ribonucleosides esidnuc edeeeeibo oososonuccr
triphosphateteep o pphphaatatetri ho

bindingn nngin

Coq8a

Neu1

Snrpa1

Snrpc

Pccb Marcksl1

Mrps11

Rbmx

Rtca

Mark3

Rnmt

Rbm3

Nek6

Nme7

Ilf2

Pcp4

Rap2b

Stk32c

Kcnj3

Rpp21Mef2c

Arl16

Mast1

IdeMtdh

Magoh
Ift22

Actr8

Hspa5H

Rbm25

Erh

Adrm1Nagk

Glul
Upf3a

Drg2

Gtpbp2

Dgke

Acsl1

Rbm22

Cpeb1

Rragd

Ctps

Ube2j2

Lsm5
Cirbp

Rhof

Tor1a

Ephb6

Nop10

Cbx4

Srprb
Csnk1e

Epha7

Prpf40b

Apex1

Rtkn

Srr

Epha5

Sart3
Exosc4

Rab4b

Mapk8

Epha4

Fubp1

Ccdc88a

Rab4aGrk6

Cdk4

Hnrnpdl

Skiv2l

Bmal1

Ric8b

DNA-bindingb ngDN nd
transcription factor pt ortra n f

bindingnd

Rin1

Ube3a
Pias1

Rasgrf2

Rlim

Pias2

Mcf2l

Pam

ubiquitin-likeike
protein ligasee

activity

Adrb1

Uhrf2

Ccdc88a

Rnf216

Slc9a3r1

Rapgef1

Sh3gl1

Arhgef18

adrenergic receptor 
binding

Krit1

Sh3bp5lGTPase regulator ator as atoG reGTPase egu
activityvac vi

Trib2

Spry2

Hexim1

Cdk5r2

Prkar2a

Ccnd2
Spred2

Ccnd1
Spred1

Dnajc3

Actn4

Gipc1

protein kinase na
inhibitor activityvit

Icmt

Rgs8

Trim9

Ep300

Lrrk2

Ltn1

Tfdp1

Rgs20

Jade2

Tdg

Rgs17

Rnf121

Bhlhe40

Sgsm1

Bcor

Sox2

Dlc1

Ankib1 Ncor2

Syngap1

Peli1

Per1

Rasa1

Bfar
Pbx1

Rundc1

Med7

Nfia

Agap2

Zbtb7a

Agfg1

Hecw2
Nr4a1

Gnaq

Shprh

Dnmt1

Mex3c

Cebpg

Rasgef1c

Neurl1b
Calr

Rangrf

Irf2bpl

protein kinase pro
regulator activity

neuropeptide
hormone activity

Nts

Cartpt

Ttr

Pdyn

Hcrt

Gal

Cnp

Cck

Pmch
Hba-a1

Gpx3

Hbb-bs
peroxidase activity

Gstz1

Gstp1
Gstm6

glutathione
transferase activityhormone activityhor

Bhlhe41 Marcksl1
MRF binding

F

0

50

100

150

200

250

300

350

400

450

489

U
ni

qu
e 

an
d 

ov
er

la
pp

in
g 

D
EG

s 
se

ts

0300600
Total DEGs
per region

592 HPF

401 Neo CTX

266 HY

113 TH

88 Allo CTX

66 SLAN

489 306 199 56 35 33 30 28 27 12 11 9 6 6 6 6 4 4 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

M
al

at
1

Sf
pq

Ch
or

dc
1

Zm
iz1

Ho
m

er
1

Ub
a5

2

Tf
rc

Rb
m

3

Ci
te

d2

Ju
n

Hs
pa

5

Gl
ul

Ci
rb

p

La
rs

2

M
ir9

-3
hg

Tm
em

21
9,

 F
ly

wc
h2

Op
al

in
, P

di
a6

Tt
r, 

Gm
42

41
8

Pt
gd

s,
 S

pa
ta

2l

Et
v5

, M
an

f

Ca
m

k1
g,

 G
se

1,
 S

gs
m

1

Cd
83

, G
st

p1
, S

rs
f5

, 2
01

02
04

K1
3R

ik

Hb
b-

bs
, P

va
lb

, C
ar

tp
t, 

Izu
m

o4

Db
p,

 P
ci

f1
, S

ow
ah

a,
 Z

dh
hc

8,
 M

gs
t3

, H
ag

hl

Ad
rb

1,
 X

bp
1,

 V
gf

, M
as

t3
, K

lh
l5

, T
ln

rd
1

Pp
if,

 U
sp

2,
 G

m
13

88
9,

 K
ct

d4
, 2

30
00

09
A0

5R
ik

, F
bx

o3
4

Ch
pf

2,
 H

ap
1,

 Id
e,

 N
ag

k,
 11

10
03

8B
12

Ri
k,

 W
dr

6

Gn
aq

, E
la

vl
3,

 K
if3

a,
 Z

bt
b7

a,
 V

eg
fa

, S
am

d4
b,

 Ta
td

n1
, C

as
to

r2
, P

id
1

Cd
h2

2,
 K

ifc
3,

 P
am

, R
as

gr
f2

, P
ol

r1
c,

 S
em

a4
a,

 S
pi

nt
2,

 T
m

ed
8,

 E
ro

1l
, P

lx
nc

1,
 Z

bt
b4

Article https://doi.org/10.1038/s41467-023-42751-z

Nature Communications |         (2023) 14:7095 4



ANaLYsis (STANLY) that aligns dots from multiple samples from dif-
ferent animals into one common anatomical reference space, the
Common Coordinate Framework (CCF) of the Allen Mouse Brain
Atlas31, thus allowing a dot-by-dot comparison of the transcriptome in
an unrestricted inference space (Fig. 5A). To account for different
numbers of spots across slices, we generated “digital spots” in this
same coordinate system to allow a statistical comparison across. Using
this method, we detected at least 18,893 genes in all sample slices for
changes in expression between NSD and SD. Of these, 413 genes
(Supplementary Data 10) were significantly differentially expressed,
with 150 genes showing an upregulation in all significant spots, 22
showing downregulation in all significant spots, and 256 showing a
combination of up and down regulation across the sample space.
These DEGs include previously described upregulated genes like Per1
(Fig. 5B), Nr4a1 (Fig. 5C), Homer1 (Fig. 5D), and Arc (Fig. 5E), which
showed localized increases in the neocortex, as well as downregulated
genes like Rbm3 (Fig. 5F) and Cirbp (Fig. 5G), which showed
hippocampus-specific changes, similar to those seen in our deconvo-
lution approach. Using ToppGene52, we found the top five enriched
mouse phenotypes were related to abnormal synaptic transmission
(83 DEGs), abnormal synaptic physiology (83 DEGs), abnormal learn-
ing/memory/conditioning (84 DEGs), abnormal cognition (84 DEGs),
and abnormal CNS synaptic transmission (75 DEGs) across the whole
coronal slice. GO-molecular function (GO:MF) enrichment analysis
showed similar functions enriched in previously identified brain region
such as RNA binding (found in the hippocampus), Ubiquitin-like pro-
tein ligase activity, GTP binding, kinase activity (found in the neo-
cortex), and neuropeptide and hormone activity (found in the
hypothalamus) (Supplementary Fig. 6 and Fig. 3).

We wanted to test the power of STANLY and spatial tran-
scriptomics for subregional analysis within the hippocampus, parti-
cularly area CA1 and the dentate gyrus. Both area CA1 and the dentate
gyrus were treated as binary masks, with dots situated within these
regions included into our analyses.We then conducted a two-sample t-
test at each spot within thesemasks as shown in Supplementary Fig. 7.
Becausewewereonly investigating one gene,Arc, weperformedourp-
value correction using the number of spots being tested, which was
140, giving us a threshold of p < 0.00075. Using this p-value, we found
that sleep deprivation significantly increased the mRNA expression of
the activity-dependent immediate early gene Arc in area CA1
(p < 0.0005), whereas there was little change or even slightly
decreased expression of Arc in the dentate gyrus. To validate the
reliability of our STANLY analyses, using samples from independent
sleep deprivation experiments, we performed in situ hybridization
using RNAscope (ACD) for Arc expression in the hippocampus. The
RNAscope analysis revealed that acute sleep deprivation significantly
increased Arc mRNA positive cells in the CA1, while there was no
change in the DG (Supplementary Fig. 7). Arc shows increased
expression in the hippocampus following acute sleep deprivation11,13.
Moreover, Arc has also been identified as having differential expres-
sion in the subregions of the hippocampus after sleep deprivationwith
significantly increased levels of Arc in the CA1 and no change or
decreased expression in the dentate gyrus53. Thus, the results from
STANLY analysis comparing subregions within the hippocampus are

consistent with our in situ hybridization experiments and with pre-
viously published results. These results validate the power of STANLY
and spatial transcriptomic approaches to identify spatially restricted
changes in gene expression.

Discussion
The identification of cell-type specific transcriptomic signatures has
been invaluable in distinguishing subclasses of cell types in the brain54

andhasprovided insights into brain disorders such as epilepsy, autism,
and Alzheimer’s disease55–57. However, the lack of spatial information
associated with single cell transcriptomics represents a significant
obstacle58,59, especially in an organ as complex as the brain. Spatial
transcriptomics combines a spatial barcode of RNA transcripts with
near single cell sequencing resolution providing a major advance for
understanding gene regulation across brain regions. However, the
recent development of this technology means that it is largely untes-
ted for the analysis of differential gene expression. Here, we used this
technique to examine the important problem of how acute sleep
deprivation affects gene expression across brain regions. The effects
of sleep deprivation onpublic health, and as a risk factor increasing the
susceptibility and incidence of numerous diseases, necessitate that we
utilize and develop techniques that will provide more detailed
understanding of the consequences of sleep loss.

The spatial transcriptomic platform provided sequencing depth
comparable to single cell and single nuclear transcriptomic studies in
terms of gene number per spot, with the advantage of enriching
mature RNA transcripts (Supplementary Data 1). Potentially, the clus-
tering of a small number of cells in the spots of the slides allows for a
greater sequencing of mature cytoplasmic RNA molecules, compared
to the nuclear mRNA that contains immature RNAs still being pro-
cessed. This technique allowed us to anatomically distinguish indivi-
dual brain regions by aligning brain regions with the reference mouse
Allen brain atlas, where we found that individual brain regions showed
distinct transcriptional profiles after acute sleep deprivation. Indivi-
dual cell types clustered within a brain region similar to single cell
transcriptomic studies (Fig. 1). Thus, these results demonstrate the
comparability of spatial transcriptomics to the resolution of single-cell
approaches with the added power of simultaneous brain-wide inves-
tigation and additional spatial information.

Given the recent development of the spatial transcriptomics
platform, we employed both a relatively large number of samples for a
transcriptomics study and a highly conservative statistical analysis
using an FDR of 0.001 to determine differential gene expression in
individual brain regions following acute sleep deprivation. Using a
conservative FDR-corrected p < 0.001 as the threshold, we identified
fewer differentially expressed genes in the hippocampus and the
cortex compared to other transcriptomic studies11,13,21. As our sleep
deprivationmethod and protocols were similar to other studies11,13, we
believe that differences arise from our use of a highly conservative
statistical approach to avoid false positives due to the large sample size
(i.e., the number of spots in each slice). However,we recognize thatour
conservative approach may also result in false negatives, so all gene
expression data is included in the Supplementary Tables and available
through GEO (GSE222410). Importantly, all samples were collected at

Fig. 2 | The hippocampal region is the brain region the most transcriptionally
affected after sleep deprivation. A Histogram representing the number of sig-
nificant differentially expressed genes (DEGs) across each brain region previously
identified. Molecular functions enriched from the significant DEGs in the hippo-
campal region (B), neocortex (C), hypothalamus (D), thalamus (E). A gene is sig-
nificant if its FDR step-up <0.001 and its log2fold-change ≥ |0.2 | . The size of the
circle for each enrichedmolecular function is proportional to the significance. Only
molecular functions with a corrected p <0.05 are displayed (two-sided hypergeo-
metric test, Bonferroni step down). The DEGs within thesemolecular functions are
color coded to show whether they are downregulated (blue) or upregulated (red).

F UpSet plot of interactions between each brain region that have more than
50 significant DEGs (fiber tracts and caudatoputamen excluded). The number of
DEGs submitted for each brain region is represented by the histogram on the left
(0–600 range). Dots alone indicate no overlap with any other lists. Dots with
connecting lines indicate one or more overlap of DEGs between brain regions. The
number ofDEGs in a specific list thatoverlap is represented by the histogramon the
top. For spatial expression patterns with smaller numbers of DEGs, we were able to
list the gene names above their respective histogram. Genes are labeled for the
smallest lists. HPF Hippocampal Formation, Neo CTX Neocortex, HY Hypothala-
mus, TH Thalamus, Allo CTX Allocortex, SLAN Striatum-like amygdalar nuclei.
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Fig. 3 | Each hippocampal subregions displays a unique transcriptional impact
of sleep deprivation. A Prediction score of the deconvolution step for each of the
2085 spots of a representative example slice for CA1 pyramidal layer and dentate
gyrus (DG) granule cells are representedwith the color legend fromblue to red. The
rest of the subregions were selected based on biological knowledge using anato-
mical structures apparent on the H&E staining images. B Example of identified
hippocampal subregions on sample 16. C UpSet plot of interactions between each
hippocampal subregion. The number of differentially expressed genes (DEGs)
submitted for each subregion is represented by the histogram on the left (0–62
range). A gene is significant if its FDR step-up <0.1 and its log2fold-change ≥ |0.2 | .

Dots alone indicate no overlap with any other lists. Dots with connecting lines
indicate one or more overlap of DEGs between hippocampal subregion. The
number of DEGs in a specific list of overlap is represented by the histogram on the
top. Genes are labeled for the smallest lists. The unique lists of 53DEGs and 51 DEGs
for stratum radiatum and CA1 pyramidal cells respectively enriched specific
molecular functions displayed on the left. The size of the circle for each enriched
molecular function is proportional to the significance. Only molecular functions
with a corrected p <0.05 are displayed (two-sided hypergeometric test, Bonferroni
step down). A gene is considered significant if FDR<0.001 and log2fold change >
|0.2 | .
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the same time of day as the circadian clock has independent effects on
transcription60,61. In the current study, we were unable to investigate
potential asymmetries in the response of the left and right hemisphere
to the impacts of acute sleep deprivation, as we were limited by the
size of the spatial transcriptomic slides in which only one hemisphere
can fit within the bounds of the slide. In future studies, we plan to use

spatial transcriptomics to investigate more nuanced impacts of sleep
deprivation, such as interhemispheric differences.

We found that acute sleep deprivation had the greatest impact on
gene regulation in the hippocampus, neocortex, hypothalamus and
thalamus (Fig. 2A). Interestingly, this conservative approach strongly
illustrated heterogeneity of brain regions in response to sleep
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deprivation, as we found little overlap in the differentially expressed
genes across brain regions (Fig. 2F).Moreover, our results conclusively
demonstrate that directional changes in gene expression following
acute sleep deprivation vary widely across brain regions; approxi-
mately 98% of the differentially expressed genes downregulated in the
hippocampus,while the opposite was true in the neocortex, which had
approximately 96% of the differentially expressed genes upregulated
(Fig. 2B, C). Thus, analysis of gene expression changes after acute sleep
deprivation in older studies, in which the entire forebrain was col-
lected, may have masked the nuanced effects of sleep deprivation on
gene regulation. The dramatic differences in gene expression across
brain regions in response to sleep deprivation also suggests that a
single theory to explain the impact of wakefulness on the brain or the
function of sleep is unlikely to be satisfactory.

Theworkpresentedhere establishes the robustness andfidelity of
spatial transcriptomics for the determination and analysis of differ-
ential gene expression within brain subregions as well as for compar-
isons of gene expression across the brain. For example, in the
hippocampus, we found that acute sleep deprivation significantly
reduced gene expression involved in RNA processing similar to what
was found in previous research11. In the neocortex, upregulation was
observed for genes involved in DNA binding and transcription factor
activity, protein kinase regulation, GTPase regulation and ubiquitin
like protein ligase activity. This upregulation of genes involved in DNA
binding and transcription factor activity, such as the transcription
factorNr4a1, may explain the greater percentage of upregulated genes
found in the neocortex as increased expression ofNR4A1would lead to
increased expression of its target genes. Although a smaller number of
genes were identified in the hypothalamus and thalamus, they none-
theless indicate significant changes in molecular function17. For
instance, we found that the most significant alterations in the hypo-
thalamus were for genes associated with neuropeptide and hormone
signaling. The differences in the functions and molecular pathways
affected in each region may provide key insights into how each
structure is related to someof the broader and longer lasting effects of
acute sleep deprivation. Importantly, the differentially expressed gene
functions we identified in each brain region are consistent with the
behavioral effects that have been observed following sleepdeprivation
and attributed to changes in neuronal function, such as changes in
circadian behavior or impairments in long-term memory.

The high density of individually coded spots on the slide grid
enabled sub-regional analysis of gene expression between slices from
sleep deprived and non-sleep deprived mice when combined with a
deconvolution approach using single cell reference data sets from the
AllenBrainAtlas for thehippocampus (Fig. 3A) and the cortex (Fig. 4A).
Subregional analysis of the hippocampus was done for the CA1, CA2/3
pyramidal cell layers, dentate gyrus granule cell layer, and the stratum
oriens and the stratum radiatum which contain diverse populations of
interneurons. Although both the stratum oriens and the stratum
radiatum contain interneurons, the functions of these two layers are
distinct, and receive different anatomical inputs. Given the disparate
functions and circuitry of the hippocampal subregions, we predicted
that sleep deprivation would result in distinct transcriptional profiles
in these subregions.With the decreased number of sample spots in the

analysis of hippocampal subregions, the FDR thresholdwas lowered to
0.1 for the identification of significant DEGs to reduce the number of
false negatives, similar to the FDR used for RNA-seq studies of hip-
pocampal subregions62. We found that sleep deprivation induced the
largest number of changes in gene expression in the CA1 and stratum
radiatum. Surprisingly, there were only four genes affected by sleep
deprivation in the stratum oriens, although interneurons within this
region have been shown to be plastic and provide input to CA1 pyr-
amidal cells63. These results suggest that sleep deprivation has the
broadest impact on gene regulation in the excitatory neurons of the
hippocampus. This result is consistent with previous research in which
manipulations of protein synthesis within hippocampal excitatory
neurons ameliorated the impacts of sleep deprivation on hippo-
campus dependent long-term spatial memory64. However, it should be
noted that the power of subregional analysis for differential gene
expression within the hippocampus may be limited by the number of
spots in each subregion. In comparison to the individual layered ana-
lysis of the neocortex, there were fewer differentially expressed genes
detected in the subregions of the hippocampus (Fig. 3C vs 4B). It is
probable that the small number of sample spots and subsequent lack
of statistical power for analysis of theCA2 andCA3 subregions resulted
in a failure to detectDEGswith some genes reported as false negatives.
Future research in which single-cell RNA-seq is combined with spatial
transcriptomics could resolve these issues.

We found that within the neocortex, sleep deprivation differen-
tially affected individual cortical layers (Fig. 4B), and that Layers 2/3
and 5 were the most affected by sleep deprivation. Interestingly,
changes in gene expression following sleep deprivation were unique
for individual layers:more than65%of the geneswereunique inLayer 5
and 75%of the genes in Layer 2/3were unique. Although the number of
genes affectedwas smaller for Layer 4 and Layer 6, the number of layer
specific gene changes for these layers was still approximately 50%.
From this we can observe that there are distinct impacts of sleep
deprivation on individual cortical layers. Indeed, Layer 2/3 function as
corticocortical projections to layer 5 and form a prominent inter-
laminarpathway to amplify, integrate, distribute and temporarily store
information within subsets of neurons65. From the Layer 5, pyramidal
tract neurons project to multiple targets including ipsilateral striatum,
thalamus, subthalamic nucleus and many brainstem and spinal cord
regions66. The elevated level of response from these two layers high-
light how the cortex is adapting in response to sleep deprivation, and
these connections may better illustrate why cortical functions and
properties are so altered by sleep loss67.

Spatial transcriptomics provides a potentially powerful approach
for large scale comparisons of gene expression across multiple con-
ditions or disease states. For the full capability of spatial tran-
scriptomics to be realized, it is necessary to develop the analysis tools
for the alignment of spatial transcriptomic data sets into a common
anatomical reference space to allow an unrestricted comparison of
gene expression between samples. To further this goal, we pioneered
the adaption of bioinformatic tools to facilitate the transformation and
registration of spatial transcriptomic data sets with the anatomical
reference space of the Allen Mouse Brain Atlas (Fig. 5). By computa-
tionally aligning the spatial transcriptomic data through a digital spot

Fig. 4 | Each cortical layer of the neocortex displays a unique transcriptional
impactof sleepdeprivation.APrediction scoreof thedeconvolution step for each
of the 2085 spots of a representative example slice for each cortical layer are
representedwith the color legend fromblue to red: layer 2–3 (A1), layer 4 (A2), layer
5 (A3), layer 6 (A4). We can distinguish between distinct sequential laminar exci-
tatory neurons layers on the aggregated profile (A5). B UpSet plot of interactions
between each deconvoluted cortical layers of the neocortex. The number of dif-
ferentially expressed genes (DEGs) submitted for each layer is represented by the
histogram on the left (0–225 range). A gene is significant if its FDR step-up <0.001
and its log2fold-change ≥ |0.2 | . Dots alone indicate no overlap with any other lists.

Dots with connecting lines indicate one or more overlap of DEGs between cortical
layers. The number of DEGs in a specific list of overlap is represented by the his-
togram on the top. Genes are labeled for the smallest lists. L2/3 = Layer 2 and 3;
L4 = Layer 4; L5 = Layer 5; L6 = Layer 6. The unique lists of 174 DEGs for layer 5 and
149DEGs for layer 2/3 that enrich specificmolecular functions are listed on the left.
The size of the circle for each enriched molecular function is proportional to the
significance. Onlymolecular functions with a corrected p <0.05 are displayed (two-
sided hypergeometric test, Bonferroni step down). A gene is considered significant
if FDR<0.001 and log2fold change > |0.2 | .
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Fig. 5 | Registration of spatial data to Allen Common Coordinate Framework
and statistical analysis of aligned transcriptomic spots. ANonlinear registration
of the tissue image from a single brain slice (A1) and its transcriptomic spot coor-
dinates (A2)—shown as example: the gene Camk2n1 – to the template image (A3),
slice 70 from the Allen P56 Mouse Common Coordinate Framework (CCF), Allen
Mouse Brain Atlas, mouse.brain-map.org. Due to the nonlinear nature of the
registration, we were able to precisely align the sample image (A4) to landmarks in
the template image and apply that transformation to the spot coordinates (A5). To
account for different numbers of spots in individual samples, digital spots spaced
at 150 µm in a honeycomb were created for the template slice. Each digital spot is
populated with the log base 2 normalized transcriptomic counts from the 7 nearest
spots from each sample in a group (A7). This approach allows the comparison of
gene expression across entire brain slices in an unrestricted inference space.

B–G Samples were split into non-sleep deprived (NSD, n = 6, 42 sample spots per
digital spot) and sleep deprived (SD, n = 7, 49 sample spots per digital spot). The
range of the color bar for the mean calculations is set from 0 to a log2 fold-change
of 3, the maximum fold change for the genes shown, while the color bar for the
SD>NSD t-statistic (B3–G3) is bounded to [−4,4], which is approximately the
equivalent to the FDR <0.1. *indicates the gene is significant at FDR<0.1, **indicates
significance at FDR<0.05. We show a selected group of 6 genes from the 413 DEGs
(Supplementary Data 10) (B–G). Panel 1 shows for each gene (B1–G1) the mean
normalized gene count in NSD, panel 2 depicts themean normalized gene count in
SD (B2–G2) and panel 3 shows the t-statistics (B3–G3). The following DEGs are
depicted: B Per1, 4 significant spots. C Nr4a1, 29 significant spots. D Homer1,
306 significant spots. E Arc, 168 significant spots. F Rbm3, 31 significant spots.
G Cirbp, 9 significant spots.
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workflow with the Common Coordinate Framework, we can observe
gene expression changes between the sleep deprived and non-sleep
deprived conditions for individual genes of interest. This coordinate
approach allows significant changes in gene expression to be visua-
lized and analyzed for individual spots across the brain (Fig. 5 and
Supplementary Data 10) in greater detail and with much higher sen-
sitivity for localized changes within larger anatomical structures than
the region of interest approach above. We used this approach at its
most basic level to examine single gene expression across the brain,
finding 413 genes that significantly changed after sleep deprivation.
However, our data shows that even genes with robust changes after
sleep deprivation display regional differences in expression, which
emphasizes that sleep deprivation has localized impacts on gene reg-
ulation. With the formidable technological advances that have been
made over the past decade, specifically those enabling detailed ana-
lysis of gene regulation at multiple levels, one of the greatest chal-
lenges facing neuroscientists is the integration and management of
complex multimodal data sets. There is a critical need to integrate
large data sets for spatial and specific cell type characterization of the
mouse brain, as the majority of preclinical research is done using the
mousemodel. The bioinformatic approach for spatial gene expression
analysis across brain regions that we developed for this study helps to
meet the challenge of integrating complex data sets for mouse spatial
transcriptomic data sets and reveals critical regional selectivity in the
impact of brief periods of sleep loss across the brain.

Methods
Animals
Male C57BL/6 J mice (Jackson Laboratory #000664), age
2.5–3.5 months were used for all the experiments. Mice were group
housed (up to 5 per cage) in cages containing soft bedding with food
(NIH-31 irradiated modified mouse diet #7913) and water available ad
libitum in a 12 h :12 h light-dark schedule. The start of the lights-on
period is defined as Zeitgeber time zero (ZT 0). Experiments were
conducted according to National Institutes of Health guidelines for
animal care and use and were approved by the Institutional Animal
Care and Use Committee (IACUC) at the University of Iowa.

Sleep deprivation
All mice were single housed 7 days prior to the experiment with
corncob bedding (Envigo, Teklad ¼” corncob, #7907) and soft bed-
ding for nesting. Mice had ad libitum access to food and water during
sleep deprivation. Mice were habituated for 5 days prior to the
experiment by the researcher conducting the experiments. Habitua-
tion, performed in the behavior room for experiments, was done by
holding each mouse in the palm for 2min and then after returning to
the home cage, tapping the cage for 2min. Sleep deprivation was
performed for 5 h from ZT 0 – ZT 5 using the gentle handling
method32,33. Briefly, the experimenter tapped the side of the cage, as
needed, to keep each mouse awake. When taps were no longer suffi-
cient the mice received a light “cage shake” to rouse the animal. NSD
mice remained in the colony housing room throughout the 5 h period.

Tissue processing and data generation
Eachmousewas rapidly euthanized by cervical dislocation at ZT 5with
the whole brain rapidly extracted and flash frozen by≥ −70 °C iso-
pentane (n = 8 SD and n = 8 NSD). Frozen brains were stored at −80 °C.
Prior to sectioning, a small tissue sample from the cerebellum of each
frozen brain was removed, RNA extracted and quality assessed using
RNA IntegrityNumber (RIN). Brainswith a RINabove 7were embedded
in optimal cutting temperature medium (OCT) and cryosectioned at
−20 °C (10μm sections) with the Leica CM3050 S Cryostat in the Iowa
Neuroscience Institute (INI) NeuroBank Core. One coronal section per
mouse, corresponding approximately to section 45 of the Paxinos
Mouse Brain atlas, was mounted on Visium Spatial Gene Expression

Slides (catalog no. 2000233, 10x Genomics). For tissue collection, we
selected a slice that resembled section 45 of the Paxinos Mouse Brain
Atlas based on the following features: the shape of the dentate gyrus
and fit of CA1 andCA3bands to the atlas; size and shape of fimbria; size
and separation of optic tract and internal capsule; size of lateral ven-
tricle. Sections were immediately processed with the 10x Genomics
Visium Gene Expression Slide kit. Full details on the methods used are
found in themanufacturer’s instructions (CG000239 Rev AUser Guide
Visium Spatial Gene Expression Reagent Kits). First, the slides were
fixed in chilled methanol at −20 °C then stained with hematoxylin and
eosin (H&E) to visualize the slices. Brightfield images of the H&E-
stained sections were acquired (20X) using an Olympus BX61 Upright
Microscope. Raw images were stitched together with the CellSens
software (Version 3.2; Olympus) and exported as tiff files. Tissue was
then permeabilized with Permeabilization Enzyme (provided by 10X
Genomics in the Visium Gene Expression Slide & Reagent Kit, PN-
1000184) for 18min as determined based on tissue optimization time-
course experiments. Permeabilization resulted in the release of polyA
mRNA fromthe tissue enabling capture by poly(dT) primersprecoated
on the Visium Gene Expression slides. Slides also contained barcoded
probeswith uniquemolecular identifiers (UMI) so that the spatial gene
distribution was mapped. After reverse transcription and second
strand synthesis, the amplified cDNA samples from the slides were
transferred, purified, and quantified for library preparation. Sequen-
cing libraries were prepared by the Iowa Institute of Human Genetics
(IIHG) Genomics Division, according to the Visium Spatial Gene
Expression User Guide. Libraries were pooled for sequencing to
achieve sequencing depth balance across the samples based on the
relative area of coverage of each tissue on the slide. The fragmented
cDNA pools were sequenced using an Illumina NovaSeq 6000 SP or S1
flowcell running 100 cycle SBS chemistry v1.5 and aimed for 200 mil-
lion total read pairs. Read 1 was 48 nucleotide length (10 nt i5
index + 10 nt i7 index + 28 nt Spatial Barcode, UMI) and read 2 was 90
nucleotides length (insert).

Data processing
Raw FASTQ files and histology images were processed with the Space
Ranger software v.1.3.1, which uses STAR v.2.7.10a for genome align-
ment against the Cell Ranger mm10 reference genome refdata-gex-
mm10-2020-A, available at: https://cf.10xgenomics.com/supp/spatial-
exp/refdata-gex-mm10-2020-A.tar.gz. QC metrics returned by this
software are available in Supplementary Table 1. Quantification and
statistical analysis were done with Partek Flow package (Build version
10.0.21.0621) in the Iowa Institute of Human Genetics (IIHG) Genomics
Division. Briefly, to avoid raw gene expression counts of 0, a value of
0.001 was added to all counts prior to running SCTransform for nor-
malization and scaling steps. Interpretation of spatial transcriptomic
data requires effective preprocessing and normalization to remove
spot-to-spot technical variability such as the number of molecules
detected in each spot, which can confound biological heterogeneity
with technical effects. Recently, a modeling framework for normal-
ization and variance stabilization of molecular count data was made
available for spatial datasets, which improves downstream analytical
tasks including gene selection, dimensional reduction, and differential
expression68 from spatial datasets. After applying this modeling fra-
mework, the dimensionality of each sample was reduced using 100
principal components from the variance of the features. A graph-based
clustering was performed to identify the transcriptional signatures of
each spot using the Louvain clustering algorithm that includes 30
nearest neighbors and 20 principal components. The Louvain algo-
rithm is an unbiased approach connecting each sample spot to its
nearest neighbor. The strength of the connections is weighted based
on the similarity between the spots, and higherweight is given to spots
more closely related. We then applied the Louvain algorithm to iden-
tify “communities” of spots that are more connected to spots in the
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same community than they are to spots of different communities,
resulting in clustering of the sample spots. The threshold of 20 prin-
cipal components was chosen based the elbow plot of each sample
where most of the transcriptional variation was captured within the
first 20 principal components (Supplementary Fig. 8).

The identification of anatomical brain regions for all 16 samples
can be found in Supplementary Fig. 2. SCTransform algorithm yields a
clearer representation of the different brain regions than a classic log-
transformation (Supplementary Fig. 9). However, it is not suitable for
differential gene expression analyses, as previously the SCTransform
algorithm has been shown to result in ten times more significant false
positives when used for differential gene expression analysis69. To
overcome this challenge, output data from the Space Ranger pipeline
were renormalized with the log transformation approach including
Counts Per Million (each gene’s raw read count in a sample divided by
the total number of counts per million in a sample), with a value of 1
added to avoid0 counts and errors in differential analysis, and finally a
log base 2 transformation applied to all values to model and measure
proportional fold changes. This normalization revealed similar counts
variation across samples (Supplementary Fig. 10). The cluster and
brain region labels previously computed by the SCTransform algo-
rithm were then transferred to this log-transformed data. Differential
gene expression analysis was performed using the non-parametric
Kruskal–Wallis rank sum test because the distribution of the counts
does not conform to a normal or binomial distribution (Supplemen-
tary Fig. 11). Rank-sum tests have been the most widely used approach
in the field of single-cell transcriptomics70 because it is assumed that
every cell (or spot for spatial transcriptomics) is an identical replicate
that defines the sample size of the statistics and this approach gen-
erates fewer false positives. In this study, the Kruskal–Wallis test was
able to assign a median count of 1 (or 0 in log2), for both conditions,
for a gene that is not expressed in a given brain region resulting in a
fold change of 1 (or 0 in log2) (Supplementary Data 2, differential gene
expression analysis in each brain region). Therefore, a gene was con-
sidered significantly differentially expressed (DE) if it has a false dis-
covery rate (FDR) step-up (p-value adjusted) below0.001 and a
log2fold-change ≥ |0.2 | .

Addressing concerns regarding the potential for false negatives,
we conducted a thorough assessment of the power of our spatial
transcriptomic approach. We maintained a robust sequencing depth,
with an average of 30,000 UMI counts per spatial spot within the
neocortex, consistently across samples and specific neocortical layers
such as layer 2/3 (Supplementary Fig. 12). Minimal variability in UMI
counts was observed between samples and within the neocortex and
neocortical layer 2/3, underscoring the reliability and reproducibility
of our methodology (Supplementary Fig. 13). Notably, we identified 12
DEGs common to each neocortical layer after sleep deprivation. The
UMI variability of these sleep responsive DEGs did not differ from that
of 12 genes unaffected by sleep deprivation in the neocortical layers
(Supplementary Fig. 14). This comparative analysis provides strong
evidence against false positives, supporting the interpretation that our
findings reflect genuine biological changes rather than artifacts.

Deconvolution: integration with single-cell data
At 55 µm, spots from the Visium platform encompass the expression
profiles of 10–20 cells and represent averaged expression of the het-
erogeneous mixture of cells at the spot level. For this reason, com-
putational techniques called deconvolution have been developed that
use scRNA-seq data to infer cell proportions in bulk transcriptomic
samples71. Consequently, deconvolution of each of the spatial voxels
was performed to predict the underlying compositionof cell types.We
used a reference scRNA-seq dataset of ~14,000 adult mouse cortical
cell taxonomy from the Allen Institute51. We applied the anchor-based
integration that enables the probabilistic transfer of annotations from
a reference to a query set, here it is our SCTransformed gene

expression matrix output from Partek Flow®. We then took advantage
of the SCTransform normalization to label transfer the cell-type
identification of scRNA-seq clusters into the transcriptional signatures
of the spatial voxels. The voxelswith the highest prediction score were
labeled and transferred to the log-transformed data for downstream
differential gene expression analysis. The deconvolution of all
16 samples can be found in Supplementary Fig. 5.

GO molecular function enrichment analyses of differentially
expressed genes (DEGs)
The ClueGO72 and CluePedia73 plug-ins of the Cytoscape
3.9.0 software74 were used in “Functional analysis”mode for analyzing
the Gene Ontology Molecular Function (4691 terms) database in net-
works for DEGs. The names of significant DEGs were pasted into the
“Load Marker List” of ClueGO, and the organism “Mus Musculus
[10090]” was selected. Only pathways with a p < 0.05 were displayed
on the figures (Supplementary Data 4). The GO Term Fusion was used
allowing for the fusion of GO parent-child terms based on similar
associated genes. The GO Term Connectivity had a kappa score of 0.4.
The enrichment was performed using a two-sided hypergeometric
test. The p-values were corrected with a Bonferroni step down
approach.

Data and spot preprocessing for STANLY
We inspected all 16 samples visually, excluding any with serious tissue
damage or a large amount of tissue folding after adhesion to the slide
limiting our analysis to 13 samples. Samples were collected from the
left or right hemisphere, but to maximize spatial similarity, we mir-
rored the right hemisphere samples (2) to the left hemisphere, so that
all samples could be aligned in the left hemisphere space. After
importing the image data of the slice along with the filtered feature
matrix, we reduced the list of spots per slice down to only those listed
as “in tissue” by Space Ranger and masked the filtered feature matrix
for each sample to first remove empty non-tissue spots. We further
removed fromthe analysis any in tissue spots that had fewer than5000
total gene counts, which might indicate an error with the spot itself.
Any genes that expressed 0 total reads across an entire sample were
removed due to low statistical viability. For these 13 samples, the
average number of in tissue spots per slide was 2548. Given the loca-
lized nature of gene expression to certain tissues or regions of a
sample, rawgene counts in each spot are likely to be correlated to their
neighbors, but not necessarily across an entire sample. This leads to a
high likelihood of a right tail distribution of data when genes are
regionally expressed, with potentially high counts in some spots and
counts of zero in others. In order to account for this distribution of
data, we performed log base 2 normalization on the raw gene counts
being fed into the analysis. Log base2 normalization is specifically
useful in the case of biological data such as gene counts as this nor-
malizes the data to look for proportional rather than additive changes
in expression. STANLY uses 7 neighboring spots in each calculation to
account for spatial uncertainty, which is an inevitable problem for
every alignment process. Importantly, every spot retains its original
log base 2 value, and all 7 spots are utilized in our t-statistics. This
strategy reduces spurious findings based on small misalignments.

While this basic principle—the alignment of individual data sets to
a common template—is applicable to all kinds of multiomics data
sets75, this version of STANLY has been optimized for the data sets in
this study (e.g., regarding resolution, the number of dots, etc.).

Image preprocessing
Our data was collected as coronal slices of the mouse brain, chosen to
be similar to slice 45 in the Paxinos Mouse Atlas, which is similar to
Allen Brain Atlas slice 70, so as a template, we chose slice 70 from the
Allen Common Coordinate Framework30. The code base for image
preprocessing steps were performed using SimpleITK76 (v.5.3.0) and
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scikit-image77 (v.0.19.3) aswell as SciPy78 (v.1.7.3) andNumPy79 (v.1.21.5)
for processing the filtered feature matrices from Space Ranger and
performing analysis on the registered spots.

For our current pipeline, most coronal tissue adhered to the slide
in such a way that a simple rotation of [0°, 90°, 180, or 270°] is suffi-
cient to bring the tissue images into the same general orientation as
the template image. For those images from the right hemisphere, we
additionally performed a symmetrical flip on the images and their
corresponding spots to match the hemisphere of the template image.
This hemisphere combination allows us to maximize the usability of
tissue slices in the analysis. Any rotation or mirroring transformation
to the tissue image is applied also to the spot coordinates so that these
maintain the same space throughout processing. One common pro-
blem when trying to register different image modalities is how to
handle differences in voxel resolution. In the platform used, we know
the size of each spot (55 µm) as well as their distance on center from
each other (100 µm). Using the image spot scaling information pro-
vided by Space Ranger, we can accurately calculate the size of each
spot in the original high-resolution image and calculate the voxel to
real world resolution and bring the image into the same resolution as
the template. To perform the registration, the tissue image is con-
verted to gray scale. The template image is alsomin-maxnormalized to
bring it into range of a normal gray scale image rather than the original
multi-channel image. To mask the background noise from the sample
images we ran a 20 µm Gaussian blur on each image, from which we
generated a binary tissuemaskusing theOtsumethod,which allowsus
to mask out all voxels except for those that contain tissue from the
registration process.

Image registration
After the initial rotation, we selected a single image from our sample
set to act as our “best fit.” For the best fit, we chose a sample that had
good shape and image quality. This selection of a bestfit image is done
to minimize the need of registering each sample individually to the
template image, which has a higher potential for error, and instead
register them all to the best fit image that shares more of the image
characteristics of H&E stains. To run the registration of the best fit
sample (Fig. 5A1) and its spots (Fig. 5A2) to the CCF template image
(Fig. 5A3) we used the symmetric image normalization method (SyN)
nonlinear registration tools from Advanced Normalization Tools
(ANTs)80 (v.2.3.2), specifically the SyNAggro transformation using a
mattes SyN metric with parameters of: SyN sampling = 32, flow
sigma= 3, gradient step =0.1, and registration iterations = [120,
100,80,60,40,20,0]. The result of this registration can be seen applied
to the tissue image (Fig. 5A4) and to the tissue spots (Fig. 5A5). After the
best fit image was registered to the CCF template image, we used the
same registration parameters to register the remaining samples to
the unregistered best fit image, and then finally applied “best fit to
template” transformation generated above to each sample and its
spots, bringing them into common space (Fig. 5A6).

Digital spots
With all sample images and their spot coordinates in theCCF reference
space, we developed a method to create “digital spots” to make run-
ning analysis on multiple samples simpler and more closely repre-
sentative of spacing of the spots in relation to eachother. Visium spots
are organized in a honeycomb arrangement, where each 55 µm spot
has 6 equidistant nearest neighbors spaced 100 µm away on center.
Knowing this, we created digital spots that replicate the characteristics
of the platform spots in the digital space. Using the 10 µmresolutionof
the CCF template, we wrote a function that generated a honeycomb
spaced grid of digital spots in CCF space and within the bounds of our
template mask by defining the desired spacing between digital spots.
Due to inevitable spatial uncertainty during registration, we set the
spot spacing of our digital sampling to 150 µm in order to “smooth” the

data, a method already common in neuroimaging. We then measured
Euclidean distance between each digital spot and template registered
tissue coordinates fromall samples in the experiment.We sorted these
distances and selected at each digital spot from each sample the 7
nearest neighbor spots up to 450 µm, or approximately 3 digital spots
away from the center of the digital spot. We chose 7 because of the
hexagonal properties of the spot spacing, with every 1 spot having 6
nearest neighbors. Each digital spot is, therefore, a vector of multiple
spots from each of the registered samples, e.g., for our 13 samples, this
sampling would include up to 7 × 13 sample spots at each digital spot.
For our data, this method generated 2052 spots for the CCF template
image (Fig. 5A7), of which we removed 160 spots from analysis for not
having sufficient nearest neighbors across samples, leaving 1892 spots.
Examples of this sampling canbe seen in Fig. 5B–G,with the first image
in each plot showing the mean of the digital spots of log base 2 nor-
malized gene counts for NSD samples (Fig. 5B1–G1), the second image
showing the mean of normalized gene counts for SD (Fig. 5B2–G2).

Statistical analysis of digital spots. We performed a two-tailed t-test
on each digital spot with a Šidák p-value correction (Šidák, 1967) for
the number of genes as follows:αs = 1 – (1–α)(1/m). Whereαs is the Šidák
corrected p-value, α is the original p-value (and m is the number of
genes in the transcriptome, n = 18,893). Based on these numbers, any
genes that differed between NSD and SD with a p < 2.71e-06 was con-
sidered significantly differentially expressed.

The results of the two-tailed t-test for 6 example DEGs can be
found in Fig. 5 (Fig. 5B3–G3). We used the Šidák method for statistical
analysis because it assumes that each test is independent of eachother.
However, we also tested the Bonferroni and Benjamini–Hochberg
methods for FDR correction to verify the strength of the gene analysis.
We found the same number of DEGs (413) for the Bonferroni correc-
tion as the Šidák, while the Benjamini–Hochberg generated 422 DEGs.
The overlap of genes between the Šidák andBonferroni correctionwas
100%, with the Benjamini–Hochberg including an additional 9 genes
(Supplementary Fig. 15). Thus, spatial transcriptomics provides a
robustdata set for differential gene analysis irrespective of themethod
used to correct for multiple comparisons.

Functional enrichment analysis of DEGs using ToppGene. ToppFun,
the functional enrichment analysis tool fromToppGene suite52 was run
by pasting the list of 413 DEGs generated by STANLY into the ToppFun
enrichment gene set and searching for an enrichmentofGO:Molecular
Functions, GO: Biological Processes, and Mouse Phenotypes (Supple-
mentary Fig. 6).

RNAscope In situ hybridization. To validate the results derived from
STANLY, we used RNAscope in situ hybridization to assess Arc mRNA
expression in the hippocampus. RNAscope was performed using
commercially available fluorescent reagent kits according to the
manufacturer’s protocol (Advanced Cell Diagnostics, Inc). In brief,
mice were subjected to acute sleep deprivation for 5 h using gentle
handling (cage taps and cage shakes). Animals were euthanized by
cervical dislocation 1 h after sleep deprivation. Non sleep deprived
animals were also euthanized at the same time to eliminate any cir-
cadian effect. Brains were dissected from SD and control NSD mice at
the same circadian time and fixed for 3 h using 4% paraformaldehyde
in PBS at 4 °C. Brains were transferred to 30% sucrose in PBS and kept
at 4 °C for 48–72 h. Brains were then cryosectioned at −20 °C (25μM),
with coronal slices placed in a cryoprotective solution (30% sucrose,
30% ethylene glycol in PBS) and stored at −20 °C. Sections were rinsed
in cold 1xPBS and then mounted and dried on Superfrost Plus micro-
scope slides (Fisher Scientific, Cat. #12-550-15). Tissue sections on
slides were arranged to enable multiple sample conditions on each
slide including positive and negative in situ controls, non-sleep
deprived sections and sleep deprived sections. For in situ
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hybridization, slides were then submerged in 50% ethanol, 70% etha-
nol, and two 100% ethanol steps for 5min each at room temperature.
Slides were then pretreated with solution according to the manu-
facturer directions for 30min, and then washed with 1xPBS twice. The
probe RNAscope™ Mm-Arc-C3 (Cat No. 316911-C3) was hybridized to
the slides for 2 h at 40 °C. Following hybridization, slides were washed
twice with wash buffer at room temperature and then subjected to a
series of hybridizations and washes with the AMP 1, AMP 2, AMP 3 and
AMP 4 reagents as directed by manufacturer (ACD). Prolong diamond
antifade mountant with DAPI (Thermofisher, Cat. # P36962) was used
to protect sections and visualize nuclei. Hippocampi were imaged
using Leica confocal microscopes.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The spatial RNA-seq data has been deposited in the National Center for
Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)
under accession number GSE222410. Data analysis and processing
were performed using commercial code from Partek Flow package at
https://www.partek.com/partek-flow/. Source data are provided with
this paper. Two screenshots of the reference mouse Allen brain atlas
(http://atlas.brain-map.org) were used in two figures. The coronal
section image 72 was used in Fig. 1C. The coronal section image 70
from the Allen P56Mouse Common Coordinate Framework (CCF) was
used in Fig. 5A3 aswell as a template for the alignment step in STANLY.
A reference scRNA-seq dataset of ~14,000 adult mouse cortical cell
taxonomy from the Allen Institute was used for deconvolution (DOI:
10.1038/nn.4216). Themm10 referencegenomeused for the alignment
of the reads in spatial transcriptomic can be found here: https://cf.
10xgenomics.com/supp/spatial-exp/refdata-gex-mm10-2020-A.tar.gz.
Source data are provided with this paper.

Code availability
The code for the deconvolution analysis can be accessed through
GitHub (https://github.com/YannVRB/Sleep-deprivation-spatial-
transcriptomic.git). The code for STANLY and subsequent analysis
can be accessed through GitLab (https://research-git.uiowa.edu/
zjpeters/STANLY).
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